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1 Introduction

Gravitational Waves (GWs) are promising tools for exploring the physics of the early universe.
Observations of GWs from binary pulsar systems [1] and the merger of binary black holes [2]
have ushered in the era of GW detection. Recently, pulsar timing array (PTA) collaborations,
including NANOGrav [3, 4], EPTA [5], PPTA [6], and CPTA [7], announced compelling
evidence of a signal consistent with stochastic gravitational wave background (SGWB) at the
reference frequency f = 1 yr−1. Shortly after the release of the PTA results, various studies
emerged regarding the possible origin of the observed signal, see, e.g., [8–75].

Primordial GWs [76–78], which are the tensor fluctuations generated quantum mechani-
cally in the very early universe, serve as an important possible source of the SGWB. Detecting
the primordial GW background would provide valuable physical insights into the origin and
evolution of the universe. It is intriguing to explore whether recent observations by PTA can
be interpreted as signals of the primordial GWs with a blue-tilted power spectrum. Recently,
a lot of research has been conducted in this direction, see, e.g., [21, 55, 56, 61, 79–82].

Inflation [83–86], as a leading paradigm for the very early universe, elegantly addresses
the horizon and flatness problems of the Big Bang cosmology. It also predicts a nearly
scale-invariant power spectrum of scalar perturbations, which is consistent with the cosmic
microwave background (CMB) observations. Furthermore, the conventional slow-roll infla-
tionary scenario also predicts a nearly scale-invariant power spectrum of primordial GWs.
However, the PTA observations suggest a highly blue tensor spectrum with a spectral index
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nT = 1.8± 0.3 [3, 21], which implies the necessity of new physics beyond the scope of con-
ventional slow-roll inflation at certain scales (see e.g. [87–106] for explorations in generating
a blue-tilted tensor spectrum within the inflationary scenario).

The violation of the null energy condition (NEC) may play a crucial role in the very early
universe (see e.g. [107] for a review). It has been demonstrated that a fully stable NEC violation
can be realized in the “beyond Horndeski” theories [108–115], see also [116–121]. Basically,
the violation of NEC implies an increase in the Hubble parameter H (i.e., dH/dt > 0).
Given that the power spectra of scalar and tensor perturbations are proportional to H2, an
intermediate NEC violation during inflation leads to intriguing phenomena of observational
interest at certain scales, including: 1) a significant enhancement in the power spectrum
of primordial GWs [122, 123], 2) a notable amplification of the parity-violation effect in
primordial GWs [124] (see also [125]), 3) the generation of primordial black holes with masses
and abundances of observational interest [126], along with the associated scalar-induced
GWs. Remarkably, the scenario proposed by [122] naturally yields a broken power-law power
spectrum, which may potentially be consistent with observations from both CMB and PTA,
see also [55] for recent studies.

In this paper, we examine the predicted primordial GW background from the model
proposed by [122] in light of observations from PTA, with a specific focus on the NANOGrav
signal. Our paper is organized as follows. In section 2, we provide a brief overview of
the background dynamics in our model. Section 3 introduces the power spectrum and its
parameterization as predicted by our model. In section 4, we perform numerical comparisons
between the primordial GW background predicted by our model and the NANOGrav signal.
Section 5 is dedicated to our conclusion.

2 Intermediate NEC violation during inflation

2.1 A brief review of the scenario

In our scenario [122], the universe begins with an initial phase of slow-roll inflation character-
ized by a Hubble parameter H = Hinf1. Subsequently, it transitions into a second phase of
slow-roll inflation with a significantly larger Hubble parameter, denoted as H = Hinf2, after
passing through an intermediate stage of NEC violation. During the evolution, the comov-
ing Hubble horizon (i.e., a−1H−1) decreases over time, signifying the exit of perturbation
modes from the horizon as the universe undergoes accelerated expansion, see figure 1 for
an illustration.1 After crossing the horizon, these perturbation modes remain in the super-
horizon regime until they re-enter the horizon during the subsequent radiation-dominated
or matter-dominated expansion era.

For the scalar (or tensor) perturbation modes that exit the horizon during the first stage
of slow-roll inflation (i.e., k < k1), their power spectrum is nearly scale-invariant, making it
consistent with the observations of temperature anisotropy in the CMB. Similarly, the power
spectrum of perturbation modes that exit the horizon during the second stage of slow-roll

1The horizon of scalar perturbations, as defined by
√

zs/z′′
s , can differ from the Hubble horizon, especially

during the transition between different phases. Here, we have simplified the analysis by not considering the
specific details of this transition.
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Figure 1. An illustration of the evolution of the conformal Hubble horizon (represented by the solid
black lines) and the perturbation modes (depicted as dashed blue lines with arrows) in our scenario.

inflation (i.e., k > k2) is also nearly scale-invariant, but it has a significantly larger amplitude.
The scale-invariance of the tensor power spectrum at large scales ensures the absence of a
highly suppressed tensor-to-scalar ratio r, and consequently a highly suppressed slow-roll
parameter in canonical single-field slow-roll inflation. At small scales, the scale-invariance of
the scalar and tensor power spectra prevents them from growing to O(1), thus preserving
the validity of perturbation theory at higher frequencies.

The power spectrum of perturbation modes that exit the horizon during the NEC-violating
phase (i.e., k1 < k < k2) is blue-tilted (ns > 0 or nT > 0). Namely, the violation of the NEC
enhances both the scalar and tensor power spectrum by increasing the Hubble parameter H,
see [122–124, 126]. Significantly, at the intermediate scales of the scalar power spectrum, the
blue tilt and oscillatory features, particularly around the scale corresponding to the beginning
of the second inflationary phase, lead to intriguing phenomena of observational interest,
including the generation of primordial black holes and the associated scalar-induced GWs [126].
Simultaneously, the power spectrum of tensor perturbations (or the primordial GWs), also
exhibits a blue tilt and possesses oscillatory features around the transition scales [122–124].
These distinctive features set our scenario apart from other single-field primordial black hole
formation scenarios. The combination of primordial black holes, scalar-induced GW signals,
and primordial GWs provides a valuable avenue for studying the violation of the NEC during
inflation, especially in the era of multi-messenger and multi-band observations.

Our scenario can be realized with the EFT action (see e.g., [108, 110, 123])

S =
∫

d4x
√
−g

[
M2

P
2 R − Λ(t)− c(t)g00

+M4
2 (t)
2 (δg00)2 − m3

3(t)
2 δKδg00 + m̃2

4(t)
2 R(3)δg00

]
, (2.1)

where δg00 = g00 + 1, R(3) is the Ricci scalar on the 3-dimensional spacelike hypersurface,
δK = K − 3H, K is the extrinsic curvature. The time-dependent functions c(t) and Λ(t)
determine the background evolution, with the relations c(t) = −M2

PḢ and Λ(t) = M2
P(Ḣ +
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3H2). The functions M4
2 (t), m3

3(t) and m̃2
4(t) can be determined or constrained based on the

condition that the scalar perturbations are in agreement with observations.
Notably, the operator R(3)δg00 plays a crucial role in preventing scalar perturbations from

becoming unstable when the NEC is violated, as demonstrated in [108–110]. The covariant
form of action (2.1), as discussed in [111, 112], falls under the category of “beyond Horndeski”
theory. Nonetheless, the propagation of primordial GWs is exactly the same as that in general
relativity at quadratic order. In this paper, we will not delve into the specific formulations of
these coefficient functions or the intricacies of the model construction. Instead, we will employ
a simplified parameterization of the background evolution for our scenario. Consequently, we
can establish a parameterization for the power spectrum of primordial GWs.

2.2 Parametrization of background

We begin with a flat Friedmann-Lemaitre-Robertson-Walker universe described by the metric

ds2 = −dt2 + a(t)2dx⃗2 = a(τ)2(−dτ2 + dx⃗2) , (2.2)

where t is the cosmic time and τ is the conformal time, related by dt = adτ . Throughout
this paper, we will use a dot to denote d/dt and a prime to denote d/dτ . We will also
define H ≡ ȧ/a, H ≡ a′/a.

An inflationary stage is commonly characterized by quasi-de Sitter expansion, where the
scale factor approximately evolves as a ∝ |τ |−1 for τ < 0. Additionally, we will parameterize
our NEC-violating stage with a power-law scale factor, i.e., a(τ) ∝ |τ |n.2 The full-scale factor
can be then parametrized as a piecewise function of τ :

aj(τ) = aj(τj)
(

τ − τR,j

τj − τR,j

) 1
ϵj−1

, τ < τj , (2.3)

where τj is the conformal time at the end of phase j, j = 1, 2, 3 corresponds to the first
inflation stage, the NEC-violating stage and the second inflation stage, respectively; τR,j =
τj − (ϵj − 1)−1H−1(τj) is the integration constant and ϵj = −Ḣ/H2 is treated as constant
during phase j. Since phases 1 and 3 are assumed as slow-roll inflation, we will set ϵ1 ≈ ϵ3 ≈ 0
for simplicity. As for the NEC-violating phase (i.e., phase 2), we have ϵ2 < 0, which indicates
−1 < n = (ϵ2 − 1)−1 < 0. A specific design of such a model can be found in [122].

The provided parametrization overlooks the details of transitions between different phases,
including the specific variations of ϵ near the beginning or the end of the NEC-violating phase.
The dynamics of the transition might depend on the specific model. For simplicity, we will
describe the transition physics using the matching condition, ensuring the continuity of the
scale factor a and its first derivative a′ at τ1 and τ2. For our purpose, such a simplification
will not make a qualitative difference.

Using eq. (2.3) and denoting the beginning and the end time of the NEC-violating stage
to be τ1 and τ2, respectively, the continuity of a gives

a1(τ1) = a2(τ2)
(

τ1 − τR,2
τ2 − τR,2

) 1
ϵ2−1

, a2(τ2) = a3(τ3)
(

τ2 − τR,3
τ3 − τR,3

)−1

. (2.4)

2An exponential parameterization of the scale factor during the NEC-violating stage is employed in
appendix A.
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The continuity of a′ or H enables us to define the following quantities

H̄1 ≡ H(τ1) , H̄2 ≡ H(τ2) . (2.5)

With the help of (2.3), we can solve the integration constants as

τR,1 = τ1 + H̄−1
1 , τR,2 = τ1 −

H̄−1
1

ϵ2 − 1 = τ2 −
H̄−1

2
ϵ2 − 1 , τR,3 = τ2 + H̄−1

2 . (2.6)

Obviously, the consistency of (2.6) requires

(τ2 − τ1)(1− ϵ2) = H̄−1
1 − H̄−1

2 > 0 . (2.7)

In terms of the scale factor and Hubble parameter;

a2(τ2)
a2(τ1)

=
(
H̄2

H̄1

) 1
1−ϵ2

,
H2
H1

=
(
H̄2

H̄1

) ϵ2
ϵ2−1

, (2.8)

where we have defined H2 ≡ H̄2/a2(τ2) and H1 ≡ H̄1/a2(τ1) to be the Hubble parameter
at τ = τ2 and τ = τ1.

3 Primordial gravitational waves

3.1 Tensor perturbations and mode functions

Since the gravity sector is minimally coupled to the matter sector, the quadratic action
for tensor perturbation is simply

S
(2)
T =

∫
dτd3x

a2

8
[
γ′2

ij − (∂kγij)2
]

, (3.1)

where we have set the propagation speed of tensor perturbation to be unity (i.e., the speed of
light), and MP = 1. In the momentum space, the dynamical equation for tensor perturbation is

u′′
k +

(
k2 − a′′

a

)
uk = 0 , (3.2)

where uk ≡ γλ
k a/2 is the mode function and λ = +,× represent two different polarizations.

The parameterization of scale factor, i.e., eq. (2.3), gives

a′′
j

aj
=

ν2
j − 1/4

(τ − τR,j)2 , νj ≡ 1
2 + 1

1− ϵj
. (3.3)

Note that ϵ2 < 0 would result in 1/2 < ν2 < 3/2. As a result, in each phase, the general
solution to eq. (3.2) can be expressed in terms of the Hankel function as

uk,j(τ) =

√
π(τR,j − τ)

2
{

αjH(1)
νj

[k(τR,j − τ)] + βjH(2)
νj

[k(τR,j − τ)]
}

, (3.4)

where H
(1)
νj and H

(2)
νj are the first and second kind Hankel functions of the νj-th order,

respectively; αj and βj are k-dependent coefficients.
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For simplicity, we have assumed ϵ1 ≈ ϵ3 ≈ 0, which indicates ν1 ≈ ν3 ≈ 3/2 and the
Hankel functions are simply

H
(1)
3/2(x) =

√
2
π

eix

x3/2 (−i − x) , H
(2)
3/2(x) =

[
H

(1)
3/2(x)

]∗
, (3.5)

where the asterisk denotes complex conjugation. We impose the Bunch-Davis vacuum initial
condition, which gives |α1| = 1 and β1 = 0. The other coefficients αj and βj for j = 2, 3
can be determined with the matching method, which requires the continuities of uk and u′

k

at the transition surface τ = τ1 and τ = τ2.
More explicitly, we are interested in the final tensor spectrum, which is relevant to

|α3 − β3|, namely

PT ≡ 4k3

π2
|u2

k,3|
a2 = 2H(τ3)2

π2 |α3 − β3|2 . (3.6)

We present

8√x1y1(α3 − β3)
π(1− 2ν2)

= H(1)
ν2 (y2)

[(
i − 1

x1

)
H

(2)
ν2−1(x2) + H(2)

ν2 (x2)
]
sin y1

+ H
(1)
ν2−1(y2)

[(
i − 1

x1

)
H

(2)
ν2−1(x2) + H(2)

ν2 (x2)
](

cos y1 −
sin y1

y1

)
−
[

ix1 − 1
x1

H
(1)
ν2−1(x2) + H(1)

ν2 (x2)
]

×
[
H(2)

ν2 (y2) sin y1 + H
(2)
ν2−1(y2)

(
cos y1 −

sin y1
y1

)]
, (3.7)

see [123], where we employ

x1 ≡ k

H̄1
, x2 =

(
ν2 −

1
2

)
x1 ; y1 ≡ k

H̄2
, y2 =

(
ν2 −

1
2

)
y1 , (3.8)

and an overall phase factor has been neglected.

3.2 Parametrization of the tensor spectrum

The tensor spectrum provided by (3.7) is complicated, necessitating further simplification. To
interpret the PTA data through primordial GWs from our model, the amplitude of primordial
GWs must be enhanced from the order of O(10−11), the upper bound on the amplitude of
PT constrained by CMB observations, to 10−3 within the PTA range. Given that in our
scenario, nT < 2, the NEC violating stage must persist for scales spanning over four orders of
magnitude, i.e., k2 > 104k1. Consequently, we can safely make the approximation k2 ≪ k1.

Next, we observe that the Hankel function behaves as a pure phase factor in the sub-
horizon region and as a power-law function in the super-horizon region. This asymptotic
behavior allows us to derive approximate expressions for modes exiting the horizon in different
stages. For example, for modes exiting the horizon during the second inflation stage, where
k ≫ k2, leading to y1, y2, x1, x2 ≫ 1, each Hankel function can be approximated as a pure
phase function, resulting in

PT ≃ PT,2 ≡ 2H2
2

π2 , k > k2 . (3.9)

– 6 –
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Similarly, modes exiting the horizon during the first inflation stage satisfy k < k1, for
which we have

PT ≃ PT,1 ≡ 2H2
1

π2 , k < k1 . (3.10)

For perturbation modes that exit the horizon during the NEC-violating stage, the
approximate tensor power spectrum is given by

PT ≃ Γ2(ν2)
π

(2ν2 − 1
4

)1−2ν2 ( k

k2

)3−2ν2

, k1 < k < k2 , (3.11)

see [123] for more details. This spectrum shows a blue tilt (nT = 3 − 2ν2 > 0) within the
range k1 < k < k2 in our scenario. Since 1/2 < ν2 < 3/2, we have 0 < nT < 2. Remarkably,
when employing an exponential parameterization for a2(τ), we reach nT = 2, as explicitly
demonstrated in appendix A.

The above treatment encounters challenges near the transition scales k ≃ k1 and k ≃ k2,
where a simple expansion of the Hankel function through its asymptotic behavior is not
applicable. However, in the vicinity of the scale k ≃ k1, the corresponding tensor spectrum is
expected to be too small for detection in the near future, allowing us to safely overlook the
transition feature in this region. Conversely, near the scale k ≃ k2, the tensor spectrum is
sufficiently large for potential detection. For k ≫ k1, all Hankel functions with arguments x1,
x2 ≫ 1 exhibit the asymptotic behavior H

(1)
ν (x) ∝ exp[i(x−νπ/2−π/4)]. This characteristic

enables us to capture the features of PT around k ≃ k2 while simplifying the formulation of PT .
In light of this, we can parametrize PT as

PT = PT,1 +
π

4 (2− nT )
k

k2
|g(k)|2PT,2 , (3.12)

where the auxiliary function is defined as

g = H
(1)
3−nT

2

[2− nT

2
k

k2

]
sin k

k2
+ H

(1)
1−nT

2

[2− nT

2
k

k2

](
cos k

k2
− k2

k
sin k

k2

)
. (3.13)

It is important to note that we have replaced ν2 by the corresponding tensor spectral index
nT = 3− 2ν2 in the NEC violating stage. In the limit of k ≪ k1, PT ≈ PT,1 since the second
term in eq. (3.12) becomes negligible compared to PT,1. Conversely, for k ≫ k1, the second
term in eq. (3.12) becomes dominant. Consequently, it ensures that the features around
k ≃ k2 are well captured. While this formulation may sacrifice accuracy around the first
transition scale k ≃ k1, such a compromise has minimal impact on our interests.

The primordial tensor power spectrum PT can be converted to the observed GW energy
spectrum by [127]

ΩGW = k2

12a2
0H2

0

3Ωmjl(kτ0)
kτ0

√√√√1.0 + 1.36 k

keq
+ 2.50

(
k

keq

)2


2

PT

≃ 1
24

(
k

H0

)2
 3Ωm

(kτ0)2

√√√√1.0 + 1.36 k

keq
+ 2.50

(
k

keq

)2


2

PT

(3.14)

where H0 = 67.8 km/s/Mpc, τ0 = 1.41×104 Mpc, a0 = 1, keq = 0.073Ωmh2 Mpc−1, Ωm is the
density fraction of matter today, and the wavenumber relates to the frequency as k = 2πf .
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Parameter Prior
log10 PT,2 [−5, 0]

nT [0,2]
log10 fc [−9,−5]

Table 1. Prior choice for spectrum parameters in the MCMC analysis.

4 Numerical results

In this section, we confront the parameterized spectrum (3.12) to the recent PTA data.
As explained in the previous section, we are interested in the case k1 ≪ k ≲ k2 where
the tensor spectrum is blue. To this end, the first term in (3.12) is much smaller than
the second one, thus we can safely neglect PT,1. With this simplification, the theoretical
spectrum (3.12) is fully parameterized by three parameters {PT,2, nT , fc}, where we have
defined the transition frequency from the NEC-violating stage to the second inflationary
stage as fc ≡ 2πk2. We performed Monte Carlo Markov Chain (MCMC) analysis varying
{PT,2, nT , fc} plus the pulsar and nuisance parameters against the most recent public
NANOGrav 15yr dataset [4]. Following NANOGrav, we assume two models on the spatial
correlation of the signal, uncorrelated common-spectrum red noise (CURN) and Hellings-
Down (HD).3 Theoretically, our model predicts nT < 2. The validity of the perturbation
theory requires PT,2 < 1. See table 1 for our prior choice of the model parameters.

Figure 2 shows the posterior distributions of the tensor spectrum parameters. Data
puts lower bounds on PT,2 > 10−2 (95% C.L.) and nT > 1.0 (95% C.L.). This is to be
expected because it is known that the NANOGrav 15yr data includes a ∼ 3σ detection
of GW background near 10−8 Hz with nT ∼ 1.8. The distribution of fc is a peak −8.1 <

log10(fc/Hz) < −6.6, but this should not be confused with a detection. Near fc, the spectrum
transits from nT ∼ 2 to nT = 0 with oscillations. Having fc > 10−8 Hz means that data does
not favor the shape of transition so it is moved to the right of the data constraining region,
see also figure 3. The upper bound on fc is due to the prior upper bound on PT,2. Because
data fixes the amplitude of the spectrum near 10−8 Hz, fc and PT,2 are strongly positively
correlated, as can be seen from the log10 fc - log10 PT,2 contour of figure 2. Therefore, a prior
upper bound PT,2 < 1 gets translated to an upper bound on fc.

Figure 3 further compares the best-fit theoretical spectrum with violin points measured
by NANOGrav. The left panel of figure 3 illustrates the physical energy spectrum of GW
denoted as ΩGW h2. While the NEC-violating phase satisfactorily accounts for the PTA signal,
the tensor spectrum originating from the second inflationary phase also falls comfortably
within the detection sensitivity of forthcoming space-based GW observatories like LISA [129],
Taiji [130], and Tianqin [131]. The right panel of figure 3 zooms into the PTA data-constrained
frequency range and plots the PTA timing excess, see [4] for a detailed definition. Only the
first few data points detect GW background signal and the theoretical spectrum (solid black

3CURN assumes spatially uncorrelated signal while HD assumes that the signal at different pulsars has a
spatial correlation described by the Hellings-Down curve [128]. The later is the expected spatial correlation of
SGWB. See [4] for details.
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Figure 2. 68% and 95% posterior distributions of model parameters.
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Figure 3. Theoretical spectra with violin data points from NANOGrav 15yr.

line) fits them as well as a power law (dashed black line). Close to fc, the solid line drops
to a smaller nT , which is not favored by data. Therefore, in the MCMC, fc automatically
shifts to a higher frequency than the range constrained by the data, leading to the observed
lower bound on fc as depicted in figure 2.
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The numeric results confirmed that the NEC-violating model can well explain the GW
background signal observed by PTA experiments, but the current data is not precise enough
to distinguish it from other models, e.g., a simple power law. Our model also predicts
a flat tensor spectrum in the mHz frequency range and is detectable to next-generation
space GW detectors.

5 Conclusions

The recent SGWB signals reported by PTA collaborations have unveiled a new frontier in the
exploration of gravitational wave physics. Notably, if these PTA signals originate from the
primordial universe, it necessitates the presence of new physics beyond the standard slow-roll
inflation scenario. This necessity arises because PTA observations indicate a highly blue
tensor spectrum with a spectral index of nT = 1.8± 0.3, whereas the conventional slow-roll
inflation scenario predicts a nearly scale-invariant tensor spectrum.

An intermediate stage of NEC violation during inflation has the potential to amplify the
primordial tensor power spectrum on certain scales, offering a potential explanation for the
PTA observations. In this paper, we explore the primordial GW spectrum within an inflation-
ary scenario featuring an intermediate NEC-violating phase. We present parameterizations for
the background evolution and the GW power spectrum of our model. Our evaluation of the
model’s compatibility with PTA data reveals its capability to account for the SGWB signal
observed by PTA experiments. Given the consistency of signals observed by various PTA
experiments, we focus primarily on the NANOGrav 15-year results in the numerical analysis.

Additionally, our model predicts a nearly scale-invariant GW spectrum in the mHz
frequency range, potentially detectable by upcoming space-based GW detectors like LISA,
Taiji, and Tianqin. This distinctive characteristic distinguishes our scenario from other
interpretations predicting a red primordial GW spectrum on smaller scales.

6 Discussions

Intriguingly, ref. [124] found that, for the scenario discussed in this paper, the violation of the
NEC naturally amplifies the parity-violating effect as well as its observability in primordial
GWs, provided the scalar field determining the background evolution is coupled to a parity-
violating term. The wavenumber k corresponding to the maximum of the parity-violating effect
is approximately the same as the wavenumber corresponding to the maximum of the power
spectrum. This intriguing feature also sets our model apart observationally from other models.

The scale corresponding to the significantly amplified parity-violating effects depends
on the scale at which the NEC violation takes place. In this paper, the maximum of the
primordial GW power spectrum appears in the vicinity of the PTA band, as shown by the
black curve in figure 3. Therefore, the parity violation is still notably amplified in the PTA
band. However, considering the power spectrum presented in figure 3, the parity violation
is suppressed by the slow-roll condition in the LISA band, as the GW modes in the LISA
band are generated during the second slow-roll inflation stage in our scenario. To achieve a
notable amplification of the parity-violating effect in the LISA band, it would be necessary
for the NEC violation to occur later than what is assumed in the present paper.
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In ref. [126], it has been demonstrated that the NEC violation can naturally enhance the
primordial scalar power spectrum at certain scales, leading to the production of PBHs and
scalar-induced GWs of observational interest. The primordial GWs (i.e., tensor perturbations)
primarily depend on the Hubble parameter H. The scalar-induced GWs are induced by
scalar perturbations, depending not only on H but also on ϵ ≡ −Ḣ/H2 (or its generalized
formulation). Therefore, the relative contribution to the GW background of each depends
on the specific model’s characteristics, particularly the relative magnitudes of the power
spectra of scalar and tensor perturbations.

In this paper, we primarily focus on primordial GWs and have not explicitly calculated
the primordial scalar perturbations. We assume that the contribution to the GW background
in the PTA band mainly comes from primordial GWs rather than scalar-induced GWs. In fact,
for the same background evolution, scalar perturbations exhibit stronger model dependence
compared to tensor perturbations. In principle, for models constructed with specific covariant
action, we can quantitatively compare the contributions of both to the GW background.
This remains a subject for future work.
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A Power spectrum from an exponential parameterization of the scale
factor during the NEC-violating phase

In this section, we explicitly calculate the power spectrum PT using an exponential param-
eterization for a2(τ), representing the scale factor during the NEC-violating stage. This
parametrization is frequently used in the study of bouncing cosmology, which also has an
NEC-violating phase, see e.g., [136].

The first and second inflationary stages, denoted by i = 1 and 3 respectively, are still
parameterized by eq. (2.3), with the assumption that ϵ1 ≈ ϵ3 ≈ 0. Therefore, we have

a1(τ) = a1(τ1)
τ1 − τR,1
τ − τR,1

, H1(τ) = − 1
τ − τR,1

, τ ≤ τ1 (A.1)

and
a3(τ) = a3(τ3)

τ3 − τR,3
τ − τR,3

, H3(τ) = − 1
τ − τR,3

, τ2 ≤ τ ≤ τ3 (A.2)

If the NEC-violating phase is very brief, we can approximate the Hubble parameter as a
linear function. As a result, a2(τ) can be parameterized by an exponential formulation as

a2(τ) = a1(τ1)eH1(τ1)(τ−τ1)+ 1
2 γ2(τ−τ1)2

, H2(τ) = H1(τ1) + γ2(τ − τ1) , (A.3)

where τ1 ≤ τ ≤ τ2.
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The parameterization of the background can be related to the characteristic scales:

k1 = H1(τ1) = (τR,1 − τ1)−1 , k2 = H3(τ2) = (τR,3 − τ2)−1 , (A.4)

where k1 is the mode that crosses the horizon at the end of the first inflationary phase,
τ = τ1, and k2 is the mode that crosses the horizon at the beginning of the second inflationary
phase, τ = τ2.

The continuity of a and H at τ1 is already incorporated into the parametrization.
Therefore, we focus on ensuring continuity at τ2, which requires that a3(τ2) = a2(τ2) and
H3(τ2) = H2(τ2), i.e.,

a3(τ2)
a1(τ1)

= eH1(τ1)(τ2−τ1)+ 1
2 γ2(τ2−τ1)2

, − 1
τ2 − τR,3

= H1(τ1) + γ2(τ2 − τ1) . (A.5)

In terms of k1 and k2, and considering the condition k1 ≪ k2, we can express

k2 = k1 + γ2(τ2 − τ1) ≃ γ2(τ2 − τ1) , (A.6)

leading to

τ2 − τ1 ≃ k2
γ2 ,

a3(τ2)
a1(τ1)

≃ e
k2

2γ2 (k2+2k1) ≃ e
k2

2
2γ2 . (A.7)

For the first inflationary phase (i.e., τ < τ1), the mode function can be given as

uk,1(τ) =

√
π(τR,1 − τ)

2 H
(1)
3/2[k(τR,1 − τ)] = eik(τR,1−τ)

√
2k3/2(τR,1 − τ)

[−i − k(τR,1 − τ)] , (A.8)

where we have taken the vacuum initial condition. It can be further simplified to

uk,1(τ) = −k + ik1√
2k3/2 e

ik
k1 , τ < τ1 . (A.9)

In the NEC-violating phase, we have ϵ ≡ 1 − H′/H2 ≪ −1, indicating H′ ≫ H2 for
nearly the entire phase. As a result, a′′/a = H2+H′ ≃ H′ = γ2. Consequently, the dynamical
equation simplifies to

u′′
k,2(τ)− ω2

kuk,2(τ) = 0, ωk ≡
√

γ2 − k2 . (A.10)

The parameter ωk turns imaginary for k > γ and real for k < γ. Yet, we will primarily
focus on analyzing the dynamics of perturbations for k < γ as it should be adequate for our
purposes. In this scenario, ωk is real, and the general solution takes the form

uk,2 = c1eωkτ + c2e−ωkτ . (A.11)

The mode function for the second inflationary phase can be expressed as

uk,3(τ) = c3

√
π(τR,3 − τ)

2 J 3
2
[k(τR,3 − τ)] + c4

√
π(τR,3 − τ)

2 Y 3
2
[k(τR,3 − τ)] , (A.12)
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where J and Y are Bessel functions. In a more explicit form, this can be written as

uk,3(τ) = c3

(sin z

z
− cos z

)
− c4

(cos z

z
+ sin z

)
, (A.13)

where z ≡ k(τR,3−τ). On super-horizon scales, the dominating term is c4, making it sufficient
to evaluate c4. The tensor spectrum on these scales, expressed in terms of c4, is given by

PT = 4k3

π2
|u2

k,3|
a2 =

2H2
inf,2

π2 2k|c4|2 . (A.14)

We match the perturbation at τ1 and τ2 for fluctuations with k < γ, resulting in

c4 = k2 + (ik − k1)(k1 + ωk)
2
√
2k7/2ωk

e
ωk
k2

[
k2 sin k

k2

+ (k2 − ωk)
(

k cos k

k2
− k2 sin

k

k2

)]
+ (ωk → −ωk) . (A.15)

A quick check: for modes crossing the horizon in the first inflation phase, we have k < k1 ≪ k2.
Moreover, the largeness of |ϵ| implies |ϵ|(τ1) = 1− γ2

k2
1
≫ 1, or γ ≫ k1 ≥ k, and thus ωk ≃ γ.

A series expansion around k/k2 ≪ 1 gives

c4 ≃ (ik − k1)
6
√
2k2

2k
1
2

e
γ

k2 (2k2 + γ) + (γ → −γ) . (A.16)

Therefore, for k ≪ k1, the power spectrum is

PT,inf1 ≃
2H2

inf,2
π2 × k2

1
k2

2

[1
6e

γ
k2

(
2 + γ

k2

)
+ (γ → −γ)

]2

=
2H2

inf,1
π2

a2
1

a2
2

[1
6e

γ
k2

(
2 + γ

k2

)
+ (γ → −γ)

]2

≃
2H2

inf,1
π2

[1
6

(
2 + γ

k2

)
+ a1

a2

(
2− γ

k2

)]2
≃ PT,inf1

(1
3 + γ

6k2

)2
, (A.17)

which is scale-invariant, as expected. The equation (A.17) indicates that the super-horizon
modes generally experience a modification factor during the NEC-violating phase, aligning
with results from bouncing cosmology.

Modes with k > k2 and k > γ remain sub-horizon at τ = τ2 and cross the horizon in
the second inflationary phase. Therefore, we can directly write down their corresponding
tensor spectrum:

PT,inf2 ≃
2H2

inf,2
π2 . (A.18)

To explain the PTA result, we aim for PT,inf2 ≃ O(10−4). The CMB constraint gives
PT,inf1 ≃ O(10−12). Consequently, we can estimate Hinf,2/Hinf,1 > O(104). This estimation
provides us with an estimate for γ, i.e.,

Hinf,2
Hinf,1

= H2
H1

a1
a2

> O(104) → k2
k1

e
k2

2
2γ2 > O(104) . (A.19)
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Figure 4. The tensor power spectrum with k1 = 0.12, k2 = 10, γ = 8.

The exponential function is sensitive to the value of k2/γ, which suggests that k2 and γ have
the same order of magnitude. For example, if k2/γ = 10, it would imply an amplification of the
Hubble parameter by e50, an implausible result. Therefore, we could reasonably approximate
PT = PT,inf2 for k > γ, accepting a minor loss of precision within a narrow scale range.

Obtaining the tensor spectrum for k > γ from (A.15) via analytical continuation on ωk

might raise a potential issue. The expression for c4 displays an apparent discontinuity at
k = γ andωk = 0. Looking into this issue in the limit of k → γ, we find

lim
k→γ

c4 ≃
(
γ2 − k2

2
)
sin γ

k2
+ γk2 cos γ

k2√
2γ

3
2 k2

. (A.20)

Therefore, c4 is well-defined at k = γ. Moreover, for k ≫ γ,

c4 ≃ 1
2
√
2k

3
2

e
i|ωk|

k2

i|ωk|

[
k2 sin k

k2
− i|ωk|

(
k cos k

k2
− k2 sin

k

k2

)]
+ c.c.

 . (A.21)

Using |ωk| ≃ k, it can be further simplified to

|c4| =
1

√
2k

1
2

∣∣∣∣1 +O
(

k2
k

)∣∣∣∣→ PT ≃
2H2

inf,2
π2 = PT,inf2 . (A.22)

Therefore, we can evaluate PT with k > γ through the analytical continuation of ωk, which
we verified numerically and illustrate in figure 4.

In conclusion, we could adopt the following parametrization for PT :

PT =
H2

inf,2
2π2 |f(k)2| , (A.23)

where

f(k) = k2 + (ik − k1)(k1 + ωk)
k3ωk

e
ωk
k2

[
(k2 − ωk)

(
k cos k

k2
− k2 sin

k

k2

)

+ k2 sin k

k2

]
+ (ωk → −ωk) , ωk ≡

√
γ2 − k2 . (A.24)
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How does this relate to PTA observations? As we can see from figure 4, the tensor
spectrum is blue-tilted in the region k1 ≪ k ≪ k2. Since γ is comparable to k2, we also have
γ ≫ k such that ωk ≃ γ. The expression (A.24) simplifies to

|f(k)| ≃ k

3k2
2

[
(2k2 + γ)e

γ
k2 + (2k2 − γ)e−

γ
k2
]

, (A.25)

which predicts a blue spectrum with nT = 2 in the range k1 ≪ k ≪ k2. This result is in
agreement with that in the main text in the limit n → ∞, as the power-law parametrization
a2 ∝ |τ |n approaches an exponential function.

However, when k ∼ γ and γ ̸= k2, we also observe a blue spectrum from figure 4. Yet,
estimating the spectral index analytically becomes challenging in this scenario as we lack
a reliable method to estimate ωk.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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