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Two particles can exert forces on each other when embedded in a sea of weakly coupled particles. These
“wake forces” occur whenever the source and target particles have quadratic interactions with the
mediating particles; they are proportional to the ambient energy density and typically have a range of order
the characteristic de Broglie wavelength of the background. The effect can be understood as source
particles causing a disturbance in the background waves—a wake—which subsequently interacts with the
target particles. Wake forces can be mediated by bosons or fermions, can have spin dependence, may be
attractive or repulsive, and have a generally anisotropic spatial profile and range that depends on the phase-
space distribution of the ambient particles. In this work, I investigate the application of wake forces to dark
matter searches, recast existing limits on short-range forces into leading constraints on dark matter with
quadratic couplings, and sketch out potential experimental modifications to optimize sensitivity. Wake
forces occur in the Standard Model: the presence of the cosmic neutrino background induces a millimeter-
range force about 22 orders of magnitude weaker than gravity. Wake forces may also be relevant in
condensed-matter and atomic physics.

DOI: 10.1103/PhysRevD.109.096036

I. INTRODUCTION

The birth of the modern scientific method can arguably
be traced to Galileo’s gravitational experiments with
inclined planes. His determination that the free fall accel-
eration of objects is independent of their mass and
composition, now known as the (weak) equivalence
principle, is a cornerstone of the theory of gravitational
interactions. Since then, swaths of experiments have been
performed to test the equivalence principle, and the
inverse-square-radius scaling of the two long-range forces
of nature, gravity and electromagnetism.
These efforts were further boosted by the realization that

motivated theories beyond the Standard Model (SM) of
particle physics—the QCD axion [1–7] and large extra
dimensions [8,9] in particular—can exhibit small devia-
tions from these predictions or even qualitatively new
forces [10]. These forces are typically mediated by
low-mass particles—dilatons, moduli, axions, dark pho-
tons, or gravitons—which couple linearly but weakly to
regular matter. Single-particle-exchange forces generally

have a range equal to the Compton wavelength of the
mediator; any such particle with gravitational-strength,
spin-independent couplings to matter must be heavier than
5.11 meV ≈ ð38.6 μmÞ−1 from tests of the gravitational
inverse-square law [11].
These light, weakly coupled fields can also make up

the dark matter (DM), as they are naturally long-lived
and have generic production mechanisms in the early
Universe [12–14]. Linearly coupled DM fields generally
give rise to temporally oscillating phenomena at a fre-
quency equal to the mass. Light scalar DM causes
oscillations of fundamental “constants” [15], which in turn
lead to time-varying energies [15,16], length scales [17],
and forces [15,18], the latter through gradients in the field.
Pseudoscalar DM can excite electromagnetic fields [19],
spin resonances [20], and acoustic modes [21]. At higher
DM masses, current and near-future single-quantum detec-
tion techniques are sufficiently sensitive to search for DM
absorption [22,23] and conversion [24,25].
Quadratic interactions between DM and SM operators

OSM are also possible, and are the leading interactions if the
linear coupling is forbidden by a symmetry of the DM field.
Examples include a Z2 parity symmetry ϕ ↦ −ϕ for a real
scalar field, forbidding ϕOSM but allowing ϕ2OSM.
Likewise, a U(1) symmetry Φ ↦ eiαΦ of a complex scalar
field implies a leading interaction of jΦj2OSM in the
effective field theory (EFT). Fermions beyond the SM
(other than sterile neutrinos) necessarily have quadratic
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couplings to SM operators because of fermion number
symmetry. Notably, the QCD axion a has an irreducible
quadratic coupling to nucleons N ¼ ðp; nÞ of the form
L ⊃ ðσ̃=2Þða=faÞ2N̄N, with σ̃ ≈ 15 MeV and fa the axion
decay constant [26]. Finally, SM neutrinos couple quad-
ratically to matter at low energies through the four-Fermi
interaction,

L ⊃ −
GFffiffiffi
2

p
X
ψ

ψ̄ ðgVψ γμ − gAψ γμγ5Þψν̄iγμð1− γ5Þνi ð1Þ

þGFffiffiffi
2

p UieU
†
ejēγμð1 − γ5Þeν̄iγμð1 − γ5Þνj; ð2Þ

where the first and second lines contain the relevant
neutral- and charged-current interactions, respectively,
with gVψ and gAψ the vector and axial-vector couplings
of the SM fermion ψ to the Z boson, and U the unitary
matrix that diagonalizes the neutrino mass matrix. (In
this convention, gVp ¼ 1=2 − 2s2w, gAp ¼ 1=2, gVn ¼ −1=2,
gAn ¼ −1=2, gVe ¼ −1=2þ 2s2w, gAe ¼ 1=2, where sw is the
sine of the weak mixing angle.)
Many of the oscillatory phenomena that can occur for

linearly coupled DM carry over to quadratic interactions
through simple rescalings of the coupling and the oscil-
lation frequency (now twice the mass); see, e.g.,
Refs. [27,28]. At higher masses, the leading effect becomes
scattering in low-threshold targets rather than (double)
absorption [29]. When the field has no ambient density,
there are still static forces from a virtual exchange of two
particles, but they decrease with distance as 1=r4 for two-
scalar exchange rather than 1=r2 for single-scalar exchange,
and is exponentially suppressed beyond half the Compton
wavelength of the scalars [30]. Famously, the feeble two-
neutrino exchange forces scale asG2

F=r
6 [19,31,32] at short

distances.
In this paper, I calculate the density-dependent forces

between two SM particles or macroscopic bodies. If two SM
particles are embedded in a sea of waves interacting with
them via quadratic couplings, there exists a static force that
scales linearly with the energy density, as the square of the
quadratic couplings, and with a range of order the typical
spatial (de Broglie) wavelength of the ambient waves,
unless they have a high degree of coherence. The spatial
profile of the resulting potentials is not generally spherically
symmetric and is determined by the couplings and the
phase-space distribution of the mediating particles. I call
this phenomenon a wake force, as it is analogous to the
wake of a stationary boat (source particle) in a mild ocean
swell (the ambient waves), which is felt by the nearby
surrounding boats (the target particles). Curiously, wake
forces generically violate Newton’s third law—the vector
sum of the wake force from source to target does not cancel
that from target to source, since there is some momentum

transferred (which depends on the source–target separation
vector) to the ambient medium.
In Sec. II, I present the general formalism for calculat-

ing (scalar, nonderivative) wake forces both classically
(Sec. II A) and quantum mechanically (Sec. II B), with
analogous derivations for other scalar interactions and
fermions relegated to Appendices A and B. I calculate the
range and spatial profile of wake forces in Sec. II C. In
Sec. III, I discuss applications of wake forces to DM
searches (Sec. III A) and neutrino detection (Sec. III B).
Section IV contains parametric comparisons of wake
forces and potentials to other effects that necessarily
occur for quadratically coupled fields: double-exchange
forces (Sec. IVA), elastic scattering (Sec. IV B), in-
medium potentials and forces (Sec. IV C), and screening
(Sec. IV D). A validation against nonperturbative numeri-
cal simulations is provided in Appendix C.
Certain aspects of this work have appeared in prior

literature in different guises and were developed independ-
ently of the material presented here. I comment on simi-
larities and differences with Refs. [27,30,33–40] in Sec. V,
where I also discuss future directions and open questions.
Throughout this work, I use natural units with ℏ ¼ c ¼

kB ¼ 1, the metric signature ðþ;−;−;−Þ, and conventions
of

R
đnk≡ R

dnk=ð2πÞn and �δ ðnÞð·Þ≡ ð2πÞnδðnÞð·Þ. Three-
vectors are bolded (k), four-vectors such as kμ ¼ ðEk;k2Þ
and xμ ¼ ðt;xÞ are not, and k · x ¼ Ekt − k · x. I
collect standard Fourier integrals and spinor identities in
Appendix D.

II. THEORY

In this section, I develop the general framework for
calculating the wake force between two particles, which
can then be pairwise integrated to obtain the force between
two macroscopic bodies. The basic effect can be under-
stood in simple classical terms, at the level of equations of
motion and solutions thereof, presented in Sec. II A.
Alternatively, Sec. II B contains the exactly equivalent
quantized treatment using tree-level scattering amplitudes,
which may be illuminating vis-à-vis standard derivations
from single-particle virtual exchanges and is more powerful
for spin-dependent interactions.
The most minimal example is that of a real scalar field ϕ

with a quadratic coupling to the number density current of a
SM fermion ψ ¼ fp; n; e;…g,

L ¼ 1

2
ð∂ϕÞ2 −m2

2
ϕ2 −

Gm
2

ϕ2ψ̄ψ : ð3Þ

The normalization of the interaction term proportional to
both the ϕ mass m and the coupling constant G (in analogy
to Fermi’s constant) of inverse-mass-squared dimension is
chosen for later notational convenience and to make contact
with quadratically-coupled fermions. Ultraviolet (UV) com-
pletions of the EFT in [Eq. (3)] are discussed in Sec. III A.
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The calculations in the rest of this section are repeated for
other quadratic scalar interactions in Appendix A (e.g.,
jΦj2ψ̄ψ for a complex scalar Φ and ϕ2ψ̄iγ5ψ) and for
fermions in Appendix B. They follow the same steps as
shown here.

A. Classical description

Consider a static “source” ψ particle at the origin x ¼ 0,
and a “target” ψ particle at position x with r≡ jxj. The
equation of motion for ϕ in the presence of this single
source particle, with a number density of ψ̄ψ ¼ δð3ÞðxÞ, is

ð□þm2Þϕ ¼ −Gmϕδð3ÞðxÞ: ð4Þ

Assume that the ϕ medium is composed of a background
wave ϕ0ðt;xÞ with amplitude φ0 and wave number k0, and
a scattered wave δϕðt;xÞ,

ϕ ¼ ϕ0ðt;xÞ þ δϕðt;xÞ; ð5Þ

ϕ0ðt;xÞ ¼ φ0 cosðωt − k0 · xÞ: ð6Þ

The angular frequency is ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

0

p
in vacuum;

ψ-density-dependent corrections are discussed in
Sec. IV D. Section II B will generalize the simple back-
ground plane wave of Eq. (6) to the more phenomenologi-
cally relevant case of a random superposition of different
k modes.
Equation (4) can be solved perturbatively inG. Using the

Green’s function corresponding to the retarded propagator,
one finds

δϕðt;xÞ ¼ Gm
2

φ0

Z
đ4pe−ip·x

�δðp0 − ωÞ þ �δðp0 þ ωÞ
ðp0 þ iεÞ2 − p2 −m2

¼ Gm
2

φ0e−iωt
Z

đ3peip·x
1

−p2 þ k2
0 þ iε

þ c:c:

¼ −
Gm
4πr

φ0 cosðωt − jk0jrÞ ð7Þ

as the leading-order solution in G for the perturbed
spherical wave δϕ.
A “target” ψ particle at x experiences the nonrelativistic

potential,

V ¼ Gm
2

ϕ2

≃
Gm½ϕ0ðt;xÞ�2

2
þ Gmϕ0ðt;xÞδϕðt;xÞ þOðG3Þ: ð8Þ

The first term is the in-medium potential from the back-
ground wave only and is independent of the source
particle’s position. The second term is the leading-order
correction from the scattered wave. Its time-averaged
expectation value is the wake potential,

hVðt;xÞit ¼ −
G2

4πr
m2φ2

0

2
cosðjk0jr − k0 · xÞ: ð9Þ

The wake force is the gradient of this potential and is
universally attractive for relative separations smaller than
the de Broglie wavelength r ≪ 1=jk0j. The parametric
form of this wake potential,

V ∼−
½coupling�2 × ½energy density�× ½form factor�

4π½radius� ; ð10Þ

is generic: it persists for other types of (spin-independent)
quadratic interactions, including with complex scalars and
fermions. The form factor is defined to go to unity in the
small-radius and nonrelativistic limit. For phase-space
distributions beyond that of a single k mode in Eq. (9),
the form factor falls off significantly—polynomially or
exponentially—at distances larger than the typical de
Broglie wavelength. The form factor is also generally
aspherical (at large distances), unless the phase-space
distribution of ϕ particles is spherically symmetric itself.
Section II C will cover the form factor in greater detail.
Figure 1 depicts the wake potential (bottom panel) for

a monochromatic unidirectional wave moving in the
z-direction k̂ ¼ ð0; 0; 2πÞ, as the multiplicative cross term
[the second term on the rhs of Eq. (8)] of the background
wave (top left panel) and the perturbed spherical wave (top
right panel). For the monochromatic unidirectional back-
ground wave of Eq. (6), the wake force effectively has an
infinite range in the forward direction x̂ ≃ k̂, and is spatially
oscillatory with wave number magnitude OðjkjÞ at large
angles (2jkj in the backward direction). The generalization
to a random superposition of background waves of varying
wave number magnitudes and directions is crucial for
phenomenological purposes and is more easily derived in
the quantized treatment below.

B. Quantum description

The classical calculation from the previous section can
be repeated from the perspective of tree-level scattering
amplitudes in quantum field theory, where the generaliza-
tion to an ensemble of many k modes and other types of
interactions (Appendices A and B) is more transparent. The
real scalar field of Eq. (3) is quantized in the usual way,

ϕ ¼
Z

đ3kffiffiffiffiffiffiffiffi
2Ek

p ½ake−ik·x þ a†ke
þik·x�; ð11Þ

with E2
k ¼ m2 þ k2. The environment, i.e., the ensemble of

background waves, is taken to be a mixed state of kmodes,
with a momentum distribution fðkÞ normalized asR
đ3kfðkÞ ¼ 1. In this background, the expectation value

of the product of creation and annihilation operators is
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ha†k0aki ¼ nfðkÞ�δ ð3Þðk0 − kÞ; ð12Þ

with n the number density of ϕ particles. Using the
free-particle Hamiltonian density H ¼ ½ϕ̇2 þ ð∇ϕÞ2 þ
m2ϕ2�=2, the expectation value of the energy density
is ρ ¼ hHi ¼ n

R
đ3kEkfðkÞ.

The Feynman diagrams contributing to the wake force
are depicted in Fig. 2. Taking the nonrelativistic limit of
distinguishable SM fermions ψ1 and ψ2 with masses mψ ,
the matrix element M for this scattering amplitude is

iM
ð2mψÞ2

¼ −iG2m2

Z
đ3k

nfðkÞ
2Ek

×

�
1

ðqþ kÞ2 −m2
þ 1

ðq − kÞ2 −m2

�
ð13Þ

in the background of Eq. (12). The four-momentum
exchanged between ψ1 and ψ2 is denoted by q with
direction as indicated in Fig. 2. Use of the standard relation

ṼðqÞ ¼ −M=ð2mψ Þ2 between the matrix element and
the 3D Fourier transform of the potential ṼðqÞ ¼R
d3xe−iq·xVðxÞ yields the result,

ṼðqÞ ¼ −G2m2

Z
đ3k

nfðkÞ
2Ek

×

�
1

q2 þ 2q · k − iε
þ 1

q2 − 2q · kþ iε

�
; ð14Þ

where, once again, the iε prescription corresponds to the
use of the retarded propagator to retain causality. Fourier
transforming back to position space gives the wake
potential,

VðxÞ ¼
Z

đ3qeiq·xṼðqÞ

¼ −G2m2

Z
đ3k

nfðkÞ
2Ek

Z
đ3q

eiðq−kÞ·x

q2 − k2 − iε
þ c:c:

¼ −
G2m2

4πr

Z
đ3k

nfðkÞ
Ek

cosðjkjr − k · xÞ: ð15Þ

In the second line, the integration variable is shifted as
qþ k → q. The result in the third line is equivalent to the
classical result of Eq. (9) for fðkÞ ¼ �δ ð3Þðk − k0Þ and with
the identification n=Ek0 ¼ φ2

0=2.
The long range of the wake force (of order the de Broglie

wavelength) is explained by the nearly on shell internal
line: the square of the four-momentum k carried by the on
shell external state cancels the pole in the internal propa-
gator in Fig. 2 and Eq. (13). In contrast, the short range of
Yukawa-type forces (of order the Compton wavelength)
from single-particle exchange and of double-particle-
exchange forces can be attributed to their off shell internal
lines.
The parametric form promised in Eq. (10),

VðxÞ ¼ −
G2mn
4πr

F ðxÞ; ð16Þ

FIG. 1. Time-averaged wake potential (bottom panel) of Eq. (9)
for a target test particle at position x produced by a monochromatic
unidirectional background wave ϕ0ðt ¼ 0;xÞ of Eq. (6) moving in
the þz direction (top left panel) and the scattered spherical wave
δϕðt ¼ 0;xÞ of Eq. (7) (top right panel) from a perturbing source
particle at the origin. For illustrative purposes, units are such that
G ¼ m ¼ φ0 ¼ 1 and k ¼ ð0; 0; 2πÞ.

FIG. 2. Diagrams contributing to the wake force between
distinguishable, nonrelativistic fermions ψ1 and ψ2 in a medium
of real scalars ϕ.
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is recovered in the nonrelativistic limit, where
limx→0F ðxÞ ≃ 1 and ρ ≃mn. This is the relevant limit
for the DM searches in Sec. III A and will be used to
calculate the range of the wake force in the next section.

C. Range

The range and profile of the wake force is governed by
the momentum distribution fðkÞ of the background par-
ticles, which determines the form factor in Eq. (16),

F ðxÞ≡
Z

đ3k
fðkÞ
Ek=m

cosðjkjr − k · xÞ: ð17Þ

Isotropic distributions—For an isotropic Maxwell-
Boltzmann (MB) distribution, the form factor takes on a
simple analytic form (for Ek=m ≃ 1),

fMBðkÞ ¼
ð2πÞ3=2
σ3k

e−k
2=2σ2k ; ð18Þ

FMBðxÞ ≃ e−2σ
2
kr

2

; ð19Þ

falling off as a (spherical) Gaussian beyond the character-
istic de Broglie wavelength σ−1k . It is depicted as the thick
black curve in the top panel of Fig. 5. For an isotropic
Fermi-Dirac (FD) distribution with temperature T,

fFDðkÞ ¼
ð2πÞ2
3ζð3Þ

1

ejkj=T þ 1

1

T3
; ð20Þ

F FDðxÞ ¼ −i
ψ ð1Þð1=2 − iTrÞ − ψ ð1Þð1 − iTrÞ

24ζð3ÞTr þ c:c:

≃
1

48ζð3ÞðTrÞ4 þOðTrÞ−6 ðr ≫ 1=TÞ; ð21Þ

where ψ ð1Þ is the first derivative of the digamma function.
In this case, the form factor is quartically suppressed for
r ≫ 1=T, shown as the thick black curve in the bottom
panel of Fig. 5.
For a general isotropic momentum distribution fðkÞ ¼

fðjkjÞ, the form factor integral reduces to

F ðrÞ ¼ 1

ð2πÞ2r
Z

∞

0

dk k sinðkrÞfðkÞ; ð22Þ

proving at least 1=r suppression at large r, and even
more suppression for smooth phase-space distributions
due to the oscillatory nature of the integrand. For a
(physically less motivated) top-hat momentum distribu-
tion, fðkÞ ¼ 6π2k−30 Θðk0 − jkjÞ, the form factor decreases
in an oscillatory fashion with an inverse quadratic
envelope, according to the parametric form F ∝
cosð2k0rÞ=ðk0rÞ2 for r ≫ 1=k0. The top-hat distribution

shows that despite “hard edges” in fðkÞ, there is still a
significant suppression of the form factor beyond the
typical wavelength k−10 . (These edges may come from
incomplete phase-space equilibration at velocities below
the Solar System’s escape velocity, or from the screening
effects discussed in Sec. IV D.)
Anisotropic distributions—The momentum distributions

for many background fields of phenomenological interest,
such as the DM and CνB particles, are strongly anisotropic
in the laboratory frame due to our motion relative to that of
the MW DM halo or the cosmic rest frame.
The DM halo in Earth’s frame can be modeled to

first approximation by a truncated, boosted Maxwell-
Boltzmann (BMB) momentum distribution,

fBMBðkÞ ¼ N −1
escfMBðk −mvcircẑÞΘðmvesc − jkjÞ; ð23Þ

with coordinates chosen such that the DM wind points
towards the þz direction (circular velocity vcirc ¼ −vcircẑ).
The distribution is truncated above the escape velocity vesc,
which affects the normalization via N esc ¼ erfðz̄Þ−
2z̄e−z̄

2

=
ffiffiffi
π

p
, where z̄≡mvesc=

ffiffiffi
2

p
σk. The corresponding

form factor FBMB cannot be calculated analytically.
However, its numerical evaluation is shown in the top
panels of Fig. 3 and Fig. 5 for fiducial parameters for the
velocity distribution at the Sun’s location in the MilkyWay
(MW): σv ≡ σk=m ≈ 165 km=s ≈ vcirc=

ffiffiffi
2

p
and vesc ≈

550.7 km=s [41]. At distances larger than those shown
in Fig. 3, the form factor falls off quadratically in all
directions. The distance dependence in the forward (back-
ward) direction is indicated by the red (gold) curve in
Fig. 5. The exponential suppression for the isotropic MB
distribution is thus lifted, but it still constitutes a dramatic
suppression relative to the forward limit from Eq. (9)—
compare the bottom panels of Figs. 1 and 3.
In a standard cosmology, the CνB is expected to be at

rest relative to the cosmic microwave background (CMB) at
a temperature Tν ≃ ð4=11Þ1=3Tγ ≈ 1.95 K, where Tγ ≈
2.725 K is the CMB temperature [42]. The CMB dipole
anisotropy thus implies that the CνB is moving with respect
to the Earth at a velocity of vCMB ≈ 370 km=s in the
direction of the CMB dipole [43]. The corresponding
momentum distribution is a boosted Fermi-Dirac (BFD)
distribution,

fBFDðkÞ ¼ fFDðk −mvCMBẑÞ: ð24Þ

Figure 4 displays the form factor FBFD for the CνB in
Earth’s frame for m ¼ m3 ¼ 60 meV, a fiducial value for
the largest of the three neutrino masses, in agreement with
current constraints on the sum of neutrino masses [44] and
not far from the lowest possible value allowed by neutrino
oscillation experiments [[45], Chap. 14]. The strength of
the anisotropy is quantified by mvCMB=Tν, which equals
about 0.44 for the assumed mass m3, and is significantly
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smaller for the lighter mass eigenstates. The form factor is
again suppressed relative to the forward limit from Eq. (9).
Like for the BMB distribution, the boost mitigates the
distance suppression of the form factor to FBFD ∝ 1=r2 at
large radii, which is less severe than the 1=r4 scaling of the
unboosted F FD—cf. the bottom panel of Fig. 5.
The reason for the 1=r3 scaling of the wake potential is

analogous to the 1=r3 effective potential of a charged
particle in a Vlasov plasma with either a relative velocity or
anisotropy [46]. In that case too, the boost and/or

anisotropy lift the exponential Debye screening of the
potential to a polynomial (cubic) one.
The anisotropic momentum distributions fBMB and fBFD

are but rudimentary approximations to the actual phase-
space distributions of DM and the CνB, respectively.
Effects that would certainly alter the DM form factor
include MW substructure such as streams and subhalos,
the annual modulation from Earth’s orbit around the Sun,
environmental screening (Sec. IV D), and corrections to the
phase-space distribution at low velocities (jkj=m≲ 10−4)
due to the gravitational potential of the Sun. Similarly, the
momentum distribution of the heaviest neutrino mass
eigenstate likely deviates from a BFD distribution due to

FIG. 3. Top panel: Form factor FBMBðxÞ for a boosted
Maxwell-Boltzmann distribution at distance r and angle θr ≡
arccosðx̂ · ẑÞ relative to the direction of the DM wind. Bottom
panel: Wake potential in units of G2nmσk=2 to allow for direct
comparison with the bottom panel of Fig. 1. At large radii,
VBMB ∝ 1=r3 in all directions.

FIG. 4. Same as in Fig. 3, but for a boosted Fermi-Dirac
distribution for m ¼ 60 meV, Tν ¼ 1.95 K, and vCMB ¼
370 km=s pointing in the þz direction. At large radii, VBFD ∝
1=r3 in all directions.
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its gravitational clustering within the Virgo/Laniakea super-
cluster, and, to a lesser extent, the MW halo and the Solar
System. A detailed study of these corrections is left to
future work.
Multiple fields—The form factor can parametrically

change for multiple wake fields, possibly extending the
range of the wake force through a phenomenon akin to
neutrino oscillations. Suppose the Lagrangian of Eq. (3) is
modified to an interaction with two real scalar fields ϕ1 and
ϕ2, with masses m1 and m2,

L ¼ −Gm1ϕ1ϕ2ψ̄ψ : ð25Þ

For concreteness, assume there is only an ambient ϕ1 field
with number density n and momentum distribution fðkÞ,
and that ϕ2 is in its vacuum state. If m1 ¼ m2 ¼ m, one
would get exactly the same results as for a single real scalar
field of massm, from the same diagrams as in Fig. 2, except
with ϕ2 on the internal line, and ϕ1 on the external legs.
Qualitatively new dynamics occur for a mass splitting,

Δ2 ¼ m2
2 −m2

1: ð26Þ

If jΔj is greater than the typical momentum jk0j in fðkÞ,
then the wake force has a shorter range, of order 1=jΔj
instead of 1=jk0j, because the propagator is further off shell.
More interesting is the opposite limit: 0 < jΔ2j ≪ k2

0. First,
the appropriate generalization of the form factor is

F ðx;Δ2Þ≡ Re
Z

đ3k
fðkÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

m2
1

q eið
ffiffiffiffiffiffiffiffiffiffi
k2−Δ2

p
r−k·xÞ: ð27Þ

At distances r≲ 1=jk0j, the form factor is almost the same
as if Δ2 were to vanish exactly.
To illustrate the oscillation phenomenon most

simply, consider an isotropic momentum distribution
fðkÞ ¼ fðjkjÞ,

F ðr;Δ2Þ ¼ 1

2π2r
Re

Z
∞

0

dk
kfðkÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

m2
1

q ei
ffiffiffiffiffiffiffiffiffiffi
k2−Δ2

p
r sinðkrÞ

≃
1

4π2
1

r

Z
∞

0

dk
kfðkÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

m2
1

q sin

�
Δ2r
2k

�
; ð28Þ

with the approximation in the second line valid for
jk0jr ≫ 1 and 0 < jΔj=jk0j ≪ 1, with jk0j again the
typical momentum in fðjkjÞ. A new length scale appears
in the form factor,

λosc ∼
jk0j
jΔ2j ; ð29Þ

which is the inverse of the spatial “beat” wave number of
the two oscillatory factors in the first line of Eq. (28) and is
reminiscent of neutrino oscillations. As in that case, the
oscillation length scale arises because of the mismatch of
interaction and mass eigenstates and is parametrically equal
to the characteristic wave number divided by the mass-
squared splitting. Thus, instead of being severely sup-
pressed for r ≫ 1=jk0j, the form factor generally takes on
a size,

F ðr;Δ2Þ ∼ Δ2

jk0j2
≡ F osc ð1=jk0j ≪ r≲ λoscÞ; ð30Þ

largely independent of the precise shape of the momentum
distribution. In a sense, the form factor is just linearly

FIG. 5. Distance (r) dependence of the form factor magnitude
jF ðxÞj for MB (top panel) and FD (bottom panel) momentum
distributions. The black curves are the isotropic form factors of
Eqs. (19) and (20) (no boost). The red (gold) curves are for BMB
and BFD distributions of Eqs. (23) and (24) in the forward
(backward) direction. The other colored curves (green, blue,
purple) are for small mass-squared splittings Δ2 > 0, in the
forward direction for the BMB distribution, and for the isotropic
FD distribution. The boost/anisotropy alone lifts the form factor
suppression to F ∝ 1=r2 in all cases, while for small mass
splittings, F ∼ Δ2=jk0j2 for r ≲ λosc ∼ jk0j=jΔ2j can be achieved,
where jk0j is the typical momentum in the distribution.
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suppressed at r ∼ λosc, since F ðλosc;Δ2Þ ∼ sgnðΔ2Þ=
ðjk0jλoscÞ, as visually indicated by the gray dashed lines
in Fig. 5. Note that the sign of the form factor—and thus the
attractive or repulsive nature of the wake force—is com-
mensurate with the sign of Δ2 over this distance range. The
behavior for various ratios of jΔj=σk and jΔj=T for Δ2 > 0
is plotted in Fig. 5; other than a sign change at large
distances, the negative-Δ2 case is similar.

III. APPLICATIONS

A. Dark matter searches

In this section, I explore the application of wake forces to
searches for DM. As a strawman example for a first case
study, I focus on the quadratic scalar coupling to nucleons
N ¼ ðp; nÞ,

L ⊃ −
Gs;N

2
mϕ2N̄N; ð31Þ

though the generalization to the analogous electron cou-
pling −ðGs;e=2Þmϕ2ēe is straightforward. (In particular,
given that the number density of nucleons is roughly twice
that of electrons in standard matter, one can rescale the
resulting wake force from the nucleon coupling to the total
coupling Gs;tot ≅ Gs;N þ Gs;e=2 to first approximation.)
The low-energy EFT may also include a parity-

violating interaction with the pseudoscalar current
−ðGp;N=2Þmϕ2N̄iγ5N, analogous (derivative) couplings
to the pseudovector current, or similar parity-violating
interactions with electron currents. These will lead to
spin-dependent dipole-dipole wake forces proportional to
G2

p, or in combination with the quadratic scalar-current
couplings of Eq. (31), to spin-dependent monopole-dipole
wake forces proportional to GsGp, as calculated in
Appendix A. Their employment in the search for DM is
fruit for further studies.
As shown in Appendix B, quadratic fermionic couplings

of the form −ðGs;N=2Þχ̄χN̄N lead to precisely the same
wake force as Eq. (31) in the nonrelativistic limit, so in
principle wake forces can be used to search for fermionic
DM particles χ as well. However, the relatively short range
of the wake force (while at least 103 times longer than that
of the double-exchange force of Sec. IVA in vacuum)
precludes its practical use in searches for realistic fermionic
DM candidates, due to the lower bound on the mass: mχ ≳
keV [47]. This confines the (unsuppressed) wake force
range to the submicron regime, where current experiments
are less sensitive.
Models—The simplest UV completion for the quadratic

scalar coupling of Eq. (31) is a quadratic coupling to the
Higgs doublet H,

L ⊃ −
gH
2
ϕ2H†H; ð32Þ

with the linear term ϕH†H forbidden by a Z2 symmetry,
which also guarantees the stability of ϕ as a DM candidate
(by forbidding decays such as ϕ → γγ). At low energies,
where the Higgs field can be safely integrated out, effective
quadratic couplings to nucleons and electrons are gener-
ated: Gs;N ≃ ð2=9ÞðgHmN=m2

hmÞ and Gs;e ≃ ðgHme=m2
hmÞ

[18], where mN , me, mh are the nucleon, electron, and
Higgs masses.
The Higgs portal coupling gH is constrained by the

observation that the invisible branching ratio of the Higgs
boson, to which the process h → ϕϕ contributes, is less than
0.18 [48] (falling pink line in Fig. 6). The gH coupling also
leads to quantum corrections to the ϕ quarticL ⊃ −λϕϕ4=4!
of order δλϕ ∼ g2H=16π

2, and thus, a minimum characteristic
single-particle self-interaction cross section σϕ ≳
δλ2ϕ=ð128πm2Þ [49]. Astrophysical observations of merging

clusters and dwarf galaxies require that ð1þ foccÞσϕ=m≲
1 cm2=g [50], where focc ≃ ð2πÞ3=2n=σ3k is a Bose enhance-
ment factor [51]. (This coherent enhancement of focc has
not been discussed in previous literature on self-interacting
DM, where the DM constituents are usually assumed to be
sufficiently heavy such that focc ≪ 1.) Self-interactions thus
indirectly bound gH from above as shown by the other pink
solid line in Fig. 6, for which I take conservative values of
ρDM ¼ 5 × 106M⊙=kpc3 and σv ¼ 3;000 km=s for the
Bullet Cluster. A conservative estimated bound based on
large-scale structure formation for a natural quartic of
jδλϕj≲ 5 × 10−8ðm=eVÞ4 [[15], Sec. VII] is shown as a
dotted pink line. Reference [52] reports big bang nucleo-
synthesis (BBN) constraints on quadratically coupled dark
matter; the corresponding limit on the nuclear coupling is
shown by the dashed pink line but would be dramatically
less stringent for the Higgs UV completion, which also
includes couplings to electrons and photons which induce a
high effective mass for ϕ in the early Universe. Similarly, ϕ
receives a mass-squared quantum correction δm2 ∼
gHΛ2=16π2 with Λ the UV cutoff, which implies that this
model has a severe hierarchy problem. As for the Higgs
boson, one may resort to anthropic selection in a landscape
of vacua to explain the smallness of m2.
Several of these observational and naturalness con-

straints can be alleviated (at the expense of introducing
others) by introducing a combination of linear and cubic
interactions. For example, the super-renormalizable
Lagrangian,

L ⊃ −AHϕH†H −
Aϕ

3!
ϕ3 ð33Þ

leads to the same low-energy wake force coupling as
Eq. (32) with the identification gH ≅ AHAϕ=m2. Its super-
renormalizability means that the model of Eq. (33) is UV
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safe: in particular, the invisible branching ratio of the Higgs
boson is parametrically smaller than for the “hard” gH
coupling, and ϕ does not suffer from a hierarchy problem.
An analogous self-interaction cross section bound applies to
A2
ϕ, and there are significant single-exchange (Yukawa)

force and stellar cooling constraints on AH. One must also
address irreducible cosmological production channels,
decays of ϕ proportional to A2

H, and the phenomenology
of the electroweak phase transition within these classes of
models, all left to future work.
Other pathways to generate quadratic interactions of the

form−ðGs;ψm=2Þϕ2ψ̄ψ and−ðGp;ψm=2Þϕ2ψ̄iγ5ψ are via a
light mediator a with mass ma, which couples to ϕ with
coupling gsϕ and to ψ with couplings gsψ and gpψ ,

L ¼ 1

2
ð∂ϕÞ2 −m2

2
ϕ2 þ 1

2
ð∂aÞ2 −m2

a

2
a2

−
gsϕ
2
maϕ2 − aψ̄ðgsψ þ gpψ iγ5Þψ : ð34Þ

[An alternative and more minimal possibility is, as in
Eq. (33), through the combination of a cubic self-inter-
action ϕ3 and linear couplings ϕψ̄ψ and ϕψ̄iγ5ψ .]
Integrating out the mediator a, valid for momentum
exchange maxfjqj; jkjg ≪ ma yields low-energy quadratic
couplings of Gs;ψ ≃ gsϕg

s
ψ=m2

a and Gp;ψ ≃ gsϕg
p
ψ=m2

a. A full
charting of the parameter space of couplings gsϕ, g

s
ψ , g

p
ψ , and

FIG. 6. Parameter space of quadratic scalar coupling Gs;N to nucleons as a function of ϕ mass m, in the interaction
L ⊃ −ðGs;Nm=2Þϕ2N̄N. In the blue region, the wake force is within reach of existing monopole-monopole force experiments if ϕ
makes up all the DM. The other blue lines indicate wake forces detectable by a torsion balance (TB) with 1 cm-radius tungsten spheres
as source and target masses, angular frequency ω ¼ 2π mHz, quality factor Q ¼ 108, and noise temperatures T ¼ 10 mK (solid) and
T ¼ ω=2 (dashed, SQL). In the light brown region, the wake force is screened by matter at standard densities. The characteristic range
1=σk is indicated by the top axis. Below the upper black dashed line, the DM wake force between nucleons is weaker than gravity at
short distances; the lower black dashed line is the reference point Gs;N ¼ GF for electroweak-strength couplings. The yellow dashed
curve corresponds to a single scattering event per kg-yr exposure in superfluid helium [70]. The pink solid lines are upper bounds on the
effective quadratic coupling in the Higgs model of Eq. (32) from DM self-interactions (ϕϕ → ϕϕ) and from invisible Higgs decays
(h → ϕϕ). The dotted pink line is the structure formation exclusion from Ref. [15], and the dashed pink line the BBN bound [52] on the
nuclear coupling only but is less stringent in the quadratic Higgs UV completion. The green line delineates the quadratic nuclear
coupling of the QCD axion for fa > 108 GeV.
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massesm and ma is beyond the scope of this work, but see,
e.g., Refs. [28,29] in this direction.
Arguably the best-motivated quadratic scalar coupling to

nucleons is that of the QCD axion a, which irreducibly has
[in the parametrization −ðGs;N=2Þmaa2N̄N of Eq. (31)],

Gs;N ¼ σ̃

maf2a
ðQCD axionÞ; ð35Þ

with σ̃ ≈ 15 MeV [26] and fa ≈ 1012 GeVð5.7 μeV=maÞ
as a function of the QCD axion mass ma [53]. This
coupling is depicted by the green line in Fig. 6 for
fa ≳ 108 GeV, the approximate lower bound on the decay
constant.
Approximate recasted limits—Dating back to the experi-

ments of Cavendish, there has been a tremendous effort to
search for deviations from Newton’s gravitational potential,
usually parametrized by the Yukawa potential with strength
α (relative to gravity) and range λ,

VðrÞ ¼ −
GNm2

Nα

r
e−r=λ; ð36Þ

as would be generated from a single virtual exchange of a
particle with mass m ¼ 1=λ and linear coupling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGNα

p
.

The form of the wake potential [Eq. (16)] is similar at short
distances, but the exponential suppression is replaced by
the anisotropic form factor F ðxÞ. The existing limits on
αlimðλÞ [11,54–65] can be (approximately) recast into a
value of the quadratic coupling Glim

s;N above which the wake
force would have been detectable in past experimental
searches—had efforts been made to look for it. I take this
recasting map to be

Glim
s;NðmÞ ¼ min

r¼λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGNm2

pα
limðλÞe−r=λ

ρDMFBMBðr; θr ¼ 0Þ

s
: ð37Þ

The m dependence of Glim
s;NðmÞ is implicit in the form factor

FBMB in the forward direction of the boosted Maxwell-
Boltzmann distribution with σv ¼ σk=m ≈ 165 km=second
and vcirc ≃

ffiffiffi
2

p
σv, plotted as the red line in the top panel of

Fig. 5. At large m (and fixed r ∼ λ), the form factor
decouples as F ∝ 1=m2, so that Glim

s;NðmÞ ∝ 1=m, with
the experimental limit from Ref. [65] dominating this
tentative “constraint”. At small m, the form factor is
constant, so that Glim

s;N tends to a constant. In the latter
regime, the wake potential scales as 1=r and is only
distinguishable from gravity via its generic violation of
the weak equivalence principle (i.e., dependence on chemi-
cal composition) and the apparent mismatch of the effective
value of GN at short range and on astronomical scales.
The map of Eq. (37), shown as the blue filled region in

Fig. 6, cannot be deemed a limit with a quantifiable
confidence level, because the geometry and orientation of

the experiment relative to the DM wind must be taken into
account. The experiments with leading limits on αðλÞ did
not explicitly search for composition dependence (only
deviations from the inverse-square-radius behavior of the
force), although they can be (and have been) modified to do
so [66]. Nevertheless, the recasting via Eq. (37) should be an
accurate (if conservative) guide to the approximate sensi-
tivity of existing experimental setups.
Sensitivity projections—The sensitivity of dedicated

wake force experiments can be estimated faithfully. As a
representative case, consider the wake force exerted on a
“target” tungsten sphere of radius R ¼ 1 cm and mass
density ρN ¼ 19.28 g=cm3 positioned in the forward direc-
tion of the wake emanating from an identical “source”
sphere, with a center-to-center separation of 2.2R. This
arrangement should be close to the optimal geometry given
a target of size R: making the source much larger than the
target does not parametrically increase the signal in the
regime of large mσkR in view of the large-radius scaling of
the wake force jFj ∝ FBMB=r2 ∝ 1=r4. For this geometry,
the wake force on the target points towards the source, and
has a parametric size,

jFj ∼G2
s;NρDM
4πR2

�
M
mN

�
2 1

1þ ðmσvRÞ2
; ð38Þ

with M ¼ ð4π=3ÞρNR3 ≈ 81 g the mass of the spheres.
Suppose the target sphere is confined to its position in a

(generalized) harmonic oscillator potential well of angular
frequency ω ¼ 2π mHz and losses corresponding to a
quality factor Q ¼ 108, as one may obtain with a future
torsion-balance (TB) setup [39]. In this rather generic case,
the minimal variance on the force measurement after an
integration time tint ¼ 3 yr is given by the fluctuation-
dissipation theorem [67],

σ2F ¼ 2Eðω; TÞωM
Qtint

: ð39Þ

In the above, Eðω; TÞ is the noise temperature, which
is typically (at least) the thermodynamic temperature T
of the environment; in thermal equilibrium, Eðω; TÞ ¼
ω½1=2þ 1=ðeω=T − 1Þ� [[68], Chap. 17.2]. With active
cooling methods and a sufficiently decoupled oscillator,
one could in principle achieve the standard quantum limit
(SQL) of Eðω; TÞ ¼ ω=2 ≈ 2 × 10−14 K, though present-
day capabilities are far from these values. Equation (39)
represents the minimum contribution from thermal/quan-
tum noise, and does not include readout/backaction and
environmental noise sources.
This corresponding idealized coupling sensitivity, at unit

signal-to-noise ratio jFj=σF ¼ 1, of this representative
oscillator is depicted in Fig. 6 as blue lines, at the thermal
noise limit E ¼ T ¼ 10 K (solid) and at the SQL E ¼ ω=2
(dashed). For this forecast, the size of the wake force
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between the spheres is computed numerically, as opposed
to the parametric estimate of Eq. (38), and the target-source
separation is assumed to remain aligned with vcirc of
Eq. (23). Any realized sensitivity will be degraded by an
order-unity factor based on the desired discovery or
exclusion threshold, and for a noncorotating experimental
setup. Especially the thermal-noise-limited sensitivity is a
benchmark that current experimental setups may strive
towards; attaining it would have significant discovery
potential for the DM wake force of, e.g., the quadratic
Higgs coupling in Eq. (32). Dedicated wake force experi-
ments may mitigate systematics through various control
knobs, such as its weak-equivalence-principle-violating
nature, distance dependence, and most strikingly, its
asphericity and angular variation with respect to the DM
wind direction, which changes on a diurnal basis in the lab
frame. It would be interesting to explore the optimal
experimental geometry and orientation to maximize the
wake force signal and minimize more prosaic backgrounds.
For example, short-range anisotropic corrections to gravity
can be sensed by modified torsion-balance setups [69].
Other DM experiments—Traditional DM experiments

searching for isolated scattering events (which produce
low-energy quasiparticles in the scattering target) lose
sensitivity at low DM masses, where the recoil energy is
suppressed. The effective coupling at which one expects a
single scattering event for a kg-yr exposure of the low-
threshold superfluid helium proposal from Refs. [70,71] is
shown in Fig. 6 as the dashed yellow line. Wake force
experiments instead become more sensitive at low masses
due to the increased range, and may thus probe effective
single-particle cross sections far below 10−40 cm2 and even
10−50 cm2 (gray dashed lines). In this sense, DM wake
force searches can bridge the gap between traditional DM
scattering experiments and coherent interactions of bosonic
DM with macroscopic targets (haloscopes).

B. Neutrino detection

Cosmic neutrino background (CνB)—The present-day
CνB is, in a standard cosmology, expected to have a
temperature,

Tν ≈ 1.95 K ≈ 1.68 × 10−4 eV ≈
1

1.17 × 10−3 m
; ð40Þ

which also sets the characteristic momentum and the
corresponding coherence length T−1

ν of the neutrino back-
ground (and wake force). The number densities per mass
eigenstate are nνi ¼ n̄νi ≈ 56 cm−3. Given the observed
mass-squared splittings of the neutrino mass eigenstates, at
least two (and possibly all three) are nonrelativistic. As
shown in Appendix B and in Refs. [33,34,36–40], wake
forces can be mediated by fermions too.
In Appendix B2, I calculate the full wake potential for a

single Dirac-neutrino mass eigenstate interacting through

neutral-current interactions with SM fermions ψ with
vector and axial-vector couplings gVψ and gAψ , respectively.
Those results are easily generalized to include three Dirac
neutrinos and the charged-current interactions. However,
the wake potential is largest for the highest-mass neutrino
eigenstate, so in the “normal” mass hierarchy case with
strong ordering m1 ≲m2 ≪ m3, it is a fine approximation
up to Oðm2=m3Þ corrections to take into account only the
heaviest neutrino ν3. Neutrino oscillations from the
charged-current interactions can similarly be neglected,
as the mass-squared splittings between the neutrinos are
higher than the square of the neutrino temperature: jΔ2j ≫
T2 in the language of the discussion around Eqs. (26)–(29).
With those assumptions, the monopole-monopole wake

potential mediated by the CνB between two SM fermions
ψ1 and ψ2 can be translated from Eq. (B20) (for Dirac
neutrinos) to

VðxÞ ¼ −
2G2

FQ
3;V
1 Q3;V

2 m3ðnν3 þ n̄ν3Þ
4πr

FVVðxÞ; ð41Þ

where Q3;V
ψ ¼ gVψ −U3eU

†
e3δψe is the effective vector

“charge” of the fermion ψ as seen by ν3, including both
the neutral-current vector coupling gVψ and the charged-
current vector coupling U3eU

†
e3 (only to electrons). The

form factor FVVðxÞ is given in Eq. (B21) (where one
should take m ¼ m3), which in the nonrelativistic limit
matches Eq. (17) up to OðT2=m2Þ corrections and thus that
of the top panel in Fig. 4 for a BFD distribution.
The characteristic strength of the CνB wake force can be

expressed in terms of its relative size αCνB relative to
the gravitational force between two macroscopic bodies
1 and 2,

αCνB ≃
2G2

FhQ3;V
1 ihQ3;V

2 im3ðnν3 þ n̄ν3Þ
4πGNm2

N
ð42Þ

≈1.9 × 10−22hQ3;V
1 ihQ3;V

2 i
�

m3

60 meV

�
; ð43Þ

at short distances r ≪ T−1
ν ≈ 1.17 mm, where hQ3;V

i i is the
average effective vector charge per nucleon of the heaviest
neutrino mass eigenstate in the two bodies i ¼ 1, 2. The
present best constraint on αðT−1

ν Þ is about 10−3 [62], far
worse than Eq. (43). An improvement by 19 orders of
magnitude is not in reach of any conceivable force
experiment; even the SQL-limited sensitivity of the dashed
line in Fig. 6 would “only” constitute a 1013 improvement
in αðT−1

ν Þ.
The monopole-dipole wake potential mediated by the

CνB between two SM fermions ψ1 and ψ2 can similarly be
translated from Eqs. (B22) and (B23). The precise expres-
sion of the form factor is not important for a back-of-the-
envelope estimate of its size, which is OðT=mÞ. For a
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spherical tungsten source mass 1 of radius R ∼ T−1 (larger
sources are not relevant given the short range), the integrated
monopole-dipole wake potential for a polarized target with
(nuclear or electronic) spin σ2 is of the parametric form
Vðσ2Þ ∼Ω · σ2, with an angular precession frequency,

jΩj ∼ G2
Fðnν þ n̄νÞT2

4π

4πρN
3mNT3

∼ 10−28 rad=s: ð44Þ

In comparison, the CνB wind effect linear in GF from
Ref. [72] is of the form,

VðσÞ ∼ GFðnν − n̄νÞhvνi · σ ð45Þ

∼10−23 rad=s; hvνi · σ
nν − n̄ν
nν þ n̄ν

: ð46Þ

The precession induced from the wake potential in
Eq. (44) is larger than that of Eq. (46) if the neutrino
asymmetry is as small as the baryon asymmetry, i.e.,
nν − n̄ν ∼ 10−10ðnν þ nν̄Þ. For neutrino asymmetries larger
than about 10−5, the effect from Eq. (46) would exceed
that of the CνB wake potential in any geometry. However,
either effect appears to be far below the quantum projec-
tion noise limits for nuclear and electron spins [73].
Solar and reactor neutrinos—There exist more intense

sources of relativistic neutrinos, for which the heuristic
form of the wake potential in Eq. (10) still holds, now with
ρ ≃ jk0jn instead of ρ ≃mn, as can be seen from taking
the relativistic limits of Eqs. (B21) and (B23). The
solar neutrino flux and thus number density is about
nν;⊙ ≈ 7 × 1010 cm−2 s−1 ≈ 2 cm−3, but with typical ener-
gies of Ek0 ∼MeV. Solar neutrinos lead to a fractional
correction to gravity on the order of αν;⊙ ∼ 2G2

FEk0n⊙;ν=
ð4πGNm2

NÞ ∼ 10−16 at distances of k−10 ∼ 10−13 m, again
far too small to be detected, even after taking into account
the neutrino oscillation effects described in Sec. II C.
Fluxes from reactor neutrinos, whose individual coherent
scattering events have been detected already [74], can be a
couple of orders of magnitude larger, but not enough to
close the gap towards practical observability of neutrino
wake forces with present-day technology. (The same
conclusion holds for neutrinos from other sources, such
as supernovae, radioactive samples, and spallation.)

IV. COMPARISONS

In this section, I compare the size of wake potential
effects to other phenomena that necessarily occur in the
same theories with quadratic interactions to matter. Other
than in Sec. IVA, the focus will be on the interaction of a
light field ϕ coupled to nucleons as in Eq. (31), since some
comparisons for neutrino wake forces have already been
made in Sec. III B.

A. Double-exchange forces

The diagrams in Fig. 2 can be regarded as “cut” versions
of the two-particle-exchange diagram in Fig. 7, with the ϕ
propagator split into two external legs which have nonzero
occupation number. The resulting wake potential is a purely
classical wave effect, as evident from Sec. II A. The double-
exchange potential from Fig. 7 is a quantum effect arising
from vacuum fluctuations, as can be shown by loop- or ℏ-
counting arguments. For the coupling in Eq. (3), the
double-scalar-exchange potential between two ψ particles
is [30,75,76]

V2ϕ ¼ −
G2m3

128π3r2
K1ð2mrÞ; ð47Þ

where K1 is a modified Bessel function of the second kind.
Firstly, the range of the force from the exchange of two
virtual scalars is roughly half the Compton wavelength of
ϕ, whereas wake forces have a range of order the de Broglie
wavelength of the ambient ϕ particles. Secondly, for a force
experiment carried out at r ¼ 1=2m, the ratio of the double-
exchange and wake potentials is

Vwake

V2ϕ
¼ 16π2

K1ð1Þ
n
m3

�
r ¼ 1

2m

�
: ð48Þ

The wake force is enhanced at large number densities, and,
unlike the double-exchange force, is not suppressed by a
loop factor. A range of 1 mm or above, where force
experiments achieve their best sensitivity, corresponds to
m≲ 1 meV to avoid exponential suppression in the dou-
ble-exchange force. If ϕ makes up all of the DM, then this
implies n=m3 ≳ 106 and thus, a much larger wake force
than double-exchange force. The occupation number
decreases quickly for submillimeter Compton wavelengths,
but so do the sensitivities of force experiments, so that the
longer range of the wake force by a factor of Oðσ−1v Þ is a
major advantage. Thus, if ϕ is a nonnegligible fraction of
DM, then its wake force is always the dominant effect in
force experiments, and the double-exchange force is
negligible. [I do not attempt to recast αlimðλÞ in terms of

FIG. 7. Diagrams for double-exchange force (left), coherent
scattering (second from left), and in-medium potentials (right
three diagrams).
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the double-exchange force sensitivity to Gs;N , because
current experimental setups are not sensitive to couplings
in the perturbative, unscreened regime below the brown
region in Fig. 6.]
Similar arguments apply to double-fermion-exchange

potentials. For SM neutrinos at distances r ≪ ð2mνÞ−1,
they are of the form V2ν ∼G2

F=ð4π3r5Þ and contain both
spin-independent and spin-dependent (dipole-dipole) com-
ponents [31,32,77]. This phenomenon is far too small to be
observable with current technology, except possibly at very
short distances with future experimental and theoretical
efforts in muonium spectroscopy [78]. For fermionic DM,
one must have n=m3 ≲ σ3v by the Pauli exclusion principle,
which is the primary reason for why fermionic DM wake
forces are harder to detect.

B. Elastic scattering

For m ≪ mψ and for momentum transfers where the
nonrenormalizable operator of Eq. (3) is valid, ϕ particles
can scatter elastically off SM ψ particles, with a cross
section,

σel ≃
G2m2

4π
: ð49Þ

In the limit of m ≫ mψ or where the momentum transfer in
the interaction is above the effective cutoff of the inter-
action [as would be possible in, e.g., the light-mediator UV
completion of Eq. (34)], there are generally further sup-
pression factors, which only strengthen the point below.
Individual scattering events occur stochastically and are

in practice only measurable if suitable quasiparticles with
sufficiently low energy threshold can be excited and
detected. The ultimate reach for single-phonon excitation
in superfluid helium [70,71], which incurs additional
suppression factors beyond Eq. (49), is shown as the
dashed yellow line in Fig. 6. An alternative approach is
to look for the collective, integrated recoil of many elastic
scattering events on a macroscopic target over time; each
scattering event will, on average, impart some momentum
to the target in the direction of the DM wind [79].
In a bath of nonrelativistic ϕ particles with number

density n and typical momentum magnitude jk0j, the
scattering rate per ψ particle is Γ ∼ nσeljk0j=m. If the
average momentum transfer per scattering event is k̄0, the
time-averaged force due to elastic scattering, on a single ψ
particle, is

Fel ∼
G2nm
4π

jk0jk̄0: ð50Þ

The wake force F ¼ −∇VðxÞ induced by the potential in
Eq. (16) with, e.g., the MB form factor of Eq. (19) (for
simplicity) is equal to

F ¼ −x̂
G2nm
4π

σ2ke
−2σ2kr

2

�
4þ 1

σ2kr
2

�
: ð51Þ

Comparison of Eqs. (50) and (51) shows that the elastic
scattering and wake forces on a single ψ particle are
roughly equal in magnitude when the two ψ particles
separated by a distance r ∼ 1=σk and if jk0jjk̄0j ∼ σ2k.
However, the wake force is larger than the elastic scattering
force for r≲ 1=σk or if the average momentum transfer jk̄0j
is much smaller than the typical momentum, which is the
case for the CνB and likely other types of primordial dark
radiation.
To maximize detection prospects, one generally wants to

measure either force on as many ψ particles as possible. The
elastic scattering force is coherent when the target size is
smaller than the coherence length of ϕ, Rtarget ≲ 1=σk,
leading to a scaling of ðnψ ;targetR3

targetÞ2 with the number
of particles in that regime. The wake force enjoys a similar
coherent enhancement as ðnψ ;targetR3

targetÞ × ðnψ ;sourceR3
sourceÞ

for Rtarget; Rsource ≲ 1=σk. However, in certain cases of
practical relevance (e.g., torsion balances, optically levitated
dielectrics, atom interferometry), maximum acceleration
sensitivity may be achieved on a very small target.
Having the option to use a larger source of ψ particles
over which the wake force is coherent can be advantageous
in such cases. Furthermore, the wake force is generally
easier to control and manipulate, as it depends on the
density, size, distance, and (generally) chemical composi-
tion of the source, allowing for a variety of experimental
knobs to be turned. Both coherent elastic scattering forces
and wake forces enjoy a cosmic reference direction, which
should help mitigate systematics. However, like any pair-
wise force, wake forces can be made to vary temporally—
by employing rotary stages [11,57,59,63–65], driven
mechanical oscillators [55], or linear motions of source
[54,56,60–62] or target masses [58]—allowing them to be
probed by ac experiments as opposed to the daunting
experimental challenge of searching for an uncontrollable
dc force. Reference [79] computes elastic scattering and the
associated dc forces in the regime where screening is
important, and discusses detection prospects of these forces
with satellite tests of the equivalence principle and torsion
balance experiments.

C. In-medium potentials and forces

In a sea of ϕ particles, individual ψ particles experience
an in-medium potential and force at linear order in G,
represented by the right three diagrams of Fig. 7, inde-
pendent of any neighboring ψ particles. For the quadratic
scalar field interaction of Eq. (3), this in-medium potential
is simply

VIM ¼ Gm
2

ϕ2 ≃
Gn
2

½1þ cosð2ωt − 2k · xÞ�; ð52Þ
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with the second equality for a simple plane wave of ϕ, for
which the in-medium force is

FIM ¼ Gnk sinð2ωt − 2k · xÞ: ð53Þ

Diagrammatically, the “constant” term in Eq. (52) arises
from the same diagram as elastic scattering (second from
left in Fig. 7, with both positive- and negative frequency
factors), whereas the oscillatory terms at 2ω in Eq. (52) and
the force of Eq. (53) arise from the rightmost two diagrams
in Fig. 7. For a random superposition of waves, n itself is
stochastically varying with coherence times and lengths of
order m=σ2k and 1=σk, respectively, generating additional
forces from spatial gradients in n, which are of the same
order of magnitude as the oscillatory force in Eq. (53).
In the perturbative regime for G, these in-medium

potentials and forces are naively larger than their corre-
sponding wake counterparts. In particular, Vwake=VIM ∼
Gm=2πr≲ 1 for a single source particle due to perturba-
tivity; for many source particles over a de Broglie volume of
Oðk−30 Þ, Vwake=VIM ∼Gmnψ=k20 ≲ 1 for a cosmic field
when screening effects are negligible (Sec. IVD).
However, in the “high-mass” regime of Fig. 6, the fractional
nucleon mass variation is VIM=mN ∼ Gs;Nn=ð2mNÞ∼
10−33ðGs;N=GeV−2ÞðeV=mÞ, well out of reach of atomic-
clock sensitivity or that of other metrological experiments.
The force from Eq. (53) oscillates at a frequency of
m=2π ∼ 242 THzðm=eVÞ, too rapidly to be detected by
torsion balances or other force sensors over the mass range
in Fig. 6. Similarly, the stochastic acceleration from gra-
dients in n is about 10−12 m=s2ðGs;N=GeV−2Þ independent
of mass, but also has a prohibitively short coherence time of
2π=ðmσ2v=2Þ ≈ 273 μsðeV=mÞ, after which it averages
to zero.
The considerations for in-medium potentials from fer-

mions are similar; the effect from Ref. [72] and Eq. (45) is
one such spin-dependent incarnation for the CνB, and the
only known nonstochastic effect linear in GF for the
CνB [80].

D. Screening

In this work, I have so far treated the quadratic ϕ
interactions perturbatively, in which the separation between
a cosmic background wave and a linear superposition of
scattered waves from all perturbing sources is justified.
However, at large G and/or small momentum, this pertur-
bative expansion can break down [27,38,81]. For an
arbitrary but static source distribution with number density
nψðxÞ, the full ϕ field obeys the Klein-Gordon equation,

½□þm2 þ GmnψðxÞ�ϕðxÞ ¼ 0; ð54Þ

with a spatially varying effective mass-squared m2
eff ¼

m2 þGmnψðxÞ, which one can model as a corresponding
index of refraction [38,39].
To illustrate the breakdown of the perturbative treatment

at large G and/or small momenta, consider the 1D problem
in the z direction with a step function in number density,
which vanishes for z < 0 and is a constant nψ for z > 0.
Suppose there is an incoming wave of the form cosðωt −
k0zÞ for z < 0. A wave will be reflected from the step at
z ¼ 0: Rc cosðωtþ k0zÞ þ Rs sinðωtþ k0zÞ. Likewise, a
wave is transmitted inside the medium (z > 0) with wave
number,

kψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −Gmnψ

q
: ð55Þ

For real kψ , write the transmitted solution as Tþ
c cosðωt−

kψzÞ þ Tþ
s sinðωt − kψzÞ, and for imaginary kψ, as

e−jkψ jz½T−
c cosðωtÞ þ T−

s sinðωtÞ�. This simple boundary
problem can be solved for the reflection and transmission
coefficients,

Tþ
c ¼ 2k0

k0 þ kψ
; Rþ

c ¼ k0 − kψ
k0 þ kψ

; ð56Þ

T−
c ¼ 2k20

k20 þ jkψ j2
; R−

c ¼ k20 − jkψ j2
k20 þ jkψ j2

; ð57Þ

Rþ
s ¼ Tþ

s ¼ 0; R−
s ¼ T−

s ¼ −2k0jkψ j
k20 þ jkψ j2

; ð58Þ

for real ( þ) and imaginary ( −) kψ , respectively. The
fraction of transmitted power is 4k0kπ=ðk0 þ kψÞ2 for
Gmnψ < k20 and vanishes for Gmnψ > k20. Either way,
most or all of the incoming wave is reflected when
jGjmnψ > k20. (Disastrous effects due to tachyonic insta-
bilities could theoretically occur for large negative G,
which I will not consider here.)
This “screening” effect has important implications for

detection of the wake force from a cosmic field. For
sufficiently large coupling, most of the “dark” field could
be reflected from the environment and not make it to the
laboratory setup. In general, the perturbative expansion can
be expected to hold at large distances if

jGjmnψ ≪ σ2k; ð59Þ

where nψ is the typical density of the environment (Earth’s
crust or atmosphere, laboratory walls). In Fig. 6, the regime
where Eq. (59) is not satisfied is shaded in light brown, for
nψ corresponding to the nucleon density of aluminum.
Even when Eq. (59) is satisfied, some small fraction of
incoming waves will be shielded by the environment [38],
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but when the inequality is strong, the perturbative expan-
sion of this work should be valid to a good approximation.
A full calculation of screening effects would be highly

specific to the geometry of the system under study and is left
to future work, though the approach of Ref. [27] should be
valid for DM masses m ≪ 10−11 eV, i.e., for vacuum de
Broglie wavelengths larger than Earth’s radius. In any case,
given self-interaction and structure formation bounds on the
model space discussed in Sec. III A, there is a significant
theoretical bias (for technically natural self-couplings)
towards low values of jGj that satisfy Eq. (59). Close to
the boundary of Eq. (59), the calculation of the wake force
to OðG3Þ may be merited. Based on the simulations of
Appendix C, I speculate that the next-to-leading order wake
potential will generate a fractional correction to the leading
OðG2Þ wake force of OðGmnψ=k20Þ. Shielding and screen-
ing effects are already negligible at the leading edge of
present-day sensitivity (lower boundary of blue region in
Fig. 6) and will be even more so for future (wake) force
experiments.

V. DISCUSSION

In this work, I have introduced a general formalism for
the perturbative calculation of wake forces and potentials,
which can be understood as classical wave phenomena that
generically occur in a “sea” of particles quadratically
coupled to nonrelativistic source and target particles. I
have computed the analytic form of wake forces from a
variety of quadratic interactions of both (pseudo)scalars
(Sec. II A, Sec. II B, and Appendix A) and fermions
(Appendix B), as well as their spatial profiles and range
(Sec. II C). Before outlining potential future applications
and directions, I will comment on the overlap and
differences with previous literature (of which I am aware).
Firstly, Ref. [27] is a study of both linearly- and

quadratically coupled light scalar DM, wherein the in-
medium potentials of Sec. IV C and some screening
phenomena (Sec. IV D) were discussed for spherical
sources (Earth in particular). The screening effects are
nothing but the nonperturbative manifestation of the wake
potential. The approach of Ref. [27] is valid in the regime
where the de Broglie wavelength of the mediating particles
is much larger than the size of the source, but finite wave
number effects, and thus, the short-range nature of the
wake force were neglected, so their constraints should be
quantitatively reconsidered for m≳ 10−11 eV. Separately,
Ref. [35] found an attractive 1=r2 force on galactic scales
between test particles in a Bose-Einstein condensate
(BEC) of quadratically coupled scalar field DM with
self-interactions. In the limit of vanishing self-interactions,
their results are equivalent to the perturbative wake force
formalism of Sec. II A at zero background momentum.
Wake forces in a neutrino medium have also been

posited in Refs. [33,34,36–39], and in a bosonic medium
in Refs. [30,39], mostly independent of this work.

References [30,36,37] regarded the medium-dependent
forces as a version of the two-particle-exchange
diagram, with the effective propagators modified by the
(thermal) background. References [36,37] also found an
additional 1=ðTrÞ4 suppression of the G2

FρCνB=r potential
at large distances for an isotropic neutrino background.
Reference [30] primarily discussed the case of a Bose-
Einstein condensate background. The background-
modified propagator approach of Refs. [33,34,36,37] is
equivalent to my approach, though the kinetic-theory
formalism of Sec. II B is more efficient for wake force
calculations for arbitrary, anisotropic phase-space distri-
butions. [Eqs. (B20), (B21), and (21) match Eqs. (3.24)
and (3.25) of Ref. [37] with nν ¼ nν̄ ¼ 3ζð3ÞT3

ν=4π2 per
generation.) References [38,82–84] compute the density
modulation of the neutrino background near Earth’s sur-
face at the level of the nonrelativistic field equations with a
spatially varying index of refraction, which should again
be equivalent to the formalism presented here in the
respective applicable regimes. Appendix C constitutes
partial numerical confirmation of both the perturbative
results of the main text and of the conclusions of
Refs. [83,84]. While this work was being completed,
Ref. [40] came to my attention; their wave packet
approach for neutrinos more closely resembles the
kinetic-theory formalism of Sec. II B.
The primary novelty of this work is its more illuminating

treatment of wake forces as perturbative classical wave
phenomena in Sec. II A and within the framework quantized
kinetic theory in Sec. II B. The methods presented here
should agree with those of the above-mentioned works in
their regimes of validity. However, the formalism of this
work allows for the efficient computation of the spatial
profile of wake forces (Sec. II C) for phenomenologically
realistic background distributions (Figs. 3, 4, and 5),
including novel oscillation phenomena. Appendices A
and B show that wake forces arise and can be computed
for any quadratically coupled field. Appendix C describes
the implementation and results of nonperturbative numerical
simulations of wake forces, which validate the perturbative
methods in this work in 2þ 1 and 3þ 1 dimensions.
I have shown in Sec. III A that wake forces can form the

basis for a new class of DM searches with precision-frontier
force experiments, in a mass range that is challenging to
probe with other methods. Force experiments can thus
bridge the gap between traditional DM scattering experi-
ments on the one hand, and DM searches based on coherent
interactions to first order in the coupling on the other hand.
The optimization of sensors and setups for wake forces
should be explored further, and the parameter space of
relevant DM models charted out more extensively. Spin-
dependent DM wake force searches are an obvious next
step. A formal proof of the convergence of the perturbative
series, including corrections to the wake potential of
OðG3Þ, is left to future work. The exquisite accuracy of
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the leading-order wake potential relative to the nonpertur-
bative simulations in Appendix C strongly suggests that the
expansion parameter is no larger than ϵ ∼Gmnψ=k20, so that
the perturbative series converges whenever the no-screening
condition of Eq. (59) is satisfied. I speculate that the
agreement with the leading-order wake potential prediction,
despite potentially large phase accumulation across large
sources, is due a combination of its phase insensitivity and
its short-ranged nature in two or more spatial dimensions.
It would be amusing to obtain a positive measurement of

wake forces mediated by known elementary particles.
Unfortunately, there are not too many suitable light bosons
to go around in the SM. The simplest possibility may be
force measurements between (electrically neutral) dielec-
tric source and target samples, to which the photon couples
quadratically. Wake forces and potentials from neutrinos
appear to be prohibitively tiny, no matter the neutrino
source (Sec. III B). An ensemble of ultracold neutrons or
atoms/molecules in a cold beam may be more promising
fermionic mediators of wake forces. Finally, the phenom-
ena calculated in this work for elementary particles
undoubtedly carry over to quasiparticles in condensed
matter systems—indeed, they may form the basis for
certain types of exotic superconductors [85], but it would
be interesting to study phonons, magnons, and other
collective excitations as mediators of wake forces.
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APPENDIX A: OTHER SCALAR INTERACTIONS

In this appendix, I present the derivation of the wake
force for two interactions other than that of ϕ2ψ̄ψ in
Eq. (3). The form of the monopole-monopole wake force
by a complex scalar Φ is identical to that of a real scalar ϕ.
This extension is (almost) trivial since a complex scalar can
be decomposed into two real scalars, but it shows that the
wake force does not depend on particle-antiparticle asym-
metry. The second example adds a pseudoscalar interaction
to the Lagrangian of Eq. (3), which leads to an additional
monopole-dipole and a dipole-dipole wake force.

1. Complex scalar

For simplicity, I follow the steps of the classical
derivation in Sec. II A (the quantized treatment gives
identical results) and consider a complex scalar field Φ
with Lagrangian,

L ¼ ð∂ΦÞð∂Φ†Þ −m2ΦΦ† − GmΦΦ†ψ̄ψ ; ðA1Þ

and corresponding equation of motion for Φ, with a source
particle at the origin,

ð□þm2ÞΦ ¼ −GmΦδð3ÞðxÞ: ðA2Þ

As before, decompose the field into a G-independent
background and a spherical perturbation linear in G from
a source particle at the origin: Φ ¼ Φ0e−iðωt−k0·xÞ þ
δΦðt;xÞ with ω2 ¼ m2 þ k2

0. The solution to the equation
of motion to leading (first) order in G is

δΦðt;xÞ ¼ GmΦ0

Z
đ4pe−ip·x

�δðp0 − ωÞ
ðp0 þ iεÞ2 − p2 −m2

¼ GmΦ0e−iωt
Z

đ3peip·x
1

−p2 þ k2
0 þ iε

¼ GmΦ0

−i
r

Z
dp

ð2πÞ2 p
eipre−iωt

−p2 þ k2
0 þ iε

¼ −
Gm
4πr

Φ0e−iðωt−krÞ; ðA3Þ
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where I show more intermediate steps than for the real-
scalar derivation in Sec. II A. The wake potential is the
obtained by retaining the term of the potential energy V ¼
GmΦΦ† of ψ to second order in G, which after time
averaging is

hVðt;xÞit ¼ −
G2

4πr
2m2Φ0Φ

†
0 cosðjk0jr − k0 · xÞ: ðA4Þ

This has the same form as Eq. (8) for the real scalar, noting
that the energy density in the nonrelativistic limit is
ρ ¼ 2m2Φ0Φ

†
0. The quantized treatment of the complex

scalar yields consistent results and is identical to Eqs. (16)
and (17) with the replacement n → ðnþ n̄Þ—the wake
forces of particles and antiparticles are additive.
The results above are a trivial extension from the case of

a real scalar, since a complex scalar can be decomposed
into two real scalars, e.g., Φ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
so

GmΦ†Φψ̄ψ ¼ ðGm=2Þðϕ2
1 þ ϕ2

2Þψ̄ψ , each of which pro-
duce an identical wake force. It is nevertheless instructive
that wake forces do not depend on particle-antiparticle
asymmetry, a result that also holds for fermion-mediated
wake forces as shown in Appendix B, in contrast to fermion
potentials linear in G [e.g., Eq. (45)].

2. Pseudoscalar interactions

Consider the quadratic interactions of a real scalar or
pseudoscalar ϕ with both the scalar and pseudoscalar
currents of ψ ,

L ¼ 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 −

mϕ2

2
ðGsψ̄ψ þGpψ̄ iγ5ψÞ; ðA5Þ

with couplings Gs and Gp, respectively. In addition to the
monopole-monopole wake force proportional toG2

s derived
in Sec. II, the addition of the pseudoscalar interaction also
generates a monopole-dipole wake force proportional to
GsGp and a dipole-dipole one proportional to G2

p, which
will be derived in the quantized treatment below.
With the inclusion of the pseudoscalar interaction, the

amplitude corresponding to the diagrams in Fig. 2 is

iM¼−im2

Z
đ3k

nfðkÞ
2Ek

½ūs011 ðp1−qÞðGsþGpiγ5Þus11 ðp1Þ�

×

�
1

ðqþkÞ2−m2
þ 1

ðq−kÞ2−m2

�

× ½ūs022 ðp2ÞðGsþGpiγ5Þus22 ðp2þqÞ�: ðA6Þ

Treating the ψ fermions nonrelativistically, the identities of
Eqs. (D8) and (D9) can be used to simplify the amplitude,

iM
ð2mψ1

Þð2mψ2
Þ≃−im2

Z
đ3k

nfðkÞ
2Ek

�
GsþGp

iq · σ1
2mψ1

�

×

�
Gs −Gp

iq · σ2
2mψ2

�

×

�
1

ðqþ kÞ2−m2
þ 1

ðq− kÞ2−m2

�
: ðA7Þ

Setting the energy transfer between the fermions to zero
(qμ ¼ ðq0;qÞ ≃ 0), selecting the iε prescription for the
retarded propagator, and using the external four-momen-
tum to cancel the pole (k2 ¼ E2

k − k2 ¼ m2), the propaga-
tor denominators are of the form: ðq� kÞ2 −m2 ≃
−ðq2 � 2q · k ∓ iεÞ. The Fourier transform of the poten-
tial is related to the amplitude as ṼðqÞ ¼ −M=
½ð2mψ1

Þð2mψ2
Þ�, so the potential in coordinate space equals

VðxÞ ¼ −m2

Z
đ3k

nfðkÞ
2Ek

Z
đ3qeiq·x

×
½Gs þ Gp

iq·σ1
2mψ1

�½Gs − Gp
iq·σ2
2mψ2

�
q2 þ 2q · k − iε

þ c:c: ðA8Þ

The G2
s piece of this expression, call it Vss, matches

Eq. (14).
Monopole-dipole wake potential—Let ψ1 be the (unpo-

larized) source and ψ2 the (polarized) target. The GsGp

piece of the potential can be rewritten as

VðxÞ ⊃ −
GsGpnm

4mψ

Z
đ3k

fðkÞ
Ek

e−ik·x

Z
đ3qeiq·xð−iÞ ðq − kÞ · σ2

q2 − k2 − iε
þ c:c:; ðA9Þ

after shifting the integration variable q → q − k in the
first equality. Then using the integral formulae of Eqs. (D1)
and (D2), the monopole-dipole potential is

Vspðx; σ2Þ ¼ −
GsGpmn

4πr
σ2

2mψ2

·
Z

đ3k
fðkÞ
Ek

×

�
x̂
r
cosðjkjr − k · xÞ

þ ½jkjx̂ − k� sinðjkjr − k · xÞ
�
: ðA10Þ

As expected, the monopole-dipole potential is related to the
monopole-monopole potential as

Vspðx; σ2Þ ¼
Gp

Gs

−σ2 · ∇
2mψ2

VssðxÞ; ðA11Þ

which can also be seen directly from Eq. (A8). This relation
implies that one can compute the monopole-monopole
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wake potential first (including the intensive integrals over k
to obtain the form factors) and then obtain the monopole-
dipole wake potential simply by taking the gradient of the
monopole-monopole one. The monopole-dipole potential
thus has a universal scaling as 1=r2 at short distances and
falls off with one extra power of 1=r compared to the
monopole-monopole potential at large distances, e.g.,
Vsp ∝ 1=r4 for BMB and BFD distributions, where it is
effectively short ranged.
Dipole-dipole wake potential—Likewise, the dipole-

dipole wake potential for ψ2 as sourced by ψ1 can be
written as

Vppðx; σ1; σ2Þ ¼
�
Gp

Gs

�
2þσ1 · ∇

2mψ1

−σ2 · ∇
2mψ2

VssðxÞ; ðA12Þ

and exhibits a universal 1=r3 short-distance scaling.

APPENDIX B: FERMIONS

Wake forces can be mediated by spin-1=2 particles as
well as spin-0 particles. In this appendix, I enumerate some
of the leading interactions of Dirac fermions with SM
fermion currents of scalar (ψ̄ψ), vector (ψ̄γμψ), and axial-
vector (ψ̄γμγ5ψ) type, and calculate their resulting wake
potentials. I comment on the extension to Majorana
fermions at the end of this appendix.

1. Dirac fermion, scalar current

The simplest example of a fermion-mediated wake force
is that of a Dirac fermion χ with a scalar current ψ̄ψ ,

L ¼ χ̄ði=∂ −mÞχ −Gs

2
χ̄χψ̄ψ : ðB1Þ

Like for the scalar field in Eq. (11), quantize the Dirac
field as

χðxÞ ¼
Z

đ3kffiffiffiffiffiffiffiffi
2Ek

p
X
s

½askusðkÞe−ik·x þ bs†k v
sðkÞeik·x�; ðB2Þ

with annihilation (creation) operators ak (a†k) for particles
and bk (b†k) for particles and antiparticles, respectively. The
corresponding spinor solutions usðkÞ and vsðkÞ satisfy the
standard identities of Eqs. (D4) and (D5). The background
is taken to be a mixed state with a number density n of χ
particles and a number density n̄ of χ̄ antiparticles with
unpolarized spins and momentum distribution fðkÞ,

has0†k0 aski ¼ nfðkÞ�δ ð3Þðk0 − kÞ δ
s0s

2
; ðB3Þ

hbs0†k0 bski ¼ n̄fðkÞ�δ ð3Þðk0 − kÞ δ
s0s

2
: ðB4Þ

The total energy density in the medium χ and χ̄ particles is
then just

ρχ ¼ hχ̄ð−iγ · ∇þmÞχi ¼
Z

đ3kfðkÞEkðnþ n̄Þ: ðB5Þ

The Feynman diagrams for a fermionic wake force are
the same as for the spin-0 equivalent of Fig. 2, with the
addition of a pair of diagrams for the antiparticles χ̄, all
shown in Fig. 8. The combined matrix element evaluates to

iM
ð2mψÞ2

¼−i
G2

s

8

Z
đ3k

fðkÞ
2Ek

X
s

×

�
þnūsðkÞ

�
=qþ=kþm

ðqþkÞ2−m2
þ −=qþ=kþm
ðq−kÞ2−m2

�
usðkÞ

− n̄v̄sðkÞ
�
−=q−=kþm
ðqþkÞ2−m2

þ =q−=kþm
ðq−kÞ2−m2

�
vsðkÞ

�
:

ðB6Þ

The signs require careful attention. The four diagrams of
Fig. 8—top left, top right, bottom left, bottom right—
correspond to the contractions with the “vacuum” jΩi, in
the same order,

ðB7Þ

ðB8Þ

FIG. 8. Diagrams contributing to the wake force in a medium of
Dirac fermions χ and antifermions χ̄.
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ðB9Þ

ðB10Þ

where χ̄1χ1 is the interaction of the current with ψ1, and
χ̄2χ2 with ψ2. Only the signs are evaluated in Eqs. (B7)–
(B10). The top right diagram of Fig. 8 has no additional
minus sign, because no anticommutators are needed to
perform the contractions with the vacuum for the incoming
and outgoing particles, nor for the internal propagator .
For the top left diagram and the contractions in Eq. (B7),
one needs two anticommutators to move χ̄2 to the left, then
one to move χ1 to the right, and finally, one to swap χ̄1 and
χ2, for an even number of anticommutators. For the bottom
right diagram and Eq. (B10), one anticommutator to bring
χ1 leftward, one to bring χ̄2 rightward, and one to swap χ̄1
and χ2, for an odd number of anticommutators and thus an
extra minus sign. The bottom left diagram and Eq. (B9) are
similarly negative. This explains the extra minus sign for
the bottom (antiparticle) diagrams in Fig. 8, reflected in the
last line of Eq. (B6).
The the matrix element is similar to that of the scalar

case, with the addition of spinor numerators such asP
s ū

sðkÞð=qþ =kþmÞusðkÞ ¼ −4q · kþ 8m2 for the first
amplitude. The monopole-monopole wake potential is

VðxÞ ¼ −
G2

s

2

Z
đ3k

fðkÞ
2Ek

ðnþ n̄Þ ðB11Þ

×
Z

đ3qeiq·x
−q · kþ 2m2

q2 þ 2q · k − iε
þ c:c:

¼ −
G2

smðnþ n̄Þ
4πr

F ðxÞ; ðB12Þ

with the form factor appropriate for fermions,

F ðxÞ≡
Z

đ3k
fðkÞ
Ek=m

�
cosðjkjr − k · xÞ

×

�
1þ jkjðjkj þ k · x̂Þ

2m2

�

þ sinðjkjr − k · xÞ
�
k · x̂
2m2r

��
: ðB13Þ

In the nonrelativistic limit jkj ≪ m, this form factor is the
same as the one for the monopole-monopole wake potential
mediated by scalars in Eq. (17). Similarly, the overall
fermionic monopole-monopole wake potential of Eq. (B12)
is the same as the scalar one of Eq. (16) in the coupling
normalizations of this work [Eqs. (3) and (B1)], with

fermions and antifermions contributing additively. For
nonrelativistic particles at low occupation numbers, there
is thus no material difference between monopole-monopole
wake forces mediated by fermions and scalars.

2. Four-Fermi interactions of Dirac fermions

Consider the neutral-current four-Fermi interaction of a
single Dirac neutrino in Eq. (1), first for a single mass
eigenstate. The matrix element for the wake potential
diagrams of Fig. 8 is similar to Eq. (B6), except the spinor
numerators are dressed with additional gamma matrices.
Firstly, the linear mass term in the numerator of the fermion
propagator does not contribute because the interactions
preserve chirality, i.e., ð1 − γ5Þγνð1 − γ5Þ ¼ 0. Secondly,
neutrinos and antineutrinos contribute additively as in all
previous cases. The full wake potential between two
fermions ψ1 and ψ2 with vector and axial couplings gV1 ,
gA1 , g

V
2 , g

A
2 , and spins σ1, σ2 is, thus,

Vðx;σ1;σ2Þ ¼ −
G2

Fðnþ n̄Þ
4

Z
đ3k
2Ek

fðkÞe−ik·x

×
Z

đ3qeiq·x
qρ þEkδ

0
ρ

q2 −k2 − iε
Iρþ c:c:; ðB14Þ

where the I vector and Γ tensors are defined as

Iρ ≡ gV1 g
V
2 Γ0ρ0 þ gA1 g

A
2 σ

i
1σ

j
2Γjρi

þ gV1 g
A
2 σ

j
2Γjρ0 þ gA1 g

V
2 σ

i
1Γ0ρi; ðB15Þ

Γνρκ ≡X
s

ūsðkÞγνð1 − γ5Þγργκð1 − γ5ÞusðkÞ ðB16Þ

¼ 4kμtrfσμσ̄νσρσ̄κg ðB17Þ

¼ 8ðkνηρκ − kρηνκ þ kκηνρ þ ikμϵμνρκÞ: ðB18Þ

Monopole-monopole wake potential—Using the identity
Γ0ρ0 ¼ 8ð2Ekη

ρ0 − kρÞ, the monopole-monopole wake
potential is found to be quite similar to that of the quadratic
interaction with the scalar current in Eq. (B12),

VðxÞ ¼ −2G2
Fg

V
1 g

V
2 ðnþ n̄Þ ðB19Þ

×
Z

đ3k
2Ek

fðkÞe−ik·x
Z

đ3qeiq·x
q · kþ E2

k

q2 − k2 − iε
þ c:c:

¼ −
2G2

Fg
V
1 g

V
2mðnþ n̄Þ
4πr

FVVðxÞ; ðB20Þ
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with the vector-vector form factor,

FVVðxÞ≡
Z

đ3k
Ek=m

fðkÞ

×

�
cosðjkjr − k · xÞ

�
1þ jkjðjkj − k · x̂Þ

m2

�

− sinðjkjr − k · xÞ
�
k · x̂
m2r

��
: ðB21Þ

In the nonrelativistic limit, this form factor reduces to that
of Eqs. (17) and (B13).
Monopole-dipole wake potential—Without loss of gen-

erality, consider the part of the wake monopole-dipole
potential proportional to gV1 g

A
2 . Use Γjρ0 ¼ 8ðkjηρ0 þ

Ekη
jρ þ ikμϵμjρ0Þ to find

Vðx; σ2Þ ¼
2G2

Fg
V
1 g

A
2mðnþ n̄Þ
4πr

σ2 ·FVAðxÞ; ðB22Þ

where the form factor is now a vector function,

FVAðxÞ ¼
Z

đ3k
Ek=m

fðkÞ
�
cosðjkjr−k ·xÞ

×

�
Ekðkþjkjx̂Þ

m2
−
x̂ · ðk× σ2Þ

m2r

�

− sinðjkjr−k ·xÞ
�
Ekx̂
m2r

þjkjðx̂×kÞ
m2

��
: ðB23Þ

In the nonrelativistic limit and r≲ 1=jk0j, this form factor
generically has a magnitude of order the typical velocity
jk0j=m of the medium.

3. Majorana fermions

Suppose the fermions χ are their own antiparticles, and
quantize the theory with creation and annihilation operators
a†k and ak,

χðxÞ ¼
Z

đ3kffiffiffiffiffiffiffiffi
2Ek

p
X
s

½askusðkÞe−ik·x þ as†k iγ2u
sðkÞeik·x�:

ðB24Þ

Assume the modes are populated with number density n
and momentum distribution fðkÞ according to Eq. (B3).
More contractions are possible for Majorana fields, namely

and in addition to the usual . For quadratic
interactions of the form χ̄Γχ with Γ ¼ f1; iγ5; γμγ5g, these
additional contractions can all be “absorbed” by conven-
tional factors of 1=2 in the vertices and propagators. For
example, consider the Lagrangian of a Majorana fermion
interacting with a scalar current,

L ¼ 1

2
χ̄ði=∂ −mÞχ −G

4
χ̄χψ̄ψ : ðB25Þ

This is the analog of Eq. (B1) and will yield the identical
wake potential to Eq. (B12) with this normalization of G
and with the replacement ðnþ n̄Þ → n. Vertex structures
with Γ ¼ fγμ; σμνg yield zero.

APPENDIX C: NONPERTURBATIVE WAKE

The primary approximation made in the main text is the
G → 0 limit. As argued in Sec. IV D, this perturbative
expansion should converge for jGjmnψ=k20 ≪ 1. (The other
approximation is the classical ℏ → 0 limit, but Sec. IVA
showed that finite-ℏ effects are negligible at r≳ σ−1k in
practice.) In this appendix, the perturbative method of this
work is validated against numerical simulations of the wake
induced by a perturber of arbitrary strength and size.
Numerical experiments become more feasible in the

nonrelativistic limit, where the “Compton oscillations” of
the field are integrated out. Specifically, Eq. (4) reduces to a
Schrödinger equation,

i∂tΨðt;xÞ ¼
−∇2 þGmnψðxÞ

2m
Ψðt;xÞ; ðC1Þ

after substituting ϕ ¼ e−imtΨ=
ffiffiffiffiffiffiffi
2m

p þ c:c: and ignoring
rapid relative oscillations at frequencies of OðmÞ. The
number density of nonrelativistic ϕ particles is thus
quantified by n ≃ jΨj2, and the full nonperturbative poten-
tial for ψ particles is

V ¼ GjΨj2
2

: ðC2Þ

For illustrative purposes and numerical efficiency, Eq. (C1)
is simulated both in 2þ 1 and 3þ 1 dimensions in what
follows.
The simulations are performed in dimensionless time

coordinates with m ¼ 1 and on a unit n torus:
x; y∈ ½−1=2; 1=2Þ for n ¼ 2, and x; y; z∈ ½−1=2; 1=2Þ for
n ¼ 3, with identified sides. (The only parametrization-
invariant quantities are Gmnψ=k2 and the fractional gra-
dients of nψ relative to jkj; no meaning should be attached
to the absolute parameter values except for these ratios.) The
initial condition for Ψðt ¼ 0;xÞ is that of a Gaussian
random field: the Fourier transform of the wave function
Ψ̃ðkÞ ¼ R

dnxe−ik·xΨðxÞ has an isotropic Maxwell-
Boltzmann power spectrum hjΨ̃ðkÞj2i ∝ e−k

2=2σ2k and a
random phase for each mode k. An n sphere of uniform
density nψ and radius R is centered at x ¼ 0. Space is
discretized in steps dx ¼ dy ¼ 1=2; 048 in 2þ 1D and in
steps dx ¼ dy ¼ dz ¼ 1=256 in 3þ 1D. The simulations
evolve the initial wave function forward in time over the
interval t∈ ½0;0.1� in increments of dt¼ 5× 10−6 in 2þ 1D
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and dt ¼ 10−4 in 3þ 1D; the density is recorded in each
time step only after t > 0.025 to avoid initial transients.
Forward evolution of the wave function is done via a
spectral method: each time step, ΨðxÞ is Fourier trans-
formed, evolved as Ψ̃ðkÞ → e−ik

2dt=2Ψ̃ðkÞ, and then inverse
Fourier transformed. Similarly, the phase evolution from the
potential GnψðxÞ=2 is computed each time step, in real
space. The mean and (statistical) standard deviation of the
density nðxÞ ¼ jΨðxÞj2 are computed over 5,000 runs with
random initializations of the field.
2þ 1 dimensions—The average density profile nðxÞ of

the 2þ 1D simulations is shown as a function of x ¼ ðx; yÞ
and jxj (azimuthal average) in Figs. 9 and 10, respectively,
and is normalized relative to the average number density
hnix over the 2-torus. The simulation parameters are σk ¼
100 and Gmnψ ðxÞ ¼ f−400;þ200;þ400;þ4; 000g for
jxj < R ¼ 0.1, and zero otherwise. The Gaussian random
field initialization does not strictly correspond to a pure
Maxwell-Boltzmann distribution in the vacuum outside the
barrier, because a fraction πR2 of the total density is
initialized inside the barrier at a slightly higher energy. I
conservatively estimate the systematic error of this effect
on nðxÞ=hnix to be σsys ∼ ϵπR2 inside the barrier, and

σsys ∼ ϵðπR2Þ2 outside. These systematic deviations
decrease with smaller fractional volumes occupied by the
barrier.
Equation (C1) can also be solved perturbatively, using

the same methods as in the main text. Decompose the field
into the perturbative series Ψ ¼ Ψð0Þ þ Ψð1Þ þ � � � and
similarly, for the potential of Eq. (C2),

V ≃ Vð0Þ þ Vð1Þ ¼ G
jΨð0Þj2

2
þ GRefΨð0Þ�Ψð1Þg; ðC3Þ

to second order in G. The background wave can always be
written as a sum of plane wavesΨð0Þ ¼ P

αΨαe−iðωαt−kα·xÞ,
i.e., the zeroth-order solutions of the Schrödinger equation
with ωα ¼ k2

α=ð2mÞ. The first-order perturbed wave is

proportional to a Hankel function Hð1Þ
0 of the first kind,

Ψð1Þ ¼
X
α

Ψα
−iGm

4
e−iωαt

×
Z

d2x0nψðx0ÞHð1Þ
0 ðjkαjjx − x0jÞeikα·x0 : ðC4Þ

Defining the (unperturbed) “number density” n≡P
α jΨαj2, the expected potentials to first and second order

in G are

Vð0ÞðxÞ ¼ þGn
2

; ðC5Þ

Vð1ÞðxÞ ¼ −
G2mn
4

Z
d2x0nψ ðxÞF 2ðx − x0Þ: ðC6Þ

The 2D form factor is

F 2ðxÞ ¼ Re
Z

đ2kfðkÞiHð1Þ
0 ðjkjjxjÞe−ik·x ðC7Þ

¼ Re
Z

∞

0

dkk
σ2k

e−k
2=2σ2k iHð1Þ

0 ðkjxjÞJ0ðkjxjÞ; ðC8Þ

with the last line for a 2DMaxwell-Boltzmann distribution.
It scales logarithmically at short distances, and falls off
exponentially for jxj ≫ σ−1k , so that the 2þ 1D (like the
3þ 1D) wake force has a short range.
Perturbatively, the predicted number density can be

written as nðxÞ ≃ 2ðVð0Þ þ Vð1ÞÞ=G to leading order in
G. These perturbative predictions are overlaid as red solid
lines on Fig. 10, where they are found to match the
numerical results well when the perturbative expansion
parameter ϵ≡ jVð1Þ=Vð0Þj ¼ jGjmnψ=2σ2k, which is the
same in 2þ 1D and 3þ 1D, is small in absolute value.
The red bands in Fig. 10 are the corresponding fractional
�1σth theory errors around the first-order prediction with
σth ¼ ϵ2. The permille-level concordance between the

FIG. 9. Time-averaged number density nðxÞ ¼ jΨðxÞj2 over a
2-torus in 2þ 1D simulations of nonrelativistic ϕ particles with
isotropic Maxwell-Boltzmann distribution parametrized by a
momentum spread σk ¼ 100. The particles are scattered by a
uniform disk of radius R ¼ 0.1 (dashed yellow outline) with an
effective coupling strength Gmnψ ¼ þ200 in its interior. The
density profile is normalized to its 2-torus average hnix. Upon
taking the mean over many coherence times and simulations, the
fractional density profile has permille-level statistical density
variations, revealing the fractional density modulation of order
−Gmnψ=2σ2k ¼ −0.01 due to the wake of the disk. The coherence
length of the density variation/modulation is of Oðσ−1k Þ.
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numerical results and the perturbative prediction indicates
that the perturbative expansion parameter is ϵ in two or
more spatial dimensions, even for large sources.
Finally, a simple thermodynamic argument can be used

to estimate the density modulation deep inside a medium-
dependent potential. Suppose particles outside the poten-
tial have a number density noutside ∝

R
đdke−k

2=2σ2k ¼R
đdke−Ekin=T given by a Maxwell-Boltzmann distribution

with effective temperature T ¼ σ2k=m. Modes deep inside a
constant potential should have an effective Boltzmann
factor e−ðEkinþGnψ=2Þ=T, thus yielding the nonperturbative
prediction,

ninside
noutside

≃ exp

�
−
Gnψ=2

T

�
¼ exp

�
−
Gmnψ
2σ2k

�
; ðC9Þ

assuming such equilibrium is indeed established. In
the perturbative regime, the estimate agrees with that of
the first-order wake potential: ninside=noutside − 1 ¼ Vð1Þ=
Vð0Þ ¼ −Gmnψ=2σ2k, which holds both in 2þ 1D and
3þ 1D. The nonperturbative thermodynamic estimate
from Eq. (C9) is indicated by the light blue dashed line
in the right panel of Fig. 10. It yields a milder density
decrease because the next-to-leading order in the pertur-
bative expansion has opposite sign.

3þ 1 dimensions—The results of the 3þ 1D simula-
tions are shown in Fig. 11 as black curves with green
(yellow) statistical error bands at �1σstat (�2σstat). The
chosen numerical resolution is lower for computational
feasibility reasons, but the qualitative features are similar to
the 2þ 1D case. The perturbative prediction for the first-
order nonrelativistic wake potential was already derived in
the main text [cf. Eqs. (16) and (19)],

Vð1ÞðxÞ ¼ −
G2mn
4π

Z
d3x0nψðx0Þ e

−2σ2kðx−x0Þ2

jx − x0j : ðC10Þ

The corresponding perturbative predictions for the density
of ϕ particles, nðxÞ ¼ ð2=GÞðGn=2þ Vð1ÞðxÞÞ are shown
as red curves with 1σth ¼ ϵ2 theory error bands. The
thermodynamic estimate from Eq. (C9) is indicated by
the light blue dashed line, and lines up precisely with the
numerical results deep inside the barrier. The systematic
uncertainty from partial field initialization inside the barrier
is not shown, but should be of order σsys ∼ ϵð4π=3ÞR3 for
jxj < R, and is negligible for R ¼ 0.1 but more appreciable
for R ¼ 0.2, with the hierarchy σstat ≲ σsys ≲ σth in that
case. Like in 2þ 1D, the nonperturbative numerical results
in 3þ 1D are in quantitative agreement with perturbative
wake potential calculations.

FIG. 10. Number density nðjxjÞ relative to the 2-torus average hnix in 2þ 1D as in Fig. 9 but azimuthally averaged at a distance jxj
from the center of the disk-shaped barrier/well with R ¼ 0.1, and for a MB distribution with σk ¼ 100. The effective coupling inside the
disk is varied over Gmnψ ¼ f−400;þ200;þ400;þ4;000g, with the first three displayed with vertical shifts of 0.0025 in the left panel,
and the last shown separately in the right panel. Black curves show the time-averaged means over approximately 5,000 simulations, and
the green (yellow) bands indicate 1σstat (2σstat) statistical errors. Red curves depict the leading-order wake potential prediction; red bands
include a 1σth estimated theory error of σth ≃ ϵ2 ≡ ðGmnψ=2σ2kÞ2. The thermodynamic estimate from Eq. (C9) is included in dashed
light blue. The systematic error from partial field initialization inside the barrier is estimated to be σsys ∼ ϵπR2 ∼ 0.006 for the right panel
(and negligible in the left panel) but is not shown.
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APPENDIX D: USEFUL FORMULAS

In this appendix, I collect some useful formulae for 3D
wake potential calculations.
Integrals to compute the inverse Fourier transform of

matrix elements,

Z
đ3qeiq·x

1

q2 − k2 − iε
¼ eijkjr

4πr
; ðD1Þ

Z
đ3qeiq·x

q
q2 − k2 − iε

¼ eijkjr

4πr
x̂

�
i
r
− jkj

�
; ðD2Þ

Z
đ3qeiq·x

ðq · n1Þðq · n2Þ
q2 − k2 − iε

¼ eijkjr

4πr

�
ðn1 · n2Þ

�
−

1

r2
þ ijk

r

�

þ ðx̂ · n1Þðx̂ · n2Þ
�
3

r2
−
ijkj
r

− jkj2
��

: ðD3Þ

Exact and approximate (q ≪ m) spinor identities,

=kusðkÞ ¼ musðkÞ; ðD4Þ

− =kvsðkÞ ¼ mvsðkÞ; ðD5Þ
X
s

ūsðkÞ=qusðkÞ ¼ −4q · k; ðD6Þ

X
s

v̄sðkÞ=qvsðkÞ ¼ −4q · k; ðD7Þ

ūs
0 ðp − qÞusðpÞ ≃ 2mδs

0s; ðD8Þ

ūs
0 ðp − qÞiγ5usðpÞ ≃ iq · σss0 ; ðD9Þ

v̄s
0 ðp − qÞvsðpÞ ≃ −2mδs

0s: ðD10Þ

Nonrelativistic spinor identities,

ūs
0 ðpÞγμusðpÞ ≃ 2mδs

0sδμ0; ðD11Þ

ūs
0 ðpÞγ0γ5usðpÞ ≃ 0; ðD12Þ

ūs
0 ðpÞγγ5usðpÞ ≃ 2mσs0s: ðD13Þ
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