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Based on reasonable assumptions, we propose a new expression for Lloyd’s bound, which confines the
complexity growth of charged black holes. We then revisit holographic complexity for charged black
branes in the presence of a finite cutoff. Using the proposed Lloyd’s bound we find a relation between the
UV and the behind the horizon cutoff. This is found to be consistent with the factorization of the partition
function at leading order in large N. We argue that the result may be thought of as a holographic realization
of strong cosmic censorship.
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I. INTRODUCTION

In the past decade, there have been a lot of interesting
developments in understanding and resolving puzzles
related to the interior of black holes, the mysterious part
of the spacetime hiding behind the black hole event
horizon. In particular, in the context of the AdS=CFT
correspondence, in which these paradoxes can be given a
sharp form in terms of information processing of the
boundary conformal field theory (CFT) [1–4], a lot of
effort has been devoted towards resolving the aforemen-
tioned problems using the entanglement structure of
spacetime [5,6]. Some of the resolutions are even instru-
mental in understanding the unique nature of entanglement
in generic systems of quantum gravity [7,8].
These developments motivated a rigorous search for

probes both sensitive to the interior of a black hole and
which also systematically relate to the evolution of oper-
ators in the boundary CFT. Holographic complexity turned
out to be one such probe. It was originally proposed in
terms of an entangled pair of black holes [9]. The pair

exchanges information through a virtual wormhole struc-
ture, namely, the Einstein-Rosen (ER) bridge [10]. The
bridge growing in time is identified as the holographic
complexity growth in this set up. In an anti–de Sitter (AdS)
black hole spacetime such a notion naturally relates the
radial depth in the bulk spacetime to the growth of
boundary operators. As a consequence, the black hole
spacetime can be thought of as an onion shell-like structure
with each radial slice corresponding to a particular com-
plexity [9] of the dual boundary CFT. One efficient way
to compute the complexity of a holographic state was
proposed in [11,12]—the “complexity ¼ action” (CA)
conjecture. In this conjecture, the holographic complexity
is given by the on-shell action on the Wheeler-DeWitt
(WdW) patch which is the domain of dependence of any
Cauchy surface in the bulk which intersects the asymptotic
boundary on the time slice, Σ,

CðΣÞ ¼ IWdW

πℏ
: ð1:1Þ

One interesting tool to investigate the precise relation
between complexity and radial depth in a black hole
spacetime is the recently proposed duality between AdS
spacetimes cut off at a finite radial distance and dual CFTs
deformed by an irrelevant operator, known as the TT̄
deformation [13–15]. TT̄ is a certain quadratic combination
of the stress-energy tensor of the boundary field theory
[16–18]. This correspondence is very nontrivially sup-
ported by the matching of the energy spectrummeasured by
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an observer at a finite distance away from the black hole in
AdS spacetime and that of a TT̄ deformed CFT.1

An attempt to explore the time evolution of holographic
complexity for a black hole in AdS with a radial cutoff was
made in [21]. It was shown that in order for this complexity
to grow linearly with time with the coefficient approaching
a constant value equal to twice the energy of the state, (this
is known as the “Lloyd’s bound” in the literature [22]2) it is
necessary to invoke a cutoff behind the horizon as well,
with a value fixed by the boundary UV cutoff. The precise
relation between the boundary cutoff and the cutoff behind
the horizon has also been obtained in [21]. The corre-
sponding relations between the two cutoffs for charged
black holes and near extremal charged black branes in AdS
were derived in [24] and in [25], respectively.
Intuitively the relation between the two cutoffs may be

understood as follows. In the context of the CA proposal,
the late time behavior of complexity growth is entirely
given by the on-shell action evaluated on the intersection of
the WdW patch with the future interior [26], leading to an
observation that the late time behavior of holographic
complexity is insensitive to the UV cutoff [21]. On the
other hand according to Lloyd’s bound [22], the late time
behavior of complexity growth is given in terms of the
energy of the system that is sensitive to the finite UV cutoff.
Therefore, while the physical charges are sensitive to a UV
cutoff, the late time behavior of holographic complexity
seems blind to the UV cutoff. A remedy to resolve this
puzzle is to assume that the UV cutoff will induce a cutoff
behind the horizon with a value fixed by the UV cutoff.
By relating the partition functions inside and outside of

the horizon of an eternal black hole using the “mirror
operator” construction of Papadodimas and Raju [5,6], the
authors of [27] established that a cutoff at a finite radial
distance does indeed imply a cutoff behind the horizon.
This guarantees a bulk effective field theory at leading
order in the 1

N expansion. Remarkably, the relation between
the cutoffs obtained this way, exactly matches the one
derived in [21], hinting at a deep connection between radial
distance and complexity as well as with the black hole
information paradox.

In this paper we shall consider a charged, eternal black
brane in AdS. It has an inner horizon in addition to its outer
event horizon which makes the causal structure of such
spacetime geometries even more rich and interesting. In
particular, there has been a long-standing debate regarding
the fate of an infalling observer after crossing the event
horizon of such black holes. Whether the observer can also
cross the inner horizon smoothly is a tricky question since
this horizon, being a Cauchy horizon, does not guarantee a
unique evolution of smooth initial data. This problem is
resolved in classical gravity using the conjecture of “strong
cosmic censorship” that predicts the eventual collapse of
the inner horizon as soon as the infalling observer reaches
it. This instability is an artefact of an infinite blue shift
effect. It is, however, very difficult to prove this in general
particularly beyond the regime of classical gravity. In recent
work, [28], a quantum test in form of the behavior of
boundary correlators was proposed in order to diagnose
the smoothness of the inner horizon for charged AdS
black holes.
In our study we will set the interior cutoff behind the

event horizon but outside the inner horizon and derive a
relation between the two cutoffs in two different ways; first
by making use of complexity growth and secondly by using
the validity of low-energy effective field theory and the
factorization of the corresponding Hilbert space. We will
then give a dual interpretation of our result in terms of the
emergence of strong cosmic censorship.
On our way towards deriving the relation between the

cutoffs, we will also address a long-standing issue regard-
ing the bound on the late time growth of complexity.
In the existing literature, there is no unique consensus on
the generalization of Lloyd’s bound for a charged system.
The reason for this apparent ambiguity is that, unlike the
uncharged case, in the case of a charged black hole, this
bound is hard to “derive” from first principles. There have
been two proposals based on “natural expectations”
[12,29]; however, both of them suffer from certain path-
ologies. The cutoff geometry makes this problem even
more complicated. However, in our case since we compute
the relation between the cutoffs in two different ways, it can
be used as a very nice diagnostic of the correct Lloyd’s
bound for a charged system. In fact, we will propose a new
bound for charged black holes (branes) which apart from
being consistent with several limits, namely, the zero cutoff
and zero charge limits, is also free from the aforementioned
issues associated with previous proposals.
The rest of the paper is organized as follows. In Sec. II

we present the computation of the late-time growth of
complexity in detail. Section III will be devoted to the
discussion of the generalization of Lloyd’s bound to
charged black branes. Here we will propose a new bound
and compare it with the previously existing bounds in the
literature. At the end of that section we will present the
relation between the two cutoffs implied by the proposed

1We note, however, that one should be careful once we are
dealing with a gravity theory with a finite radial cutoff [19]. It
has been shown that the TT̄ deformation might be better
described by imposing mixed boundary conditions at the asymp-
totic boundary [20].

2In the context of holographic complexity, it is known that
Lloyd’s bound may actually be violated [23]. Nonetheless, the
violation of Lloyd’s bound just modifies the relation between the
cutoff behind the horizon and the UV cutoff at intermediate times,
depending on whether at late times the bound is saturated from
above or below. This does not, however, affect the main
conclusion of our paper because in either case, the saturation
is guaranteed at late times and the late time behavior of
complexity growth is controlled by boundary physical charges
whose values are affected by a finite UV cutoff.
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bound. In Sec. IV we will derive the relation between the
cutoffs from a different perspective, namely from the
factorization of the partition function. We will show that,
provided we use the proposed Lloyd’s bound, the relation
between the cutoffs in both the approaches match exactly.
Section V is reserved for the interpretation of our results,
particularly, in terms of an emergent strong cosmic censor-
ship. We will conclude in Sec. VI with some comments on
the choice of ensembles and also some future outlooks.

II. COMPLEXITY OF A CHARGED BLACK
BRANE WITH CUTOFF

In this section we shall study the complexity growth of
an eternal charged black brane solution with a finite radial
cutoff.3 To proceed, let us first fix our notation. We will
consider the Einstein-Hilbert-Maxwell bulk action

Sbulk¼
1

16πGN

Z
ddþ2x

ffiffiffiffiffiffi
−g

p �
R−2Λ−

1

2
FμνFμν

�
; ð2:1Þ

for which eternal charged black brane solutions, for d > 2
may be given as follows4:

ds2 ¼ L2

r2

�
−fðrÞdt2 þ dr2

fðrÞ þ
Xd
i¼1

dx2i

�
; with

fðrÞ ¼ 1 −mrdþ1 þQ2r2d ð2:2Þ

and

At ¼
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 1

r
QLðrd−1þ − rd−1Þ: ð2:3Þ

Here m and Q are related to the mass and the charge of the
black brane, respectively. In particular, the total Arnowitt-
Deser-Misner (ADM) charge of the system is given by

Q ¼
I

�F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ

p VdLd−1

8πGN
Q; ð2:4Þ

where the d-form field, �F, is the Hodge dual of the
electromagnetic field strength tensor Fμν ¼ ∂μAν − ∂νAμ.
Vd denotes the transverse d-dimensional volume. GN is the
(dþ 2)-dimensional Newton’s constant and L is the AdS
length scale.

This geometry has two horizons, the outer horizon rþ, and
the inner horizon r−, as depicted in the Penrose diagram in
Fig. 1. They correspond to the positive real roots of the
equationfðrÞ ¼ 0, where fðrÞ is the blackening factor given
in (2.2). In our choice of coordinates in which the AdS
boundary is located at r ¼ 0, one has rþ < r−.
Furthermore, following [21], we introduce two cutoffs,

the UV cutoff at r ¼ rc and a cutoff at r ¼ r0 lying behind
the outer horizon. We place our cutoff, r0 in between the
inner and the outer horizons, rþ < r0 < r−. However, in
principle, r0 could also lie behind the inner horizon,
r0 > r−. For the moment, this is only a choice, but we
will elaborate upon and justify this in Sec. V.
Now we proceed to compute the late time growth of

complexity in the charged black brane geometry with the
aforementioned two cutoffs. We will use the CA proposal
given in (1.1),5 which requires the evaluation of the on-shell

FIG. 1. The Penrose diagram of the eternal charged black brane
with theWdW patch depicted in light green. The intersection of the
WdWwith the future interior is denoted in a darker green.We have
also labeled the four lightlike boundaries byB1;…; B4 and denoted
joint points of these boundaries with each other and with the
spacelike surface r0 byblackdots. The three lightlike joint points are
marked as J1, J2, J3. Moreover, we also introduce the three regions
a, b, c, which break the WdW patch into simple contributions.

3We note that the complexity of charged black holes in the
presence of a finite cutoff has been already studied in [24] (see
also [30]) and indeed most parts of this section are a review. Our
aim is to present the results in a new, inspiring form.

4In what follows we only consider electric brane solutions in
which the only nonzero components of the electromagnetic field
strengths are Frt and Ftr. We have also assumed the radial gauge,
Ar ¼ 0. For a complete discussion on these solutions and how to
obtain them see [31].

5Although the procedure of computing complexity using the CA
proposal is, by now, quite standard, in order to be self-contained,
we will present the computations in a rather detailed manner.
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action on the WdW patch associated with a boundary state
at a time, τ ¼ tL þ tR. Here tL is the time at the left
boundary and tR at the right boundary. The full WdW patch
is the union of the dark and the light green regions in
Fig. 1.6 As for the computations in this section, we will
closely follow [21] (see also [24,25]).
In general, the action on the WdW patch contains the

following pieces [32–34]

IWdW ¼ Ibulk þ IGH þ ICT þ Ij: ð2:5Þ

The individual terms on the right-hand side correspond to
the on-shell bulk action, the Gibbons-Hawking surface
terms, the counterterms, and the contributions coming from
the joint points on the WdW patch, respectively. While the
bulk contribution can be straightforwardly obtained by
evaluating the on-shell bulk action (2.1) on the WdW patch,
the boundary contributions are slightly subtle. One needs to
specify the choice of ensemble at this point. We prefer
to work in the grand canonical ensemble, which amounts to
having a fixed chemical potential for the boundary CFT.
For any other ensemble, one has to be careful about
Maxwell boundary terms on different surfaces [31,35].
We postpone further discussion on this subtlety to Sec. VI.
While the Gibbons-Hawking term is required to achieve

a well-defined variational principle, to guarantee finite free
energies in respective regions of spacetime one needs to
add further counterterms [36]. The explicit forms of these
terms are given by7

IGH ¼ � 1

8πG

Z
ddþ1x

ffiffiffiffiffiffi
jhj

p
K; ð2:6Þ

ICT ¼ ∓ 1

8πG

Z
ddþ1x

ffiffiffiffiffiffi
jhj

p d
L
: ð2:7Þ

Since the WdW patch possesses both spacelike and
timelike boundary surfaces, we have to be careful about
fixing the signs in front of (2.6) and (2.7). A timelike
surface corresponds to the upper choice of sign, while for a
spacelike one the lower sign is appropriate. For example, in
our setup, the upper signs of both (2.6) and (2.7) are to be
used for the cutoff at rc, whereas the lower signs have to be
used when dealing with the cutoff at r0.
The requirement of having boundary terms on the null

boundaries can be avoided by simply choosing an affine
parametrization of the null directions as we will do in what
follows. However, for such boundaries, we do need to
consider contributions to the action coming from joint

points. These are the points where two null boundaries
intersect or a null boundary intersects with a spacelike or
timelike boundary. The former case requires

Ij ¼ � 1

8πG

Z
ddx

ffiffiffi
σ

p
log

jv1 · v2j
2

; ð2:8Þ

where v1 and v2 are the null vectors of the two respective
boundaries

v1 ¼ α

�
−dtþ dr

fðrÞ
�

v2 ¼ β

�
dtþ dr

fðrÞ
�
: ð2:9Þ

Here, α and β are parameters, which must be introduced
due to the ambiguous nature of the normalization of
lightlike vectors. σ is the induced metric on this surface.
The latter case, namely the intersection of a lightlike

boundary with either a spacelike or timelike boundary takes
on a similar form

Ij ¼ � 1

8πG

Z
ddx

ffiffiffi
σ

p
log nμvμ; ð2:10Þ

where nμ refers to the unit normal of the timelike/spacelike
surface and where vμ is as given in (2.9).
In order to evaluate these contributions explicitly, it is

convenient to introduce the tortoise coordinate r� as

r� ¼ −
Z

∞

r

dr
fðrÞ ; ð2:11Þ

in terms of which, from Fig. 1, we can read off the null
boundaries of the WdW patch at late times as

B1∶t¼ tRþr�ðrcÞ−r�ðrÞ; B3∶t¼−tLþr�ðrcÞ−r�ðrÞ;
B2∶t¼ tR−r�ðrcÞþr�ðrÞ; B4∶t¼−tL−r�ðrcÞþr�ðrÞ:

ð2:12Þ

The action of the WdW patch only depends on the time
τ ¼ tL þ tR and not on the individual boundary times, tL
and tR. This follows trivially from the boost symmetry.
Therefore, to simplify our computation, without any loss of
generality, we can consider a time-symmetric configura-
tion, namely, tL ¼ tR ¼ t

2
. One could, in principle, also

choose time-shifted configurations, but this would not
affect the late time growth of complexity.

A. The bulk and the boundary contributions

In order to evaluate the bulk contribution along with the
Gibbons-Hawking and the counterterms, we split up half
the WdW patch into three regions, a, b, and c, as depicted
in Fig. 1. The bulk and boundary terms of the full WdW
patch will then be obtained by simply doubling the
contributions.

6We are ultimately interested in the late-time behavior which
means that we effectively restrict to the intersection of the WdW
patch with the future interior. This region is highlighted as the
dark green patch in Fig. 1.

7The same counterterm (2.7) also appears for a flat boundary
metric in the context of holographic renormalization [37].
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Let us first work through the bulk contributions.
We work on the full WdW patch (the union of the dark
and the light green regions) before reducing to the

intersection of WdW with the future interior. Evaluating
the action, (2.1), on-shell in the three regions a, b, and c
yields

Iabulk ¼
LdV
8πG

Z
r0

rþ
dr
Z

B1

0

dt

�
−
ðdþ 1Þ
rdþ2

þQ2ðd − 1Þrd−2
�

¼ LdV
8πG

Z
r0

rþ
dr
�
−
ðdþ 1Þ
rdþ2

þQ2ðd − 1Þrd−2
��

τ

2
þ r�ðrcÞ − r�ðrÞ

�
; ð2:13Þ

Ibbulk ¼
LdV
8πG

Z
rþ

rc

dr
Z

B1

B2

dt

�
−
ðdþ 1Þ
rdþ2

þQ2ðd − 1Þrd−2
�

¼ LdV
8πG

Z
rþ

rc

dr
�
−
ðdþ 1Þ
rdþ2

þQ2ðd − 1Þrd−2
�
ðr�ðrcÞ − r�ðrÞÞ; ð2:14Þ

Icbulk ¼
LdV
8πG

Z
rm

rþ
dr
Z

0

B2

dt

�
−
ðdþ 1Þ
rdþ2

þQ2ðd − 1Þrd−2
�

¼ LdV
8πG

Z
rm

rþ
dr

�
−
ðdþ 1Þ
rdþ2

þQ2ðd − 1Þrd−2
��

−
τ

2
þ r�ðrcÞ − r�ðrÞ

�
: ð2:15Þ

As stated above, for the full WdW patch these contributions
have to be doubled. Note, that we are working in a late time
approximation, rm ≈ rþ, such that (2.15) vanishes. Both the
Gibbons-Hawking term (2.6) and the counterterm (2.7) do
not contribute on the lightlike segments due to the affine
parametrization we choose. However, both do appear at the
spacelike cutoff surface located at r0. Here we get

IGH ¼ −2 ×
VLd

8πG

Z
τ=2

0

dt

�
ðdþ 1Þ 1

rdþ1
0

þQ2rd−10

−
1

2
ðdþ 1Þm

�
; ð2:16Þ

ICT ¼ 2 ×
VLd

8πG

Z
τ=2

0

dt
d

rdþ1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðr0Þj

p
: ð2:17Þ

The factors of 2 appearing in front of (2.16) and (2.17)
follow from the same logic of doubling the contributions.

B. Contributions from the joint points

In Fig. 1, as far as the late time behavior is concerned,
there are five joint point contributions, which we will
evaluate using (2.8) and (2.10). In order to specify the
location of these points it is useful to switch to the
following coordinates [38]

u ¼ −e−1
2
f0ðrþÞðr�−tÞ; v ¼ −e−1

2
f0ðrþÞðr�þtÞ: ð2:18Þ

In these coordinates the horizon is located at uv ¼ 0 or
equivalently r�ðrþÞ ¼ −∞ on which three of the joint

points are located. However, since both r�ðrþÞ and
logðfðrþÞÞ diverge, we must introduce ϵu and ϵv, which
can be interpreted as regularized locations of the horizon.
The three lightlike joint points are then represented by

J1∶ðϵu; v0Þ; J2∶ðϵu; ϵvÞ; J3∶ðu0; ϵvÞ; ð2:19Þ

where v0 and u0 designate the future interior null bounda-
ries. We denote the corresponding radial coordinates by
ru0;ϵv , rϵu;v0 , and rϵu;ϵv respectively. Using (2.8), we can
evaluate the contribution coming from these three joint
points. Similarly, contributions from the other two joints
located at the spacelike cutoff r0 can be evaluated using
(2.10). The total contribution from all five joint points is
given by

Ij ¼
VLd

8πG

0
B@log αβr2

0

L2jfðr0Þj
rd0

þ
log αβr2ϵu;ϵv

L2jfðrϵu;ϵv Þj
rdϵu;ϵv

−
log

αβr2u0 ;ϵv
L2jfðru0 ;ϵv Þj
rdu0;ϵv

−
log

αβr2ϵu;v0
L2jfðrϵu;v0 Þj
rdϵu;v0

1
CA; ð2:20Þ

where the first term corresponds to the two joint points at r0
and the remaining three terms, to the lightlike joint points.
We work in the approximation rϵu;ϵv ≈ rþ, ru0;ϵv ≈ rþ and
rϵu;v0 ≈ rþ, such that (2.20) simplifies to
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Ij ¼
VLd

8πG

 
log jfðrϵu;v0Þj þ log jfðru0;ϵvÞj − log jfðrϵu;ϵvÞj

rdþ

−
log αβr2þ

L2

rdþ
−
log αβr2

0

L2jfðr0Þj
rd0

!
: ð2:21Þ

Furthermore, in the limit, uv → 0, log jfðru;vÞj appearing in
(2.21) can be approximated as [38]

log jfðru;vÞj ¼ log juvj þ c0 þOðuvÞ; ð2:22Þ

where c0 is an u, v independent function. This further
simplifies (2.21) to

Ij¼
VLd

8πG

 
logju0v0jþc0

rdþ
−
logjfðr0Þj

rd0
−
logαβr2þ

L2

rdþ
þ log

αβr2
0

L2

rd0

!
:

ð2:23Þ

The ambiguity in (2.23) due to the presence of the last two
terms may in principle be removed by a further counterterm
[25,34,39]. However, since we are only interested in the
growth rate of complexity, we can ignore this issue since
only the τ-dependent first term of (2.23) will contribute in
this case.

C. The late time growth of complexity

Now that we have all the constituents appearing in (2.5),
evaluated on shell, on the intersection of the WdW patch
with the future interior, we can evaluate the late time growth
of the action by taking derivatives of (2.13), (2.14), (2.16),
(2.17), and (2.23) with respect to τ

dIbulk
dτ

¼ LdV
8πG

�
1

rdþ1
0

−
1

rdþ1
þ

þQ2ðrd−10 − rd−1þ Þ
�
; ð2:24Þ

dIGH
dτ

¼ LdV
8πG

�
m
2
ð1þ dÞ − ð1þ dÞ

rdþ1
0

−Q2rd−1
�
; ð2:25Þ

dICT
dτ

¼ LdV
8πG

�
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
rdþ1
0

�
; ð2:26Þ

dIj
dτ

¼ LdV
8πG

�ð1þ dÞm
2

− dQ2rd−1þ

�
: ð2:27Þ

On the other hand by making use of (1.1), one obtains the
late time growth of complexity as follows:

dC
dτ

¼ LdV
8π2Gℏ

�
ðdþ 1Þm −

d

rdþ1
0

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p �

−
1

rdþ1
þ

−Q2ðdþ 1Þrd−1þ

�
; ð2:28Þ

which could be further simplified, using fðrþÞ ¼ 0, to find

dC
dτ

¼ LdVd
8π2Gℏ

�
1

rdþ1
þ

þ 1

rdþ1
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
− 1

��
; ð2:29Þ

which has the same form as that of the neutral case (see
[21]) and the only charge dependence comes from the
blacking factor fðr0Þ. It is evident that it reduces to that
of the neutral case in the zero charge limit. On the other
hand it is also clear that for r0 → r− it gives the standard
expression for the late time growth of complexity of a
charged black brane [23,29],

dC
dτ

¼ LdVd
8π2Gℏ

�
1

rdþ1
þ

−
1

rdþ1
−

�
¼ LdVd

8π2Gℏ
Q2ðrd−1− − rd−1þ Þ:

ð2:30Þ

It is believed that the late time behavior of complexity
should be expressed in terms of conserved charges such as
energy. Therefore there must be a relation between r0 and
the UV cutoff rc, so that the above expression for the late
time growth of complexity can be written entirely in terms
of the conserved charges defined at the boundary. To find
such a relation it is natural to use the Lloyd’s bound. To do
so, in the next section we revisit Lloyd’s bound for charged
black branes (black holes).

III. LLOYD’S BOUND AND BEHIND THE
HORIZON CUTOFFS

Lloyd’s bound constitutes an upper bound on the growth
rate of the quantum complexity of any physical system
[22]. Explicitly, it is given as

dC
dt

≤
2E
πℏ

; ð3:1Þ

E being the energy of the system.
In [11,12] it was shown that the late time growth of the

WdWaction of a charge neutral AdS black hole satisfies the
relation

dIWdW

dτ
¼ 2E ¼ 2M; ð3:2Þ

which, in conjunction with (1.1), can be read as a statement
on the saturation of Lloyd’s bound (3.1). M here is the
ADMmass of the black hole in AdS which in the context of
the AdS=CFT correspondence can be identified with the
energy of the boundary CFT.8

8Although we are calling it “Lloyd’s bound” for historical
reasons, more appropriately, we should think of this as a bound
on holographic complexity given in terms of conserved quantities
at the holographic boundary. In presence of a UV cutoff, this
bound will, therefore, be sensitive to the cutoff.
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They further proposed the generalization of Lloyd’s
bound for a charged AdS black hole as

�
dC
dt

�
Lloyd

≤
2

πℏ

�
ðE − μQÞ − ðE − μQÞgs

�
; ð3:3Þ

where the subscript gs denotes the ground state. Computing
the growth explicitly and using the CA proposal, they
concluded that while this bound is saturated for a small
charged black hole, it is violated for finite sized charged
black holes.
However, the authors of [29] showed explicitly that

the claim of [11,12] was actually incorrect and even
small charged black holes disobey the bound (3.3). This
observation was quite intriguing because [11,12] attributed
the saturation and violation of the bound, respectively, by
small and finite-sized charged black holes to the fact that
the bound could only be saturated in the supersymmetric
limit and for UV complete holographic theories. This
further fueled the possibility that the bound proposed in
[11,12] was actually inappropriate.
Due to the fast scrambling nature of black holes,9 it is

natural to expect that black holes should saturate the
appropriately defined bound, irrespective of its size. In
[29] a new version of the bound on charged black holes was
proposed, namely

dC
dt

≤
1

πℏ
½ðE − μþQÞ − ðE − μ−QÞ�; ð3:4Þ

where E is the total energy andQ is the ADM charge of the
system given in (2.4). μ� denote, “formally”, the chemical
potentials associated with the two horizons, rþ and r−
respectively. However, one might complain that this state-
ment is a bit vague since the thermodynamics of the inner
horizon is not a strictly well-understood concept, and rightly
so. The way we should understand μ− here is through the
replacement rþ → r− in the expression for the CFT chemi-
cal potential μþ which is thermodynamically well defined.
However, it is worth mentioning that, although μ− cannot be
interpreted as a chemical potential from the perspective of
the boundary CFT, it can be reexpressed in terms of other
well-defined boundary quantities using the expressions of
ADM mass and charge in terms of rþ and r− [29].
While [29] explicitly established the saturation of the

proposed Lloyd’s bound (3.4) for charged (and also rotating
and Gauss-Bonnet) AdS black holes, they also showed how
this proposal reduces to (3.2) in the uncharged limit. This
limit is very interesting and follows from the fact that in the
neutral limit, where Q → 0 and r− → ∞ simultaneously,
μþQ → 0 and μ−Q → 2M while the energies E cancel
between the two terms.

Although (3.4) conforms with the saturation of Lloyd’s
bound for charged AdS black holes of any size, along with
other categories of black holes, this is slightly unnatural.
This can be understood from the limiting argument to the
neutral case mentioned above. The contribution in this limit
arises solely from the “−” side, namely from the term
which modifies the original proposal for Lloyd’s bound
because of the existence of the inner horizon. It is legitimate
to expect that all such contributions coming from the “−”
side will add up to zero in the neutral limit.
Moreover, due to this unnatural limiting behavior, it was

argued that Eq. (3.4) is unable to accommodate the right
expression for Lloyd’s bound when a finite cutoff is applied
to the theory [24].10

Based on the above observations we would like to
propose a new bound for the late time growth of complexity
as follows:

�
dC
dt

�
bound

¼ 1

πℏ
½ð2Eþ − μþQÞ − ð2E− − μ−QÞ�; ð3:5Þ

with� denoting the quantities associated with the outer and
inner horizons as before. It is then clear that in the zero-
charge limit, the contributions coming from the “−” side
will add up to zero and we are left with the contribution of
the “þ” side. Of course, for most cases in which Eþ ¼ E−
both proposals (3.4) and (3.5) result in the same expression
for Lloyd’s bound. The difference shows up when
Eþ ≠ E−, which may happen when we have a finite cutoff.
Indeed, we will also see that the expression for Lloyd’s
bound as given in (3.5) allows to consider the theory in the
presence of finite cutoffs. As we mentioned before [follow-
ing (3.4)], it is worth stressing once again that μ− cannot be
directly interpreted as a chemical potential. However, it is
possible to express μ− in terms of well-defined conserved
charges of the boundary CFT [29].
To proceed we note that for the case in which there is no

cutoff, the ADM energy can be directly computed from the
on shell gravitational action as [31]

E0 ¼
LdVd
16πG

m; ð3:6Þ

which is the same for both the inner and the outer horizon.
Now if we consider the cutoff at r ¼ rc, the physical energy
gets corrected by [15]

LdVd
16πG

m →
LdV
8πG

d
rdþ1
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p �
: ð3:7Þ

This can be derived in two steps, first by computing the
bulk energy enclosed by the cutoff surface at r ¼ rc

9Black holes may be considered the fastest scramblers,
see [40].

10The authors of [24] used the equation (3.3) for Lloyd’s
bound.
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and then using the holographic dictionary for the cutoff
AdS/ TT-deformed CFT correspondence to compute the
boundary energy11

Eþ ¼ LdV
8πG

d
rdþ1
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p �
: ð3:8Þ

While the presence of the cutoff will only modify the
energy contribution in the outside “þ” region, the
contribution coming from the “−” region will remain
unaffected,

E− ¼ LdVd
16πG

m: ð3:9Þ

This is supported by the zero charge limit in which, as we
mentioned, one would naturally expect that the contribution
of the “−” side should vanish in this limit.
We also need the contributions to Lloyd’s bound coming

from the chemical potentials. Following our conventions in
(2.2), (2.3), and in (2.4), the chemical potentials for the
outer and the inner horizons are given by

μQjþ ¼LdVd
8πG

Q2rd−1þ ; μQj−¼
LdVd
8πG

Q2rd−1− : ð3:10Þ

Now we are in a position to combine (3.8), (3.9) and (3.10)
to evaluate the bound given in (3.5)

�
dC
dτ

�
bound

¼ LdVd
8π2ℏG

�
2

1

rdþ1
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p �
−Q2rd−1þ

�
−

LdVd
8π2ℏG

½m −Q2rd−1− �

¼ LdVd
8π2ℏG

�
2

rdþ1
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p �
−mþQ2ðrd−1− − rd−1þ Þ

�
: ð3:11Þ

From this expression, it is clear that in the limit Q → 0,
the full contribution coming from the “-” side, namely
ð2E − μQÞ−, vanishes identically leaving only the contri-
bution coming from the canonical energy Eþ at the
boundary. This leads to the expected result�
dC
dτ

�
bound

¼ LdVd
8π2ℏG

�
2

rdþ1
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p ��
¼ 2Eþ:

ð3:12Þ
It is worth stressing again that both proposals for a suitable

Lloyd’s bound for a charged black brane, the one considered
in [29] and the other we proposed, namely, (3.5), reduce to
the uncharged limit, (3.2).However, the limits are achieved in
crucially different manners. Contrary to our case discussed
above, in the neutral limit of [29], “−” quantities contribute.

A. Behind the horizon cutoff

Apart from our proposal being physically more reason-
able, it will turn out that in the presence of cutoffs, our
proposal is the apt one. Before justifying this in the
following section, let us use our proposal to find the
relation between the two cutoffs.
Equating (3.11) to the late time growth of complexity

(2.29), one obtains a relation between rc and r0 as follows:

2

rdþ1
c

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p �
−m¼ 1

rdþ1
−

þ 1

rdþ1
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
−1

�
:

ð3:13Þ

To write this equation we have used the fact that

1

rdþ1
þ

−
1

rdþ1
−

¼ Q2ðrd−1− − rd−1þ Þ: ð3:14Þ

In the next section, we will use a different approach to
arrive at the result (3.13), which implicitly also verifies (3.5).

IV. FACTORIZATION OF THE
PARTITION FUNCTION

In this section we will investigate the possibility of
relating the UV and the behind the horizon cutoff from a
completely different perspective. This study follows
directly from the construction of interior operators in terms
of those describing the exterior regions proposed in [5].
Actually, based on this fact one can argue that the partition
function of the operators describing the interior of an
eternal black hole is proportional to the product of partition
functions of operators describing the left and right exteriors
of the black hole [27]. At leading order this connection may
be reduced to a relation between the on-shell actions
evaluated on the inside and outside of the black hole.
Using this approach for neutral, eternal black holes one

may find an expression for the cutoff behind the horizon
which is the same as that obtained in the context of
holographic complexity [27]. The aim of this section is
to extend this study to charged black branes.
To proceed, we note that in regions I and III of the

Penrose diagram depicted in Fig. 2, AdS=CFT provides us
with a map allowing us to write down nonlocal CFT
operators playing the role of the local bulk fields in these
regions11See [15] for the details of this computation.
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ΦI
CFT ¼

Z
ω>0

dωddk
ð2πÞdþ1

½Oω;k⃗fω;k⃗ðt; x⃗; rÞ þ H:c:�;

ΦIII
CFT ¼

Z
ω>0

dωddk
ð2πÞdþ1

½Õω;k⃗fω;k⃗ðt; x⃗; rÞ þ H:c:�; ð4:1Þ

where Oω;k⃗ and Õω;k⃗ are Fourier transforms of generalized
free fields in the CFT. These are special CFT operators
whose n-point correlators factorize into 2-point correlators
at leading order in the large N expansion [41]. The mode
functions fω;k⃗ are the solutions of the bulk equations of
motion in these two regions subject to normalizability
conditions at the respective boundaries.

On the other hand in the interior regions, such as II,
representation of the local bulk field needs both sets of
operators [5]

ΦII
CFT ¼

Z
ω>0

dωddk
ð2πÞdþ1

½Oω;k⃗gω;k⃗ðt; x⃗; rÞ

þ Õω;k⃗g̃ω;k⃗ðt; x⃗; rÞ þ H:c:�; ð4:2Þ

where gi
ω;k⃗

ðt; x⃗; rÞ and g̃i
ω;k⃗

ðt; x⃗; rÞ are bulk mode functions

in respective regions. However, for the obvious reason that
these regions cannot access the AdS boundaries, one
cannot impose any boundary conditions on these solutions,
and (4.2) follows naturally from the smoothness of the
horizon [5] or equivalently, the entanglement structure of
the dual CFT state [42]. It is worth mentioning that in the
expansions (4.1) and (4.2), the bulk radial coordinate r,
plays the role of a nonlocality parameter in the dual CFT.
Following [27], let us define the restricted partition

function in which the integration is taken over the fields
associated with regions I, II, or III of the corresponding
eternal black hole

ZðαÞ ∝
Z

DΦαe−iS
ðαÞ½Φα�; ð4:3Þ

where α ¼ fI; II; IIIg. We can rewrite the path integral
using the mode expansions in the respective regions which
yield

ZðIÞ ∝
Z

DOω;k⃗DO−ω;−k⃗e
−iSðIÞ½O�; ð4:4Þ

ZðIIIÞ ∝
Z

DÕω;k⃗DÕ−ω;−k⃗e
−iSðIIIÞ½Õ�; ð4:5Þ

ZðIIÞ∝
Z

DOω;k⃗DÕω;k⃗DO−ω;−k⃗DÕ−ω;−k⃗e
−iSðIIÞ½O;Õ�: ð4:6Þ

In general the restricted partition function in region II, (4.6),
does not factorize into the contributions coming from the
modesO and Õ; SðIIÞ½O; Õ� ≠ SðIÞ½O� þ SðIIIÞ½Õ�. However,
we know that for generalized free fields, mixed correlators
factorize at leading order of the 1

N expansion [41],

hO1O2 � � �OnÕ1Õ2 � � � Õmi ¼
1

ZðIIÞ
dnþmZðIIÞ

dJndJ̃m

				
J¼J̃¼0

¼ 1

ZðIÞ
dnZðIÞ

dJn

				
J¼0

þ 1

ZðIIIÞ
dmZðIIIÞ

dJ̃m

				
J̃¼0

þO
�
1

N

�

¼ hO1O2 � � �OnihÕ1Õ2 � � � Õmi þO

�
1

N

�
: ð4:7Þ

FIG. 2. Penrose diagram of the eternal, charged black brane.
The radial cutoff in region I lies at r ¼ rc and induces a cutoff
behind the outer horizon at r ¼ r0.
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Therefore in the large N limit, one obtains a simple relation
between the restricted partition functions at leading order of
the 1

N expansion

ZðIIÞ ∝ ZðIÞZðIIIÞ: ð4:8Þ

Intuitively, the above equation indicates that in order to
study region II, one needs twice the number ofmodes as those
in region I. It is worth noting that since the operator (4.2) is a
nonlocal operator in the dual field theory whose nonlocality
parameter is given by the AdS redial coordinate, imposing
any restriction on the nonlocality parameter (such as setting a
UV cutoff) would restrict the range of the spacetime
accessible to those fields defined behind the horizon.
Therefore, assuming that spacetime is cut off at the radial

distance rc, immediately and automatically implies that
there should also be a second cutoff in region II, the region
behind the outer horizon. This provides a justification for
the existence of the interior cutoff “r0”, we introduced in
the context of late time growth of the WdW action before.
Furthermore, one can fix the proportionality constant in
(4.8) and write down a relation involving the on-shell
actions, in the respective regions of the Penrose diagram as

eiðS
ðIIÞ
cut−off−S

ðIIÞ
0

Þ ¼ e2iðS
ðIÞ
cut−off−S

ðIÞ
0
Þ; ð4:9Þ

with SðiÞ0 denoting the on-shell action evaluated without a
cutoff. In view of the fact that the original relation (4.8) was
derived for generalized free fields, one might wonder at this
point about how one can identify the restricted actions with
the gravitational actions in respective regions.12 An intuitive
justification for doing this comes from the fact that at leading

order of 1
N, the classical effective action is indeed given by

the Einstein-Hilbert-Maxwell action, (2.1). The fluctuation
of this action around the classical geometry given by (2.2)
and (2.3) gives rise to the expectation value of the graviton
field which can be treated as a generalized free field of the
dual CFT. However, we should mention that this is only an
intuitive argument and we do not have a concrete proof for
the same. Rather we will consider this as a proposition
motivated by [27] where the relation between the restricted
gravitational actions led to a relation between two cutoffs in
the case of an uncharged black brane which was found to be
perfectly consistent with the well-accepted Lloyd’s bound in
the uncharged case. It is legitimate to expect that the same
should also work for our charged black brane.
Now we would like to use the relation (4.9) to determine

the relation between the two cutoffs: the UV cutoff, rc and
the cutoff behind the horizon, r0. We will again assume the
interior cutoff r0 to lie between the inner and the outer
horizons. Furthermore, here toowewill compute the on-shell
actions in the grand canonical ensemble. Also, as is standard
procedure, in order to ensure finite free energies in all
regions we are required to use both the Gibbons-Hawking
terms and the counterterms which have the forms given in
(2.6) and (2.7) respectively. With this, let us now write down
the on-shell actions in different regions explicitly.

A. Region I: Outside the outer horizon

First we calculate the on-shell action in the region
outside the outer horizon. This entails a radial integration
from rc to rþ. The individual components of the on-shell
action are given by

SðIÞbulkðrcÞ ¼
LdVdτ

8πG

�
1

rdþ1
þ

þQ2rd−1þ

�
−
LdVdτ

8πG

�
1

rdþ1
c

þQ2rd−1c

�
;

¼ LdVdτ

8πG
m −

LdVdτ

8πG

�
1

rdþ1
c

þQ2rd−1c

�
;

SðIÞGHðrcÞ ¼
LdVdτ

8πG

�
dþ 1

rdþ1
c

þQ2rd−1c −
dþ 1

2
m

�
;

SðIÞCTðrcÞ ¼ −
LdVdτ

8πG
d

rdþ1
c

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
: ð4:10Þ

Here, we have also introduced τ as a cutoff in time
direction. By summing up the individual contributions
we arrive at the total on-shell action in region I

SðIÞðrcÞ ¼ SðIÞbulkðrcÞ þ SðIÞGHðrcÞ þ SðIÞCTðrcÞ

¼ LdVdτ

16πG
ð1 − dÞmþ LdVdτ

8πG
d

rdþ1
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p �
:

ð4:11Þ

We now normalize this expression with respect to the no
cutoff case. Hence, we subtract from (4.11), the asymptotic
boundary limit, rc ¼ ϵ → 0, namely,

12We would like to thank the anonymous referee for bringing
up this subtlety.
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SðIÞðϵÞ ¼ LdVdτ

16πG
m: ð4:12Þ

This yields

ΔSðIÞ ¼SðIÞðrcÞ−SðIÞðϵÞ

¼−
LdVdτd
16πG

mþLdVdτ

8πG
d

rdþ1
c

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p �
: ð4:13Þ

B. Regions II: Between the two horizons

We now move to region II, which in principle runs from
rþ to r−. However, we are assuming the existence of a
cutoff situated between r− and rþ. Hence, we perform a
radial integration from rþ to r0. First note that without a
cutoff, the bulk action in region II amounts to

SðIIÞbulk ¼
LdVdτ

8πG

�
1

rdþ1
−

þQ2rd−1−

�

−
LdVdτ

8πG

�
1

rdþ1
þ

þQ2rd−1þ

�
¼ 0: ð4:14Þ

However, if we set a cutoff at r0 < r− this changes to

SðIIÞbulkðr0Þ ¼
LdVdτ

8πG

�
1

rdþ1
0

þQ2rd−10

�
−
LdVdτ

8πG
m; ð4:15Þ

which, as expected, clearly vanishes as we set r0 ¼ r−.
Noting again the spacelike nature of the cutoff surface r0 in
region II, the contributions of the boundary terms (2.6),
(2.7), are given by

SðIIÞGHðr0Þ ¼ −
LdVdτ

8πG

�
dþ 1

rdþ1
0

þQ2rd−10 −
dþ 1

2
m

�
;

SðIIÞCT ðr0Þ ¼
LdVdτ

8πG
d

rdþ1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
: ð4:16Þ

Hence, the full on-shell action in the interior for r0 < r−
is given by

SðIIÞðr0Þ¼SðIIÞbulkðr0ÞþSðIIÞGHðr0ÞþSðIIÞCT ðr0Þ

¼LdVdτ

16πG
ðd−1ÞmþLdVdτ

8πG
d

rdþ1
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
−1

�
:

ð4:17Þ

Just as we did for region I, we want to normalize the
cutoff partition function by subtracting the asymptotic
contribution, which for this case amounts to r0 ¼ r−.
Setting r0 ¼ r− makes the counter term and also the bulk
contribution vanish, the Gibbons-Hawking term remains
nonzero yielding the full on-shell action in this region
without cutoff as

SðIIÞðr−Þ ¼ −
LdVdτ

8πG

�
d

rdþ1
−

−
d − 1

2
m

�
: ð4:18Þ

One can then evaluate the difference ΔSðIIÞ as

ΔSðIIÞ ¼SðIIÞðr0Þ−SðIIÞðr−Þ

¼LdVdτd
8πG

�
1

rdþ1
−

þ 1

rdþ1
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
−1

��
: ð4:19Þ

We can now simply use (4.13) and (4.19) in (4.9) to find
a relation between the two cutoffs, r0 and rc

2

rdþ1
c

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p �
−m¼ 1

rdþ1
−

þ 1

rdþ1
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
−1

�
:

ð4:20Þ

This relation is identical to the one obtained by demand-
ing the saturation of Lloyd’s bound in (3.13). This match-
ing is very much reminiscent of the chargeless case already
noted in [27]. The charged scenario, in presence of the inner
horizon will provide a new interpretation of this result.

V. TOWARDS A HOLOGRAPHIC REALIZATION
OF STRONG COSMIC CENSORSHIP

Let us come back to the issue of the location of the cutoff
r0. As stated previously, there are, in principle, two options
in placing this cutoff. One may either put it between the
inner and the outer horizons, or it may also be assumed to
lie behind the inner horizon. In all our computations
presented above, we chose the former option. Although
this was only a choice initially, we will now argue that this
choice leads to a self-consistent physical interpretation of
our result.
It is worth mentioning here that in [25], the interior cutoff

was assumed to lie behind the inner horizon.13 This leads to
the late time growth of complexity being independent of
this cutoff. Of course this was also consistent with Lloyd’s
bound (3.4) upon which this assumption was made. In this
paper we have argued that this expression for Lloyd’s
bound exhibits certain unnatural features and therefore
needs to be modified.
Moreover the assumption made in [25] results in incon-

sistencies if the growth has to approach and eventually
saturate a bound at late times. This is because, whatever
the correct bound is, it should depend on the physical,
thermodynamical quantities of the boundary CFTand as we
already saw, these quantities are explicitly dependent on the
UV cutoff, rc. As a result, there will be a mismatch of scales
if we aim to construct an equation describing a bound, B,
on the growth of complexity, namely,

13We note however, that the main conclusion of that paper was
not based on this assumption.
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dC
dt

≤ B; ð5:1Þ

where the left-hand side of (5.1) will now be independent of
any cutoff and the right-hand side will be dependent on rc.
One could argue that this might be the case if saturation is
never met. However, it is quite unreasonable to expect such
a situation for an AdS black hole due to the “fast scrambler”
argument mentioned before.
Another interesting aspect of the setup considered in [25]

is that it adds to an apparent ambiguity. While it was
assumed that the late time growth of complexity is
independent of the cutoff behind the horizon, in order to
achieve the expected complexity growth for the near
horizon AdS2 region, one does need to consider the
counterterms coming from the behind the horizon cutoff.
Therefore, it turns out, in the setup of [25], this interior
cutoff is very much essential but it is not clear how this
should get fixed explicitly in terms of the UV cutoff,
contrary to our expectations.
Having the interior cutoff between the two horizons

solves all the aforementioned problems in a consistent way.
With the interior cutoff placed between the inner and the
outer horizons, the left-hand side of (5.1) depends on r0
and the right-hand side, on rc, thus providing the relation
between the cutoffs. Moreover, we obtained exactly the
same relation from the factorization of the partition
function. As a consequence of having a well-defined bulk
effective field theory, the factorization is expected to be
obeyed at least when the cutoff is sufficiently close to the
boundary of AdS.
The aforementioned arguments in favour of having the

interior cutoff in between the inner and the outer horizons
give us a hint about bulk reconstruction in AdS=CFT. The
exact matching of the relation between the cutoffs makes it
clear that complexity, as a probe, cannot penetrate the inner
horizon of the black brane or black hole if it is to be
consistent with the factorization of the Hilbert space at
large N. It therefore indicates emergence of a holographic
censorship in bulk reconstruction behind the inner horizon.
One might naturally identify this as a version of strong
cosmic censorship arising from holography.

VI. DISCUSSION AND OUTLOOK

In this work, we have revisited holographic complexity
for charged black branes in the presence of a finite cutoff.
We have seen that a UV finite cutoff enforces a cutoff
behind the outer horizon, with an expression determined by
the UV cutoff. This was shown in two ways.
First, by assuming that Lloyd’s bound is saturated for a

charged black hole in the presence of a cutoff, we related
conserved charges of this system to the late time growth of
complexity. Here, interestingly, the charges are only sensi-
tive to the UV cutoff, whereas the late-time behavior of
holographic complexity seems blind to rc. Assuming an

agreement to hold at late times forces a relation between the
two cutoffs.
Secondly, we saw that the same relation may also be

obtained using the leading-order factorization of the par-
tition function in the 1

N expansion. Following Papadodimas-
Raju’s construction of interior operators in terms of exterior
operators, implies that behind the horizon, twice the
number of modes are required.
A crucial point in order to make the overall setup

consistent is to use the correct expression for Lloyd’s
bound in terms of conserved charges such as the electric
charge at the boundary. Although in the literature there are
several proposals for Lloyd’s bound, they suffer from
certain pathologies. Our proposal (3.5), in the neutral limit,
reduces to the Schwarzschild case in a more natural way
with the contributions arising solely from the outer horizon.
Furthermore and perhaps more importantly, our proposed
relation between the two cutoffs (3.13) as derived using our
proposal for Lloyd’s bound, (3.5), guarantees an exact
match with the relation obtained from the Papadodimas-
Raju construction.
Our proposal for the expression of Lloyd’s bound (3.5),

can be further generalized to systems with more physical
conserved charges. For instance, in the case of a charged
rotating system, it can be readily generalized to

dC
dt

≤
1

πℏ
ð2E − μQ −ΩJÞþ − ð2E − μQ −ΩJÞ−; ð6:1Þ

where J and Q are angular momentum and charge, and Ω
and μ are their corresponding potentials.
In this paper we have only considered the case of an

electric black brane, although we could have also consid-
ered dyonic black holes, in which the system carries both
electric and magnetic charges. While in this case the final
expressions become more involved, essentially the physical
conclusions remain unchanged.
Moreover, in our computations, we have made a specific

choice of ensemble. We are working in a grand canonical
ensemble, in which the chemical potential μ is considered
fixed. However, it is of course interesting to examine
different choices of ensemble, specifically the canonical
ensemble. This requires the addition of a boundary term to
the action (2.1)

SM;b ¼
γ

8πG

Z
ddþ1x

ffiffiffiffiffiffi
jhj

p
nμFμνAν: ð6:2Þ

This generalizes our calculations to a larger choice of
ensembles designated by values of γ, which is in the
interval [0, 1]. γ ¼ 1 corresponds to the canonical ensemble
where the total charge Q is held fixed, while γ ¼ 0
corresponds to the grand canonical ensemble where instead
the chemical potential μ of the system is fixed and hence
reduces to the approach outlined in this paper. Choices in
between correspond to mixed ensembles. Holographic
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complexity of charged black holes in the presence of this
boundary term has been studied in [35,43].
The boundary term (6.2) would alter both the on-shell

action computed on the WdW patch and also the compu-
tations of partition functions taking into account the effec-
tive field theory of the interior. Accordingly, the relations
(3.13) and (4.20) between rc and r0 should be generalized to
an arbitrary choice of ensemble. The natural question would
then be if the relations obtained from the two approaches
should agree for general γ or if this should only work for a
specific choice of ensemble. We are investigating this issue
and we hope to come back with a precise answer in a future
publication. It will also be interesting to understand the near
horizon, near extremal limit of the construction with
arbitrary γ, as the presence of a boundary term of the form
(6.2) was shown to be essential in this limit [25,43].
Assuming that the leading order factorization of the

partition function works for arbitrary γ, following Sec. IV,
the relation (4.20) generalizes to

2

rdþ1
c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðrcÞj

p �
−m

¼ 1

rdþ1
−

þ 1

rdþ1
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
− 1

�

− γQ2ðrd−10 − rd−1− þ 2rd−1c Þ: ð6:3Þ

It is interesting to see if this expression is consistent with
the complexity computations for general ensembles.
Another aspect which we would like to investigate in the

future is the “factorization puzzle”, namely, the apparent
tension of the exact factorization of the boundary Hilbert
space and the loss thereof due to bulk wormhole structures
[44–48]. Following the connection between the bound on
the late time growth of complexity and the factorization of
the partition function that we developed in this work, it is of
course highly interesting to see in how far the presence of
bulk wormholes is captured by the growth of complexity.
Particularly, connecting to the discussion above, it will be
worth investigating if the ensemble dependence plays any
crucial role here.
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