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Using a geometric description of 2HDM, the CP-odd invariants are classified into three independent
sectors: scalar potential, Yukawa interaction, and CKM matrix. We calculate the effective thermal potential
of 2HDM in a basis invariant way and show that the CP phases in the CKM matrix cannot leak to the
effective potential at all orders. In the 2HDM with a softly broken Z2 symmetry, the leading thermal
correction to the effective potential tends to restore the CP symmetry at high temperatures.
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I. INTRODUCTION

Two-Higgs-Doublet-Model (2HDM) is one of the most
straightforward extensions of Standard Model (SM) that
can provide both new sources of CP violation and strong
first-order phase transition [1–6]. It suffers, unfortunately,
from the arbitrariness of the scalar basis choice, e.g., a
unitary transformation between the two Higgs doublets
does not have any physical consequence. In addition to
the CP phase in Cabbibo-Kobayashi-Maskawa (CKM)
matrix [7], the 2HDM can also have CP phases from the
scalar potential and the Yukawa interactions of an addi-
tional scalar [8]. As a global symmetry, the CP symmetry is
best studied in basis invariant methods, such as the bilinear
notation [9–13] or the tensor notation [8,14,15].
The CP property of the 2HDM effective potential in the

early universe is attractive as it relates to baryogenesis. It
is shown that the bilinear notation is also convenient in
handling global symmetries of 2HDM effective poten-
tial [16], but a complete analysis, including the contribu-
tions from the scalar self-interactions, the Yukawa
interactions, and the gauge interactions, still needs to be
done. In this work, we adopt the bilinear notation to
categorize all the independent CP-violating sources and
extend the bilinear notation to the Yukawa couplings so that
the effective potential from the fermion loop contribution
can be expressed in the bilinear notation. For the first time,

the one-loop 2HDM effective potential is calculated fully
by basis invariant form, which enables us to identify
various CP-violating sources in the loop correction.
The paper is organized as follows. In Sec. II, we briefly

review the bilinear notation and provide a geometric picture
of the CP-odd invariant. In Sec. III, we discuss the CP
phases in the CKM and show that the phase in the CKM
matrix cannot enter the effective scalar potential. In Sec. IV,
we present the one-loop effective potential in the bilinear
notation. Finally, we conclude in Sec. V.

II. CP SYMMETRIES IN THE
BILINEAR NOTATION

We start by reviewing the bilinear notation of the 2HDM
potential. A general scalar potential is

VðΦ1;Φ2Þ ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 −m2

12Φ
†
1Φ2

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
2Φ2ÞðΦ†

1Φ1Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ 1

2
λ5ðΦ†

1Φ2Þ2 þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ
þ λ7ðΦ†

2Φ2ÞðΦ†
1Φ2Þ þ H:c:; ð1Þ

in which ðm2
12; λ5;6;7Þ are generally complex while all the

other parameters are real. The scalar potential can be
reparametrized by an SUð2ÞΦ rotation Φ0

i ¼ UijΦj (i, j ¼
1, 2). Making use of the relation between SUð2Þ and SOð3Þ
groups, the basis transformation can be viewed explicitly in
the so-called K-space, in which the SUð2ÞΦ basis trans-
formation Φ0

i ¼ UijΦj corresponds to an SOð3ÞK rotation.

Define a four-vector Kμ ≡Φ†
i σ

μ
ijΦj ¼ ðK0; K⃗ÞT, where
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K⃗ ¼ ðΦ†
1Φ2 þΦ†

2Φ1; iðΦ†
2Φ1 −Φ†

1Φ2Þ;Φ†
1Φ1 −Φ†

2Φ2ÞT;
K0 ¼ Φ†

1Φ1 þΦ†
2Φ2: ð2Þ

Under an SOð3ÞK rotation RabðUÞ ¼ 1
2
tr½U†σaUσb�, K0

behaves as a scalar while K⃗ transforms as a vector, i.e.,

ðK0
0; K⃗

0Þ ¼ ðK0; RðUÞK⃗Þ: ð3Þ

The scalar potential in the K-space is written as [9,11]

V ¼ ξ0K0 þ η00K2
0 þ ξ⃗ · K⃗ þ 2K0η⃗ · K⃗ þ K⃗TEK⃗; ð4Þ

where

ξ0 ≡ 1

2
ðm2

11 þm2
22Þ; η00 ¼ ðλ1 þ λ2 þ 2λ3Þ=8;

ξ⃗ ¼
�
−ℜðm2

12Þ;ℑðm2
12Þ;

1

2
ðm2

11 −m2
22Þ

�
T
;

η⃗ ¼ ðℜðλ6 þ λ7Þ=4;−ℑðλ6 þ λ7Þ=4; ðλ1 − λ2Þ=8ÞT;

E ¼ 1

4

0
B@

λ4 þℜðλ5Þ −ℑðλ5Þ ℜðλ6 − λ7Þ
−ℑðλ5Þ λ4 −ℜðλ5Þ ℑðλ7 − λ6Þ

ℜðλ6 − λ7Þ ℑðλ7 − λ6Þ ðλ1 þ λ2 − 2λ3Þ=2

1
CA:

As the scalar potential is invariant under the SOð3ÞK
rotation, it demands the coefficients transform covariantly
in the dual space of Kμ, i.e., ξ00 ¼ ξ0, η000 ¼ η00, ξ⃗0 ¼
RðUÞξ⃗, η⃗0 ¼ RðUÞη⃗, and E0 ¼ RðUÞERðUÞT .
The conventional CP transformation Φi → Φ�

i corre-
sponds to a mirror reflection K2 → −K2 in the K-space
[9,10,12]. The CP conserving potential satisfies

VðΦ1;Φ2Þ ¼ VðΦ1;Φ2ÞjΦi→Φ�
i
; ð5Þ

while in the K-space it becomes

VðK0; K⃗Þ ¼ VðK0; K⃗ÞjK2→−K2
: ð6Þ

It requires that m12 and λ5;6;7 are all real. Denote Π̂ as the
mirror reflection operator that reflects K2 when acting on
K⃗, i.e., Π̂ðK1; K2; K3Þ ¼ ðK1;−K2; K3Þ. The potential is
invariant under the mirror reflection on the condition that

ξ⃗ ¼ Π̂ ξ⃗; η⃗ ¼ Π̂ η⃗; E ¼ Π̂EΠ̂T; ð7Þ

which can be easily understood from a geometrical view.
The 3 × 3 real symmetric tensor E possesses at least three
C2 axes (principal axis) and three symmetry planes. To
respect the CP conserving condition in Eq. (7), ðE; ξ⃗; η⃗Þ are
all invariant under the mirror reflection. Therefore, ξ⃗ and η⃗
must lie on the same symmetry plane of E; see Fig. 1.

The symmetric tensor E can be visualized either as an
ellipsoid or a hyperboloid when not positive definite.
We can construct independent CP-odd invariants from

the geometrical view. For example, two independent
conditions for CP conserving scalar potential can be
constructed from ξ⃗, η⃗, and E [12],

I1 ¼ ðξ⃗ × η⃗Þ · Eξ⃗ ¼ 0; I2 ¼ ðξ⃗ × η⃗Þ · Eη⃗ ¼ 0: ð8Þ

The CP-conserving condition requires all the CP-odd
invariants one can construct to vanish. Therefore, Ii are
CP-odd invariants that parametrize irremovable CP phases
in the scalar potential. In case of ξ⃗ is collinear with η⃗ along
direction ⃗l, another invariant ð⃗l × E⃗lÞ · E2 ⃗l can be con-
structed; see Ref. [12] for details.
Yukawa interaction. The Yukawa couplings of the

additional Higgs doublet lead to additional CP phases [8].
The CP phases from Yukawa interactions have yet to be
studied in the bilinear notation because the Yukawa
coupling terms in the Lagrangian cannot be expressed in
bilinear notation. However, we can project the Yukawa
couplings coefficients to the bilinear space to study whether
the Yukawa couplings spoil the global symmetries in the
bilinear space.
We start with Yukawa coupling terms of the u-quark for

illustration

−LYuk ⊃ Q̄LyiΦ̃iuR þ H:c:; i ¼ 1; 2; ð9Þ

where QL ¼ ðuL; dLÞT and yi are the coefficients of the
Yukawa couplings. Consider a scalar basis transformation
Uij ∈ SUð2ÞΦ,

Φ0
i ¼ UijΦj: ð10Þ

It is required that the couplings yi transform as

y0i ¼ Uijyj; ð11Þ

so that the Yukawa coupling terms are also invariant under
the Higgs basis transformation,

FIG. 1. Configuration of parameter vectors in a CP symmetric
potential, where the black dashed line denotes the three principal
axes of the ellipsoid.
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Q̄LyiΦ̃iuR ¼ Q̄Ly0iΦ̃0
iuR: ð12Þ

Since yi transform covariantly with Φi, the vector Yμ ≡
yiðσμÞijy�j ¼ ðY0; Y⃗Þ also transforms covariantly with Kμ,

i.e., Y0 is invariant and Y⃗ transforms as

Y⃗ 0 ¼ y0�i ðσ⃗Þijy0j ¼ y�l U
�
liðσ⃗ÞijUjkyk ¼ RðUÞY⃗: ð13Þ

Thus Y⃗ is a vector in the SOð3ÞK space, and any SOð3ÞK
invariant constructed by Y⃗ is a weak basis invariant in the
Higgs family space. If the Lagrangian preserves the CP
symmetry, the vector Y⃗ should be invariant under the mirror
reflection Π̂ and lie on the same reflection plane of ξ⃗ and η⃗
shown in Fig. 1. For a CP conserving potential satisfying
Eq. (8), the u-quark Yukawa coupling term in Eq. (9) does
not spoil this symmetry only when

Ju ¼ ðξ⃗ × η⃗Þ · Y⃗ ¼ 0: ð14Þ

When Y⃗ is not in the same plane of ξ⃗ and η⃗, a nonzero
CP-odd invariant Ju is generated, and its magnitude is the
“volume” of the cross product ðξ⃗ × η⃗Þ · Y⃗.
If we include both up and down-type quarks with N

generations, the Yukawa couplings for quarks in the
2HDM are

LYuk ¼ −Q̄m
Ly

mn
u;i Φ̃iunR − Q̄m

Ly
mn
d;iΦidnR þ H:c:; ð15Þ

where the superscripts m and n sum over N generations.
Under the SUð2ÞΦ basis transformation, yu;i transform like
Φi while yd;i transform like Φ�

i . Then we define 2N2

covariant vectors in the dual space of Kμ in terms of the
Yukawa couplings:

Ymn
u;μ ≡ ymn

u;i
�ðσμÞijymn

u;j ; Ymn
d;μ ≡ ymn

d;i ðσμÞijymn
d;j

�; ð16Þ

where i, j sum over all Higgs family and m, n do not sum.
And Ymn

μ transform in the same way as ξμ and ημ, i.e.,

ðY0; Y⃗Þmn
u=d → ðY0; RðUÞY⃗Þmn

u=d: ð17Þ

For the Yukawa interactions of N-generation quarks,
we obtain 2N2 CP-odd invariants Jmn

u and Jmn
d where

m; n ¼ 1; 2;…; N.

Jmn
u=d ¼ ðξ⃗ × η⃗Þ · Y⃗mn

u=d: ð18Þ

To conserve the CP symmetry, the vectors ξ⃗, η⃗, and Y⃗mn
u=d

have to lie on the same reflection plane of E. Each vector
acts as an independent CP violation source if it departs
from the reflection plane.

Counting the numbers of independent CP-odd invariants
in the 2HDM, there are two from the scalar potential,
2N2 from the additional Yukawa interactions, and
ðN − 1ÞðN − 2Þ=2 from the CKM matrix.

III. CP PHASES IN THE CKM MATRIX
AND EFFECTIVE POTENTIAL

Before calculating the effective potential, we would like
to emphasize the difference between the CP phases in the
additional Yukawa couplings and theCP phase of the CKM
matrix and discuss the question asked in Ref. [17] that
whether aCP-conserving 2HDM potential will receiveCP-
violating phases from the CKM matrix through quantum
corrections of quarks inside loops. It is pointed out in
Ref. [17] that the CP violation effect from the Jarlskog
invariant may contribute the effective potential through
Feynman diagrams with at least three loops, e.g., Fig. 2.
However, their calculation of three-loop tadpole diagrams
of the CP-odd scalar field shows no impact from the
Jarlskog invariant. And we will be able to prove that the
CP-violation effect in the CKMmatrix never contributes to
the effective potential after discriminating CP-violating
sources in the Yukawa interactions and the CKM matrix.
The irremovable CP phase of the CKM matrix origins

from the complex phases in the quark mass matrix, which
can be described by the so-called Jarlskog invariant [18,19],
a basis invariant quantity under the basis transformations in
the quark family space,

J ¼ det½MuM
†
u;MdM

†
d�: ð19Þ

Next, we write down all the components of the Yukawa
couplings and the quark mass matrices to discuss the
independence between Eqs. (14) and (19). Because y1
and y2 in Eq. (9) are two complex numbers, we can
always parametrize them with three angles ðβ; γ; δÞ and a
magnitude jYj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy1j2 þ jy2j2

p
. Then ðy1; y2Þ and Yμ ≡

y�i ðσμÞijyj are written as

FIG. 2. An example set of the diagrams of the effective
potential may receive a contribution from the Jarlskog invariant.
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ðy1; y2Þ ¼ eiδjYjðsβ; cβe−iγÞ; ð20Þ

ðY0; Y⃗Þ ¼ jYj2ð1; s2βcγ;−s2βsγ;−c2βÞ: ð21Þ

Note that the global phase δ yields no information in vector Y⃗
and is therefore independent of theCP violations in Eq. (18).
We add the quark flavor index and include all three

generations of quarks to write down the quark mass matrix
and CKM matrix. After the electro-weak symmetry break-
ing (EWSB), the Higgs doublet field have non-zero
expectation value hΦii ¼ ð0; viÞT; Kμ

v ≡ KμjΦi→hΦii. Each
quark mass matrix is an SUð2ÞΦ basis invariant quantity:

Mmn
u ¼ ymn

u;i v
�
i ; Mmn

d ¼ ymn
d;i vi: ð22Þ

The complex phase of each element of the quark mass
matrix, which is related to the global phases δmn of the
Yukawa couplings, is not included in Y⃗. To show the
independence between the CP phases in the quark mass
matrix and additional Yukawa couplings, it is most con-
venient to do the decomposition Eq. (20) in the Higgs basis,
where v1 ¼ v and v2 ¼ 0. Then the complex phases in the
quark mass matrices are only determined by δ,

Mmn
u ¼ eiδ

mn
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðYmn

u;0Kv;0 þ Y⃗mn
u · K⃗vÞ

r
;

Mmn
d ¼ eiδ

mn
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðYmn

d;0Kv;0 þ Y⃗mn
d · K⃗vÞ

r
: ð23Þ

Here m, n in the right-hand side (rhs) do not sum, and the
quark mass matrix can be diagonalized as

diagðmu;mc;mtÞ ¼ VL
uMuVR

u

diagðmd;ms;mbÞ ¼ VL
dMdVR

d ;

VCKM ¼ ðVL
u Þ†VL

d : ð24Þ

We can see that the CP phase of the CKM matrix is
determined only by the phases δmn

u=d. The Jarlskog invariant
parametrizes the phase δmn

u=d that cannot be removed by the
rotations in the quark family space, while the CP-odd
invariants constructed by Y⃗mn

u=d parametrize the CP phases
that the rotations in the Higgs family space cannot remove.
Therefore the CP-odd invariants constructed by Y⃗mn

u=d are
independent of the Jarlskog invariant.
In other words, the CP phases in the CKM matrix are

from the quark family space, but theCP phases in the scalar
potential and the additional Yukawa couplings are from the
Higgs family space.
The above arguments help to answer the question of

Ref. [17]. We notice that the CP violation effect appears in
the effective potential only in the form of SOð3ÞK tensors.
As the Jarlskog invariant cannot be described by the tensor

structure of the SOð3ÞK group, we conjecture that the CP
phase in the CKM matrix would not leak into the effective
potential through quantum corrections.
Without loss of generality, consider a CP-conserving

Type-I 2HDM in which the SOð3ÞK covariant parameter
tensors are E, ξ⃗, η⃗, and Y⃗. CP conserving conditions require
all the tensors invariant under a mirror symmetry Π̂, i.e.,

Eab ¼ EcdΠacΠbd; ξa ¼ ξcΠac; ηa ¼ ηcΠac: ð25Þ

Besides, the vectors Y⃗ also conserve CP symmetry
Ya ¼ YcΠac, and the only CP-violating source left is the
CP phases in the CKM matrix. Any global SUð2ÞL
invariant effective potential can be written as

VeffðΦ†
iΦjÞ

¼ VeffðK0; K⃗Þ
¼ VeffðK0; T

ð1Þ
a Ka; T

ð2Þ
ab KaKb; T

ð3Þ
abcKaKbKc; � � �Þ; ð26Þ

where TðqÞ
a1���aq transforms as a rank-q tensor under the

SOð3ÞK rotation. In the K-space, the tensor TðqÞ
a1���aq can be

constructed by tensor products of tree-level parameter
tensors. Moreover, the tensor constructed by E; η⃗; ξ⃗; Y⃗ is
also invariant under the mirror reflection,

TðqÞ
a1���aq ¼ TðqÞ

b1���bqΠa1b1 � � �Πaqbq : ð27Þ

It guarantees the CP invariance of the effective potential,

VeffðK0; K⃗Þ ¼ VeffðK0; Π̂ K⃗Þ: ð28Þ

Even though the quark mass matrix, whose elements are

SUð2ÞΦ singlets, may enter TðqÞ
a1���aq as a factor, tensor

structures of TðqÞ
a1���aq remain unchanged and the result of

Eq. (28) still holds.
On the other hand, when the additional Yukawa cou-

plings break the CP symmetry, i.e., Ya ≠ YcΠac, the
effective potential may break the CP symmetry because
tensors in Eq. (26) that are constructed by Y⃗ will break
the CP symmetry. To summarize, the CP phases of an
electroweak global invariant 2HDM effective potential will
not receive a contribution from the Jarlskog invariant. Still,
it may receive contributions from the CP phases of addi-
tional Yukawa interactions.

IV. ONE-LOOP EFFECTIVE POTENTIAL

Next, we calculate the one-loop effective potential and
analyze its global symmetries. Using the backgroundmethod,
the one-loop effective potential at zero temperature is [20]
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VeffðϕcÞ ¼ V treeðϕcÞ þ VCWðϕcÞ; ð29Þ

where V tree denotes the tree level potential and

VCWðϕcÞ ¼
1

2
Tr

Z
d4p
2π4

ln ½p2 þM2ðϕcÞ�

¼ 1

64π2
X
i

nim4
i ðϕcÞ

�
ln
m2

i ðϕcÞ
μ2

− ci

�
ð30Þ

is the Coleman-Weinberg (CW) potential [21] calculated in
the Landau gauge under MS scheme; M2 is the mass matrix
with eigenvalues m2

i ; ni denotes the degree of freedom of
the field; and ci is equal to 5=6 for gauge bosons and 3=2
for others.
The effective potential of the 2HDM has been discussed

extensively [22–27]. As a usual practice, only neutral orCP
even components of Higgs boson doublets are treated as
background fields, which breaks the SUð2ÞL invariance
explicitly such that our previous discussions cannot apply
to VeffðϕcÞ. Therefore the mass matrices need to be
evaluated in a global SUð2ÞL invariant way to analyze
the CP property of effective potential in bilinear notation.
For that, we take all the components of the Higgs boson
doublets to be background fields, and Φi ¼ ðϕi↑;ϕi↓ÞT
should be understood as background fields hereafter.
(1) Contributions from the scalar loops: In a scenario

that the scalar potential preserves the CP symmetry at the
tree level, the scalar self-interaction cannot induce CP
violation effects in the effective potential. However, it is
hitherto verified only in a specific choice of the scalar basis.
Below we provide basis-independent proof.
The mass matrices of the scalar sector cannot be

analytically diagonalized; therefore, we use the method
in Ref. [28] to derive the bilinear form of the potential. We
first expand the trace of logarithm in Eq. (30) as Taylor
series and calculate the trace for each term. For example,
the first-term yields

Trðm2
SÞ ¼ 8RμAμ þ 4Sμνηνμ

¼ ð20η00 þ 4TrðEÞÞK0 þ 24K⃗ · η⃗þ 8ξ0; ð31Þ

where

Sμν ¼ RμKν þ RνKμ − gμνðRKÞ;
SμνA ¼ AμKν þ AνKμ − gμνðAKÞ;
Aμ ¼ 2ημνKν þ ξμ;

Rμ ¼ ð1; 0; 0; 0Þ: ð32Þ

This term was also calculated in Refs. [16,28]. Here we
finish the calculation of the total Taylor series, and the final
result can be expressed as

VðSÞ
CW ¼ F ðSμνηνρ; SμνA ηνρÞ; ð33Þ

where F is a function of the traces of Sμνηνρ; S
μν
A ηνρ and

their combinations [29]. If the tree level potential is
invariant under the mirror reflection Π̂ operation, i.e.,

V treeðK0; K⃗Þ ¼ V treeðK0; Π̂ K⃗Þ; ð34Þ

then any combination of the tensors given in Eq. (32) is

invariant too. As a result, the VðSÞ
CW is also CP invariant, i.e.,

VðSÞ
CWðK0; K⃗Þ ¼ VðSÞ

CWðK0; Π̂ K⃗Þ; ð35Þ

as it should be.
(2) Contributions from the gauge boson loops: The mass

matrix of gauge bosons can be diagonalized and written in
gauge invariant form directly. The eigenvalues of gauge
boson masses obtained from the kinetic terms are

m2
Z ¼ g2

8

�
ð1þ t2WÞK0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2W jK⃗j2 þ ðt2W − 1Þ2K2

0

q �
;

m2
γ ¼

g2

8

�
ð1þ t2WÞK0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2W jK⃗j2 þ ðt2W − 1Þ2K2

0

q �
;

m2
W� ¼ g2

4
K0; ð36Þ

where tW ¼ tan θW , and a massless photon is ensured by
the neutral vacuum condition K0 ¼ jK⃗j [9,11]. Therefore,
the CW potential from gauge boson loop contributions

VðGÞ
CW ¼ VðGÞ

CWðK0; jK⃗jÞ is spherically symmetric in the
K-space,

VðGÞ
CWðK0; K⃗Þ ¼ VðGÞ

CWðK0; RK⃗Þ; R ∈ Oð3Þ:

Furthermore, any global symmetry exhibited by the tree-
level potential cannot be broken by quantum corrections
from gauge bosons.
(3) Contributions from the quark loops: Usually, the

dominant correction of quark loops to the effective poten-
tial is from the heaviest quark. Nevertheless, we include top
and bottom quarks to ensure our calculation is SUð2ÞL
invariant. The top and bottom quark masses can mix as
there are charged background fields. The fermion mass
matrix derived from −∂2L=∂ψ̄ i

L∂ψ
j
R reads as

ðt̄L; b̄LÞ
� yitϕ�

i↓ yibϕi↑

−yitϕ�
i↑ yibϕi↓

��
tR
bR

�
: ð37Þ

After singular decomposition Mdiag ¼ L−1MR, two ele-
ments of the diagonalized mass matrix are
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m2
t=b ¼

B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C

p

2
; ð38Þ

where B and C, in terms of Yμ ¼ ðY0; Y⃗Þ defined in
Eq. (16), are

B ¼ 1

2
ðYt0 þ Yb0ÞK0 þ

1

2
ðY⃗t þ Y⃗bÞ · K⃗;

C ¼ −
1

2
ðYt · YbÞK2

0 − ðYt0Y⃗b þ Yb0Y⃗tÞK0K⃗

þ 1

2
K⃗ · ðY⃗t · Y⃗b − Yt0Yb0 − Y⃗t ⊗ Y⃗b − Y⃗b ⊗ Y⃗tÞ · K⃗:

The symbol “⊗” means the direct product of two vectors.
For illustration, we consider the special case of yt ≫ yb, in
which the top quark plays the leading role. The mass square
of the top quark is

m2
t ¼

1

4
ðYt0K0 þ Y⃗t · K⃗Þ: ð39Þ

Consider a scalar potential conserving the CP symmetry at
the tree level, i.e., V treeðK0; K⃗Þ ¼ V treeðK0; Π̂ K⃗Þ. When the
Yukawa couplings break the CP symmetry, or equivalently,
Y⃗t=b ≠ Π̂Y⃗t=b, m2

t is no longer invariant under the mirror
reflection and introduces the CP violation effect to the
effective potential at one-loop level,

VðFÞ
CWðK0; K⃗Þ ≠ VðFÞ

CWðK0; Π̂ K⃗Þ: ð40Þ

The CP violation effect is related to jJtj.
Thermal corrections. Previous discussions show that the

bilinear notation is convenient for analyzing the effective
potential’s global symmetries. Next, we include the thermal
corrections into consideration. At finite temperature, the
effective potential should be written as [20],

Veff ¼ V tree þ VCW þ VT þ Vdaisy;

VT ¼
X
i

ni
T4

2π2
JB=Fðm2

i =T
2Þ; ð41Þ

where VT is the one-loop approximation result and Vdaisy

is the contribution from Daisy diagrams [30,31]. At a high
temperature, the leading contributions of the thermal
bosonic function JB and fermionic function JF yield

VðGÞ
T ≈

g2T2

32
ð3þ t2WÞK0; ð42Þ

VðFÞ
T ≈ −

T2

8

h
ðYt0 þ Yb0ÞK0 þ ðY⃗t þ Y⃗bÞ · K⃗

i
; ð43Þ

VðSÞ
T ≈

T2

6

h
ð5η00 þ trðEÞÞK0 þ 6η⃗ · K⃗

i
; ð44Þ

which shift the tree-level parameters ξμ → ξμ þ Δξμ,

Δξ0 ¼ T2

�
g2

32
ð3þ t2WÞ −

Yt0 þ Yb0

8
þ 5η00 þ TrðEÞ

6

�
;

Δξ⃗ ¼ T2

8
ð8η⃗ − Y⃗t − Y⃗bÞ: ð45Þ

And only the contributions from quark and scalar loops can
modify global symmetries of the potential in the K-space
by shifting the direction of ξ⃗. The Daisy resummation
result is

Vdaisy ¼ −
T
12π

X
i¼bosons

ni½M3
i ðϕc; TÞ −m3

i ðϕcÞ�; ð46Þ

where Miðϕc; TÞ denotes the masses after the ξμ shifting
given in Eq. (45). Notice that the T-dependent tensor
structures of the Mi’s are related only to Δξμ in Eq. (45).
Therefore we can conclude that leading thermal corrections
only affect the global symmetries of scalar potential by
shifting the direction of ξ⃗.
Softly broken Z2 symmetry. Finally, we examine the

2HDM with a softly broken Z symmetry which is often
studied in literature. The 2HDM often induces a flavor-
changing neutral current, which is prohibited by precision
measurements. A Z2 symmetry,

Φ1 → −Φ1; Φ2 → Φ2; ð47Þ

is therefore introduced to forbid the flavor-changing neutral
current [32]. The Z2 symmetry demands m12 ¼ λ6 ¼
λ7 ¼ 0. The parameter tensors are of the patterns

ξ⃗ ¼

0
B@

0

0

#

1
CA; η⃗ ¼

0
B@

0

0

#

1
CA; E ¼ 1

4

0
B@

# # 0

# # 0

0 0 #

1
CA;

ð48Þ

where the symbol “#” denotes combinations of other
coefficients. From geometrical perspective, ξ⃗ and η⃗ are
on the third primary axis of the symmetric tensor E, and
the Z2 symmetry is nothing but a 180° rotation (C2) around
the third primary axis, i.e., C2K⃗ ¼ C2ðK1; K2; K3Þ ¼
ð−K1;−K2; K3Þ. A Z2 invariant 2HDM satisfies

ξ⃗ ¼ C2ξ⃗; η⃗ ¼ C2η⃗; E ¼ C2ECT
2 : ð49Þ

The vectors Y⃗mn
u=d defined in Eq. (17) are covariant under an

SOð3ÞK rotation, therefore also satisfy

Y⃗mn
u=d ¼ C2Y⃗

mn
u=d; ð50Þ
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and they are parallel to ξ⃗; η⃗ and the C2 axis of E likewise.
Y⃗mn
u=d point to the same direction in Type-I 2HDM, while

Y⃗mn
u and Y⃗mn

d are in opposite directions in Type-II case. We
thus use Y⃗ to label the direction of Y⃗mn

u=d for simplicity. A Z2

symmetric 2HDM Lagrangian is always CP invariant.
The Z2 symmetry can be softly broken when m2

12 ≠ 0.

The vector η⃗ is not changed, but ξ⃗ ¼ ð#; 0; #ÞT points to an
arbitrary direction; see Fig. 3. Hence, the scalar potential
exhibits only one CP invariant, ðξ⃗ × η⃗Þ · Eξ⃗, and no CP
invariant arises from the Yukawa interactions as Y⃗kη⃗.
As a result, for a tree-level CP-conserving 2HDM with a

softly broken Z2 symmetry, the scalar potential maintains
the CP invariance at the loop level. In addition, for a tree-
level CP-violating 2HDM with a softly broken Z2 sym-
metry, ξ⃗ is the only CP-violating source. But the leading
thermal correction to ξ⃗ in Eq. (45) is CP conserving as both
η⃗ and Y⃗ lie on the principal axis of E. Therefore, as long
as the length of η⃗ and Y⃗ are not fine-tuned, ξ⃗ tends to be
bent toward the principal axis at sufficiently high temper-
atures, restoring the Z2 and CP symmetries. The leading
T-dependent contributions from Daisy diagrams, only

related to the quartic and Yukawa couplings, do not spoil
the CP restoration.

V. CONCLUSION

We generalized the bilinear notation of 2HDM scalar
potential to Yukawa couplings by defining dual vectors
Y⃗mn
u=d in bilinear space. By doing so, we obtained all the

independent CP-odd invariants in the 2HDM from a
geometrical view. The separation of CP phases from the
Yukawa interactions and the CKM matrix is made intui-
tively evident for the first time.
We calculated the Coleman-Weinberg potential in a basis

invariant manner. The scalar potential that preserves the
CP symmetry at the tree level can receive CP violation
corrections only from the Yukawa interactions at the one-
loop level. We proved that the CP phase in the CKMmatrix
could not leak to the effective potential at all orders based
on the basis invariant form. We further showed that the
leading thermal corrections shift the scalar quadratic
couplings only with Yukawa and scalar quartic couplings.
When a softly broken Z2 symmetry is imposed, the scalar
quadratic terms ξ⃗ is the only source that breaks Z2 and CP
symmetries. Still, its effect tends to be suppressed by
Yukawa couplings and scalar quartic couplings at a large
temperature such that the Z2 and the CP symmetries tend to
restore.
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