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Abstract: The numerical evaluation of multi-loop scattering amplitudes in the Feynman
representation usually requires to deal with both physical (causal) and unphysical (non-
causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily
characterise and distinguish these two types of singularities, and then simplify analytically
the underling expressions. In this paper, we work explicitly on the dual representation of
multi-loop Feynman integrals generated from three parent topologies, which we refer to as
Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular,
we aim at expressing these dual contributions, independently of the number of loops and
internal configurations, in terms of causal propagators only. Thus, providing very compact
and causal integrand representations to all orders. In order to do so, we reconstruct their
analytic expressions from numerical evaluation over finite fields. This procedure implicitly
cancels out all unphysical singularities. We also interpret the result in terms of entangled
causal thresholds. In view of the simple structure of the dual expressions, we integrate
them numerically up to four loops in integer space-time dimensions, taking advantage of
their smooth behaviour at integrand level.
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1 Introduction

There is an important interest in considering higher order predictions in perturbation
theory. This is due to the exceptional experimental measurements that have been done at
the CERN’s Large Hadron Collider (LHC) [1] and, also, in view of future colliders [2–9].
In general, multi-loop integrals are not always well defined in d = 4 space-time dimensions.
Hence, a special treatment needs to be carried out through dimensional regularisation
(DREG) [10, 11] that introduces extra difficulties. Several alternative techniques have
appeared in the recent years [12] that are aimed at overcoming this problem by keeping
most of the computations in d = 4 space-time dimensions.

Scattering amplitudes and loop integrals in the Feynman representation exhibit, in
general, unphysical or non-causal singularities in the loop momentum space. Their repre-
sentation in terms of Feynman parameters, Symanzik polynomials or Mellin-Barnes also
inherit the unphysical structure of the original loop integral. However, all these unphysical
singularities are expected to cancel after integration.

It would be therefore desirable to work with loop representations, in which the inte-
grand would exclusively exhibit the physical or causal singularities that characterise the
final integrated expression. On the one hand, such representations would be more stable
and faster to integrate through numerical methods. On the other hand, the presence of
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non-causal singularities obscures and makes difficult the analysis of the actual singular
structure through, e.g., the Landau equations [13], particularly at higher quantum orders.

One of the most appealing features of the loop-tree duality (LTD) [14–16] is that
the unphysical or non-causal singularities cancel among different contributions of the in-
tegrand dual representation. This behaviour was firstly demonstrated for one-loop ampli-
tudes [17, 18] and then to higher quantum orders [19], and is the fundamental property
that enables the simultaneous generation of loop and real-emission events through the four-
dimensional unsubtraction (FDU) [20–22]. Other methods have also been proposed that
are aimed at performing perturbative computations directly in the four physical space-time
dimensions [23–31].

The LTD formalism has recently taken also a lot of attention from other authors [32–
35]. This is indeed due to the advantages of LTD in the numerical integration of loop in-
tegrals [18, 36, 37] and, therefore, scattering amplitudes [38–42]. In particular, an N -point
amplitude at L loops requires, within the LTD approach, only (d− 1)L integrations. Typ-
ically, this corresponds to the Euclidean space of the loop three-momenta, although LTD
works as well in arbitrary coordinate systems. Since, in an Euclidean space, the hierarchies
of scales are unambiguous, LTD has also been exploited as an alternative method [38, 43, 44]
for asymptotic expansions [45]. Moreover, extra external momenta and, likewise, internal
propagators do not alter the number of integrations. Thus, the CPU time necessary for
numerical integrations does not increase drastically with the number of external momenta
as in other numerical approaches.

In a recent Letter [46], we have conjectured that, in fact, LTD leads to loop inte-
grand representations which are manifestly free of non-causal singularities to all orders
and independently of the internal configuration. In this paper, we elaborate further on
the conjecture of ref. [46], which claims that non-causal singularities can be eliminated at
integrand level from its analytic expression, then, leading to unintegrated representations
displaying causal singularities exclusively. In order to achieve this conclusion, we rely on
the classification of parent topologies at multi-loop level defined in ref. [46], which are
used as the building block to describe more complex topologies. In particular, two-loop
scattering amplitudes can be characterised by a topology with 3 momentum sets, where in
each set there is an explicit dependence on the same loop momentum or a linear combi-
nation of the two loop momenta. The generalisation of this topology at multi-loop level,
with L + 1 momentum sets, is called Maximal Loop Topology (MLT). Similarly, the ex-
tension to loop configurations with L + 2 and L + 3 sets, with L arbitrary, originates the
Next-to-Maximal Loop Topology (NMLT) and the Next-to-Next-to-Maximal Loop Topol-
ogy (N2MLT), respectively. Several relations exist among them through convolutions and
factorisation identities, as presented in ref. [46]. These are the only topologies necessary to
describe any scattering amplitude of up to three loops. Beyond three loops, new topologies
appear that are considered in another paper [47].

Following this spirit, we present closed formulae for all the MLT, NMLT and N2MLT
multi-loop topologies in terms of causal propagators only. We start from their compact
LTD representations presented in ref. [46] that contain both causal and non-causal singu-
larities. Then, we reconstruct the full analytical result from numerical evaluations over
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finite fields [48, 49]. This reconstruction algorithm allows us to overcome the non-causal
propagators, since cancellations of the latter are implicitly performed. To the best of our
knowledge, the application of finite fields to generate integrands free of unphysical singu-
larities is not present in the literature and is studied here for the first time. On top of it,
the algorithm presented in this paper can be straightforwardly extended to any topology,
NkMLT with k > 2, and arbitrary internal configurations.

For the purpose of elucidating the methods and results, we organise the paper in two
parts. The first one corresponds to the explicit study of the three parent loop topologies,
MLT, NMLT and N2MLT, first with single and then with multiple power propagators. We
emphasise on the physical causal structure that the integrands display as a by-product
of the LTD representation. Traditional approaches based on integration-by-parts iden-
tities [50, 51] produce, in general, scalar integrals with powered propagators. The LTD
approach allows, without modifying our algorithm, to consider as well all these config-
urations, and therefore provides the interplay between our approach and the traditional
methods.

The second part concerns to the study of the numerical performance of the causal LTD
representation of the MLT, NMLT and N2MLT topologies. We highlight that the structure
of these compact formulae at L loops allows us to have a smooth and well-behaved numerical
evaluation. Certainly, with the presence of only physical singularities, we can elaborate
more efficiently on the cancellation of the latter, following the lines of FDU [20–22], in which
the cancellation of infrared and ultraviolet singularities are performed at integrand level.

The paper is structured as follows. In section 2, we recall the main features of the
all-order LTD representation with Lorentz-invariant infinitesimal complex prescription of
dual propagators [14, 15, 46]. Then, in section 3, on top of the general expressions for
the MLT, NMLT and N2MLT configurations given in ref. [46], we present their compact
analogous expressions in terms of exclusively causal propagators. In order to obtain this set
of expressions, we use analytic reconstruction over finite fields through the C++ implemen-
tation, FiniteFlow [52], of this algorithm and interpret the results in terms of entangled
causal thresholds. In section 4, elaborating on section 3, we study topologies with higher
powers in the propagators. We show that, independently of the powers of the propaga-
tors, we end up with causal integrands. These results are independent of the number of
space-time dimensions. Then, in section 5, we numerically integrate the causal expressions
obtained for MLT, NMLT and N2MLT with linear and raised powers in the propagators.
In order to exploit the causal LTD representation, we perform several numerical tests at
d = 2, 3, 4 space-time dimensions, finding full agreement with softwares based on sector
decomposition [53–56], SecDec 3.0 [57] and Fiesta 4.2 [58]. Finally, in section 6, we
draw our conclusions and future research directions.

Algebraic manipulations of this paper have been carried out with an in-house Math-
ematica implementation of the LTD theorem.

2 On the loop-tree duality theorem to all orders

In this section, we set the notation and review the main features of the loop-tree duality
(LTD) formalism. To start the discussion, let us consider a generic N -point scattering
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amplitude at L loops,

A(L)
N (1, . . . , n) =

∫
`1,...,`L

∑
N
(
{`i}L , {pj}N

)
×GF (1, . . . , n) , (2.1)

where, to simplify the notation, we use the shorthand notation
∫
`s
≡ −ıµ4−d ∫ dd`s/ (2π)d

for the integration measure, where {`s}s=1,...,L corresponds to the independent loop mo-
menta, N is a function of the loop and external momenta {pj}, which is given by the
Feynman rules of the theory. The function GF is defined as follows,

GF (1, . . . , n) =
∏

i∈1∪···∪n
(GF (qi))αi , (2.2)

with αi the powers of the propagators and,

GF (qi) = 1
q2
i −m2

i + ı0
= 1(

qi,0 + q
(+)
i,0

) (
qi,0 − q(+)

i,0

) , (2.3)

the usual Feynman propagator of one single particle, in which, mi corresponds to its mass,
ı0 to the usual infinitesimal imaginary prescription and,

q
(+)
i,0 =

√
q2
i +m2

i − ı0 , (2.4)

is the on-shell energy of the loop momentum qi written in terms of their spatial components
qi. We have explicitly pulled out in eq. (2.3) the dependence of the Feynman propagator on
the energy component of the loop momentum because we will integrate out this component
explicitly. In general, the LTD theorem is defined in arbitrary coordinate systems, as
explained in refs. [14, 15, 46].

The sum inside the integrand of eq. (2.1) accounts for all the Feynman diagrams, or
sets of Feynman diagrams, that contribute to the scattering amplitude. In the context of
integration-by-parts identities [50, 51], Eq (2.1) can represent a single Feynman integral or
a sum over master integrals.

Since all the propagators are written in terms of independent loop momenta, we clas-
sify them through the flowing between them. With this in mind, the set s includes all
the propagators with internal momenta of the form qis = `s + kis , where kis is a linear
combination of external momenta and `s is the loop momentum, or the linear combination
of loop momenta, that characterises the set. The number of different sets s is always larger
than the number of loops beyond one loop. For the sake of simplicity, we will consider
from now on that each set is composed by only one propagator.

In order to obtain the LTD representation for a given scattering amplitude, it is nec-
essary to apply the Cauchy residue theorem iteratively and integrate out one degree of
freedom for each loop momentum. Then, in each iterative step, we select the poles with
negative imaginary part in the complex plane of the component of the loop momentum that
is integrated. In some intermediate steeps it is necessary to reverse some sets of momenta
to keep a coherent momentum flow. A detailed discussion about this procedure is presented
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Figure 1. Maximal Loop Topology (MLT), Next-to-Maximal Loop Topology (NMLT) and Next-to-
Next-to-Maximal Loop Topology (N2MLT) at L loops. An arbitrary number of external momenta
(not shown) is attached to the internal lines.

in ref. [59]. Explicitly, starting from eq. (2.1) and setting on shell the propagators that
depend on the first loop momentum, qi1 , we define,1

A(L)
D (1; 2, . . . , n) ≡

∑
i1∈1

Res
(
dA(L)

N (1, . . . , n), Im(qi1,0) < 0
)
, (2.5)

where dA(L)
N is the integrand of the amplitude in eq. (2.1). The residue in eq. (2.5) cor-

responds to integrate out the energy components of the loop momenta. Hence, assuming
that the iteration goes until the r-th set, we construct the nested residue as

AD(1, . . . , r; r + 1, . . . , n) ≡
∑
ir∈r

Res (AD(1, . . . , r − 1; r, . . . , n), Im(qir,0) < 0) . (2.6)

The final LTD representation is given by the sum of all the nested residues and corresponds
to setting simultaneously L lines on shell, which is equivalent to open the loop amplitude
to non-disjoint trees. In the following, we use the abbreviation∫

~̀
s

• ≡ −µd−4
∫

dd−1`s
(2π)d−1 • , (2.7)

for the (d− 1)-momentum integration measure.

3 Causal representation of multi-loop integrals by analytic reconstruc-
tion

In former works [19], we have demonstrated how the LTD formalism provides a compre-
hensive classification of causal singularities and how unphysical ones are cancelled among
paired terms. These results stimulated the study of multi-loop topologies based on the def-
inition of a systematic classification scheme, and leading to general LTD representations2

1For each loop, and w.r.t. ref. [46], the factor −2πı from the Cauchy residue theorem is now included in
the integration measure, eq. (2.7).

2A formal inductive proof of the all-order validity of such representations is presented in [59].
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of the MLT, NMLT and N2MLT topologies depicted in figure 1. In fact, along the same
lines, these results have been extended to N4MLT [47]. In view of specific explicit exam-
ples, we also conjectured in ref. [19] that LTD leads to integrand representations which are
manifestly free of nonphysical singularities to all loop orders and regardless of the internal
configuration. Hence, here and in the successive sections, we elaborate on this conjecture
and present causal representations of MLT, NMLT and N2MLT to all loop orders.

Starting from the compact LTD representations of the NMLT and N2MLT multi-loop
topologies presented in ref. [46] in terms of nested residues (2.6), that contain both causal
and non-causal singularities, and motivated by their factorisation properties in terms of
MLT subtopologies, for which we already obtained a causal representation, namely, free
of non-causal singularities, we reconstruct in this section their full analytic expression in
term of causal propagators only. Here and in the following, we refer to causal propaga-
tors to denominators that only contain sums of on-shell energies of the loop momenta,
q

(+)
i,0 + q

(+)
i+1,0 + q

(+)
i+2,0 + . . . + q

(+)
m,0, whereas non-causal ones are expressed as denominators

that contain differences of on-shell energies of the loop momenta, q(+)
i,0 − q

(+)
i+1,0 + . . .± q(+)

m,0,
leading thus to spurious singularities that are cancelled as shall be described in this sec-
tion. We perform this operation by numerical evaluation over finite fields [48, 49], in
which we use the C++ implementation of the FiniteFlow [52] algorithm together with its
Mathematica interface. In particular, we profit from the way how this algorithm solves
linear systems.

Within the approach of reconstructing analytical expressions from numerical evalu-
ations, we simply end up with rational functions, whose variables are the on-shell loop
momenta q(+)

i,0 and the energy components of the external momenta, pi,0. It turns out that
this rational function is written only in terms of causal propagators [46], which always
have the structure of sums of on-shell loop energies. This pattern, indeed, shows a very
interesting behaviour, since the numerical evaluation of these quantities lacks of possible
zeroes due to the absence of differences of q(+)

i,0 . As shall be described in the following, we
comment more on this pattern, elucidating how our final formula, originally constructed
from non-causal propagators, contains only causal ones, and we interpret the result in
terms of entangled causal thresholds.

Furthermore, it is important to obtain a closed formula that can describe the pattern
of any topology with an arbitrary number of loops. This, certainly, provides a parametric
expression at all orders and, hence, the calculation through the nested residue (2.6) is
avoided. In order to sketch our procedure to obtain the causal analytic expressions, we
explicitly consider NMLT and N2MLT vacuum integrals first and then their generalisation
with external momenta.

3.1 The two-loop sunrise diagram

Before starting with the analysis of the multi-loop MLT, NMLT and N2MLT configurations,
let us consider, for illustrative reasons, the simplest example of the two-loop sunrise diagram
with three propagators. Then, with the convention of (2.3), this two-loop integral becomes

A(2)
2 =

∫
`1,`2

GF (1, 2, 12) =
∫
`1,`2

∏
i=1,2,12

1(
qi,0 − q(+)

i,0

) (
qi,0 + q

(+)
i,0

) , (3.1)
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with qi = `i for i ∈ {1, 2}, and q12 = −`1 − `2 + p. Thus, by applying the Cauchy residue
theorem in {`1, `2}, we obtain the LTD representation of A(2)

2 in terms of the nested
residues (2.6),

A(2)
2 =

∫
~̀1,~̀2

[
GD (1, 2) +GD

(
1, 12

)
+GD

(
2, 12

)]
, (3.2)

where the bar indicates a reversal of the momentum flow of the corresponding propagators,
qi = −qi, and GD represents the double residue of the integrand of A(2)

2 ,

GD (i, j) ≡ Res
(
Res

(
GF (1, 2, 12),

{
qi,0 = q

(+)
i,0

})
,
{
qj,0 = q

(+)
j,0

})
. (3.3)

Then, the first term of the integrand in eq. (3.2),

GD (1, 2) = 1
4 q(+)

1,0 q
(+)
2,0

(
q

(+)
1,0 + q

(+)
2,0 − p0 + q

(+)
12,0

) (
q

(+)
1,0 + q

(+)
2,0 − p0 − q(+)

12,0

) , (3.4)

allows us to implement the decomposition

GD (1, 2) =− 1
8 q(+)

1,0 q
(+)
2,0 q

(+)
12,0

 1
q

(+)
1,0 + q

(+)
2,0 + q

(+)
12,0 − p0

− 1
q

(+)
1,0 + q

(+)
2,0 − q

(+)
12,0 − p0

 ,

(3.5)

where the first term on the r.h.s. of eq. (3.5) represents the double residue over the positive
energy mode of the propagator with momentum q12. This term generates a causal threshold
at
∑
i=1,2,12 q

(+)
i,0 = p0, if p0 > 0, when q12 becomes on shell, and represents a configuration

where the three on-shell momenta are aligned in the same direction. The second term in
eq. (3.5) is non-causal and shall cancel. Hence, by applying partial fractioning to the three
contributions of (3.2), we notice that non-causal denominators are piecewise cancelled,
leading to,

A(2)
2 = −

∫
~̀1,~̀2

1
8q(+)

1,0 q
(+)
2,0 q

(+)
12,0

 1
q

(+)
1,0 + q

(+)
2,0 + q

(+)
12,0 − p0

+ 1
q

(+)
1,0 + q

(+)
2,0 + q

(+)
12,0 + p0

 ,

(3.6)

which is manifestly free of non-causal thresholds. Besides the causal threshold which is
active if p0 > 0, this expression also generates the complementary causal threshold for
p0 < 0 that arise when the three on-shell momenta flow in the opposite direction. In other
words, when the three negative energy modes are selected and set on shell. If p0 = 0,
both threshold configurations occur simultaneously, although only the limit q(+)

i,0 → 0, with
i ∈ {1, 2, 12}, can lead to an integrand singularity.

We would like to remark that the ordering in which the residues are taken does not alter
the final result given by eq. (3.6), although individual terms are modified. For example,
the expression

A(2)
2 =

∫
~̀1,~̀2

[
GD (1, 12) +GD

(
1, 2
)

+GD
(
2, 12

)]
, (3.7)
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Figure 2. Three dimensional plots for the integrand of the two-loop sunrise diagram in terms
of non-causal (left) and causal (right) propagators. The numerical fluctuations due to numerical
cancellations of non-causal thresholds are visible on the left plot. The right plot is stable because
the integrand expression is manifestly free of non-causal thresholds.

leads exactly to eq. (3.6), although the individual contributions are different from those in
eq. (3.2) and also exhibits non-causal thresholds.

Let us now briefly comment on the structure of the two kind of integrands. Both
representations, with or without non-causal thresholds, are physically equivalent. However,
the LTD representation that still contains non-causal denominators is not optimal since it
exhibits spurious singularities. This is illustrated in figure 2, where we show the difference
between the full expression (3.2) and the simplified one (3.6). The small peaks in the left
plot are due to numerical fluctuations introduced by the numerical cancellation of non-
causal thresholds arising at q(+)

1,0 ± q
(+)
2,0 ∓ q

(+)
12,0 = 0 (assuming p0 = 0), which correspond to

the singularities of the individual terms in (3.2).

3.2 Maximal loop topology

The MLT configuration is characterised by L + 1 sets of propagators with an arbitrary
number of propagators in each set. A pictorial representation of this topology is given in
figure 1a. Its general LTD representation is given by [46],

A(L)
MLT (1, 2, . . . , L+ 1) =

∫
~̀1,...,~̀L

L+1∑
i=1
AD(1, . . . , i− 1, i+ 1, . . . , L+ 1; i) , (3.8)

in terms of the nested residues defined in eq. (3.2). This expression is valid for any loop
integral or scattering amplitude with an arbitrary internal configuration, although it con-
tains both causal and non-causal thresholds. Again, the bar in i indicates a reversal of the
momentum flow or equivalently a selection of negative energy modes.

For the sake of simplicity, we will consider in the following only one propagator in each
set and scalar integrals. The momenta of these propagators are defined as follows.

qi = `i , with i ∈ {1, . . . , L} , qL+1 = −
L∑
i=1

`i − p1 . (3.9)

– 8 –
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1

2

3

L+ 1

+

Figure 3. Causal thresholds of the MLT topology. The arrow on the external momentum represents
the positive energy flow.

The two-loop integral A(2)
2 in eq. (3.1) indeed belongs to the MLT family. Likewise, any

two-loop amplitude can be cast in this way, independently on whether it contains planar
or non-planar topologies. At this order, L = 2, there are only three independent sets of
propagators.

A causal representation of this topology was already presented in ref. [46],

A(L)
MLT (1, 2, . . . , (L+ 1)−p1) =−

∫
~̀1,...,~̀L

1
xL+1

(
1
λ−1

+ 1
λ+

1

)
, (3.10)

where (L + 1)−p1 means that the external momentum p1 has been inserted in the loop
momentum L+ 1 according to (3.9), xL+k = 2L+k∏L+k

i=1 q
(+)
i,0 and,

λ±1 =
L+1∑
i=1

q
(+)
i,0 ± p1,0 . (3.11)

Due to the simplicity that this set of integrals holds, we have used it as a first test of the
reconstruction algorithm that is explained later. By setting L = 2, we recover (3.6).

Each of the two terms of the integrand in eq. (3.10) represents a potential causal
threshold singularity. Only one of them is active once the sign of the energy of the external
momentum, p1,0, is fixed. These two causal thresholds can be interpreted exactly as we
interpreted eq. (3.6). The threshold singularities arise when all the momenta are on shell
and either aligned in one direction or the opposite one. The graphical interpretation of
these causal thresholds is illustrated in figure 3.

3.3 NMLT vacuum integral

As we have observed, the MLT topology is sufficient to describe any two-loop configuration.
Starting from three loops, the NMLT and N2MLT topologies are also necessary to charac-
terise the loop configurations that are not described by MLT. General LTD representations
for NMLT and N2MLT have been presented in ref. [46] that contain both causal and non-
causal thresholds. In this section, we consider their causal LTD representation. To simplify
the presentation, we start by considering configurations with one single propagator in each
set, and no external momenta. The more complex case with external momenta will be

– 9 –
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considered in section 3.5. Then, to describe NMLT configurations, on top of considering
the internal momenta (3.9), with p1 = 0, we also need to add an additional one,

qL+2 = −`1 − `2 . (3.12)

A pictorial representation of NMLT is provided in figure 1b.
The causal LTD representation that we obtain is

A(L)
NMLT (1, 2, . . . , L+ 2) =

∫
~̀1,...,~̀L

2
xL+2

∑L+2
i=1 q

(+)
i,0

λ1λ2λ3
. (3.13)

with

λ1 =
L+1∑
i=1

q
(+)
i,0 λ2 = q

(+)
1,0 + q

(+)
2,0 + q

(+)
L+2,0 , λ3 =

L+2∑
i=3

q
(+)
i,0 . (3.14)

This expression, although it is slightly more complicated than the MLT one, can easily be
rewritten by partial fractioning in the more suitable form,

A(L)
NMLT (1, 2, . . . , L+ 2) =

∫
~̀1,...,~̀L

2
xL+2

( 1
λ1λ2

+ 1
λ2λ3

+ 1
λ3λ1

)
. (3.15)

The analytic expression of eq. (3.15) can alternatively be reconstructed from numerical
evaluations over finite fields. Since the integrand in (3.13) is a rational function in the on-
shell energies of the loop momenta, q(+)

i,0 , we find relations among q(+)
i,0 and λi. For instance,

at L = 3, we find

q
(+)
1,0 = 1

2
(
λ1 + λ2 − λ3 − 2q(+)

2,0

)
, q

(+)
5,0 = 1

2 (−λ1 + λ2 + λ3) .

q
(+)
3,0 = 1

2
(
λ1 − λ2 + λ3 − 2q(+)

4,0

)
, (3.16)

Then, by plugging these relations in (3.13), we directly find (3.15). Because the numerator
of (3.13) is a linear function of q(+)

i,0 , both approaches are of the same difficulty.
In this particular case, it is straightforward to observe the linear relations between λi

and q
(+)
i,0 , leading, in this way, to simplifications originated by polynomial divisions. In

fact, as stated above, eq. (3.13) can be directly obtained by using partial fractioning. In
more general cases, partial fractioning will produce more terms that need to be properly
cancelled. Hence, to avoid the proliferation of terms at intermediate steps, we make use
of the analytic reconstruction over finite fields to obtain compact expressions containing
only causal propagators. In the following section, we shall note that simplifications are not
straightforward because the degree of the numerator we want to reduce increases as the
number of causal propagators.

Let us now interpret (3.15) in terms of what we call entangled causal thresholds. Each of
the λi represents a potential causal threshold singularity that, as in the MLT case, requires
that all the momentum flows are aligned in the same direction. The product of two causal
denominators can be understood as representing physical configurations where two sets of
propagators can simultaneously go on shell. For this to happen, the common propagators
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Figure 4. Entangled causal thresholds of the NMLT topology. External momenta not shown.

have to be in the same configuration. This entanglement can also be understood from the
factorisation identity that NMLT fulfils in terms of MLT subtopologies, as explained in
ref. [46].

A pictorial interpretation of the entangled causal structure of (3.15) is provided in
figure 4, where the dashed lines single out the internal propagators that eventually go on
shell simultaneously; a subset of them is already on shell through LTD. Each diagram in
figure 4 has two dashed lines that correspond to the two denominators λi and λj which are
present in each term of (3.15). The causal thresholds are entangled because the momentum
flow of the propagators that are common to both causal thresholds are matched. For
example, the first diagram of figure 4 represents the term 1/(λ1λ2) corresponding to the
causal thresholds {1, 2, . . . , L} and {1, 2, L+1} that share the entangled propagators {1, 2}.

3.4 N2MLT vacuum integral

The N2MLT is the last topology that is needed to describe any full scattering amplitude at
three loops. In fact, N2MLT is the master topology that describes also MLT and NMLT
configurations to all orders [46]. This configuration is depicted in figure 1c, and is usually
called Mercedes-Benz topology. Similar to the NMLT case, besides considering the internal
momenta (3.9) and (3.12), we add one more,

qL+3 = −`2 − `3 . (3.17)

For the moment, we consider configurations without external momenta. Then, with L+ 3
internal propagators, we have all the required ingredients to understand the structure of
any integral at three loops and, equivalently, any scattering amplitude.

Hence, from the LTD representation of N2MLT given in ref. [46], we end up with the
integrand written as a rational function,

A(L)
N2MLT (1, 2, . . . , L+ 3) =

∫
~̀1,...,~̀L

1
xL+3

N({q(+)
i,0 })∏7

i=1 λi
, (3.18)

with λ1 through λ3 defined in eq. (3.14),

λ4 = q
(+)
2,0 + q

(+)
3,0 + q

(+)
L+3,0 , λ6 = q

(+)
1,0 + q

(+)
3,0 + q

(+)
L+2,0 + q

(+)
L+3,0 ,

λ5 = q
(+)
1,0 + q

(+)
L+3,0 +

L+1∑
i=4

q
(+)
i,0 , λ7 = q

(+)
2,0 +

L+3∑
i=4

q
(+)
i,0 , (3.19)
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Figure 5. Entangled causal thresholds of the N2MLT topology. External momenta not shown.

and N({q(+)
i,0 }) a degree-four polynomial in q(+)

i,0 . From the structure of the latter it is not
straightforward to make manifest an expression with the features of eqs. (3.10) and (3.15).
Thus, we reconstruct its analytic expression through finite fields. In fact, one notices that
the denominators λi are not independent; they, instead, obey a few relations. Hence, we
write some q(+)

i,0 and λ1 in terms of λi,

q
(+)
1,0 = 1

2 (λ2 + λ5 − λ7) , q
(+)
6,0 = 1

2 (−λ4 − λ5 + λ6 + λ7) ,

q
(+)
2,0 = 1

2 (λ2 + λ4 − λ6) , q
(+)
7,0 = 1

2 (−λ2 − λ3 + λ6 + λ7) ,

q
(+)
3,0 = 1

2 (λ3 + λ4 − λ7) , λ1 = λ2 + λ3 + λ4 + λ5 − λ6 − λ7 .

q
(+)
4,0 = 1

2
(
λ3 + λ5 − λ6 − 2q(+)

5,0

)
, (3.20)

Then, by properly replacing q
(+)
i,0 and λi, according to their relations and performing a

straightforward polynomial division, we find,

A(L)
N2MLT (1, 2, . . . , L+ 3) =−

∫
~̀1,...,~̀L

2
xL+3

[
1
λ1

( 1
λ2

+ 1
λ3

)( 1
λ4

+ 1
λ5

)
(3.21)

+ 1
λ6

( 1
λ2

+ 1
λ4

)( 1
λ3

+ 1
λ5

)
+ 1
λ7

( 1
λ2

+ 1
λ5

)( 1
λ3

+ 1
λ4

)]
.

Analogous to the NMLT case, we note that (3.21) is written to all orders in term of
causal propagators only, in this case in terms of the product of three causal propagators.
This pattern can be understood from two approaches. First, from their factorisation prop-
erties in terms of MLT and NMLT configurations, as explained in ref. [46]. Second, from the
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Figure 6. Next-to-Maximal Loop Topology (left) and Next-to-Next-to-Maximal Loop Topology
(right) at L loops with the insertion of external momenta pi, according to eqs. (3.22).

entanglement of three causal thresholds. A pictorial representation of this entanglement is
presented in figure 5 for the first term in the r.h.s. of (3.21).

3.5 NMLT and N2MLT topologies with external momenta

In this section, we show how to generalise the causal representations of the NMLT and
N2MLT vacuum diagrams presented in sections 3.3 and 3.4 to the most general case that
considers insertion of external momenta. Then, to obtain analytic and compact expressions
for these two topologies, we follow the same algorithm based on finite fields. The vacuum
expression in eqs. (3.15) and (3.21) have been used to guide this computation. Let us antic-
ipate that the insertion of external momenta does not affect the causal physical behaviour
of these integrals. The only difference now is that, as for the causal MLT representation
given in section 3.2, we have to distinguish the entangled configurations that correspond to
external momenta with positive or negative energy flow, or in other words, if the external
momenta are incoming or outgoing.

We can apply the same procedure for the insertion of the external momenta p1, p2 and
p3 in the internal momenta L+ 1, L+ 2 and L+ 3, respectively,

qL+1 = −
L+1∑
i=1

`i − p13 , qL+2 = −`1 − `2 + p2 , qL+3 = −`2 − `3 − p3 . (3.22)

The three external momenta pi are considered to have positive energy when they are
incoming. By momentum conservation, we should also have either p12 = p1 +p2 for NMLT
or p123 =

∑3
i=1 pi for N2MLT as outgoing momentum in one of the vertices. Besides,

we emphasise that we set p3 = 0 for NMLT while keeping the definition of the internal
momenta at (3.22). These topologies, with the insertion of external momenta, are depicted
in figure 6.

We note that the causal propagators λi are now shifted by the external momenta ±pi
or a linear combination of them as

λ±1 =
L+1∑
i=1

q
(+)
i,0 ± p13,0 ,

λ±2 = q
(+)
1,0 + q

(+)
2,0 + q

(+)
L+2,0 ± p2,0 , λ±3 =

L+2∑
i=3

q
(+)
i,0 ∓ p123,0 ,
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λ±4 = q
(+)
2,0 + q

(+)
3,0 + q

(+)
L+3,0 ± p3,0 , λ±6 = q

(+)
1,0 + q

(+)
3,0 + q

(+)
L+2,0 + q

(+)
L+3,0 ± p23,0 ,

λ±5 = q
(+)
1,0 + q

(+)
L+3,0 +

L+1∑
i=4

q
(+)
i,0 ± p1,0 , λ±7 = q

(+)
2,0 +

L+3∑
i=4

q
(+)
i,0 ± p12,0 . (3.23)

With the formula that we present in the following, we can describe, with a single represen-
tation, up to three-point functions for NMLT and up to four-point functions for N2MLT.

The causal representation of NMLT is a function of λ±1 through λ±3 , with p3 = 0, and
is given by

A(L)
NMLT(1, 2, . . . , (L+ 1)−p1 , (L+ 2)p2)

=
∫
~̀1,...,~̀L

1
xL+2

[ 1
λ+

1 λ
−
2

+ 1
λ+

2 λ
−
3

+ 1
λ+

3 λ
−
1

+ (λ+
i ↔ λ−i )

]
. (3.24)

Due to the insertion of external momenta, we have now to consider the entangled threshold
configurations that distinguish if the external momenta are incoming or outgoing, namely,
if their energy flow is positive or negative. With our conventions, positive energy flows
correspond to incoming momenta. The exchange λ+

i ↔ λ−i accounts for the configurations
with opposite momentum flows and results in a doubling of the terms obtained for the
vacuum diagrams.

The causal N2MLT representation also exhibits a very compact expression

A(L)
N2MLT

(
1, 2, . . . , (L+ 1)−p13

, (L+ 2)p2
, (L+ 3)−p3

)
= −

∫
~̀1,...,~̀L

1
xL+3

[
1
λ+

1

(
1
λ−2

+ 1
λ−3

)(
1
λ+

4
+ 1
λ+

5

)
+ 1
λ+

6

(
1
λ−3

+ 1
λ−5

)(
1
λ+

2
+ 1
λ+

4

)

+ 1
λ+

7

(
1
λ−3

+ 1
λ−4

)(
1
λ+

2
+ 1
λ+

5

)
+
(
λ+
i ↔ λ−i

) ]
. (3.25)

Let us briefly summarise on the algorithm used to compute all these formulae. As
mentioned before, we profit from the software FiniteFlow and its built-in functions,
FFLinearFit and FFDenseSolve, to analytically reconstruct the rational function of the
configuration and to find relations between q

(+)
i,0 and λi, respectively. We would like to

remark that these expressions for MLT, NMLT and N2MLT have been analytically checked,
with the iterated application of the LTD theorem, up to six loops, finding completely
agreement. The pattern displayed by all topologies allows us to generalise and provide a
closed formula that has the mathematical support of the studies carried out in [46, 59] to
all orders. In other words, only causal contributions remain in the final expressions, being
all the non-causal or unphysical terms cancelled at intermediate steps. We also note that
the structure of the integrands suggests a smooth numerical evaluation, which we profit
in section 5. Although we have presented explicit expressions only for scalar integrals, the
algorithm is valid as well for non-scalar integrals.

4 Topologies with higher powers in the propagators

So far we have discussed the structure of MLT, NMLT and N2MLT configurations in which
the dependence on the Feynman propagators is linear. However, in practical applications,
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like UV local renormalisation [38, 40, 42] or multi-loop calculations, one also deals with
higher powers in the propagators [16, 50, 51]. In this section, we elaborate on the compact
formulae, found in the previous section, and provide a procedure for computing L-loop
integrals with higher powers in the propagators. In particular, due to the causal structure
observed in all the cases, it is expected that this physical behaviour should also remain with
higher powers of the propagators. Abusing of the notation and recalling we are considering
only one propagator in each loop set, let us define,

A(L)
Nk−1MLT (1α1 , 2α2 , . . . , (L+ k)αL+k) =

∫
`1,...,`L

N ×
L+k∏
i=1

(GF (qi))αi , (4.1)

with k ∈ {1, 2, 3}, for any L-loop integral, where the superscript αi corresponds to the
power of the i-th propagator. In the following, for the sake of the simplicity, we restrict
our study to the scalar case in which the numerator is N = 1.

Remarkably, due to the structure of the Feynman propagator (2.3), it is straightforward
to raise the power in the propagators by simple performing (αi− 1) derivatives w.r.t. q(+)

i,0 ,

(GF (qi))αi = 1
(αi − 1)!

∂αi−1

∂
(
(q(+)
i,0 )2

)αi−1 GF (qi) . (4.2)

Therefore, the results obtained in section 3 can be used for the purpose of the present
discussion. Furthermore, we stress that the expressions obtained in the present paper
are valid in any dimension, since only the energy components of the loop momenta have
been integrated. Hence, we can yet numerically evaluate these integrals in any integer
dimensions. Since the LTD representation of the Nk−1MLT configurations that we have
considered are manifestly free of non-causal propagators, the corresponding loop integrals
with raised propagators will also be causal. In the following we will consider integrals that
are ultraviolet and infrared finite in order to check the better numerical performance of the
causal LTD representation.

Therefore, if we were to evaluate finite integrals, for instance in integer space-time
dimensions, it is sufficient to consider the causal LTD representation with linear propa-
gators and perform the derivatives in the on-shell energies q(+)

i,0 . For example, the MLT
configuration, with the insertion of an external momentum,

A(L)
MLT

(
12, 22, . . . , L2, (L+ 1)−p1

)
=

L∏
i=1

∂

∂(q(+)
i,0 )2

A(L)
MLT (1, 2, . . . , (L+ 1)−p1) . (4.3)

In order to elucidate the operation of raising powers, we consider the simplest case
A(L)

MLT
(
12, 2, . . . , (L+ 1)−p1

)
with one single squared propagator. Since the denominators

depend linearly on q(+)
i,0 , we utilise the chain rule as follows,

∂

∂(q(+)
i,0 )2

• = 1
2q(+)
i,0

∂

∂(q(+)
i,0 )

• . (4.4)
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This amounts to,

A(L)
MLT

(
12, 2, . . . , (L+ 1)−p1

)
= 1

2q(+)
1,0

∂

∂(q(+)
1,0 )
A(L)

MLT

(
12, 2, . . . , (L+ 1)−p1

)
, (4.5)

=
∫
~̀1,...,~̀L

1
2q(+)

1,0 xL+1

[
1
q

(+)
1,0

(
1
λ+

1
+ 1
λ−1

)
+ 1

(λ+
1 )2 + 1

(λ−1 )2

]

In the following, we present the numerical evaluation of several MLT, NMLT and
N2MLT configurations. We remark that, within LTD, the inclusion of internal masses do
not stem any issue. In more details, one needs to perform (d − 1) integrations for each
loop. The number of integrations turn out to be lower than approaches based on Feynman
parametrisation.

5 Numerical evaluation of Nk−1MLT

In view of the results of sections 3 and 4, we elaborate on those expressions by numerically
integrating in the (d−1)-loop momenta, qi. This is indeed done to investigate the stability
of this set of formulae, written now in terms of causal propagators only. To this end, we
evaluate multi-loop integrals in d = 2, 3, 4 space-time dimensions,3 presenting results for
topologies with and without higher powers in the propagators up to four loops.

The numerical results presented in this section are double checked with the softwares
SecDec 3.0 and Fiesta 4.2.

5.1 Two-dimensional integrals

We start with the first non-trivial numerical application at d = 2 space-time dimensions,
in which we perform L-loop integrations, one integration per loop. In order to perform
these integrations, we embed the integration domain, RL, in a L-dimensional sphere. This
set of integration variables has the features that only one variable goes to infinity,

r ∈ [0,∞) , θ1 ∈ [0, π] , . . . , θL−2 ∈ [0, π] , θL−1 ∈ [0, 2π] , (5.1)

which we can compactify. Then, its domain is mapped onto [0, 1] through to the change of
variable,

r → x

1− x . (5.2)

These operations are carried out in Mathematica as well as the numerical integration,
which was performed with the built-in function NIntegrate.

Then, with all the ingredients ready to perform the integrations, we evaluate the
multi-loop integrals in which the propagators of the lines {1, 2, . . . , L} (3.9) have mass m2

4,
while the remaining ones have mass m2

5. Likewise, to test the smooth behaviour of these
integrations, we scan over m2

4 ∈ [1, 10]. Here and in the following, all kinematic invariants
are implicitly given in GeV2. We then integrate numerically up to four loops the MLT,

3The case with d = 1 space-time dimensions [34] is trivial. One just replaces q(+)
i,0 →

√
m2

i .
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Figure 7. Two-dimensional MLT, NMLT and N2MLT at three and four loops, as a function of the
internal masses m2

4 and m2
5. Solid lines correspond to the analytic results of LTD and dots to the

numerical results of Fiesta 4.2.
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NMLT and N2MLT topologies presented in section 3. Nevertheless, the extension to higher
loops does not originate any obstacle within our approach.

The evaluation of the two-dimensional integrals is shown in figure 7, where solid lines
corresponds to the evaluation within LTD, and the dots represent the evaluations per-
formed by Fiesta 4.2 and SecDec 3.0. The evaluation time per point was O (1′′) in a
desktop machine with an Intel i7 (3.4GHz) processor with 8 cores and 16 GB of RAM.
Additionally, we report that when including more propagators or, equivalently, inserting
external momenta, the number of integrations for the softwares based on sector decomposi-
tion increases w.r.t. the number of Feynman parameters, instead, within LTD, one always
has to perform L integrations.

5.2 Three- and four-dimensional integrals

It is clear that the number of integrations depends on the dimensionality of the loop
momenta. Hence, we can still use the same procedure of section 5.1 to express all loop
components in terms of spherical coordinates. Thanks to the LTD theorem, we pass from
Minkowskian to Euclidean space, which, in practice, corresponds to work in R(d−1)L. Hence,
the embedding in a (d− 1)L-dimensional sphere can be carried out analogously as in the
former section.

Alternatively, an equivalent approach consists in treating each loop momentum inde-
pendently when doing the change of variables. For instance, the integration domain can
be separately expressed as follows,

R(d−1)L =
L∏
i=1

R(d−1) , (5.3)

where each term in the product is the (d− 1)-dimensional space of each loop momentum.
The main difference between this approach and the former one relies on how the integrand
behaves at infinity. In particular, embedding the integrand in a (d − 1)L-dimensional
sphere allows us to reach and understand this behaviour with a single variable. Instead,
in the product of (d − 1)-dimensional spheres (5.3), this behaviour is understood with L

variables. In the present discussion, we, nonetheless, follow both approaches as a double
check of our results.

The numerical integrations within LTD, in d = 3 and d = 4, for the MLT, NMLT and
N2MLT configurations with higher powers in the propagators, obtained from the causal
representations of section 3,

A(L)
Nk−1MLT

(
12, 22, . . . , L2, L+ 1, . . . , L+ k

)
=

L∏
i=1

∂

∂(q(+)
i,0 )2

A(L)
Nk−1MLT (1, 2, . . . , L+ 1, . . . , L+ k) , (5.4)

are shown in figure 8 and 9, respectively. In the same way as done in section 5.1, we make
a scan in m2

4, by fixing m2
5.
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Figure 8. Three-dimensional MLT, NMLT and N2MLT at three and four loops, as a function of
the internal masses m2

4 and m2
5. Solid lines correspond to the analytic results of LTD and dots to

the numerical results of Fiesta 4.2.
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Figure 9. Four-dimensional MLT, NMLT and N2MLT at three and four loops, as a function of
the internal masses m2

4 and m2
5. Solid lines correspond to the analytic results of LTD and dots to

the numerical results of Fiesta 4.2.
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6 Conclusions

In this paper, we have explicitly elaborated on the analytical structure of the Maximal
(MLT), Next-to-Maximal (NMLT) and Next-to-Next-to-Maximal (N2MLT) loop topologies
to all orders. We noted that any multi-loop scattering amplitude constructed from the
MLT, NMLT and N2MLT topologies, within the loop-tree duality formalism, can always
be expressed in terms of causal propagators only. The causal representation contains
products of causal propagators that can be interpreted as entangled thresholds.

In order to understand the pattern of the multi-loop MLT, NMLT and N2MLT topolo-
gies, we reconstructed their compact analytic expressions and, thus, elucidated their causal
structure. We made use of reconstruction of analytic expressions from numerical evalua-
tions over finite fields, and generated compact formulae at arbitrary numbers of loops. The
calculation of the compact causal formulae was explicitly carried out for multi-loop vacuum
integrals as well as for their extension with external momenta.

We also studied the behaviour of topologies with higher powers in the propagators. In
particular, we noted that the results generated for topologies with single power propagators
give the relevant causal information. Hence, due to the explicit dependence in the on-shell
loop energies q(+)

i,0 of the LTD representation, we defined an operator that raises the powers
of propagators starting from the original single-power causal representation.

In view of the compact and simple expressions of MLT, NMLT and N2MLT, we in-
tegrated them numerically up to four loops in integer space-time dimensions, d = 2, 3, 4.
Since we had to perform (d − 1)L integrations, we followed two approaches to evaluate
these integrals. The first one embeds the integration domain R(d−1)L in (d− 1)L sphere,
whereas the second one embeds the former in L products of (d− 1) spheres. We found
agreement in both approaches. Furthermore, we checked our expressions with available
softwares based on sector decomposition, Fiesta 4.2 and SecDec 3.0.

The algorithm presented in this paper and the interpretation in terms of entangled
causal thresholds can be extended to other loop integrals with more complex internal
configurations and to new Nk−1MLT topologies, with k > 3, that will appear beyond three
loops. We recall that a causal representation is expected, since in the end Nk−1MLT admits
a decomposition in terms of MLT subtopologies.
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