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Abstract Parameter estimation via unbinned maximum
likelihood fits is central for many analyses performed in high
energy physics. Unbinned maximum likelihood fits using
event weights, for example to statistically subtract back-
ground contributions via the sPlot formalism, or to correct
for acceptance effects, have recently seen increasing use in
the community. However, it is well known that the naive
approach to the estimation of parameter uncertainties via the
second derivative of the logarithmic likelihood does not yield
confidence intervals with the correct coverage in the pres-
ence of event weights. This paper derives the asymptotically
correct expressions and compares them with several com-
monly used approaches for the determination of parameter
uncertainties, some of which are shown to not generally be
asymptotically correct. In addition, the effect of uncertain-
ties on event weights is discussed, including uncertainties
that can arise from the presence of nuisance parameters in
the determination of sWeights.
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1 Introduction

Unbinned maximum likelihood fits are an essential tool for
parameter estimation in high energy physics, due to the desir-
able features of the maximum likelihood estimator. In the
asymptotic limit the maximum likelihood estimator is nor-
mally distributed around the true parameter value and its vari-
ance is equal to the minimum variance bound [1,2]. Further-
more, in the unbinned approach no information is lost due to
binning.

The inclusion of weights into the maximum likelihood
formalism is desirable in many applications. Examples are
the statistical subtraction of background events in the sPlot
formalism [3] through the use of per-event weights, and the
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correction of acceptance effects via weighting by the inverse
efficiency. However, with the inclusion of per-event weights
the confidence intervals determined by the inverse second
derivative of the negative logarithmic likelihood (in the mul-
tidimensional case the inverse of the Hessian matrix of the
negative logarithmic likelihood) are no longer asymptotically
correct.1 There are several approaches that are commonly
used to determine confidence intervals in the presence of
event weights. However, as will be shown below, not all
of these techniques are guaranteed to give asymptotically
correct coverage. In this paper, the asymptotically correct
expressions for the determination of parameter uncertainties
will be derived and then compared with these approaches.

This paper is structured as follows: In Sect. 2 the unbinned
maximum likelihood formalism is briefly summarised and
the inclusion of event weights is discussed. The asymptoti-
cally correct expression for static event weights is derived
in Sect. 2.1 and compared with several commonly used
approaches to determine uncertainties in weighted maximum
likelihood fits in Sect. 2.2. Section 3.1 details the correction of
acceptance effects through event weights and discusses the
impact of weight uncertainties in this context. Section 3.2
derives the asymptotically correct expressions for parameter
uncertainties from fits of sWeighted data, and also details the
impact of potential nuisance parameters present in the deter-
mination of sWeights. Different approaches to the determina-
tion of parameter uncertainties are compared and contrasted
using two specific examples in Sect. 4, an angular fit correct-
ing for an acceptance effect (Sect. 4.1) and the determination
of a lifetime when statistically subtracting background events
using sWeights (Sect. 4.2). Finally, conclusions are given in
Sect. 5.

2 Unbinned maximum likelihood fits and event weights

The maximum likelihood estimator for a set of NP param-
eters λ = {

λ1, . . . , λNP

}
, given N independent and identi-

cally distributed measurements x = {x1, . . . , xN }, is deter-
mined by solving (typically numerically using a software
package like Minuit [5]) the maximum likelihood condition

∂

∂λ j
lnL(x1, . . . , xN ;λ)

∣∣∣∣
λ̂

= 0

N∑

e=1

∂

∂λ j
lnP(xe;λ)

∣∣∣∣
λ̂

= 0, (1)

whereP(xe;λ) denotes the probability density function eval-
uated for the event xe and parameters λ. Maximising the

1 It should further be noted, that the inclusion of event weights involves
some loss of information [4].

logarithmic likelihood lnL finds the parameters λ̂ for which
the measured data x becomes the most likely. The covari-
ance matrix C for the parameters in the absence of event
weights can be calculated from the inverse matrix of second
derivatives (the Hessian matrix) of the negative logarithmic
likelihood

Ci j = −
(

∂2

∂λi∂λ j
lnL(x1, . . . , xN ;λ)

∣∣∣∣
λ̂

)−1

= −
(

N∑

e=1

∂2

∂λi∂λ j
lnP(xe;λ)

∣∣∣∣∣
λ̂

)−1

. (2)

evaluated at λ = λ̂. When including event weights we=1,...,N

to give each measurement a specific weight the maximum
likelihood condition becomes2

N∑

e=1

we
∂

∂λ j
lnP(xe;λ)

∣∣∣∣
λ̂

= 0. (3)

Depending on the application, the weightwe can be a function
of xe and other event quantities ye that P(xe;λ) does not
depend on directly. For efficiency corrections the weights are
given by we(xe, ye) = 1/ε(xe, ye) as detailed in Sect. 3.1, for
sWeights the weights we(ye) depend on the discriminating
variable y as described in Sect. 3.2. It should be noted, that
the weighted inverse Hessian matrix

Ci j = −
(

N∑

e=1

we
∂2

∂λi∂λ j
lnP(xe;λ)

∣∣∣∣∣
λ̂

)−1

. (4)

will generally not give asymptotically correct confidence
intervals. This can be most easily seen when assuming con-
stant weights we = w which will result in an over-estimation
(w > 1) or under-estimation (w < 1) of the statistical power
of the sample and confidence intervals that thus under- or
overcover.

2.1 Asymptotically correct uncertainties in the presence of
per-event weights

To derive the parameter variance in the presence of event
weights, which for now are considered to be static, the simple
case of a single parameter λ is discussed first. In this case,
the estimator λ̂ is defined implicitly by the condition

2 It should be noted that the left-hand side of Eq. 3 strictly speaking
is no longer a standard logarithmic likelihood, however that does not
preclude its use in parameter estimation as an estimating function.
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N∑

e=1

we
∂ lnP(xe; λ)

∂λ

∣∣∣∣
λ̂

= 0 (5)

which is referred to as an estimating equation in the statistical
literature. A central prerequisite for the following derivation
is the property3

E

( N∑

e=1

we
∂ lnP(xe; λ)

∂λ

∣∣∣∣
λ0

)
= 0, (6)

which is shown for event weights to correct an acceptance
effect in Sect. 3.1 (Eq. 29). The more complex case of
sWeights will be discussed in Sect. 3.2 (see Eqs. 42–44).
Using the fact that E(w∂2 lnP/∂λ2|λ) < 0 (see Eq. 30) it
can be shown that the estimator λ̂ defined by Eq. 5 is con-
sistent [6]. We can then Taylor-expand Eq. 5 to first order
around the (unknown) true value λ0, to which λ̂ converges in
the asymptotic limit of large N :

N∑

e=1

we
∂ lnP(xe; λ)

∂λ

∣∣∣∣
λ0

+
(
λ̂−λ0

) N∑

e=1

we
∂2lnP(xe; λ)

∂λ2

∣∣∣∣
λ0

= 0.

(7)

This equation can be rewritten as

λ̂ − λ0 = −
∑N

e=1 we
∂ lnP(xe;λ)

∂λ

∣∣∣
λ0

∑N
e=1 we

∂2 lnP(xe;λ)

∂λ2

∣∣∣
λ0

= −
∑N

e=1 we
∂ lnP(xe;λ)

∂λ

∣∣∣
λ0

NE
(
w

∂2 lnP(xe;λ)

∂λ2

∣∣∣
λ0

) + O(1/N ), (8)

giving the deviation of the estimator λ̂ from the true value
λ0. Here, we used that the sum in the denominator goes to

N∑

e=1

we
∂2 lnP(xe; λ)

∂λ2

∣∣∣∣
λ0

→ NE

(
w

∂2 lnP(x; λ)

∂λ2

∣∣∣∣
λ0

)

(9)

in the asymptotic limit due to the law of large numbers. Due
to the central limit theorem, the numerator converges to a
Gaussian distribution with mean zero (according to Eq. 6)
and variance

3 Estimating functions fulfilling Eq. 6 are referred to as unbiased esti-
mating equations in the statistical literature (see e.g. Ref. [6]). It should
be noted that the existence of an unbiased estimating equation does not
imply that the corresponding estimator itself is unbiased. In particular, it
is well known that maximum likelihood estimators are biased for finite
samples.

Nvar

(

w
∂ lnP(x; λ)

∂λ

∣∣∣∣
λ0

)

= NE

(
w2 ∂ lnP(x; λ)

∂λ

∣∣∣∣
λ0

∂ lnP(x; λ)

∂λ

∣∣∣∣
λ0

)
. (10)

Using Eqs. 9 and 10, the variance in the asymptotic limit at
leading order is thus given by

var(λ̂ − λ0) = E
(
(λ̂ − λ0)

2
)

=
E

(
w2 ∂ lnP(x;λ)

∂λ

∣∣∣
λ0

∂ lnP(x;λ)
∂λ

∣∣∣
λ0

)

NE

(
w

∂2 lnP(x;λ)

∂λ2

∣∣∣
λ0

)2 . (11)

The right-hand side of Eq. 11 is the inverse Godambe infor-
mation [7,8], which is central to the theory of estimating
equations. As the estimator is consistent, we replace λ0 with
λ̂ in the asymptotic limit, and further estimate the expectation
values through the sample, resulting in

var(λ̂ − λ0)

=
∑N

e=1 w2
e

∂ lnP(xe;λ)
∂λ

∣∣∣
λ̂

∂ lnP(xe;λ)
∂λ

∣∣∣
λ̂(∑N

e=1 we
∂2 lnP(xe;λ)

∂λ2

∣∣∣
λ̂

) (∑N
e=1 we

∂2 lnP(xe;λ)

∂λ2

∣∣∣
λ̂

) .

(12)

This expression is also known as the sandwich estimator.
In the case where event weights are absent (we = 1), the
numerator in Eq. 11 cancels with one of the inverse Hessian
matrices as in this case

E

(
∂ lnP(x; λ)

∂λ

∣∣∣∣
λ0

∂ lnP(x; λ)

∂λ

∣∣∣∣
λ0

)
= −E

(
∂2 lnP(x; λ)

∂λ2

∣∣∣∣
λ0

)
.

(13)

For we = 1 the Godambe information thus simplifies to the
well known Fisher information.

For the multidimensional case we analogously Taylor-
expand Eq. 3 to first order, resulting in

N∑

e=1

we
∂

∂λi
lnP(xe;λ)

∣∣∣∣
λ0

+
N∑

e=1

we

NP∑

j=1

(λ̂ j − λ0 j )

× ∂2

∂λ j∂λi
lnP(xe;λ)

∣∣∣∣
λ0

= 0, (14)

which can be written as a matrix equation

di |λ0 = −
NP∑

j=1

Hi j
∣∣
λ0

(
λ̂ j − λ0 j

)
with the definitions
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di =
N∑

e=1

we
∂ lnP(xe;λ)

∂λi
and

Hi j =
N∑

e=1

we
∂2

∂λi∂λ j
lnP(xe;λ). (15)

Matrix inversion yields an expression for the deviation of the
estimator λ̂i from the true value λ0i

λ̂i − λ0i = −
NP∑

j=1

H−1
i j d j

∣∣∣
λ0

. (16)

The covariance matrix C is then given by

Ci j = E
(
λ̂i − λ0i )(λ̂ j − λ0 j )

)

=
NP∑

k,l=1

H−1
ik E(dkdl)H

−1
l j

∣∣∣
λ̂

=
NP∑

k,l=1

H−1
ik

(
N∑

e=1

w2
e
∂ lnP(xe; λ)

∂λk

∂ lnP(xe; λ)

∂λl

)

H−1
l j

∣∣∣∣∣
λ̂

,

(17)

which can be compactly written as

Ci j =
NP∑

k,l=1

H−1
ik Dkl H

−1
l j

∣∣∣
λ̂

with

Dkl =
N∑

e=1

w2
e
∂ lnP(xe;λ)

∂λk

∂ lnP(xe;λ)

∂λl
. (18)

The above expressions are familiar from the derivation of
Eq. 2 (in the absence of event weights) in standard textbooks
(e.g. Ref. [9]). Equation 18 has been previously discussed in
Ref. [4] in the context of event weights for efficiency correc-
tion. However, it does not seem to be commonly used and
often one of the approaches detailed below in Sect. 2.2 is
employed instead.

2.2 Commonly used approaches to uncertainties in
weighted fits

Instead of using the asymptotically correct approach for static
event weights given by Eq. 18, often other techniques are used
to determine parameter uncertainties in weighted unbinned
maximum likelihood fits which are presented below. We
stress that of the techniques (a)–(c) listed below only the
bootstrapping approach (c) will result in generally asymp-
totically correct uncertainties.

(a) A simple approach used sometimes (e.g. in Ref. [10]) is
to rescale the weights we according to

w′
e = we

∑N
e=1 we

∑N
e=1 w2

e

(19)

and to use Eq. 4 with the weights w′
e. This will rescale

the weights such that their sum corresponds to Kish’s
effective sample size [11], however, this approach will
not generally reproduce the result in Eq. 18.

(b) A method proposed in Refs. [1,2] is to correct the covari-
ance matrix according to

C ′
i j =

NP∑

k,l=1

H−1
ik Wkl H

−1
l j

∣∣∣
λ̂
, (20)

where H is the weighted Hessian matrix defined in Eq. 15
and W is the Hessian matrix determined using squared
weights w2

e according to

Wkl = −
N∑

e=1

w2
e
∂2 lnP(xe;λ)

∂λk∂λl
. (21)

This method is the nominal method used in the Roofit
software package when using weighted events [12] and
is thus widely used in particle physics. It corresponds to
the result in Eq. 18 only if

E

( N∑

e=1

w2
e

∂ lnP(xe;λ)

∂λk

∣∣∣∣
λ̂

∂ lnP(xe;λ)

∂λl

∣∣∣∣
λ̂

)

= −E

( N∑

e=1

w2
e

∂2 lnP(xe;λ)

∂λk∂λl

∣∣∣∣
λ̂

)
. (22)

This is however not generally the case. This becomes
more clear when rewriting the left- and right-hand side
of Eq. 22 according to

N∑

e=1

w2
e

∂ lnP(xe;λ)

∂λk

∣∣∣∣
λ̂

∂ lnP(xe;λ)

∂λl

∣∣∣∣
λ̂

=
N∑

e=1

w2
e

P2(xe;λ)

∂P(xe;λ)

∂λk

∣∣∣∣
λ̂

∂P(xe;λ)

∂λl

∣∣∣∣
λ̂

and

(23)

−
N∑

e=1

w2
e

∂2 lnP(xe;λ)

∂λk∂λl

∣∣∣∣
λ̂

=
N∑

e=1

w2
e

P2(xe;λ)

∂P(xe;λ)

∂λk

∣∣∣∣
λ̂

∂P(xe;λ)

∂λl

∣∣∣∣
λ̂
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−
N∑

e=1

w2
e

P(xe;λ)

∂2P(xe;λ)

∂λk∂λl

∣∣∣∣
λ̂

. (24)

The expectation value of the second part on the right-
hand side of Eq. 24 is not generally zero. While Refs.
[1,2] correctly derive that the expectation value

E

(
w

P(x;λ)

∂2P(x;λ)

∂λk∂λl

)
= 0 (25)

for an efficiency correction εe = 1/we, this is not gen-
erally the case for the expression with squared weights

E

(
w2

P(x;λ)

∂2P(x;λ)

∂λk∂λl

)
(26)

resulting in confidence intervals that are not generally
asymptotically correct when using this approach. This
will be detailed for efficiency corrections in Sect. 3.1.
For the specific example discussed in Sect. 4.1, the cor-
responding expectation values are calculated explicitly
in Appendix A.

(c) A general approach for the determination of parame-
ter uncertainties is to bootstrap the data [13]. Repeat-
edly resampling the data set with replacement allows
new samples to be generated that can in turn be used
to estimate the parameters λ using the maximum like-
lihood method. The width of the distribution of esti-
mated parameter values can then be used as estimator
for the parameter uncertainty. This approach is generally
valid, however repeatedly (typically O(103) times) solv-
ing Eq. 3 numerically can be computationally expensive
and thus this approach is often unfeasible.

3 Event weights and inclusion of weight uncertainties

3.1 Acceptance corrections

Following the notation in Refs. [1,2], this section details
the correction of acceptance effects using event weights.
Acceptance of events with a certain probability ε, depend-
ing on the measurements xe and ye, can be accounted for in
unbinned maximum likelihood fits by using event weights
we = 1/ε(xe, ye) in Eq. 3. The efficiency ε(x, y) should
be positive over the full phasespace considered, regions of
phasespace where the efficiency is zero should be excluded
from the analysis.4 Here, we differentiate between the quan-
tities x that the probability density function P(x;λ) in Eq. 3
depends on directly, and potential additional quantities y that

4 To exclude pathological cases we furthermore require
∑N

e=1 we =
∑N

e=1 1/εe to be of O(N ).

can depend on x . Using event weights can be advantageous
when it is difficult or computationally expensive to determine
the norm of the probability density function when including
the efficiency as an explicit additional multiplicative factor
ε(x, y). The covariance in this case can be estimated using
Eq. 18 as previously suggested in Ref. [4].

To determine expectation values it is necessary to include
the acceptance effect in the probability density function. The
probability density function P(x, y;λ) gives the probability
to find the measurements x and y depending on the parame-
ters λ with

P(x, y;λ) = P(x;λ)Q(y; x) (27)

and the proper normalisation
∫ P(x;λ)dx = 1 and

∫ Q(y; x)
dy = 1. The resulting total probability density function
including the acceptance effect is then given by

G(x, y;λ) = P(x;λ)Q(y; x)ε(x, y)
∫ P(x;λ)Q(y; x)ε(x, y)dxdy

= P(x;λ)Q(y; x)ε(x, y)/N (28)

with normalisationN . This is the probability density function
that needs to be used when determining expectation values.
For the likelihood condition we find

E

(
w(x, y)

∂ lnP(x;λ)

∂λ j

)

= E

(
w(x, y)

1

P(x; λ)

∂P(x;λ)

∂λ j

)

=
∫

1

ε(x, y)

1

P(x;λ)

∂P(x;λ)

∂λ j
P(x;λ)Q(y; x)ε(x, y)dxdy/N

= ∂

∂λ j

∫
P(x;λ)Q(y; x)dxdy/N = ∂

∂λ j
1/N = 0, (29)

confirming the central property of Eq. 6. Further, we obtain

E

(
w(x, y)

∂2 lnP(x;λ)

∂λi∂λ j

)

= E

(
w(x, y)

1

P(x; λ)

∂2P(x;λ)

∂λi∂λ j

)

− E

(
w(x, y)

1

P2(x;λ)

∂P(x;λ)

∂λi

∂P(x;λ)

∂λ j

)

=
∫

1

ε(x, y)

1

P(x;λ)

∂2P(x;λ)

∂λi∂λ j
P(x;λ)Q(y; x)ε(x, y)dxdy/N

−
∫

1

ε(x, y)

1

P2(x;λ)

∂P(x;λ)

∂λi

× ∂P(x;λ)

∂λ j
P(x;λ)Q(y; x)ε(x, y)dxdy/N

= −
∫

1

P(x;λ)

∂P(x;λ)

∂λi

∂P(x;λ)

∂λ j
dx/N , (30)
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where also the expectation value in Eq. 25 is shown, and

E

(
w(x, y)

∂ lnP(x;λ)

∂λi

∂ lnP(x;λ)

∂λ j

)

= E

(
w(x, y)

1

P2(x;λ)

∂P(x;λ)

∂λi

∂P(x;λ)

∂λ j

)

=
∫

1

ε(x, y)

1

P2(x;λ)

∂P(x;λ)

∂λi

× ∂P(x;λ)

∂λ j
P(x;λ)Q(y; x)ε(x, y)dxdy/N

= −E

(
w(x, y)

∂2 lnP(x;λ)

∂λi∂λ j

)
. (31)

However, the equality derived above is not generally fulfilled
for squared weights. In this case, we find

E

(
w2(x, y)

∂2 lnP(x;λ)

∂λi∂λ j

)

= E

(
w2(x, y)

1

P(x;λ)

∂2P(x;λ)

∂λi∂λ j

)

− E

(
w2(x, y)

1

P2(x;λ)

∂P(x;λ)

∂λi

∂P(x;λ)

∂λ j

)

= ∂2

∂λi∂λ j

∫
1

ε(x, y)
P(x;λ)Q(y; x)dxdy/N

−
∫

1

ε(x, y)

1

P(x;λ)

∂P(x;λ)

∂λi

× ∂P(x;λ)

∂λ j
Q(y; x)dxdy/N (32)

and

E

(
w2(x, y)

∂ lnP(x;λ)

∂λi

∂ lnP(x;λ)

∂λ j

)

= E

(
w2(x, y)

1

P2(x;λ)

∂P(x;λ)

∂λi

∂P(x;λ)

∂λ j

)

=
∫

1

ε(x, y)

1

P(x;λ)

∂P(x;λ)

∂λi

∂P(x;λ)

∂λ j

× Q(y; x)dxdy/N

= −E

(
w2(x, y)

∂2 lnP(x;λ)

∂λi∂λ j

)

+ ∂2

∂λi∂λ j

∫
1

ε(x, y)
P(x;λ)Q(y; x)dxdy/N , (33)

where the term in the last line of Eq. 33, which corresponds
to the expectation value in Eq. 26, is not generally zero, as
the integral in the numerator can retain a dependence on λ.
For the example discussed in Sect. 4.1 this is explicitly calcu-
lated in Appendix A. This shows that parameter uncertainties
determined using Eq. 20 are not generally asymptotically cor-

rect when performing weighted fits to account for acceptance
corrections.

3.1.1 Weight uncertainties

If the weights to correct for an acceptance effect are only
known to a certain precision, i.e. they are not fixed as assumed
in Sect. 2.1, this induces an additional variance that is not
included in Eq. 18 and that needs to be accounted for. This
additional covariance can be estimated using standard error
propagation, starting from Eq. 16. For weights depending on
the NT parameters pm with covariance matrix M, this results
in

C ′′
i j =

NT∑

m,n=1

∂(λ̂i − λ0i )

∂pm
Mmn

∂(λ̂ j − λ0 j )

∂pn
with (34)

∂(λ̂i−λ0i )

∂pm
=−

NP∑

j=1

H−1
i j

∂d j

∂pm

∣∣∣∣
λ0

−
NP∑

j=1

∂H−1
i j

∂pm
d j

∣∣∣∣
λ0

, (35)

where d j and Hi j are defined in Eq. 15. Due to the likelihood
condition d j

∣∣
λ̂

= 0, the second term in Eq. 35 behaves as

O(1/
√
N ) and only the first term needs to be considered.

For the case of an efficiency histogram, where the
efficiency is given in NB bins with weight uncertainty
σm=1,...,NB , weights inside a bin are fully correlated, but typi-
cally uncorrelated with other bins. In this case, the additional
covariance matrix that needs to be added to account for the
weight uncertainties is given by

C ′′
i j =

NP∑

k,l=1

H−1
ik

NB∑

m=1

([
∑

e∈binm

∂ lnP(xe;λ)

∂λk

∣∣∣∣
λ̂

]

σ 2
m

×
[

∑

e∈binm

∂ lnP(xe;λ)

∂λl

∣∣∣∣
λ̂

])

H−1
l j . (36)

If the efficiency is modelled analytically, for example by a
parameterisation that is fit to simulated samples, the impact
of the uncertainty of the parameters p on the event weights
we( p) = 1/εe( p) needs to be accounted for. For NT parame-
ters with covariance M the additional covariance matrix that
needs to be added to Eq. 18 is given by

C ′′
i j =

NP∑

k,l=1

H−1
ik

NT∑

m,n=1

( N∑

e=1

∂we

∂pm

∂ lnP(xe;λ)

∂λk

∣∣∣∣
λ̂

)
Mmn

×
( N∑

e=1

∂we

∂pn

∂ lnP(xe;λ)

∂λl

∣∣∣∣
λ̂

)
H−1
l j . (37)

Identical results are obtained when using the systematic
approach to error propagation that is employed for sWeights
in the next section, which is based on combining the estimat-
ing equations for the parameters p and λ in a single vector.
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(b)(a)

Fig. 1 Angular cos θ distribution of (black) data and (red) efficiency corrected events for 10 000 pseudoexperiments consisting of 1000 events
each

3.2 The sPlot formalism

The sPlot formalism was introduced in Ref. [3] to statistically
separate different event species in a data sample using per-
event weights, the so-called sWeights, that are determined
using a discriminating variable (in the following denoted
by y). The sWeights allow to reconstruct the distribution of
the different species in a control variable (in the following
denoted by x), assuming the control and discriminating vari-
ables are statistically independent for each species. In this
section, only a brief recap of the sPlot formalism is given, it
is described in more detail in Ref. [3].

The sWeights are determined using an extended unbinned
maximum likelihood fit of the discriminating variable y
where the NS different event species are well separated. An
example of a discriminating variable (which will be discussed
in more detail in Sect. 4.2) would be the reconstructed mass
of a particle which is flat for the background components
and peaks clearly for the signal component. For the typical
use case of a signal component of interest and a single back-
ground component, the sWeight for event e is given by

ws(ye) = V̂ssPs(ye) + V̂sbPb(ye)

N̂sPs(ye) + N̂bPb(ye)

= V̂−1
bb Ps(ye) − V̂−1

sb Pb(ye)

(V̂−1
bb − V̂−1

sb )Ps(ye) + (V̂−1
ss − V̂−1

sb )Pb(ye)
,

(38)

where N̂s = V̂ss + V̂sb and N̂b = V̂bb + V̂sb is used [3].
Retaining only the dependency on the inverse covariance
matrix elements V−1

i j simplifies the following derivations.
The estimates for the inverse covariance matrix elements are

given by

V̂−1
i j =

N∑

e=1

Pi (ye)P j (ye)
(
N̂sPs(ye) + N̂bPb(ye)

)2 , with expectation

V−1
i j =

∫ Pi (y)P j (y)

NsPs(y) + NbPb(y)
dy. (39)

Using the sWeights in a weighted unbinned maximum like-
lihood fit allows to statistically subtract events originating
from species not of interest [14], by including them as event
weights in Eq. 3, resulting in the estimating equations

N∑

e=1

ws(ye; V̂−1
ss , V̂−1

sb , V̂−1
bb )

∂ lnP(xe;λ)

∂λi

∣∣∣∣
λ̂

= 0. (40)

The sWeights depend on estimates for the inverse covari-
ance matrix elements V−1

i j (Eq. 38), which in turn depend
on estimates for the signal and background yields (Eq. 39)
determined from the same sample.5 To account for this effect,
i.e. in order to systematically perform error propagation, it
is useful to combine the estimating equations for the yields
Ns and Nb, the inverse covariance matrix elements V−1

i j , and
the parameters of interest λ in a single vector

g(x, y; θ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

ϕs( y; Ns, Nb)

ϕb( y; Ns, Nb)

ψss( y; V−1
ss , Ns, Nb)

ψsb( y; V−1
sb , Ns, Nb)

ψbb( y; V−1
bb , Ns, Nb)

ξi (x, y;λ, V−1
ss , V−1

sb , V−1
bb )

⎞

⎟⎟⎟⎟⎟⎟
⎠

5 Problems of this type are discussed in the statistical literature as two-
step M-estimation, see for example Refs. [15–17].
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(b)

(a)

Fig. 2 Pull distributions from 10 000 pseudoexperiments for the dif-
ferent approaches to the uncertainty estimation for the efficiency cor-
rection ε(cos θ) = 1.0 − 0.7 cos2 θ at a total yield of 2000 events for
each pseudoexperiment

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
e

∂
∂Ns

[
ln(NsPs(ye) + NbPb(ye)) − Ns+Nb

N

]
∑

e
∂

∂Nb

[
ln(NsPs(ye) + NbPb(ye)) − Ns+Nb

N

]

∑
e

[ Ps(ye)Ps(ye)
(NsPs(ye)+NbPb(ye))2 − V−1

ss
N

]

∑
e

[ Ps(ye)Pb(ye)
(NsPs(ye)+NbPb(ye))2 − V−1

sb
N

]

∑
e

[ Pb(ye)Pb(ye)
(NsPs(ye)+NbPb(ye))2 − V−1

bb
N

]

∑
e ws(ye; V−1

ss , V−1
sb , V−1

bb )
∂ lnP(xe;λ)

∂λi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(41)

where θ denotes the vector of parameters θ = {Ns, Nb, V−1
ss ,

V−1
sb , V−1

bb ,λ}. It should be noted that solving g(x, y; θ)|
θ̂

=
0 is equivalent to solving the estimating equations for the
yields, the inverse covariance matrix elements, and the
parameters of interest λ sequentially. It can be shown that

(b)

(a)

Fig. 3 Pull distributions from 10 000 pseudoexperiments for the dif-
ferent approaches to the uncertainty estimation for the efficiency cor-
rection ε(cos θ) = 0.3 + 0.7 cos2 θ at a total yield of 2000 events for
each pseudoexperiment

E
(
g(x, y; θ)|θ0

) = 0, i.e. the estimating equations are unbi-
ased,6 as

E

(
ϕi ( y; Ns, Nb)

∣∣
θ0

)
=
∫ Pi (NsPs + NbPb)

NsPs + NbPb
dy − 1 = 0 (42)

E

(
ψi j ( y; V−1

i j , Ns, Nb)
∣∣
θ0

)
=
∫ PiP j

NsPs+NbPb
dy−E(V−1

i j )=0,

(43)

and

E

(
ξi (x, y;λ, V−1

ss , V−1
sb , V−1

bb )
∣∣
θ0

)

6 Note that the expectation values are evaluated at the true parameter
values θ0 which simplifies their calculation significantly.
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= E

(∑

e

ws(ye)
∂ lnPs(xe; λ)

∂λi

)

=
∫

V−1
bb Ps(y) − V−1

sb Pb(y)

(V−1
bb − V−1

sb )Ps(y) + (V−1
ss − V−1

sb )Pb(y)

∂ lnPs(x;λ)

∂λi

× (
NsPs(x)Ps(y) + NbPb(x)Pb(y)

)
dxdy

=
∫

V−1
bb Ps(y) − V−1

sb Pb(y)

(V−1
bb − V−1

sb )Ps(y) + (V−1
ss − V−1

sb )Pb(y)
Pb(y)dy

×
∫

Nb
Pb(x)

Ps(x;λ)

∂Ps(x; λ)

∂λi
dx

︸ ︷︷ ︸
κi

= V−1
bb V−1

sb − V−1
sb V−1

bb

V−1
ss V−1

bb − V−1
sb V−1

sb

× κi = 0. (44)

The covariance matrix for the full system in the asymptotic
limit is given by7 [6,18]

Cθ = E

(
∂ g(x, y; θ)

∂θT

)−1

× E
(
g(x, y; θ)g(x, y; θ)T

)

× E

(
∂ g(x, y; θ)

∂θT

)−T

. (45)

The covariance can be estimated from the sample by
replacing the expectation values E

(
∂gi (x, y; θ)/∂θ j

)
and

E
(
gi (x, y; θ)g j (x, y; θ)

)
by their sample estimates, which

are given in Appendices B.1 and B.2, respectively.
For the case of classic sWeights, where the shapes of all

probability density functions are known, the above expres-
sion can be simplified further. The detailed calculation is
given in Appendix B. For the covariance of the parameters
of interest λ it results in

Cλ = H−1H ′H−T − HEC ′ET H−T with

Hi j =
∑

e

ws(ye)
∂2 lnPs(xe;λ)

∂λi∂λ j

H ′
i j =

∑

e

w2
s (ye)

∂ lnPs(xe;λ)

∂λi

∂ lnPs(xe;λ)

∂λ j

Ek(i j) =
∑

e

∂ws(ye)

∂V−1
i j

∂ lnPs(xe;λ)

∂λk

C ′
(i j)(kl) =

∑

e

Pi (ye)P j (ye)Pk(ye)Pl(ye)
(
NsPs(ye) + NbPb(ye)

)4 . (46)

Note that using only the first term in Eq. 46 (which cor-
responds to Eq. 18) would not generally be asymptotically
correct but instead conservative for the parameter variances,
as the matrix C ′ is positive definite.

The same technique used for the calculation of Eq. 46
can also be used to determine the (co)variance of the sum

7 Here and in the following the superscript −T refers to the transposed
inverted matrix.

of sWeights in non-overlapping bins in the control variable
x , which is needed to perform χ2 fits of binned sWeighted
data. The detailed calculation for the covariance of S (with
Si = ∑

e∈ bin i ws(ye) for bin i) is given in Appendix C and
results in

CS = H ′ − EC ′ET where

H ′
i j = δi j

∑

e∈ bin i

w2
s (ye)

Ek(i j) =
∑

e∈ bin k

∂ws(ye)

∂V−1
i j

C ′
(i j)(kl) =

∑

e

Pi (ye)P j (ye)Pk(ye)Pl(ye)
(
NsPs(ye) + NbPb(ye)

)4 . (47)

As is apparent, using only the first term in Eq. 47, i.e. using∑
e∈ bin i w

2
s (ye) as estimate for the variance of the content of

bin i , is not generally asymptotically correct but conservative,
as C ′ is positive definite. The second term in Eq. 47 also
induces correlations between bins which should be accounted
for in a binned χ2 fit.

3.2.1 sWeights and nuisance parameters

Additional nuisance parameters α present in the extended
maximum likelihood fit of the event yields (e.g. shape param-
eters of Ps or Pb) can be easily included in the formal-
ism used in the previous section. The estimating equations
ϕi ( y;α, Ns, Nb) for the parameters α need to be added to
the vector g defined in Eq. 41, resulting in a modified

g′(x, y; θ ′) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ϕs( y;α, Ns, Nb)

ϕb( y;α, Ns, Nb)

ϕi ( y;α, Ns, Nb)

ψss( y; V−1
ss ,α, Ns, Nb)

ψsb( y; V−1
sb ,α, Ns, Nb)

ψbb( y; V−1
bb ,α, Ns, Nb)

ξi (x, y;λ, V−1
ss , V−1

sb , V−1
bb ,α)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
e

∂
∂Ns

[
ln(NsPs(ye;α) + NbPb(ye;α)) − Ns+Nb

N

]
∑

e
∂

∂Nb

[
ln(NsPs(ye;α) + NbPb(ye;α)) − Ns+Nb

N

]
∑

e
∂

∂αi

[
ln(NsPs(ye;α) + NbPb(ye;α)) − Ns+Nb

N

]

∑
e

[ Ps(ye;α)Ps(ye;α)

(NsPs(ye;α)+NbPb(ye;α))2 − V−1
ss
N

]

∑
e

[ Ps(ye;α)Pb(ye;α)

(NsPs(ye;α)+NbPb(ye;α))2 − V−1
sb
N

]

∑
e

[ Pb(ye;α)Pb(ye;α)

(NsPs(ye;α)+NbPb(ye;α))2 − V−1
bb
N

]

∑
e ws(ye; V−1

ss , V−1
sb , V−1

bb ,α)
∂ lnP(xe;λ)

∂λi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(48)

where the vector of parameters is θ ′ = {Ns, Nb,α, V−1
ss , V−1

sb ,

V−1
bb ,λ}. The covariance matrix in the asymptotic limit is then
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(a)

(b)

Fig. 4 (Left) Pull means and (right) pull widths for the efficiency correction ε(cos θ) = 1.0 − 0.7 cos2 θ , depending on total event yield Ntot . The
markers are slightly horizontally staggered to improve readability

given by

Cθ ′ = E

(
∂ g′(x, y; θ ′)

∂θ ′T

)−1

× E
(
g′(x, y; θ ′)g′(x, y; θ ′)T

)

× E

(
∂ g′(x, y; θ ′)

∂θ ′T

)−T

. (49)

The covariance can again be estimated from the sample
by replacing the expectation values E

(
∂g′

i (x, y; θ ′)/∂θ ′
j

)

and E
(
g′
i (x, y; θ ′)g′

j (x, y; θ ′)
)

by their sample estimates.
It should be noted that the nuisance parameters α in this case
will induce additional covariance terms beyond Eq. 46.8

8 For the binned case nuisance parameters α induce additional covari-
ance terms beyond Eq. 47 as well.

4 Examples

4.1 Correcting for an acceptance effect with event weights

The first example discussed in this paper is the fit of an angu-
lar distribution to determine angular coefficients, using event
weights to correct for an acceptance effect. The probability
density function used to generate and fit the pseudoexperi-
ments is a simple second order polynomial in the angle cos θ :

P(cos θ; c0, c1) =
(

1 + c0 cos θ + c1 cos2 θ
)

/N with

N =
∫ +1

−1

(
1 + c0 cos θ + c1 cos2 θ

)
dcosθ

= 2 + 2
3c1. (50)
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(b)

(a)

Fig. 5 (Left) Pull means and (right) pull widths for the efficiency correction ε(cos θ) = 0.3 + 0.7 cos2 θ , depending on total event yield Ntot . The
markers are slightly horizontally staggered to improve readability

In the generation, the values cgen
0 = 0 and cgen

1 = 0 are
used. Events are generated using a cos θ -dependent efficiency
ε(cos θ). Two efficiencies shapes are studied, given by

(a) ε(cos θ) = 1.0 − 0.7 cos2 θ and
(b) ε(cos θ) = 0.3 + 0.7 cos2 θ .

For simplicity, no uncertainty is assumed on the description
of the acceptance effect by ε(cos θ), otherwise the effect of
uncertainties on event weights would need to be included
as described in Sect. 3.1. Figure 1 shows the generated data
(including the acceptance effect) in black and the efficiency
corrected distributions, weighted by we = 1/ε(cos θe) in red.

The parameters c0 and c1 are determined using a weighted
unbinned maximum likelihood fit, solving Eq. 3. The uncer-
tainties on the parameters c0 and c1 are determined using

the approaches to determine parameter uncertainties that are
discussed in Sect. 2. The following methods are studied:

(a) The method of using the uncertainties determined accord-
ing to Eq. 4 without any correction, denoted as wFit in
this section.

(b) Scaling the weights according to Eq. 19. This approach
is referred to as scaled weights.

(c) Determining the covariance matrix using Eq. 20. This
method is referred to as squared correction in the fol-
lowing.

(d) Bootstrapping the data (using 1000 bootstraps) with
replacement, denoted as bootstrapping.

(e) The method to determine the covariance according to
Eq. 18 as discussed in Sect. 2.1, referred to as asymptotic
method.
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Fig. 6 Discriminating mass distribution for (black) the full data, (blue)
signal and (red) background

(f) A conventional fit (cFit) modelling the efficiency cor-
rection effect in the probability density function (and its
normalisation) instead of using event weights.

The performance of the methods is compared using pseu-
doexperiments, with each study consisting of 10 000 toy
data samples. The same data samples are used for every
method. The distribution of the pull, defined as pi (c0) =
(c0,i − cgen

0 )/σi (c0) (and analogously for parameter c1), is
used to test the different methods for uncertainty estimation.
Here, the fitted value for parameter c0 in pseudoexperiment
i is denoted as c0,i , the corresponding uncertainty is denoted
as σi (c0) and the generated value as cgen

0 . If the fit is unbiased
and the uncertainties are determined correctly, the pull distri-
bution is expected to be a Gaussian distribution with a mean
compatible with zero and a width compatible with one. Dif-
ferent event yields per data sample (N = 500, 1000, 2000,
5000, 10 000, 20 000, 50 000) are studied to investigate the
influence of statistics.

The pull distributions for the parameters c0 and c1 for 2000
events are shown in Figs. 2 and 3. The pull means and widths
depending on statistics are given in Figs. 4 and 5. Numerical
values are given in Tables 2 and 3 in Appendix D. A few
remarks are in order.

The wFit method is unbiased but shows significant under-
coverage for c0 and c1 for both acceptance corrections tested.
The scaled weights approach shows significant undercov-
erage for both c0 and c1 for the acceptance (a) and over-
coverage for acceptance (b). In both cases, the coverage
remains incorrect even for high statistics. Both the use of
the wFit as well as the scaled weights methods are therefore
strongly disfavoured to determine the parameter uncertain-
ties in this example for a simple efficiency correction. The
squared method shows good behaviour for parameter c0 but

Table 1 (Left) The parameters used in the generation of the pseudoex-
periments. Only Nsig, Nbkg, and the background slope αbkg are varied
in the mass fit. The background slope αbkg is then fixed for the deter-
mination of the sWeights. (Right) the mean correlation matrix from the
mass fit when both the yields and αbkg are allowed to float

(a) Parameters used in the generation

Parameter Value

fsig = Nsig/(Nsig + Nbkg) 0.5

αbkg 0.0

m(B) 5.367 GeV/c2

σ(m) 23 MeV/c2

Mass range [5 337, 5 567] MeV/c2

τ
gen
sig 1.5 ps

t range [0, 10] ps

(b) Mean correlation matrix

Nsig Nbkg αbkg

Nsig 1.00 −0.63 −0.67

Nbkg −0.63 1.00 0.67

αbkg −0.67 0.67 1.00

incorrect coverage for parameter c1. For parameter c1 the
method shows overcoverage for acceptance (a) and very sig-
nificant undercoverage (more severe than even the wFit) for
acceptance (b). The reason for this behaviour is the different
expectation value of Eq. 26 with respect to the second deriva-
tives to c0 and c1, as detailed in Appendix A. This illustrates
that the squared correction method, which is widely used in
particle physics, in general does not provide asymptotically
correct confidence intervals when using event weights to cor-
rect for acceptance effects. Bootstrapping the data sample or
using the asymptotic approach results in pull distributions
with correct coverage for both c0 and c1 and both acceptance
effects. No bias is observed for parameter c0 and only a small
bias is found for c1 at low statistics. This paper therefore
advocates for the use of the asymptotic method (or alterna-
tively bootstrapping) when using event weights to account
for acceptance corrections. The pull distributions for the cFit
also show, as expected, good behaviour. As there is no loss
of information for the cFit, it can result in better sensitivity,
as shown by the relative efficiencies given in Tables 2 and 3,
and its use should be strongly considered, where feasible.

4.2 Background subtraction using sWeights

As second specific example for the determination of confi-
dence intervals in the presence of event weights, the deter-
mination of the lifetime τ of an exponential decay in the
presence of background is discussed. The sPlot method [3]
is used to statistically subtract the background component.
Asdiscriminating variable, the reconstructed mass is used. In
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(a) (b)

(d)(c)

Fig. 7 Decay time distributions for the four different background options for (black) the full data, (blue) signal and (red) background. The signal
and background components are obtained using sWeights

this example, the signal is distributed according to a Gaussian
in the reconstructed mass, and the background is described
by a single Exponential function with slope αbkg. Figure 6
shows the mass distribution for signal and background com-
ponents. The parameters used in the generation of the pseu-
doexperiments are listed in Table 1a. The configuration is
purposefully chosen such that there is a significant corre-
lation between the yields and the slope of the background
exponential, to illustrate the effect of fixing nuisance param-
eters in the sPlot formalism, as discussed in Sect. 3.2. The
resulting mean correlation matrix for the mass fit is shown
in Table 1b. The simpler case, where no significant correla-
tion between αbkg and the event yields is present, due to a
different choice of mass range, is discussed in Appendix F.

The decay time distribution (the control variable) that is
used to determine the lifetime is a single Exponential for
the signal. For the background component, several differ-
ent shapes were tested: (a) A single Exponential with long
lifetime, (b) a Gaussian distribution, (c) a triangular distri-
bution, and (d) a flat distribution in the decay time. Figure 7
shows the decay time distribution for the different options.
The decay time distributions for signal and background com-
ponents shown are obtained using the sPlot formalism [3]
described in Sect. 3.2.

The parameter τ is determined using a weighted unbinned
maximum likelihood fit solving the maximum likelihood
condition Eq. 3 numerically. Its uncertainty σ(τ) is deter-
mined using the different methods for weighted unbinned
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(b)

(a)

Fig. 8 Pull distributions from 10 000 pseudoexperiments for the dif-
ferent approaches to the uncertainty estimation for a total yield of 2000
events in each pseudoexperiment. The different figures shown corre-
spond to the different background models as specified in Sect. 4

maximum likelihood fits discussed in Sect. 2. The following
approaches are studied:

(a) A weighted fit determining the uncertainties according
to Eq. 4 without any correction. This method is denoted
as sFit in the following.

(b) Scaling the weights according to Eq. 19. The approach
is denoted as scaled weights.

(c) Determining the covariance matrix using Eq. 20. This
method is referred to as squared correction.

(d) Bootstrapping the data (using 1000 bootstraps) with
replacement, without rederiving the sWeights (i.e. keep-
ing the original sWeights for each event). Denoted as
bootstrapping in the following.

(a)

(b)

Fig. 9 Pull distributions from 10 000 pseudoexperiments for the dif-
ferent approaches to the uncertainty estimation for a total yield of 2000
events in each pseudoexperiment. The different figures shown corre-
spond to the different background models as specified in Sect. 4

(e) Bootstrapping the data (again using 1000 bootstraps) and
rederiving the sWeights for every bootstrapped sample,
in the following denoted as full bootstrapping.

(f) The asymptotic method to determine the covariance
according to Eq. 46 as discussed in Sect. 3.2, but not
accounting for the impact of nuisance parameters in the
determination of the sWeights. This approach is referred
to as asymptotic method.

(g) The method to determine the covariance according to
Eq. 49, which includes the effect of nuisance parameters
in the sWeight determination. This method is denoted as
full asymptotic.

(h) A conventional fit (cFit) modelling both signal and
background components in two dimensions (mass and
decay time) for comparison. As the main point of using
sWeights is to remove the need to model the background
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(a)

(b)

Fig. 10 (Left) Pull means and (right) pull widths depending on total event yield Ntot . The markers are slightly horizontally staggered to improve
readability

contribution in the fit, this method is given purely for
comparison.

The performance of the different methods is evaluated using
pseudoexperiments. Every study consists of 10 000 data sam-
ples generated and then fit for an initial determination of the
sWeights. For every method, the same data samples are used.

The performance of the different methods is compared
using the distribution of the pull, defined as pi (τ ) = (τi −
τ

gen
sig )/σi (τ ). Here, τi is the central value determined by

the weighted maximum likelihood fit and σi (τ ) the uncer-
tainty determined by the above methods. The lifetime used
in the generation is denoted as τ

gen
sig . To study the influence

of statistics, pseudoexperiments are performed for different
numbers of events. The total yields Ntot = Nsig + Nbkg

generated correspond to 400, 1000, 2000, 4000, 10 000 and

20 000 events. The signal fraction used in the generation is
fsig = Nsig/(Nsig + Nbkg) = 0.5.

The pull distributions from 10 000 pseudoexperiments,
each with a total yield of 2000 events, are shown in Figs. 8
and 9. The pull means and widths are shown in Figs. 10
and 11. Numerical values for the different configurations are
given in Tables 4 and 5 in Appendix E.

As expected, both the sFit as well as the approach using
scaled weights perform quite poorly, as they show large
undercoverage, both for low statistics as well as for high
statistics. Furthermore, they exhibit significant bias at low
statistics (which reduces at large statistics) due to a strong
correlation of the uncertainty with the parameter τ . This
strongly disfavours the use of these methods for these
sWeighted examples. The squared correction method shows
better performance, nevertheless also exhibits significant bias
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(b)

(a)

Fig. 11 (Left) Pull means and (right) pull widths depending on total event yield Ntot . The markers are slightly horizontally staggered to improve
readability

(which reduces for higher statistics) and undercoverage. It
should be stressed that significant undercoverage is still
present at large statistics. This shows that the squared correc-
tion method in general does not provide asymptotically cor-
rect confidence intervals. Both bootstrapping as well as the
asymptotic methods perform better for the examples studied
here. However, both methods show some remaining under-
coverage even at high statistics. It is instructive that boot-
strapping the data without redetermining the sWeights per-
forms identically to the asymptotic method without account-
ing for the uncertainty due to nuisance parameters. However,
when performing a full bootstrapping including rederiving
the sWeights for the bootstrapped samples or when using
the full asymptotic method the confidence intervals generally
cover correctly and no significant biases are observed. Only
at low statistics some slight overcoverage can be observed.

This paper therefore advocates the use of the full asymptotic
method, or alternatively, if computationally possible, the full
bootstrapping approach for the determination of uncertain-
ties in unbinned maximum likelihood fits using sWeights. If
nuisance parameters have no large impact on the sWeights,
the asymptotic method can also be appropriate, as shown in
Appendix F.

The conventional fit describing the background compo-
nent in the decay time explicitly instead of using sWeights
also shows good behaviour, as expected. When the back-
ground distribution is known, a conventional fit is gener-
ally advantageous as it has improved sensitivity due to the
additional available information. For this example, where the
background pollution and parameter correlations are large,
the parameter sensitivity is significantly improved when
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using the conventional (unweighted) fit, as shown by the rel-
ative efficiencies given in Tables 4 and 5.

5 Conclusions

This paper derives the asymptotically correct method to
determine parameter uncertainties in the presence of event
weights for acceptance corrections, which was previously
discussed in Ref. [4] but does not currently see widespread
use in high energy particle physics. The performance of this
approach is validated on pseudoexperiments and compared
with several commonly used methods. The asymptotically
correct approach performs well, while several of the com-
monly used methods are shown to not generally result in cor-
rect coverage, even for large statistics. In addition, the effect
of weight uncertainties for acceptance corrections is dis-
cussed. The paper furthermore derives asymptotically correct
expressions for parameter uncertainties in fits that use event
weights to statistically subtract background events using the
sPlot formalism [3]. The asymptotically correct expression
accounting for the presence of nuisance parameters in the
determination of sWeights is also given. On pseudoexper-
iments the asymptotically correct methods perform well,
whereas several commonly used methods show incorrect
coverage also for this application. Finally, the (co)variance
for the sum of sWeights in bins of the control variable is calcu-
lated, which is a prerequisite for binned χ2 fits of sWeighted
data. If statistics are sufficiently large this paper advocates
the use of the asymptotically correct expressions in weighted
unbinned maximum likelihood fits, in particular over the cur-
rent nominal method used in the Roofit [12] fitting frame-
work, which was proposed in Refs. [1,2], and is shown to
not generally result in asymptotically correct uncertainties.
If computationally feasible, the bootstrapping approach [13]
can be a useful alternative. A patch for Roofit to allow the
determination of the covariance matrix according to Eq. 18
has been provided by the author and is available starting from
Root v6.20.
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Appendix A: Expectation value Eq. 26 for examples cor-
recting for acceptance effects

As mentioned in Sect. 2.2, Eq. 22 is not generally asymptot-
ically valid. To demonstrate this with an example, the expec-
tation value in Eq. 26 is explicitly calculated below for the
angular fit in Sect. 4.1. Using the probability density function

P(cos θ; c0, c1) = 1 + c0 cos θ + c1 cos2 θ

2 + 2
3c1

(51)

and the efficiency correction (b)

ε(cos θ) = 3

10
+ 7

10
cos2 θ (52)

we derive the expectation value in Eq. 26 according to (show-
ing the asymptotic behaviour for the double partial derivative
to c1 is sufficient):

E

(
1

ε2(cos θe)P(cos θe; c0, c1)

∂2P(cos θe; c0, c1)

∂c2
1

)

=
∫ +1
−1

1
ε2(cos θ)P(cos θe;c0,c1)

∂2P(cos θe;c0,c1)

∂c2
1

P(cos θe; c0, c1)ε(cos θ)dcosθ
∫ +1
−1 ε(cos θ)P(cos θe; c0, c1)dcosθ

=
∂2

∂c2
1

∫ +1
−1

1
3

10 + 7
10 cos2 θ

1+c0 cos θ+c1 cos2 θ

2+ 2
3 c1

dcosθ
∫ +1
−1

( 3
10 + 7

10 cos2 θ
) 1+c0 cos θ+c1 cos2 θ

2+ 2
3 c1

dcosθ
.

(53)
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Using computer algebra, these integrals can be easily eval-
uated analytically. For the denominator we obtain

∫ +1

−1

(
3

10
+ 7

10
cos2 θ

)
1 + c0 cos θ + c1 cos2 θ

2 + 2
3c1

dcosθ

= 36

50

c1

c1 + 3
+ 48

30

1

c1 + 3
c1=0= 8

15
. (54)

The expression for the numerator is slightly more compli-
cated, it results in

∂2

∂c2
1

∫ +1

−1

1
3

10 + 7
10 cos2 θ

1 + c0 cos θ + c1 cos2 θ

2 + 2
3 c1

dcosθ

= ∂2

∂c2
1

(
1

2
3 c1 + 2

[

−20
√

21

49
tan−1

(√
21

3

)

c1 + 20

7
c1

+ 20√
21

tan−1

(√
21

3

)])

c1=0= 20

7
√

21
tan−1

(√
21

3

)

+ 140

3 · 213/2 tan−1

(√
21

3

)

− 20

21

≈ 0.146. (55)

We thus find

E

(
1

ε2(cos θe)P(cos θe; c0, c1)

∂2P(cos θe; c0, c1)

∂c2
1

)
≈ 0.274 �= 0.

(56)

This shows clearly, that Eq. 22 is not generally asymptotically
correct. The result in Eq. 56 has been crosschecked using
the pseudoexperiments described in Sect. 4.1 and indeed
the additional term fluctuates around N × 0.2742 as derived
above.

For acceptance (a) we find similarly

E

(
1

ε2(cos θe)P(cos θe; c0, c1)

∂2P(cos θe; c0, c1)

∂c2
1

)
≈ −0.135 �= 0,

(57)

which is also confirmed using the pseudoexperiments. The
fact that the expectation value is negative for acceptance (a)
and positive for acceptance (b) indicates that, as observed
using the pseudoexperiments, the squared correctionmethod
overcovers for acceptance (a) and undercovers for accep-
tance (b).

It is instructive to note that for the double partial deriva-
tive to c0, E(ε−2P−1∂2/∂c2

0P), we find an expectation value
of zero, as the integration of the numerator removes the c0

dependence in that case. This is the reason why the squared
correction method results in compatible results with the

asymptotic method for c0, but shows incorrect coverage for
c1.

Appendix B: Covariance determination for unbinned
sWeighted fits

The asymptotic covariance for sWeighted unbinned maxi-
mum likelihood fits is given by Eq. 45 [6,18] which is repro-
duced below for convenience.

Cθ = E

(
∂ g(x, y; θ)

∂θT

)

︸ ︷︷ ︸
“denominator′′

−1

× E
(
g(x, y; θ)g(x, y; θ)T

)

︸ ︷︷ ︸
“numerator′′

× E

(
∂ g(x, y; θ)

∂θT

)−T

. (58)

Here, the vector of estimating equations g is given by Eq. 41,
which is also repeated below

g(x, y; θ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

ϕs( y; Ns, Nb)

ϕb( y; Ns, Nb)

ψss( y; V−1
ss , Ns, Nb)

ψsb( y; V−1
sb , Ns, Nb)

ψbb( y; V−1
bb , Ns, Nb)

ξi (x, y;λ, V−1
ss , V−1

sb , V−1
bb )

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
e

∂
∂Ns

[
ln(NsPs(ye) + NbPb(ye)) − Ns+Nb

N

]
∑

e
∂

∂Nb

[
ln(NsPs(ye) + NbPb(ye)) − Ns+Nb

N

]

∑
e

[ Ps(ye)Ps(ye)
(NsPs(ye)+NbPb(ye))2 − V−1

ss
N

]

∑
e

[ Ps(ye)Pb(ye)
(NsPs(ye)+NbPb(ye))2 − V−1

sb
N

]

∑
e

[ Pb(ye)Pb(ye)
(NsPs(ye)+NbPb(ye))2 − V−1

bb
N

]

∑
e ws(ye; V−1

ss , V−1
sb , V−1

bb )
∂ lnP(xe;λ)

∂λi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(59)

The elements of the denominator9 E
(
∂ g(x, y; θ)/∂θT

)

given by

E

(
∂ g(x, y; θ)

∂θT

)

= E

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂ϕs
∂Ns

∂ϕs
∂Nb

∂ϕs

∂V−1
ss

∂ϕs

∂V−1
sb

∂ϕs

∂V−1
bb

∂ϕs
∂λT

∂ϕb
∂Ns

∂ϕb
∂Nb

∂ϕb

∂V−1
ss

∂ϕb

∂V−1
sb

∂ϕb

∂V−1
bb

∂ϕb
∂λT

∂ψss
∂Ns

∂ψss
∂Nb

∂ψss

∂V−1
ss

∂ψss

∂V−1
sb

∂ψss

∂V−1
bb

∂ψss

∂λT

∂ψsb
∂Ns

∂ψsb
∂Nb

∂ψsb

∂V−1
ss

∂ψsb

∂V−1
sb

∂ψsb

∂V−1
bb

∂ψsb

∂λT

∂ψbb
∂Ns

∂ψbb
∂Nb

∂ψbb

∂V−1
ss

∂ψbb

∂V−1
sb

∂ψbb

∂V−1
bb

∂ψbb

∂λT

∂ξ
∂Ns

∂ξ
∂Nb

∂ξ

∂V−1
ss

∂ξ

∂V−1
sb

∂ξ

∂V−1
bb

∂ξ

∂λT

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(60)

9 In the following, the arguments of the estimating functions ϕ, ψ and
ξ will be omitted for brevity.
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are determined in Appendix B.1 and the elements of the (sym-
metric) numerator

E
(
g(x, y; θ)g(x, y; θ)T

)

= E

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

ϕsϕs ϕsϕb ϕsψss ϕsψsb ϕsψbb ϕsξ
T

ϕbϕs ϕbϕb ϕbψss ϕbψsb ϕbψbb ϕbξ
T

ψssϕs ψssϕb ψssψss ψssψsb ψssψbb ψssξ
T

ψsbϕs ψsbϕb ψsbψss ψsbψsb ψsbψbb ψsbξ
T

ψbbϕs ψbbϕb ψbbψss ψbbψsb ψbbψbb ψbbξ
T

ξϕs ξϕb ξψss ξψsb ξψbb ξξ T

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

(61)

are determined in Appendix B.2. For both numerator and
denominator the sample estimates are derived first and their
expectation values are given afterwards. The resulting covari-
ance is derived in Appendix B.3.

B.1 Determination of the denominator

We first determine the expectations E(∂ g/∂θT ), the denomi-
nator in Eq. 58, which would be corresponding to the Hessian
matrix if we were doing purely maximum likelihood estima-
tion. We find for the two ϕ components

E

(
∂

∂N j
ϕi

)
= E

(∑ ∂

∂N j

Pi (ye)

NsPs(ye) + NbPb(ye)

)

= E

(
−
∑ Pi (ye)P j (ye)

(
NsPs(ye) + NbPb(ye)

)2

)

= −
∫ Pi (y)P j (y)

NsPs(y) + NbPb(y)
dy ≡ Ai j (62)

E

(
∂

∂V−1
kl

ϕi

)
= 0 (63)

E

(
∂

∂λ j
ϕi

)
= 0, (64)

for the ψ components

E

(
∂

∂Nk
ψi j

)
= E

(∑

e

∂

∂Nk

[ Pi (ye)P j (ye)
(
NsPs(ye)+NbPb(ye)

)2 −V−1
i j

N

])

= E

(
−2

∑

e

Pi (ye)P j (ye)Pk(ye)
(
NsPs(ye) + NbPb(ye)

)3

)

= −2
∫ Pi (y)P j (y)Pk(y)

(
NsPs(y) + NbPb(y)

)2 dy ≡ B(i j)k , (65)

E

(
∂

∂V−1
kl

ψi j

)
= E

(
∂

∂V−1
kl

∑

e

[ Pi (ye)P j (ye)
(
NsPs(ye)+NbPb(ye)

)2 −V−1
i j

N

])

= −δ(kl)(i j) (66)

E

(
∂

∂λi
ψkl

)
= 0, (67)

and finally for the ξ components

E

(
∂

∂Nk
ξl

)
= 0 (68)

E

(
∂

∂V−1
ss

ξl

)
= E

(
∂

∂V−1
ss

∑

e

ws(ye)
∂

∂λl
lnPs(xe;λ)

)

= −
∫

V−1
bb Ps(y)Pb(y) − V−1

sb P2
b (y)

(
(V−1

bb − V−1
sb )Ps(y) + (V−1

ss − V−1
sb )Pb(y)

)2

× Pb(y)dy × κl

≡ El1 = κl e1 (69)

E

(
∂

∂V−1
sb

ξl

)
= E

(
∂

∂V−1
sb

∑

e

ws(ye)
∂

∂λl
lnPs(xe;λ)

)

= +
∫

V−1
bb P2

s (y) − V−1
ss P2

b (y)
(
(V−1

bb − V−1
sb )Ps(y) + (V−1

ss − V−1
sb )Pb(y)

)2

× Pb(y)dy × κl

≡ El2 = κl e2 (70)

E

(
∂

∂V−1
bb

ξl

)
= E

(
∂

∂V−1
bb

∑

e

ws(ye)
∂

∂λl
lnPs(xe;λ)

)

= +
∫ −V−1

sb P2
s (y) + V−1

ss Ps(y)Pb(y)
(
(V−1

bb − V−1
sb )Ps(y) + (V−1

ss − V−1
sb )Pb(y)

)2

× Pb(y)dy × κl

≡ El3 = κl e3 (71)

E

(
∂

∂λl
ξk

)
= E

(∑

e

ws(ye)
∂2 lnPs(xe;λ)

∂λl∂λk

)

=
∫

V−1
bb Ps(y) − V−1

sb Pb(y)

(V−1
bb − V−1

sb )Ps(y) + (V−1
ss − V−1

sb )Pb(y)

× ∂2 lnPs(x;λ)

∂λl∂λk

× (
NsPs(x; λ)Ps(y) + NbPb(x)Pb(y)

)
dxdy

=
∫

NsPs(x;λ)
∂2 lnPs(x;λ)

∂λl∂λk
dx ≡ Hkl , (72)

where κi = ∫
Nb

Pb(x)
Ps(x;λ)

∂Ps(x;λ)
∂λi

dx was defined in Eq. 44. In
summary, the matrix in the denominator is

E

(
+∂ g(x, y; θ)

∂θT

)
=
⎛

⎝
A 0 0
B −1 0
0 E H

⎞

⎠ . (73)

As a reminder, the matrix A is the 2 × 2 matrix for the signal
and background yields defined by Eq. 62, the matrix B is a
3 × 2 matrix defined by Eq. 65, E is the dim(λ) × 3 matrix
defined by Eqs. 69–71, and H the dim(λ) × dim(λ) matrix
given by Eq. 72. The upper right corner of Eq. 73 is filled
with zero matrices, as the estimation of the yields does not
depend on the parameters V−1

i j , and the estimators for the
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V−1
i j and the yields do not depend on λ. This simplifies the

inversion of the matrix in Eq. 73, which results in

E

(
+∂ g(x, y; θ)

∂θT

)−1

=
⎛

⎝
A−1 0 0
BA−1 −1 0

−H−1EBA−1 H−1E H−1

⎞

⎠ .

(74)

This matrix can be further simplified, as

(B11El1 + B12El2 + B22El3)

=
∫ P3

s

(. . .)2 dy
∫ −V−1

bb PsP2
b + V−1

sb P3
b

(. . .)2 × κl

+
∫ P2

s Pb

(. . .)2 dy
∫

V−1
bb P2

s Pb − V−1
ss P3

b

(. . .)2 × κl

+
∫ PsP2

b

(. . .)2 dy
∫ −V−1

sb P2
s Pb + V−1

ss PsP2
b

(. . .)2

× κl expanding V−1
i j =

∫ PiP j

(. . .)

NsPs + NbPb

NsPs + NbPb
dy

=
(
Ns

∫ PsP2
b

(. . .)2 dy + Nb

∫ P3
b

(. . .)2 dy

)

×
(∫ P2

s Pb

(. . .)2 dy
∫ P2

s Pb

(. . .)2 dy −
∫ P3

s

(. . .)2 dy
∫ PsP2

b

(. . .)2 dy

)
× κl

+
(
Ns

∫ P2
s Pb

(. . .)2 dy + Nb

∫ PsP2
b

(. . .)2 dy

)

×
(∫ P3

s

(. . .)2 dy
∫ P3

b

(. . .)2 dy −
∫ PsP2

b

(. . .)2 dy
∫ P2

s Pb

(. . .)2 dy

)
× κl

+
(
Ns

∫ P3
s

(. . .)2 dy + Nb

∫ P2
s Pb

(. . .)2 dy

)

×
(∫ PsP2

b

(. . .)2 dy
∫ PsP2

b

(. . .)2 dy −
∫ P2

s Pb

(. . .)2 dy
∫ P3

b

(. . .)2 dy

)
× κl

= 0 (75)

and

(B12El1 + B22El2 + B32El3)

=
∫ P2

s Pb

(. . .)2 dy
∫ −V−1

bb PsP2
b + V−1

sb P3
b

(. . .)2 × κl

+
∫ PsP2

b

(. . .)2 dy
∫

V−1
bb P2

s Pb − V−1
ss P3

b

(. . .)2 × κl

+
∫ P3

b

(. . .)2 dy
∫ −V−1

sb P2
s Pb + V−1

ss PsP2
b

(. . .)2 × κl

=
(
Ns

∫ PsP2
b

(. . .)2 dy + Nb

∫ P3
b

(. . .)2 dy

)

×
(∫ P2

s Pb

(. . .)2 dy
∫ PsP2

b

(. . .)2 dy −
∫ P2

s Pb

(. . .)2 dy
∫ PsP2

b

(. . .)2 dy

)
× κl

+
(
Ns

∫ P2
s Pb

(. . .)2 dy + Nb

∫ PsP2
b

(. . .)2 dy

)

×
(∫ P2

s Pb

(. . .)2 dy
∫ P3

b

(. . .)2 dy −
∫ P2

s Pb

(. . .)2 dy
∫ P3

b

(. . .)2 dy

)
× κl

+
(
Ns

∫ P3
s

(. . .)2 dy + Nb

∫ P2
s Pb

(. . .)2 dy

)

×
(∫ PsP2

b

(. . .)2 dy
∫ P3

b

(. . .)2 dy −
∫ PsP2

b

(. . .)2 dy
∫ P3

b

(. . .)2 dy

)
× κl

= 0. (76)

We therefore find EB = 0 and the inverse of Eq. 73 is given
by

E

(
+∂ g(x, y; θ)

∂θT

)−1

=
⎛

⎝
A−1 0 0
BA−1 −1 0
0 H−1E H−1

⎞

⎠ . (77)

B.2 Determination of numerator

We now have to determine the elements of the numerator
E
(
g(x, y; θ)g(x, y; θ)T

)
in Eq. 58. For completeness we

determine all sub-matrices, but it will be shown that we only
need the components E

(
ψi jψkl

) ≡ C ′
(i j)(kl), E

(
ψi jξl

) ≡
E ′
l(i j) and E

(
ξkξl

) ≡ H ′
kl to determine the covariance for the

parameters of interest λ. We find

E
(
ϕiϕ j

) = E

(∑

e

[ Pi (ye)

NsPs(ye) + NbPb(ye)
− 1

N

]

×
∑

f

[ P j (y f )

NsPs(y f ) + NbPb(y f )
− 1

N

])

= E

(∑

e

Pi (ye)P j (ye)
(
NsPs + NbPb

)2 +
∑

e �= f

Pi (ye)

NsPs + NbPb

P j (y f )

NsPs + NbPb

−
∑

e

Pi (ye)

NsPs + NbPb
−
∑

f

P j (y f )

NsPs + NbPb
+ 1

)

= E

(∑

e

Pi (ye)P j (ye)
(
NsPs(ye) + NbPb(ye)

)2

)

=
∫ Pi (y)P j (y)

NsPs(y) + NbPb(y)
dy ≡ A′

i j (78)

E
(
ϕkψi j

) = E

(∑

e

[ Pk(ye)

NsPs(ye) + NbPb(ye)
− 1

N

]

×
∑

f

[ Pi (y f )P j (y f )
(
NsPs(y f ) + NbPb(y f )

)2 − V−1
i j

N

])

= E

(∑

e

Pi (ye)P j (ye)Pk(ye)
(
NsPs(ye) + NbPb(ye)

)3

)

=
∫ Pi (y)P j (y)Pk(y)

(
NsPs(y) + NbPb(y)

)2 dy ≡ B ′
(i j)k (79)

E
(
ψi jψkl

) = E

(∑

e

[ Pi (ye)P j (ye)
(
NsPs(ye) + NbPb(ye)

)2 − V−1
i j

N

]

×
∑

f

[ Pk(y f )Pl(y f )
(
NsPs(y f ) + NbPb(y f )

)2 − V−1
kl

N

])

= E

(∑

e

Pi (ye)P j (ye)Pk(ye)Pl (ye)
(
NsPs(ye) + NbPb(ye)

)4

)
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=
∫ Pi (y)P j (y)Pk(y)Pl (y)

(
NsPs(y) + NbPb(y)

)3 dy ≡ C ′
(i j)(kl), (80)

and

E
(
ϕkξl

) = E

(∑

e

[ Pk(ye)

NsPs(ye) + NbPb(ye)
− 1

N

]

×
∑

f

ws(y f )
∂

∂λl
lnPs(x f ; λ)

)

= E

(∑

e

Pk(ye)

NsPs(ye) + NbPb(ye)
ws(ye)

∂

∂λl
lnPs(xe; λ)

)

=
∫ Pk(ye)

NsPs(ye) + NbPb(ye)

× V−1
bb Ps(y) − V−1

sb Pb(y)

(V−1
bb − V−1

sb )Ps(y) + (V−1
ss − V−1

sb )Pb(y)
Pb(y)dy × κl

≡ D′
lk = κl d

′
k (81)

E
(
ψi j ξl

) = E

(∑

e

[ Pi (ye)P j (ye)
(
NsPs(ye) + NbPb(ye)

)2 − V−1
i j

N

]

×
∑

f

ws(y f )
∂

∂λl
lnPs(x f ; λ)

)

= E

(∑

e

Pi (ye)P j (ye)
(
NsPs(ye) + NbPb(ye)

)2 ws(ye)
∂

∂λl
lnPs(xe;λ)

)

=
∫ Pi (y)P j (y)

(
NsPs(y) + NbPb(y)

)2

× V−1
bb Ps(y) − V−1

sb Pb(y)

(V−1
bb − V−1

sb )Ps(y) + (V−1
ss − V−1

sb )Pb(y)
Pb(y)dy × κl

≡ E ′
l(i j) = κl e

′
(i j) (82)

E
(
ξkξl

) = E

(∑

e

ws(ye)
∂

∂λk
lnPs(xe; λ)

×
∑

f

ws(y f )
∂

∂λl
lnPs(x f ; λ)

)

= E

(∑

e

w2
s (ye)

∂ lnPs(xe; λ)

∂λk

∂ lnPs(xe; λ)

∂λl

)

=
∫

w2
s (y)

∂ lnPs(x; λ)

∂λk

∂ lnPs(x; λ)

∂λl

× (
NsPs(x)Ps(y) + NbPb(x)Pb(y)

)
dxdy

= Ns

∫
w2

s (y)Ps(y)dy
∫

∂ lnPs(x; λ)

∂λk

∂ lnPs(x; λ)

∂λl
Ps(x)dx

+ Nb

∫
w2

s (y)Pb(y)dy
∫

∂ lnPs(x; λ)

∂λk

∂ lnPs(x; λ)

∂λl
Pb(x)dx

≡ H ′
kl . (83)

The matrix in the numerator is therefore given by

E
(
g(x, y; θ)g(x, y; θ)T

) =
⎛

⎝
A′ B′T D′T
B′ C ′ E′T
D′ E′ H ′

⎞

⎠ , (84)

with the matrix elements defined in Eqs. 78–83.

B.3 Resulting covariance

The full covariance matrix is then given by the following
matrix multiplication

E

(
∂ g(x, y; θ)

∂θT

)−1

× E
(
g(x, y; θ)g(x, y; θ)T

)

× E

(
∂ g(x, y; θ)

∂θT

)−T

=
⎛

⎝
A−1 0 0
BA−1 −1 0
0 H−1E H−1

⎞

⎠ ×
⎛

⎝
A′ B′T D′T
B′ C ′ E′T
D′ E′ H ′

⎞

⎠

×
⎛

⎝
A−T A−T BT 0
0 −1 ET H−T

0 0 H−T

⎞

⎠ . (85)

We are interested in the bottom right elements for the covari-
ance matrix for the parameters of interest λ. The matrix mul-
tiplication yields

Cλ = (
H−1EC ′ + H−1E′)ET H−T

+ (
H−1EE′T + H−1H ′)H−T

= H−1[EC ′ET + E′ET + EE′T + H ′]H−T

= H−1H ′H−T+H−1[EC ′ET+E′ET+EE′T ]H−T

= H−1H ′H−T+H−1[EC ′ET+2EE′T ]H−T because
(
E′ET )

ik =
∑

j

E ′
i j Ek j =

∑

j

e′
jκi e jκk = κiκk

∑

j

e′
j e j

=
∑

j

e jκi e
′
jκk =

∑

j

Ei j E
′
k j = (

EE′T )
ik . (86)

The additional covariance beyond the first term can be further
simplified. To this end we use our definitions

El1 = κl
(
det V−1

)2

(
−V−1

bb

∫ PsP2
b(

NsPs + NbPb
)2 dy

+ V−1
sb

∫ P3
b(

NsPs + NbPb
)2 dy

)

= κl
(
det V−1

)2

(−V−1
bb (NsC

′
13 + NbC

′
23)

+ V−1
sb (NsC

′
23 + NbC

′
33)

)

E12 = κl
(
det V−1

)2

(
V−1
bb

∫ P2
s Pb

(
NsPs + NbPb

)2 dy

− V−1
ss

∫ P3
b(

NsPs + NbPb
)2 dy

)

= κl
(
det V−1

)2

(
V−1
bb (NsC

′
12 + NbC

′
13)

− V−1
ss (NsC

′
23 + NbC

′
33)

)

123



393 Page 22 of 32 Eur. Phys. J. C (2022) 82 :393

El3 = κl
(
det V−1

)2

(
−V−1

sb

∫ P2
s Pb

(
NsPs + NbPb

)2 dy

+ V−1
ss

∫ PsP2
b(

NsPs + NbPb
)2 dy

)

= κl
(
det V−1

)2

(−V−1
sb (NsC

′
12 + NbC

′
13)

+ V−1
ss (NsC

′
13 + NbC

′
23)

)
(87)

and

E ′
l1 = κl

det V−1

(
V−1
bb C ′

12 − V−1
sb C ′

13

)

E ′
l2 = κl

det V−1

(
V−1
bb C ′

13 − V−1
sb C ′

23

)

E ′
l3 = κl

det V−1

(
V−1
bb C ′

23 − V−1
sb C ′

33

)
(88)

and furthermore replace the V−1
i j to only retain dependencies

on C ′
i j and the yields

V−1
ss =

∫ P2
s

NsPs + NbPb

(NsPs + NbPb)
2

(NsPs + NbPb)2 dy

= N 2
s C

′
11 + 2NsNbC

′
12 + N 2

bC
′
13

V−1
sb = N 2

s C
′
12 + 2NsNbC

′
13 + N 2

bC
′
23

V−1
bb = N 2

s C
′
13 + 2NsNbC

′
23 + N 2

bC
′
33. (89)

We can then calculate (easiest to verify using computer alge-
bra)

(
EC ′ET + EE′T )

ik

=
∑

j,l

Ei jC
′
jl Ekl +

∑

j

Ei j E
′
k j

=
[
−
(
C ′

11C
′
13C

′
33 − C ′2

12C
′
33 − C ′

11C
′2
23 + 2C ′

12C
′
13C

′
23 − C ′3

13

)

× N 2
s

(
C ′

12N
3
s + 3C ′

13NbN
2
s + 3C ′

23N
2
b Ns + C ′

33N
3
b − 1

)

︸ ︷︷ ︸

=0, as 1=∫ Pbdy=∫ (NsPs+NbPb)3

(NsPs+NbPb)3
Pbdy

×
(
C ′

11C
′
13N

4
s − C ′2

12N
4
s + 2C ′

11C
′
23NbN

3
s − 2C ′

12C
′
13NbN

3
s

+ C ′
11C

′
33N

2
b N

2
s + 2C ′

12C
′
23N

2
b N

2
s

− 3C ′2
13N

2
b N

2
s + 2C ′

12C
′
33N

3
b Ns − 2C ′

13C
′
23N

3
b Ns

+ C ′
13C

′
33N

4
b − C ′2

23N
4
b

)]
× κiκk

(
det V−1

)4 = 0. (90)

Equation 86 therefore simplifies to

Cλ = H−1H ′H−T + H−1EE′T H−T

= H−1H ′H−T − H−1EC ′ET H−T . (91)

The additional variance for the parameters of interest is there-
fore ≤ 0, as the matrix C ′ (and also EC ′ET ) is positive def-
inite. Using only the first term of Eq. 91 (the naive sandwich
estimate) is therefore conservative for sWeights, but can over-
estimate the variances. To guarantee asymptotically correct
coverage, Eq. 91 should be used.

Appendix C: Covariance determination for binned
sWeighted quantities

To determine the variance for the sum of sWeights in a bin
i in the control variable,10 ∑

e∈ bin i ws(ye), we use the same
technique of systematic error propagation as detailed above
in Appendix B. We have as estimating equations

ϕi ( y; Ns, Nb)

=
∑ ∂

∂Ni

[
ln(NsPs(ye) + NbPb(ye)) − Ns + Nb

N

]

=
∑[ Pi (ye)

NsPs(ye) + NbPb(ye)
− 1

N

]
(92)

ψi j ( y; V−1
i j , Ns, Nb)

=
∑

e

[ Pi (ye)P j (ye)
(
NsPs(ye) + NbPb(ye)

)2 − V−1
i j

N

]
(93)

ξi (x, y; V−1
ss , V−1

sb , V−1
bb , Si )

=
∑

e

[
θ(e ∈ bin i)ws(ye; V−1

ss , V−1
sb , V−1

bb ) − Si
N

]
,

=
[ ∑

e∈ bin i

ws(ye; V−1
ss , V−1

sb , V−1
bb )

]
− Si (94)

where Si denotes the expected signal yield in bin i . We now
want to determine the variance for the expected signal yield
in bin i , and, in addition, its covariance with a different, non-
overlapping bin j with expected signal yield S j .

C.1 Determination of the denominator

The elements of the denominator E(∂ g/∂θT ) are calculated
in full analogy to the unbinned case. We have

E

(
∂

∂N j
ϕi

)
= E

(
−
∑ Pi (ye)P j (ye)

(
NsPs(ye) + NbPb(ye)

)2

)

= −
∫ Pi (y)P j (y)

NsPs(y) + NbPb(y)
dy ≡ Ai j (95)

E

(
∂

∂V−1
kl

ϕi

)
= 0 (96)

10 Reference [3] gives this variance as
∑

e∈ bin i w
2
s (ye) in Eq. 22.
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E

(
∂

∂S j
ϕi

)
= 0, (97)

for the ϕ components. For the ψ components we find

E

(
∂

∂Nk
ψi j

)
= E

(
−2

∑

e

Pi (ye)P j (ye)Pk(ye)
(
NsPs(ye) + NbPb(ye)

)3

)

= −2
∫ Pi (y)P j (y)Pk(y)
(
NsPs(y) + NbPb(y)

)2 dy ≡ B(i j)k

(98)

E

(
∂

∂V−1
kl

ψi j

)
= −δ(i j)(kl) (99)

E

(
∂

∂Sk
ψi j

)
= 0, (100)

and finally, using the shorthand

β1 =
∫ P3

s (y)
(
NsPs(y) + NbPb(y)

)2 dy
(
= − B11

2

)

β2 =
∫ P2

s (y)Pb(y)
(
NsPs(y) + NbPb(y)

)2 dy
(
= − B12

2

)

β3 =
∫ Ps(y)P2

b (y)
(
NsPs(y) + NbPb(y)

)2 dy
(
= − B22

2

)

β4 =
∫ P3

b (y)
(
NsPs(y) + NbPb(y)

)2 dy
(
= − B32

2

)
(101)

we find

E

(
∂

∂Ni
ξk

)
= 0 (102)

E

(
∂

∂V−1
ss

ξk

)

= E

( ∑

e∈bin k

−V−1
bb Ps(ye)Pb(ye) + V−1

sb P2
b (ye)

(
(V−1

bb − V−1
sb )Ps(ye) + (V−1

ss − V−1
sb )Pb(ye)

)2

)

= 1
(
det V−1

)2

∫

y

∫

bin k

−V−1
bb Ps(y)Pb(y) + V−1

sb P2
b (y)

(
NsPs(y) + NbPb(y)

)2

× [
NsPs(y)Ps(x) + NbPb(y)Pb(x)

]
dydx

= 1
(
det V−1

)2

[
Ns

∫

bin k
Ps(x)dx

×
∫ −V−1

bb P2
s (y)Pb(y) + V−1

sb Ps(y)P2
b (y)

(
NsPs(y) + NbPb(y)

)2 dy

+ Nb

∫

bin k
Pb(x)dx

∫ −V−1
bb Ps(y)P2

b (y) + V−1
sb P3

b (y)
(
NsPs(y) + NbPb(y)

)2 dy

]

= 1
(
det V−1

)2

[
Ns

∫
Ps(x)dx

(−V−1
bb β2 + V−1

sb β3
)

+ Nb

∫
Pb(x)dx

(−V−1
bb β3 + V−1

sb β4
)]

= β2
3 − β2β4

(
det V−1

)2 NsNb

(∫

bin k
Ps(x)dx

︸ ︷︷ ︸
=δk

−
∫

bin k
Pb(x)dx

︸ ︷︷ ︸
=εk

)

≡ Ek1 = (δk − εk)e1, (103)

E

(
∂

∂V−1
sb

ξk

)

= E

( ∑

e∈bin k

+V−1
bb P2

s (ye) − V−1
ss P2

b (ye)
(
(V−1

bb − V−1
sb )Ps(ye) + (V−1

ss − V−1
sb )Pb(ye)

)2

)

= 1
(
det V−1

)2

[
Ns

∫

bin k
Ps(x)dx

×
∫

V−1
bb P3

s (y) − V−1
ss Ps(y)P2

b (y)
(
NsPs(y) + NbPb(y)

)2 dy

+ Nb

∫

bin k
Pb(x)dx

∫
V−1
bb P2

s (y)Pb(y) − V−1
ss P3

b (y)
(
NsPs(y) + NbPb(y)

)2 dy

]

= 1
(
det V−1

)2

[
Ns

∫
Ps(x)dx

(
V−1
bb β1 − V−1

ss β3
)

+ Nb

∫
Pb(x)dx

(
V−1
bb β2 − V−1

ss β4
)]

= β1β4 − β2β3
(
det V−1

)2 NsNb

∫

bin k

(Ps(x) − Pb(x)
)
dx

≡ Ek2 = (δk − εk)e2, (104)

and

E

(
∂

∂V−1
bb

ξk

)

= E

( ∑

e∈bin k

−V−1
sb P2

s (ye) + V−1
ss Ps(ye)Pb(ye)

(
(V−1

bb − V−1
sb )Ps(ye) + (V−1

ss − V−1
sb )Pb(ye)

)2

)

= 1
(
det V−1

)2

[
Ns

∫

bin k
Ps(x)dx

×
∫ −V−1

sb P3
s (y) + V−1

ss P2
s (y)Pb(y)

(
NsPs(y) + NbPb(y)

)2 dy

+ Nb

∫

bin k
Pb(x)dx

∫ −V−1
sb P2

s (y)Pb(y) + V−1
ss PsP2

b (y)
(
NsPs(y) + NbPb(y)

)2 dy

]

= 1
(
det V−1

)2

[
Ns

∫
Ps(x)dx

(−V−1
sb β1 + V−1

ss β2
)

+ Nb

∫
Pb(x)dx

(−V−1
sb β2 + V−1

ss β3
)]

= β2
2 − β1β3

(
det V−1

)2 NsNb

∫

bin k

(Ps(x) − Pb(x)
)
dx

≡ Ek3 = (δk − εk)e3, (105)

and finally

E

(
∂

∂Sk
ξl

)
= −δkl . (106)
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The denominator matrix is then given by

E

(
∂ g(x, y; θ)

∂θT

)
=
⎛

⎝
A 0 0
B −1 0
0 E −1

⎞

⎠ (107)

with the inverse

E

(
∂ g(x, y; θ)

∂θT

)−1

=
⎛

⎝
A−1 0 0
BA−1 −1 0

+EBA−1 −E −1

⎞

⎠

=
⎛

⎝
A−1 0 0
BA−1 −1 0
0 −E −1

⎞

⎠ (108)

for which we again needed to show EB = 0, i.e.

B11Ek1 + B12Ek2 + B22Ek3

= −2
(
β1(β

2
3 − β2β4) + β2(β1β4 − β2β3) + β3(β

2
2 − β1β3)

)

× NsNb
(
det V−1

)2 (δk − εk)

= −2
(
β1β

2
3 − β1β2β4 + β1β2β4 − β2

2 β3 + β3β
2
2 − β1β

2
3

)

× NsNb
(
det V−1

)2 (δk − εk) = 0 and (109)

B12Ek1 + B22Ek2 + B32Ek3

= −2
(
β2(β

2
3 − β2β4) + β3(β1β4 − β2β3) + β4(β

2
2 − β1β3)

)

× NsNb
(
det V−1

)2 (δk − εk)

= −2
(
β2β

2
3 − β2

2 β4 + β1β3β4 − β2β
2
3 + β2

2 β4 − β1β3β4
)

× NsNb
(
det V−1

)2 (δk − εk) = 0. (110)

C.2 Determination of the numerator

The elements of the numerator E
(
g(x, y; θ)g(x, y; θ)T

)
are

given by

E
(
ϕiϕ j

) = E

(∑

e

Pi (ye)P j (ye)
(
NsPs(ye) + NbPb(ye)

)2

)

=
∫ Pi (y)P j (y)

NsPs(y) + NbPb(y)
dy ≡ A′

i j (111)

E
(
ϕkψi j

) = E

(∑

e

Pi (ye)P j (ye)Pk(ye)
(
NsPs(ye) + NbPb(ye)

)3

)

=
∫ Pi (y)P j (y)Pk(y)

(
NsPs(y) + NbPb(y)

)2 dy ≡ B ′
(i j)k

(112)

E
(
ψi jψkl

) = E

(∑

e

Pi (ye)P j (ye)Pk(ye)Pl(ye)
(
NsPs(ye) + NbPb(ye)

)4

)

=
∫ Pi (y)P j (y)Pk(y)Pl(y)

(
NsPs(y) + NbPb(y)

)3 dy ≡ C ′
(i j)(kl).

(113)

For the combinations including the terms ξ we find

E
(
ξkξl

) = E

(∑

e

[
θ(xe ∈ bin k)ws(ye) − Sk

N

]

×
∑

f

[
θ(x f ∈ bin l)ws(y f ) − Sl

N

])

k=l= E

(∑
θ(e ∈ bin k)w2

s (ye)

+
∑

e �= f

θ(e ∈ bin k)θ( f ∈ bin l)ws(ye)ws(y f )

− Sk
∑

f

θ( f ∈ bin l)ws(y f ) − Sl
∑

e

θ(e ∈ bin k)ws(ye)

+ Sk Sl

)

= E

( ∑

e∈bin k

w2
s (ye)

)

= Ns

∫

bin k
Ps(x)dx

︸ ︷︷ ︸
δk

∫
w2

s (y)Ps(y)dy

+ Nb

∫

bin k
Pb(x)dx

︸ ︷︷ ︸
εk

∫
w2

s (y)Pb(y)dy

≡ H ′
kk (114)

E
(
ξkξl

) k �=l= Sk Sl − Sl
∑

e

θ(e ∈ bin k)ws(ye)

− Sk
∑

f

θ( f ∈ bin l)ws(y f ) + Sk Sl

= 0, (115)

and furthermore

E
(
ξkψi j

) = E

(∑

e

[
θ(xe ∈ bin k)ws(ye) − Sk

N

]

×
∑

f

[ Pi (y f )P j (y f )
(
NsPs(y f ) + NbPb(y f )

)2 − V−1
i j

N

])

= E

(∑

e

θ(xe ∈ bin k)ws(ye)
Pi (ye)P j (ye)

(
NsPs(ye) + NbPb(ye)

)2

+
∑

e �= f

θ(xe ∈ bin k)ws(ye)
Pi (y f )P j (y f )

(
NsPs(y f ) + NbPb(y f )

)2

+ SkV
−1
i j

−
∑

e

θ(xe ∈ bin k)ws(ye)V
−1
i j − Sk

×
∑

e

Pi (ye)P j (ye)
(
NsPs(ye) + NbPb(ye)

)2

)
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= E

( ∑

e∈bin k

ws(ye)
Pi (ye)P j (ye)

(
NsPs(ye) + NbPb(ye)

)2

)

= Ns

∫

bin k
Ps(x)dx

∫
ws(y)

Pi (y)P j (y)Ps(y)
(
NsPs(y) + NbPb(y)

)2 dy

+ Nb

∫

bin k
Pb(x)dx

∫
ws(y)

Pi (y)P j (y)Pb(y)
(
NsPs(y) + NbPb(y)

)2 dy,

= Ns

det V−1 δk

(
V−1
bb

∫ PiP jP2
s

(
NsPs + NbPb

)3 dy

− V−1
sb

∫ PiP jPsPb
(
NsPs + NbPb

)3 dy

)

+ Nb

det V−1 εk

(
V−1
bb

∫ PiP jPsPb
(
NsPs + NbPb

)3 dy

− V−1
sb

∫ PiP jP2
b(

NsPs + NbPb
)3 dy

)
,

≡ E ′
k(i j), (116)

i.e.

E
(
ξkψss

) = Ns

N det V−1 δk
(
V−1
bb C ′

11 − V−1
sb C ′

12

)

+ Nb

N det V−1 εk
(
V−1
bb C ′

12 − V−1
sb C ′

13

) = E ′
k1

E
(
ξkψsb

) = Ns

N det V−1 δk
(
V−1
bb C ′

12 − V−1
sb C ′

13

)

+ Nb

N det V−1 εk
(
V−1
bb C ′

13 − V−1
sb C ′

23

) = E ′
k2

E
(
ξkψbb

) = Ns

N det V−1 δk
(
V−1
bb C ′

13 − V−1
sb C ′

23

)

+ Nb

N det V−1 εk
(
V−1
bb C ′

23 − V−1
sb C ′

33

) = E ′
k3

and finally

E
(
ξkϕi

) = E

(∑

e

[
θ(xe ∈ bin k)ws(ye) − Sk

N

]

×
[(∑

f

Pi (y f )

NsPs(y f ) + NbPb(y f )

)
− 1

]

= E

(∑

e

θ(xe ∈ bin k)
Pi (ye)

NsPs(ye) + NbPb(ye)

+
∑

e �= f

θ(xe ∈ bin k)
Pi (y f )

NsPs(y f ) + NbPb(y f )

−
∑

e

θ(xe ∈ bin k)ws(ye)

− Sk
∑

f

Pi (y f )

NsPs(y f ) + NbPb(y f )
+ Sk

)

= E

(∑

e

θ(xe ∈ bin k)
Pi (ye)

NsPs(ye) + NbPb(ye)

)

=
∫

θ(x ∈ bin k)ws(y)
Pi (y)

NsPs(y) + NbPb(y)

× [
NsPs(x)Ps(y) + NbPb(x)Pb(y)

]
dxdy

= Ns

∫

bin k
Ps(x)dx

∫
ws(y)

Pi (y)Ps(y)

NsPs(y) + NbPb(y)
dy

+ Nb

∫

bin k
Pb(x)dx

∫
ws(y)

Pi (y)Pb(y)

NsPs(y) + NbPb(y)
dy

≡ D′
ki . (117)

As before, the matrix in the numerator is given by

E
(
g(x, y; θ)g(x, y; θ)T

) =
⎛

⎝
A′ B′T D′T
B′ C ′ E′T
D′ E′ H ′

⎞

⎠ . (118)

C.3 Resulting covariance

The full covariance matrix is given by the product

E

(
∂ g(x, y; θ)

∂θT

)−1

× E
(
g(x, y; θ)g(x, y; θ)T

)

× E

(
∂ g(x, y; θ)

∂θT

)−T

=
⎛

⎝
A−1 0 0
BA−1 −1 0
0 −E −1

⎞

⎠ ×
⎛

⎝
A′ B′T D′T
B′ C ′ E′T
D′ E′ H ′

⎞

⎠

×
⎛

⎝
A−T A−T BT 0
0 −1 −ET

0 0 −1

⎞

⎠ . (119)

The covariance matrix for the parameters of interest, in this
instance the sWeighted bin contents, is given by

CS = EC ′ET + E′ET + EE′T + H ′

= H ′ − EC ′ET . (120)

Equation 120 is shown by first realising

(
E′ET )

ik =
∑

j

E ′
i j E

T
jk = (δk − εk)

∑

j

E ′
i j e j

= (δk − εk)
(
E ′
i1e1 + E ′

i2e2 + E ′
i3e3

)

= −N 2
s N

2
b (δi − εi )(δk − εk)

× (
C ′

11C
′
13C

′
33−C ′2

12C
′
33−C ′

11C
′2
23+2C ′

12C
′
13C

′
23−C ′3

13

)

× (
C ′

12N
3
s + 3C ′

13N
2
s Nb + 3C ′

23NsN
2
b + C ′

33N
3
b

)

︸ ︷︷ ︸
=1

× (
det V−1)−3

= (δi − εi )
∑

j

e′
k j e j =

∑

j

ei j e
′
k j = (

EE′T )
ik (121)

and

(
EC ′ET )

ik =
∑

j,l

Ei jC
′
jl E

T
lk = (δi − εi )(δk − εk)

∑

j,l

e jC
′
jl el

= N 2
s N

2
b (δi − εi )(δk − εk)
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× (
C ′

11C
′
13C

′
33 − C ′2

12C
′
33

− C ′
11C

′2
23 + 2C ′

12C
′
13C

′
23 − C ′3

13

)

× (
det V−1)−3

= −(
E′ET )

ik . (122)

The first term in Eq. 120 can be estimated by
∑

e∈bin k w2
s (ye)

from the sample. As the matrix C ′ is positive definite, using
only the first term can overestimate the variances and is there-

fore conservative. To guarantee asymptotically correct cov-
erage for a χ2 fit the full expression in Eq. 120 should be
used, which also accounts for correlations between bins.

Appendix D: Results from pseudoexperiments correcting
acceptance effects

Table 2 Means and widths of the pull distribution for the different
approaches to the uncertainty estimation for the efficiency correction
ε(cos θ) = 1.0 − 0.7 cos2 θ , depending on the number of events. In

addition, the relative efficiencies (i.e. the ratios of variances) of the cFit
estimator and the weighted estimator defined by Eq. 3 are given

Method Pull 500 1 k 2 k 5 k 10 k 20 k 50 k

(a) Parameter c0

wFit Mean −0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01

Width 1.38 ± 0.01 1.40 ± 0.01 1.40 ± 0.01 1.37 ± 0.01 1.38 ± 0.01 1.38 ± 0.01 1.37 ± 0.01

Scaled weights Mean −0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

Width 1.15 ± 0.01 1.16 ± 0.01 1.17 ± 0.01 1.14 ± 0.01 1.15 ± 0.01 1.15 ± 0.01 1.14 ± 0.01

Squared correction Mean −0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

Width 0.99 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

Bootstrapping Mean −0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

Width 0.97 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

Asymptotic Mean −0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

Width 1.00 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

cFit Mean 0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

Width 1.00 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

Rel. efficiency cFit/weighted 0.90 ± 0.02 0.91 ± 0.02 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02

(b) Parameter c1

wFit Mean −0.17 ± 0.01 −0.11 ± 0.01 −0.07 ± 0.01 −0.06 ± 0.01 −0.05 ± 0.01 −0.02 ± 0.01 −0.03 ± 0.01

Width 1.39 ± 0.01 1.40 ± 0.01 1.39 ± 0.01 1.38 ± 0.01 1.38 ± 0.01 1.38 ± 0.01 1.39 ± 0.01

Scaled weights Mean −0.15 ± 0.01 −0.10 ± 0.01 −0.06 ± 0.01 −0.05 ± 0.01 −0.04 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01

Width 1.16 ± 0.01 1.17 ± 0.01 1.16 ± 0.01 31.15 ± 0.01 1.15 ± 0.01 1.15 ± 0.01 1.16 ± 0.01

Squared correction Mean −0.10 ± 0.01 −0.07 ± 0.01 −0.04 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01

Width 0.79 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01

Bootstrapping Mean −0.13 ± 0.01 −0.07 ± 0.01 −0.04 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01

Width 1.01 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.01

Asymptotic Mean −0.11 ± 0.01 −0.07 ± 0.01 −0.05 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01

Width 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

cFit Mean −0.08 ± 0.01 −0.05 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01

Width 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.91 ± 0.02 0.92 ± 0.02 0.90 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.90 ± 0.02 0.90 ± 0.02
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Table 3 Means and widths of the pull distribution for the different
approaches to the uncertainty estimation for the efficiency correction
ε(cos θ) = 0.3 + 0.7 cos2 θ , depending on the number of events. In

addition, the relative efficiencies (i.e. the ratios of variances) of the cFit
estimator and the weighted estimator defined by Eq. 3 are given

Method Pull 500 1 k 2 k 5 k 10 k 20 k 50 k

(a) Parameter c0

wFit Mean 0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01

Width 1.22 ± 0.01 1.22 ± 0.01 1.23 ± 0.01 1.24 ± 0.01 1.24 ± 0.01 1.22 ± 0.01 1.21 ± 0.01

Scaled weights Mean 0.00 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 0.00 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01

Width 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.82 ± 0.01

Squared correction Mean 0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 0.00 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01

Width 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

Bootstrapping Mean 0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 0.00 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01

Width 0.97 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

Asymptotic Mean 0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 0.00 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01

Width 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

cFit Mean 0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01

Width 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

Rel. efficiency cFit/weighted 0.91 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02

(b) Parameter c1

wFit Mean −0.06 ± 0.01 −0.03 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01 0.00 ± 0.01 −0.02 ± 0.01 −0.00 ± 0.01

Width 1.37 ± 0.01 1.36 ± 0.01 1.37 ± 0.01 1.40 ± 0.01 1.38 ± 0.01 1.37 ± 0.01 1.37 ± 0.01

Scaled weights Mean −0.04 ± 0.01 −0.02 ± 0.01 −0.00 ± 0.01 −0.01 ± 0.01 0.01 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01

Width 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.93 ± 0.01

Squared correction Mean 0.53 ± 0.04 0.29 ± 0.03 0.21 ± 0.03 0.12 ± 0.03 0.11 ± 0.03 0.04 ± 0.03 0.04 ± 0.03

Width 3.93 ± 0.03 3.05 ± 0.02 2.92 ± 0.02 2.91 ± 0.02 2.86 ± 0.02 2.84 ± 0.02 2.82 ± 0.02

Bootstrapping Mean −0.06 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01 −0.02 ± 0.01 −0.00 ± 0.01

Width 0.96 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 1.02 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Asymptotic Mean −0.06 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01 0.00 ± 0.01 −0.01 ± 0.01 −0.00 ± 0.01

Width 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.02 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

cFit Mean −0.07 ± 0.01 −0.04 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.00 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01

Width 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.02 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.89 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.90 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.91 ± 0.02

Appendix E: Results from pseudoexperiments using
sWeights
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Table 4 Means and widths of the pull distribution for the different
approaches to the uncertainty estimation, depending on the total yield
Ntot . In addition, the relative efficiencies (i.e. the ratios of variances) of

the cFit estimator and the weighted estimator defined by Eq. 3 are given.
The different tables shown correspond to the different background mod-
els as specified in Sect. 4

Method Pull 400 1 k 2 k 5 k 10 k 20 k

(a) Exponential background model

sFit Mean −1.17 ± 0.09 −0.50 ± 0.03 −0.35 ± 0.03 −0.25 ± 0.03 −0.17 ± 0.02 −0.14 ± 0.02

Width 8.53 ± 0.06 2.78 ± 0.02 2.63 ± 0.02 2.52 ± 0.02 2.48 ± 0.02 2.48 ± 0.02

Scaled weights Mean −0.75 ± 0.05 −0.34 ± 0.02 −0.24 ± 0.02 −0.17 ± 0.02 −0.12 ± 0.02 −0.10 ± 0.02

Width 5.14 ± 0.04 2.16 ± 0.02 2.09 ± 0.01 2.03 ± 0.01 2.00 ± 0.01 2.00 ± 0.01

Squared correction Mean −0.22 ± 0.02 −0.13 ± 0.01 −0.09 ± 0.01 −0.07 ± 0.01 −0.05 ± 0.01 −0.05 ± 0.01

Width 1.59 ± 0.01 1.44 ± 0.01 1.44 ± 0.01 1.43 ± 0.01 1.43 ± 0.01 1.43 ± 0.01

Bootstrapping Mean −0.07 ± 0.01 −0.06 ± 0.01 −0.04 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01

Width 1.21 ± 0.01 1.22 ± 0.01 1.26 ± 0.01 1.26 ± 0.01 1.27 ± 0.01 1.28 ± 0.01

Full bootstrapping Mean 0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.00 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01

Width 0.94 ± 0.01 0.94 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01

Asymptotic Mean −0.07 ± 0.01 −0.06 ± 0.01 −0.04 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01

Width 1.21 ± 0.01 1.24 ± 0.01 1.27 ± 0.01 1.27 ± 0.01 1.28 ± 0.01 1.29 ± 0.01

Full asymptotic Mean 0.02 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01

Width 0.94 ± 0.01 0.96 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01

cFit Mean −0.08 ± 0.01 −0.06 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01

Width 1.03 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.01

Rel. efficiency cFit/weighted 0.393 ± 0.008 0.429 ± 0.009 0.433 ± 0.009 0.440 ± 0.009 0.444 ± 0.009 0.451 ± 0.009

(b) Gaussian background model

sFit Mean −3.75 ± 0.25 −1.46 ± 0.08 −0.85 ± 0.05 −0.58 ± 0.04 −0.30 ± 0.04 −0.21 ± 0.04

Width 25.33 ± 0.18 7.69 ± 0.05 4.68 ± 0.03 4.27 ± 0.03 4.08 ± 0.03 4.00 ± 0.03

Scaled weights Mean −2.47 ± 0.17 −1.00 ± 0.06 −0.58 ± 0.04 −0.40 ± 0.03 −0.20 ± 0.03 −0.14 ± 0.03

Width 16.58 ± 0.12 5.51 ± 0.04 3.66 ± 0.03 3.41 ± 0.02 3.29 ± 0.02 3.24 ± 0.02

Squared correction Mean −0.39 ± 0.02 −0.25 ± 0.02 −0.16 ± 0.02 −0.12 ± 0.02 −0.05 ± 0.02 −0.04 ± 0.02

Width 2.43 ± 0.02 2.06 ± 0.01 1.94 ± 0.01 1.89 ± 0.01 1.89 ± 0.01 1.87 ± 0.01

Bootstrapping Mean −0.03 ± 0.02 −0.02 ± 0.02 −0.01 ± 0.02 −0.02 ± 0.02 0.01 ± 0.02 0.00 ± 0.02

Width 1.56 ± 0.01 1.59 ± 0.01 1.62 ± 0.01 1.63 ± 0.01 1.65 ± 0.01 1.64 ± 0.01

Full bootstrapping Mean −0.01 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01

Width 1.05 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

Asymptotic Mean 0.02 ± 0.01 −0.02 ± 0.02 −0.02 ± 0.02 −0.02 ± 0.02 0.01 ± 0.02 0.00 ± 0.02

Width 1.49 ± 0.01 1.62 ± 0.01 1.66 ± 0.01 1.66 ± 0.01 1.68 ± 0.01 1.67 ± 0.01

Full asymptotic Mean 0.09 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01

Width 0.93 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

cFit Mean −0.09 ± 0.01 −0.07 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.01 ± 0.01

Width 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.118 ± 0.002 0.113 ± 0.002 0.119 ± 0.002 0.124 ± 0.002 0.126 ± 0.003 0.127 ± 0.003
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Table 5 Means and widths of the pull distribution for the different
approaches to the uncertainty estimation, depending on the total yield
Ntot . In addition, the relative efficiencies (i.e. the ratios of variances) of

the cFit estimator and the weighted estimator defined by Eq. 3 are given.
The different tables shown correspond to the different background mod-
els as specified in Sect. 4

Method Pull 400 1 k 2 k 5 k 10 k 20 k

(a) Triangular background model

sFit Mean −3.55 ± 0.21 −1.42 ± 0.07 −0.83 ± 0.05 −0.56 ± 0.04 −0.32 ± 0.04 −0.20 ± 0.04

Width 20.61 ± 0.15 7.25 ± 0.05 4.66 ± 0.03 4.24 ± 0.03 4.04 ± 0.03 4.08 ± 0.03

Scaled weights Mean −2.37 ± 0.14 −0.97 ± 0.05 −0.58 ± 0.04 −0.39 ± 0.03 −0.22 ± 0.03 −0.13 ± 0.03

Width 13.93 ± 0.10 5.24 ± 0.04 3.65 ± 0.03 3.38 ± 0.02 3.26 ± 0.02 3.29 ± 0.02

Squared correction Mean −0.41 ± 0.02 −0.24 ± 0.02 −0.16 ± 0.02 −0.12 ± 0.02 −0.06 ± 0.02 −0.03 ± 0.02

Width 2.40 ± 0.02 2.04 ± 0.01 1.92 ± 0.01 1.88 ± 0.01 1.86 ± 0.01 1.90 ± 0.01

Bootstrapping Mean −0.04 ± 0.02 −0.02 ± 0.02 −0.01 ± 0.02 −0.02 ± 0.02 −0.00 ± 0.02 0.01 ± 0.02

Width 1.57 ± 0.01 1.57 ± 0.01 1.59 ± 0.01 1.60 ± 0.01 1.62 ± 0.01 1.66 ± 0.01

Full bootstrapping Mean −0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

Width 1.06 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 1.01 ± 0.01

Asymptotic Mean 0.01 ± 0.02 −0.02 ± 0.02 −0.02 ± 0.02 −0.02 ± 0.02 −0.00 ± 0.02 0.01 ± 0.02

Width 1.50 ± 0.01 1.60 ± 0.01 1.62 ± 0.01 1.63 ± 0.01 1.64 ± 0.01 1.68 ± 0.01

Full asymptotic Mean 0.08 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

Width 0.94 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 1.01 ± 0.01

cFit Mean −0.11 ± 0.01 −0.08 ± 0.01 −0.05 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.01 ± 0.01

Width 1.02 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.128 ± 0.003 0.122 ± 0.002 0.130 ± 0.003 0.136 ± 0.003 0.137 ± 0.003 0.132 ± 0.003

(b) Flat background model

sFit Mean −2.38 ± 0.16 −0.97 ± 0.05 −0.58 ± 0.04 −0.41 ± 0.04 −0.25 ± 0.03 −0.20 ± 0.03

Width 16.02 ± 0.11 4.57 ± 0.03 3.83 ± 0.03 3.59 ± 0.03 3.47 ± 0.02 3.42 ± 0.02

Scaled weights Mean −1.56 ± 0.10 −0.66 ± 0.03 −0.39 ± 0.03 −0.28 ± 0.03 −0.17 ± 0.03 −0.15 ± 0.03

Width 10.43 ± 0.07 3.44 ± 0.02 3.02 ± 0.02 2.87 ± 0.02 2.80 ± 0.02 2.77 ± 0.02

Squared correction Mean −0.32 ± 0.02 −0.19 ± 0.02 −0.11 ± 0.02 −0.09 ± 0.02 −0.06 ± 0.02 −0.05 ± 0.02

Width 2.09 ± 0.01 1.83 ± 0.01 1.78 ± 0.01 1.76 ± 0.01 1.74 ± 0.01 1.73 ± 0.01

Bootstrapping Mean −0.06 ± 0.01 −0.04 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01

Width 1.36 ± 0.01 1.38 ± 0.01 1.41 ± 0.01 1.43 ± 0.01 1.43 ± 0.01 1.43 ± 0.01

Full bootstrapping Mean −0.01 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.00 ± 0.01

Width 1.00 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Asymptotic Mean −0.03 ± 0.01 −0.04 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01

Width 1.32 ± 0.01 1.41 ± 0.01 1.44 ± 0.01 1.45 ± 0.01 1.45 ± 0.01 1.45 ± 0.01

Full asymptotic Mean 0.06 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 −0.00 ± 0.01

Width 0.93 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01

cFit Mean −0.08 ± 0.01 −0.07 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01

Width 1.02 ± 0.01 1.01 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.207 ± 0.004 0.203 ± 0.004 0.208 ± 0.004 0.215 ± 0.004 0.224 ± 0.004 0.223 ± 0.004

AppendixF: sWeightswith negligible nuisance parameter
correlations

In Sect. 4.2 the mass range which is used to determine the
sWeights is chosen such that the background slope αbkg is
significantly correlated with the event yields. This results in
an additional uncertainty on the sWeights that needs to be
accounted for using Eq. 49. For completeness, in this sec-
tion the different methods are studied in the absence of any

significant impact of nuisance parameters on the sWeights.
To this end, the mass range [5 267, 5 467] MeV/c2 is cho-
sen, which is a symmetrical mass window around the peak
at 5 367 MeV/c2, as shown in Fig. 12. This choice results in
negligible correlation of αbkg with Nsig and Nbkg. All other
settings are kept as in Sect. 4.2.
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Table 6 Means and widths of the pull distribution for the different
approaches to the uncertainty estimation, depending on the total yield
Ntot . In addition, the relative efficiencies (i.e. the ratios of variances)
of the cFit estimator and the weighted estimator defined by Eq. 3 are

given. The different tables shown correspond to the different back-
ground models as specified in Sect. 4. In this case, the mass range
[5267, 5467] MeV/c2 is chosen, such that the nuisance parameter αbkg
has negligible correlation with the event yields

Method Pull 400 1 k 2 k 5 k 10 k 20 k

(a) Exponential background model

sFit Mean −0.46 ± 0.03 −0.29 ± 0.02 −0.18 ± 0.02 −0.14 ± 0.02 −0.09 ± 0.02 −0.06 ± 0.02

Width 2.82 ± 0.02 2.47 ± 0.02 2.40 ± 0.02 2.37 ± 0.02 2.32 ± 0.02 2.33 ± 0.02

Scaled weights Mean −0.30 ± 0.02 −0.19 ± 0.02 −0.12 ± 0.02 −0.09 ± 0.02 −0.06 ± 0.02 −0.04 ± 0.02

Width 1.97 ± 0.01 1.76 ± 0.01 1.72 ± 0.01 1.69 ± 0.01 1.66 ± 0.01 1.67 ± 0.01

Squared correction Mean −0.08 ± 0.01 −0.06 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01

Width 1.17 ± 0.01 1.14 ± 0.01 1.13 ± 0.01 1.13 ± 0.01 1.11 ± 0.01 1.12 ± 0.01

Bootstrapping Mean 0.01 ± 0.01 −0.00 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01

Width 0.95 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01

Full bootstrapping Mean 0.00 ± 0.01 −0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01

Width 0.96 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01

Asymptotic Mean 0.00 ± 0.01 −0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01

Width 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01

Full asymptotic Mean 0.00 ± 0.01 −0.01 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01 −0.00 ± 0.01

Width 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01

cFit Mean −0.05 ± 0.01 −0.05 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01

Width 1.02 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.466 ± 0.009 0.470 ± 0.009 0.468 ± 0.009 0.467 ± 0.009 0.478 ± 0.010 0.465 ± 0.009

(b) Gaussian background model

sFit Mean −0.84 ± 0.04 −0.42 ± 0.03 −0.25 ± 0.03 −0.16 ± 0.03 −0.14 ± 0.03 −0.10 ± 0.03

Width 4.47 ± 0.03 3.29 ± 0.02 3.09 ± 0.02 3.01 ± 0.02 2.92 ± 0.02 2.92 ± 0.02

Scaled weights Mean −0.54 ± 0.03 −0.27 ± 0.02 −0.16 ± 0.02 −0.10 ± 0.02 −0.09 ± 0.02 −0.07 ± 0.02

Width 3.05 ± 0.02 2.32 ± 0.02 2.20 ± 0.02 2.15 ± 0.02 2.09 ± 0.01 2.09 ± 0.01

Squared correction Mean −0.12 ± 0.01 −0.06 ± 0.01 −0.03 ± 0.01 −0.01 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01

Width 1.22 ± 0.01 1.15 ± 0.01 1.14 ± 0.01 1.13 ± 0.01 1.11 ± 0.01 1.11 ± 0.01

Bootstrapping Mean 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01

Width 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

Full bootstrapping Mean 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01

Width 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01

Asymptotic Mean 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01

Width 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Full asymptotic Mean 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.00 ± 0.01 −0.00 ± 0.01

Width 0.97 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

cFit Mean −0.09 ± 0.01 −0.06 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01

Width 1.02 ± 0.01 1.01 ± 0.01 1.02 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.218 ± 0.004 0.228 ± 0.005 0.235 ± 0.005 0.235 ± 0.005 0.239 ± 0.005 0.236 ± 0.005
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Table 7 Means and widths of the pull distribution for the different
approaches to the uncertainty estimation, depending on the total yield
Ntot . In addition, the relative efficiencies (i.e. the ratios of variances)
of the cFit estimator and the weighted estimator defined by Eq. 3 are

given. The different tables shown correspond to the different back-
ground models as specified in Sect. 4. In this case, the mass range
[5 267, 5 467] MeV/c2 is chosen, such that the nuisance parameter αbkg
has negligible correlation with the event yields

Method Pull 400 1 k 2 k 5 k 10 k 20 k

(a) Triangular background model

sFit Mean −0.84 ± 0.05 −0.42 ± 0.03 −0.29 ± 0.03 −0.20 ± 0.03 −0.14 ± 0.03 −0.09 ± 0.03

Width 5.33 ± 0.04 3.24 ± 0.02 3.08 ± 0.02 3.02 ± 0.02 2.97 ± 0.02 2.97 ± 0.02

Scaled weights Mean −0.54 ± 0.04 −0.27 ± 0.02 −0.19 ± 0.02 −0.13 ± 0.02 −0.09 ± 0.02 −0.06 ± 0.02

Width 3.55 ± 0.03 2.29 ± 0.02 2.20 ± 0.02 2.16 ± 0.02 2.13 ± 0.02 2.12 ± 0.02

Squared correction Mean −0.11 ± 0.01 −0.06 ± 0.01 −0.05 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01

Width 1.23 ± 0.01 1.15 ± 0.01 1.14 ± 0.01 1.13 ± 0.01 1.13 ± 0.01 1.13 ± 0.01

Bootstrapping Mean 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.01

Width 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.98 ± 0.01

Full bootstrapping Mean 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

Width 0.97 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Asymptotic Mean 0.04 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

Width 0.97 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Full asymptotic Mean 0.04 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

Width 0.97 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

cFit Mean −0.11 ± 0.01 −0.07 ± 0.01 −0.05 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01

Width 1.02 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.231 ± 0.005 0.239 ± 0.005 0.244 ± 0.005 0.246 ± 0.005 0.242 ± 0.005 0.242 ± 0.005

(b) Flat background model

sFit Mean −0.71 ± 0.04 −0.46 ± 0.03 −0.36 ± 0.03 −0.28 ± 0.03 −0.18 ± 0.03 −0.13 ± 0.03

Width 3.86 ± 0.03 3.14 ± 0.02 3.03 ± 0.02 2.98 ± 0.02 2.89 ± 0.02 2.88 ± 0.02

Scaled weights Mean −0.46 ± 0.03 −0.30 ± 0.02 −0.24 ± 0.02 −0.19 ± 0.02 −0.12 ± 0.02 −0.09 ± 0.02

Width 2.67 ± 0.02 2.23 ± 0.02 2.16 ± 0.02 2.13 ± 0.02 2.07 ± 0.01 2.07 ± 0.01

Squared correction Mean −0.10 ± 0.01 −0.09 ± 0.01 −0.08 ± 0.01 −0.07 ± 0.01 −0.05 ± 0.01 −0.03 ± 0.01

Width 1.26 ± 0.01 1.22 ± 0.01 1.22 ± 0.01 1.22 ± 0.01 1.20 ± 0.01 1.20 ± 0.01

Bootstrapping Mean 0.02 ± 0.01 −0.00 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01

Width 0.94 ± 0.01 0.95 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01

Full bootstrapping Mean 0.01 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01

Width 0.95 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Asymptotic Mean 0.02 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01

Width 0.96 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Full asymptotic Mean 0.02 ± 0.01 −0.01 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01 −0.01 ± 0.01

Width 0.96 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

cFit Mean −0.06 ± 0.01 −0.04 ± 0.01 −0.03 ± 0.01 −0.03 ± 0.01 −0.02 ± 0.01 −0.02 ± 0.01

Width 1.02 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

Rel. efficiency cFit/weighted 0.298 ± 0.006 0.295 ± 0.006 0.290 ± 0.006 0.293 ± 0.006 0.296 ± 0.006 0.297 ± 0.006
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Fig. 12 Discriminating mass distribution for (black) the full
data, (blue) signal and (red) background using the mass range
[5267, 5467] MeV/c2

The means and widths of the resulting pull distributions
are given in Tables 6 and 7. As for the case discussed in
Sect. 4.2, the sFit, the scaled weightsmethod and the squared
weights method show significant undercoverage. All other
methods, namely the (full) bootstrapping, the (full) asymp-
totic method and the cFit show correct coverage.
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