
 

Radiative neutrino mass via fermion kinetic mixing
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We propose that the radiative generation of the neutrino mass can be achieved by incorporating the
kinetic mixing of fermion fields which arises radiatively at one-loop level. As a demonstrative example of
the application of the mechanism, we present the particular case of the Standard Model extension byUð1ÞD
symmetry. As a result, we show how neutrino masses can be generated via a kinetic mixing portal instead of
a mass matrix with residual symmetries responsible for the stability of multicomponent dark matter.
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In the Standard Model (SM) of electroweak (EW) inter-
actions, neutrinos are predicted to be massless. There are
many extensions of the SM that generate Majorana neutrino
masses via the Weinberg dimension-five operator [1]
LHLH=Λ realized at tree level [2–10], and one-loop level
[11–16], as well as Dirac neutrino masses [17,18].
In this paper, we introduce a new possibility that kinetic

mixing of fermions occurs radiatively and it leads to the
radiative generation of neutrino masses. In order to present
the idea of kinetic mixing of fermions that induces the
radiative generation of neutrino masses, we introduce the
minimal set of fields in the context of Uð1ÞD dark gauge
symmetry extension of the SM. The field content for the
SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞD gauge symmetry
case is shown in Table I, where all fermions are presented
by left-handed fields. The last column in Table I shows the
number of copies beside the flavor count. The quantum
number assignments for these fields are presented in
Table I.
First of all, let us show how the kinetic mixing between

two new fermions AL and Ci
L can be generated. In order for

the kinetic mixing to occur radiatively, we need mediators
which are a massive fermion ΨL and new scalars s7;11. In
addition, a scalar ϕ is introduced so as to spontaneously
break Uð1ÞD and then hϕi ¼ vϕ=

ffiffiffi
2

p
. The new interaction

terms leading to the kinetic mixing between AL and Ci
L are

given by

−LKM ¼ ΨLaYab
A ALbs11 þ ΨLaYab

Ci Ci
Lbs

�
7

þ μ3ϕs11s7 þ H:c: ð1Þ

Note that all terms which could give AL a mass, even at
one-loop order, are forbidden by symmetry, whereas the
mass terms for Ci

L are allowed. The Feynman diagram
representing the fermion kinetic mixing mechanism is
shown in Fig. 1. In general, all five copies of CL can
kinetically mix with AL, but without loss of generality and
for the sake of simplicity, we take the bases of CL fermions

TABLE I. Particle content for the GSM ⊗ Uð1ÞD model. The
bold values indicate that the numbers given are irreducible
representations of the non-Abelian groups.

Field SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞD Flavors Copies

Q 3 2 1
6

0 3 1

uc 3̄ 1 − 2
3

0 3 1
dc 3̄ 1 1

3
0 3 1

L 1 2 − 1
2

0 3 1
ec 1 1 1 0 3 1
H 1 2 1

2
0 1 1

AL 1 1 0 3 3 1
CL 1 1 0 1 3 5
NL 1 1 0 −4 3 1
Nc

R 1 1 0 4 3 1
SL 1 1 0 −2 3 4
ΨL 1 1 0 5

2
3 1

Ψc
R 1 1 0 − 5

2
3 1

ηL 1 2 − 1
2

3 1 1
ηD 1 1 0 −1 1 1
ϕ 1 1 0 2 1 1
s7 1 1 0 7

2
1 1

s11 1 1 0 − 11
2

1 1

*skkang@seoultech.ac.kr
†opopo001@ucr.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 115025 (2018)

2470-0010=2018=98(11)=115025(5) 115025-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.115025&domain=pdf&date_stamp=2018-12-17
https://doi.org/10.1103/PhysRevD.98.115025
https://doi.org/10.1103/PhysRevD.98.115025
https://doi.org/10.1103/PhysRevD.98.115025
https://doi.org/10.1103/PhysRevD.98.115025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


in which only one particular Ci
L mixes with AL. It is

worthwhile to notice that ϕ carries evenQD charge in order
to generate a residual Z2 symmetry upon breaking of
Uð1ÞD, which stabilizes the dark matter (DM) candidate.
This residual symmetry is desirable to prevent the collaps-
ing of the loop down to tree level, i.e., to prevent the s7 and
s11 from obtaining the vacuum expectation values (VEVs).
In our case, it is achieved by choosing the specific QD
charge assignments for the fields in the loop. The other
new fields are required to generate neutrino masses and for
cancellation of chiral anomalies, as will be shown later.
The result of Fig. 1 produces the effective kinetic mixing
between two fermion fields which leads to the Lagrangian
kinetic term {aĀL∂Ci

L þ H:c:, where a represents the loop
structure and will be given in Eq. (5). All relevant kinetic
terms are presented by

L ¼ {ð ĀL C̄i
L Þ∂

�
1 a

a� 1

��
AL

Ci
L

�
: ð2Þ

In order to bring the kinetic terms into canonical form, the
first step is to rotate by π=4 so that the kinetic matrix
becomes diagonalized. Next, renormalization of the cor-
responding fermion fields is required for the kinetic terms
to be properly normalized. Finally, we need to diagonalize
back the mass matrix of the fermions AL and Ci

L in the new
basis of properly normalized mass eigenstates F1L and F2L.
This rotation will differ from π=4 due to the presence of
rescaling. The relation between (AL, Ci

L) and (F1L, F2L) is
given by

�
AL

Ci
L

�
¼ Uðπ=4; δÞ†R−1Uðα; 0Þ†

�
F1L

F2L

�
ð3Þ

¼
� 1 − ϵffiffiffiffiffiffiffi

1−ϵ2
p

0 ϵffiffiffiffiffiffiffi
1−ϵ2

p

��
F1L

F2L

�
: ð4Þ

Here, Uðθ; δÞ is the unitary 2 × 2 transformation with
mixing angle θ and relative phase change δ, Im½ϵ� ¼
Im½ae−{2δ� ¼ 0, tan 2α ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϵj2

p
=jϵj, and R ¼

Diagð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jϵjp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jϵjp Þ. a is defined as

a ¼ 1

16π2
Y�
A½ssRcsRGðys2R; ys1RÞ þ ssIcsIGðys1I; ys2IÞ�YC;

ð5Þ

Gðyi; yjÞ ¼
½yiðyi=2 − 1Þ ln yi − yjðyj=2 − 1Þ ln yj

ð1 − yiÞ2ð1 − yjÞ2

þ yiyjðyiyj þ 4Þ ln
�
yi
yj

��
2

þ 1

2
fyiðyi − 1Þ − yjðyj − 1Þ þ yiyjðyj − yiÞg�;

ð6Þ

where yi ¼ m2
si=M

2
Ψ, and Yukawa couplings are given with

the flavor indices suppressed. Here,MΨ is the Dirac mass of
ΨL, and ssRðsIÞ and csRðsIÞ stand for the sinus and cosinus,
respectively, corresponding to the mixing between the real
(imaginary) components of s7 and s11, which is proportional
to μ3 in Eq. (1). The final form of the relevant Lagrangian is
{F1L∂F1L þ {F̄2L∂F2L −MF2

F2LF2L, and the mass eigen-
values are MF1

¼ 0 and MF2
¼ mC exp½{2δ�=ð1 − jϵj2Þ,

where mC is the mass of Ci
L.

Now, let us consider how Dirac neutrino mass can be
radiatively generated. For our aim, lepton doublet L
couples only to AL, and NL is needed as a Dirac mass
partner for νL. A fermion field ΨR is added to produce a
Dirac mass for ΨL. Also, new scalar fields ηL and ηD are
added for the generation of Dirac radiative neutrino mass
(see Fig. 2). The new interaction terms leading to the
radiative generation of Dirac neutrino mass are given by

−LDM ¼ LaiYab
L ALbη

†i
L þ ALaYab

N NLbη
�
D

þ Ci
LaY

ab
CiCjC

j
Lbϕ

� þ μDη
2
Dϕ

þ λHηϕHiηLjηDϕ
�ϵij þ λsηη

2
Ds

�
7s

�
11 þ H:c:; ð7Þ

where H develops a nonzero VEV, hH0i ¼ v=
ffiffiffi
2

p
. Note

that the λHηϕ quartic scalar term, which mixes η0L with ηD, is
needed to generate Dirac radiative neutrino mass. Figure 2

FIG. 1. Radiative kinetic mixing between CL and AL in the
GSM ×Uð1ÞD gauge symmetry case.

FIG. 2. Radiative neutrino mass generation via fermion kinetic
mixing in the GSM ⊗ Uð1ÞD gauge symmetry case. Crosses
between the AL and CL fields correspond to kinetic mixing given
in Fig. 1.
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represents the radiative neutrino mass generation via kinetic
mixing for GSM ×Uð1ÞD gauge symmetry. Thus, neutrino
masses are generated via the effective dimension-eight
LH NLϕ

2ðϕ�ϕÞ operator at three-loop order after H and
ϕ develop nonzero vacuum expectation values after spon-
taneous symmetry breaking.
The neutrino Dirac mass corresponding to the mixing

between νL and NL [see Eq. (12)] is given by

mloop¼
YNMF2

YLϵ
2

16π2
½sηRcηRFðx1R;x2RÞþsηIcηIFðx2I;x1IÞ�;

ð8Þ

where sηRðηIÞ, cηRðηIÞ stand for the sinus and cosinus,
respectively, corresponding to the mixing between the real
(imaginary) components of η0L and ηD. Fðxi; xjÞ is defined
as

Fðxi; xjÞ ¼
xi ln xi − xj ln xj þ xixj ln

xj
xi

ð1 − xiÞð1 − xjÞ
; ð9Þ

with xi ¼ m2
ηi

M2
F2

. The extra suppression from ϵ inmloop allows

for a wider range of masses, mass splittings, and Yukawa
couplings.
For completeness of the model with GSM ⊗ Uð1ÞD

gauge symmetry, we require that SUð3ÞC × SUð2ÞL ×
Uð1ÞY triangular anomalies are canceled in the same
way as in the canonical SM case. Since there are no
fermions that transform nontrivially under the SM and dark
sector simultaneously, any cross anomalies between the SM
and Uð1ÞD are trivially absent. The only anomalies to
consider for cancellation are Uð1ÞDGrav and ½Uð1ÞD�3. For
this purpose, multiple copies of CL as well as new fermions
SiLði ¼ 1; ::; 4Þ, Nc

R, and Ψc
R are introduced. Considering

Uð1ÞD sector anomalies, they cancel in the following way:P
iQDi¼1×ð3Þþ5×ð1Þþ4×ð−2Þþ1×ð−4Þþ1×ð4Þþ

1×ð5
2
Þþ1×ð−5

2
Þ¼0,

P
iQ

3
Di¼ 1× ð3Þ3þ5× ð1Þ3þ

4× ð−2Þ3þ1× ð−4Þ3þ1× ð4Þ3þ1× ð5
2
Þ3þ1× ð−5

2
Þ3¼ 0.

In addition to LSM, LKM, and LDM, we introduce invariant
mass terms of ΨLðRÞ and NLðRÞ and extra new interaction
terms given by

−Lextra ¼ ALaYab
ASiS

i
LbηD þ Ci

LaY
ab
CiSjS

j
Lbη

�
D

þ S̄iLaY
ab
NSiNRbϕþ H:c:; ð10Þ

where Ci
L and SjL run over 1–5 and 1–4, respectively.

After EW and dark symmetry breaking due to the
symmetry and field content of the model, we obtain two
residual darkZ2 symmetries which are not ad hoc. The first
Z2 symmetry is analogous to the one from the canonical
scotogenic model, but here is it obtained from Uð1ÞD
spontaneous symmetry breaking. The otherZ2 symmetry is

new and present here due to fractional charge assignments
of the particles involved in the kinetic mixing. This gives us
the opportunity for the multicomponent DM case. SM
fields, NL;R, SL, and ϕ fields transform trivially, fields with
ð−1ÞQDð¼oddÞ which are ηL, ηD, AL, Ci

L transform as ð−;þÞ,
scalar fields with fractional QD charges, i.e., s7, s11,
transform as ðþ;−Þ, and ΨL;R transform as ð−;−Þ under
both Z2 symmetries, respectively.
Let us present the mass spectrum of the new fields we

introduced.
Fermions: We need to consider three different

sectors that do not mix with each another. First, the
ðνL; NL; Nc

R; SLÞ sector, which is ðþ;þÞ under Z1;2
2 .

Next, the Z1
2 ∼ ð−Þ odd sector similar to the one present

in the canonical scotogenic paper [12], ðAL; Ci
LÞ fields.

Lastly, the Z2
2 ∼ ð−Þ odd fermions, special for this model,

due to the presence of kinetic mixing, i.e., ΨLðRÞ. Starting
with the Z2 even fermions we have and considering the
Lagrangian given in Eqs. (7) and (10), we get the following
mass matrix for these new fermions and neutrinos

0
BBB@

0 mloop 0 0

mloop 0 MN 0

0 MN 0 YNSivϕ
0 0 YNSivϕ 0

1
CCCA ð11Þ

in the ðνL; NL; Nc
R; S

i
LÞ basis. We choose the basis for SiL in

which the linear combination of the four SiL’s that couple to
NR appears in the mass matrix, and the other three
orthonormal combinations do not couple to NR. Before
Uð1ÞD symmetry breaking, NLðRÞ is a vectorlike fermion
with mass MN , and the neutrinos together with SiL are
massless. After Uð1ÞD symmetry breaking, we get one
heavy Dirac fermion, mostly NLðRÞ, and most importantly,
the neutrino combines with SiL to become a Dirac fermion.
The eigenvalues, to the leading order in the mloop ≪ MN ,
YNSivϕ limit, are approximately given by

mν≈
mloopffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM2
NY

−2
NSiv

−2
ϕ

q ; mH ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þY2
NSiv

2
ϕ

q
: ð12Þ

Neutrinos are Dirac at leading order. Since the lepton
number is violated softly by two units by the μDη

2
Dϕ

trilinear term, neutrinos become pseudo-Dirac when
higher-loop corrections are considered. In the case where
the mloop does not provide enough suppression for the
neutrino masses, the ratio of MN=vϕ can provide extra
suppression for the neutrino masses. For example, if
mloop ∼ 10−4 GeV, then MN=vϕ ∼ 106 would give
mν ∼Oð0.1 eVÞ. The other three SiL states orthonormal
to the SjL state coupled to the NR fermion obtain their
masses radiatively through Ci

L Majorana masses.
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It is worthwhile to note that in the Z1
2 ∼ ð−Þ odd sector,

AL remains massless till neutrinos get their masses, such
that AL mass is generated through Dirac neutrino mass
(mloop). To generate radiative neutrino masses, we need a
fermion mass in the loop, which is MF2

the mass of F2L

mass eigenstate. F2L is mixed state of AL and CL
interaction eigenstates, mostly CL, whereas the other mass
eigenstate, F1L mostly AL, is still massless. Radiative
neutrino masses are generated without MF1

. Therefore,
the dominant contribution to the mAðMF1

Þ comes from the
effective four-loop diagram proportional tomloop, andmA is
then given by

YNmloopYL

16π2
½sηRcηRFðx1R; x2RÞ þ sηIcηIFðx2I; x1IÞ�; ð13Þ

where Fðxi; xjÞ and xiðjÞ are given in Eq. (9). This is an
important point because ifAL obtained itsmass in some other
way, the neutrinos would generate their masses throughAL’s
mass, and the kinetic mixing would contribute in the
subleading order and be unnecessary. Also, it is important
to mention that this predicts one dark fermion to be naturally
lighter than the mloop since its mass is one-loop suppressed
with respect to themloop and overall four-loop suppressed. To
avoidmA < mν, we can use the freedomofMN . For instance,
setting MN=vϕ ∼ 106, mloop ∼ 10−4 GeV, and Yukawa’s of
Oð1Þ would give mν ∼Oð0.1 eVÞ and mA ∼OðkeVÞ. The
five copies of Ci

L dark fermions obtain their masses through
hϕi at tree level by incorporating the diagonalization of the
5 × 5 mass matrix in the Ci

L basis. The Z2
2 ∼ ð−Þ odd sector

vectorlike fermion Ψ has an invariant mass of MΨ.
Gauge bosons: The Uð1ÞD dark gauge boson gets its

mass through a canonical Higgs mechanism during sponta-
neous symmetry breaking of Uð1ÞD gauge symmetry in the
dark sector. Mass of the dark Uð1ÞD gauge boson is given
bym2

AD
¼ 2g2Dv

2
ϕ, and the corresponding would-be Nambu-

Goldstone boson is Im½ϕ�. Because of the absence of
scalars with nonzero VEV that simultaneously transform
under GSM and dark Uð1ÞD gauge symmetry, there is no
tree level mixing between Aμ

D and SM neutral gauge
bosons. Mixing will appear at one-loop order through
η�;0
L running in the loop, but it is loop suppressed and we
will ignore the mixing here. The rest of the gauge bosons
obtain their masses just like in the SM.
Scalars: The charged Higgs scalar from the SM H�

corresponds to the would-be Nambu-Goldstone boson and
gets eaten up by W�. The other electrically charged scalar
η�L , which is part of the ηL doublet needed for the neutrino
mass generation, does not mix withH� due to the presence
of Z1

2 under which ηL ∼ − and H ∼þ. For electrically
neutral scalar components, we have three sectors: the
mixing of real components of H0 and ϕ, and the real
and imaginary components of ðη0L; ηDÞ and ðs7; s11Þ.

ðH0
I ;ϕIÞ correspond to the longitudinal degrees of freedom

of the Z and AD gauge bosons. The three separate sectors
arise due to the 2 × Z2 symmetries present; the first one is
analogous to the canonical scotogenic model and plays the
same role here, whereas the second Z2 symmetry in this
case is unique and is present here due to the kinetic mixing
mechanism and the fractional charges of the particles
involved. It can be thought of as a dark stabilizing
symmetry for the dark sector within dark sector of
the scotogenic model. In this way, the corresponding
neutral scalars can be categorized as ðH0;ϕÞ ∈ fþ;þg,
ðη0L; ηDÞ ∈ f−;þg, and ðs7; s11Þ ∈ fþ;−g under the two
Z2 symmetries. All 2 × 2 scalar mass matrices can be easily
diagonalized using unitary rotations with one angle.
The GSM ⊗ Uð1ÞD model can accommodate the multi-

component DM scenario. The lightest of the particles that
transform as Z1;2

2 ∼ ð−;þÞ is one component, and the
stability is provided by the Z1

2 symmetry, which is exact.
Assuming MΨ > ms7;11 , the second component is the
lightest eigenstate of the s7, s11 sector, which transforms
as Z1;2

2 ∼ ðþ;−Þ. In this case, Ψ ∼ ð−;−Þ under Z1;2
2 would

decay into lighter s7;11 eigenstates ∼ðþ;−Þ and AL ∼
ð−;þÞ through YA;C Yukawa couplings.
In this paper, we have presented neutrino mass gener-

ation via a fermion kinetic mixing mechanism in the
context of the anomaly free SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗
Uð1ÞD gauge symmetry. In this case, neutrino Dirac mass is
generated after EW and Uð1ÞD symmetry breaking via the
kinetic mixing of two fermions in the dark sector. As a
consequence, the neutrino mass is naturally suppressed by
the radiative nature of the generation mechanism. This
model includes two dark sectors: The first one is similar to
the scotogenic scenario, and the second is unique to realize
the kinetic mixing mechanism, which allows for the
multiparticle DM scenario. Despite presenting the particu-
lar example with GSM ⊗ Uð1ÞD gauge symmetry, the
kinetic mixing idea is more general and can be realized
in cases with other gauge symmetries as well. In principle,
the kinetic mixing of fermions does not need to be carried
out in the dark sector, and we could kinetically mix
neutrinos with other fermions, but this would require us
to include sterile neutrinos in the model. Furthermore, in
this case, in order to increase the neutral fermion mass
matrix rank (to give the neutrino mass), one would need to
follow the following scenario: The neutrino mixes with
another neutral fermion leading to mass generation of the
dark sector. Then using the same diagram, the neutrino
would get mass through the mediation of the same dark
sector. These and other prospects and phenomenology are
among the further possible research directions of this work.
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