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Abstract

In this paper, using a formula for the minimal type-I seesaw mechanism by LDLT (or generalized
Cholesky) decomposition, conditions of general Z,-invariance for the neutrino mass matrix m are ob-
tained in an arbitrary basis. The conditions are found to be (M220,~+ - Mlzbl?") (Mzzaj_ -M 12b/._) =

—detM bi+ b; for the Z,-symmetric and -antisymmetric part of a Yukawa matrix Yi:]": =Y xTY);/2=
(ajt, bjt) and the right-handed neutrino mass matrix M;;. In other words, the symmetric and antisymmet-

ric part of b; must be proportional to those of the quantity a; = a; — %—;bi. They are equivalent to the
condition that m is block diagonalized by eigenvectors of the generator 7.

These results are applied to three Z, symmetries, the ;© — T symmetry, the TM| mixing, and the magic
symmetry which predicts the TM, mixing. For the case of TM| 5, the symmetry conditions become
M222 &ITBM(};BM = —detM b?BMbgBM and M222 &E%M&;FBM = —detM ngMbgBM with components
EJITBM and bTBM in the TBM basis v1,2,3- In particular, for the TM, mixing, the magic (anti-)symmetric
Yukawa matrix with S Y = £Y is phenomenologically excluded because it predicts my = 0 or m1, m3 =0.
In the case where Yukawa is not (anti-)symmetric, the mass singular values are displayed without a root sign.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The structure of the lepton mixing matrix often involves a certain Z, symmetry of the neutrino
mass matrix m. The bi-maximal mixing [1] accompanies the u — T symmetry [2-32], and the
trimaximal mixing [33-39] does the magic symmetry [40]. The tri-bi-maximal (TBM) mixing
[41], the combination of these two mixings is realized by the Klein symmetry K4 >~ Z> X Z»
[42-44].

In this paper, using a recently discovered seesaw formula by L DL” decomposition, we inves-
tigate conditions of a Z symmetry in the mass of light neutrinos m for the minimal type-I seesaw
mechanism [45—-68] in an arbitrary basis. Such formulation can be applied to other generalized
C P symmetries (GCP) [69-94] and seesaw mechanisms.

This paper is organized as follows. The next section gives a formula by L DL” decomposition
for the minimal type-I seesaw mechanism and conditions of general Z,; symmetry in an arbitrary
basis. In Sec. 3, we analyze eigensystems of the Z,-symmetric m and its applications. The final
section is devoted to a summary.

2. A formula for the minimal type-I seesaw model and conditions of general Z, symmetry
in an arbitrary basis

Here we review a formula by LDLT decomposition [95,96] in the minimal seesaw models
[45—47]. The Yukawa matrix of neutrinos Y and the mass matrix of right-handed neutrinos M
are defined as follows

al b1

M M

Y=|a b], M:(M“ M”), (1
a3 b3 21 22

where q;, b;, and M;; are general complex parameters. By setting the vacuum expectation value
of the Higgs field to unity, the mass dimension of Y;; becomes one. This M can be diagonalized
by LDLT (or generalized Cholesky) decomposition;
i 0
0o L) @
M

where L is a lower unitriangular matrix that has all the diagonal entries equal to one

1 0 1 1 0
L={_mo ). L= ) (3)
M»> M

By redefining the phase of the second right-handed neutrino vgy, we can choose a basis such
that My, is real-positive. A further phase transformation of the first right-handed neutrino v, =
e'Pvgy yields detM' = %? (M1 M — M?,). Thus, the phase of det M can be absorbed and
M~" can be chosen as real-positive. If M is strongly hierarchical, the absolute values of these
diagonal elements coincide with the first approximation of the physical singular values of M. In
other words, it corresponds to an approximate spectral decomposition based on diagonalization
by L.
Thus, a deformed Yukawa matrix Y defined as

- M 1 0
YE(& b)E(d—bi,b)=Y< My )
My —i, |

- My
M=ot = (e
M

YL, 4)
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yields a formula for the neutrino mass matrix m in an arbitrary basis,

a  aia i b2 biby bibs
o=l yT My [ L =2 = ! 2
m=YM 'Y = detM aiay  a; @maz |+ -—— b1by b2 bybs (®)]
M\aa ama; @ 2 \bibs babs b}
1 1
M, M,

Although it does not correspond to a physical basis for not hierarchical M, this formula is valid
in any basis.

If the two three-dimensional vectors @ = (@;) and b = (b;) are linearly independent, the rank
of m becomes two and a massless mode appears. The eigenvector belonging to the zero mode of
mm" is proportional to @* x b* (the complex conjugation of the cross product).

In this paper, we investigate general conditions under which m has a Z, symmetry, using the
formula (6) and similar arguments as in the previous paper [96]. We obtain more general results
than the previous analysis of C P-symmetry.

When a Lagrangian has a Z> symmetry, m satisfies Tm TT = m by a matrix T. Such Z,
symmetries include p-t symmetry [2-4] and magic symmetry [40], which has been studied
extensively. T is unitary because the symmetry does not change the kinetic term, and T is also
Hermitian because 72 = 1 leads to 7 = T~! = T'. Then the three eigenvectors of T belonging
to the eigenvalues 1 form an orthonormal basis. The vectors a and b can be expanded by the
eigenvectors as @ = a ' +a and b =b" + b~. This means that the vectors are divided into
symmetric and antisymmetric parts under the transformation;

Ta=at—a , Tbh=b"—b". (7

Note that either eigenspace is one-dimensional because the eigenvalues are {+1,+1, —1} or
{+1, —1, —1} for a nontrivial T.

Since detT can be changed by redefinitions of fields, it does not lose generality by choos-
ing detT = —1. In this case, the normalized eigenvectors of 7 consist of e~ belonging to
the eigenvalue —1 and e™!, e*? belonging to +1. Using the vector e, the generator can be
written as T =1 —2e~ ® e~ 1. If eT!Tet? = 0 holds, T is diagonalized by a unitary matrix
U= (e— , e+1 , e+2);

T'=UTU=(e",e™", et (1 —2¢e " ®@e e ,et!, et?) = 01 (1) 8 . (8
0 0 1
In this basis, a Z>-symmetric m must have the following form,
my, 0 0
m=UmU*=[ 0 mhy my|. )

U l4
0 my my

The conditions for m to be such a block diagonal matrix are

;(e_,&)(eﬂ,&) =—~i(e—,b)(e+1,b), (10)
M, M

} (e ,a)et? a)= —é(e—,b)(e”,b), (11)
M, M,
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where (u, v) = u'v is the Hermitian inner product. By multiplying e~ and (e*!?)” from left

and right of Egs. (10) and (11) respectively, and adding two equations, conditions for m to have
a Zp symmetry by T are summarized as

1 1
ﬁ” @at! = M~—b_®b+T, M3,af a; = —detM b b . (12)
1 2
Thus, @ and @~ are proportional to b and b~ respectively and their coefficients are determined
by Eq. (12). Otherwise, two of the four components will be zero vectors. This kind of alignment
also seems to be necessary for naturalness in the seesaw mechanism [97].
If Ezii and bii # 0; holds, we can find solutions to a* for given b™;

1
(M2251+, My a )= vdetMbT, ——~/detM b™). (13)
r
Here, r is a complex constant defined by the non-zero Ezii and b?c,

M a}L _ VdetM b (14)
VdetM bJr My a;

At first glance, the solution (13) seems to have a degree of freedom of sign +. Indeed, it is correct
that some a; and —a; are solutions to each other. However, they are treated as independent
solutions because all of bl?JE and one of Elii are required as input parameters to determine the
solution uniquely. This fact is also manifest in representations (B.6) and (B.7) by orthogonal
matrices, as seen in the Appendix.

There are four trivial cases with each of @* and b* are 0, in which the denominator of r or
1/r can not be defined and d;* need not be proportional to bl.i. In such cases, Y itself has definite
symmetry,

TY={V,Yo3,~Yo3, -V}, (15)
where o3 = diag(1, —1). For example, if Y is T-symmetric with a;” = b;” = 0, we obtain expres-
sions for Y and a from Eq. (4);

- M _
+ + + -
a’ =a +M22b’ , a; =0. (16)

That is, T Y = Y holds and the original Y also has the T symmetry. Although the same is true
for antisymmetric Y, the other two situations are somewhat different. For example, the case of
TY = Ya3,te a; —b+—0 leads to

Then, while the antisymmetric components of @; and b; must be proportional, a; can have in-

dependent symmetric components. These different behavior influences representations of mass
values in the analysis of eigensystems.

3. Analysis of eigensystem and its application
Due to the Z> symmetry, the mass values and eigenvectors can be formally determined for

each solution (13) and (15). If Eq. (12), i.e. M22a a = —dethJr b. is satisfied, the mass
matrix m becomes
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1 1
m=—@ ®atT+a ®a H+—0brebtT+b- b 7). (18)
My M,

Since the projective components a* and bT are orthogonal to each other, the sum of respective
projections must be rank one unless a* and b (or bT) are zero vectors. Thus, each of projections
must be proportional to the others, as a* o b*. The behavior of the solutions can be classified
into the following three cases.

a.TY==Y o3 First, if each of @T and b~ is 0 in the trivial solutions (15), the mass matrix is

1 1
m=~—éi®[liT+Tb:F®b:FT. (19)
M M,
The Hermitian matrix m m’ becomes
at | bF |’ .
mm' = | aimiu‘T b @b, (20)
M, M,

where |v]? = Z?:l viv;.
The eigenvectors of mm' are {@* x bF)*,a*, bF}, and the corresponding mass singular
values m; are

@ b7

my=1{0, 121 21 1)
’ M| | My

In this situation, a matrix S = 1 —2v+ ® v+ 7 defined by the remaining v+ =a™ or b generates
another Z, symmetry of m [42].

b.TY==4Y WhenVY and?Y are T -symmetric or antisymmetric in Eq. (15), the mass matrix is

m=—i* @it + bt b7 (22)
M, M>

Since the eigenvalues of nontrivial T are (41,41, —1) or (—1, —1, +1), the solution of TY =
(detT)Y is phenomenologically excluded because the rank of m is one. In the other solution,
although the eigenvectors of m m' are {(&jE X bi)*, &i, bi}, there is no guarantee that the two
vectors @* and b are orthogonal. Thus the general representation of mass singular values be-
comes complicated expressions as displayed in Ref. [98]. This is because that @ and b belong
to the same eigenvalue of T. If we can specify another Z; symmetry by S, @ and b can be de-
composed into projections with different eigenvalues of S, so that mass singular values can be
determined as in the previous case.

c. Nontrivial solutions In other general situations, by substituting the solution (13) into

Eq. (18), the mass matrix m is
1 1

—— [+ @b +(1+ )b @b 1. (23)

My r2

The eigenvectors of m m" are {(b* x b7)*, b", b~} and the mass singular values are

m =

1
|b+|2 1 r2

M»>,

1+r2

b %) 24
Vs b7} (24)

m; ={0,
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There is another Z, symmetry generated by either S* =1 — 26 @b* T Inthe following subsec-
tions, the results obtained above will be applied to three specific symmetries, the @ — 7 symmetry,
the TM| mixing, and the TM; mixing predicted from the magic symmetry.

3.1. Bi-maximal mixing and p — T symmetry

Although the exact u — v symmetry [2] that predicts 813 = 0 has now been excluded, let us
consider this as a simple example for practice. First, the basis of the TBM mixing is given by

: @2,—1,-D7 : (1,1, H7 : ©,1,-DT (25)
V) =—F4 s T Ly T , V= —F s by , V3= — s Ly T .
G NE V2
Expanding the vectors a and b in the TBM basis yields
=v1(v1,a) +v2(v2,a) +v3(v3,0) = Z a; Mo (26)
i=1
3
b=v,(v1.b) +v2(v2, b) + v3(v3.b) = »_b*Mv;, 27
i=1
where aTBM and bl.TBM are components in this basis.

The p — T symmetry is defined as'

1 00
TmT=m, T=[0 0 1]|=1-2v;®0v]. (28)
010
The eigensystem of T is
Tvz=—-v3, Tvp=+4v12. (29)

Since the third eigenvector of m mt is fixed to vs, m3 can be formally determined as

(a3 BM)? (b§BM)2 My (G — a3)? 1 (b —b3)?
ms = - = 4+ — 30)
Ml M det M 2 M»y 2

This expression generally includes complex phases. However, the absolute value |m3| must co-
incide with the singular value because v3 belongs to one-dimensional eigenspace of T (28).
The symmetry condition (12) becomes

M3, alPM @My, 4 a]®Muy) = —det M b1BM(BBMo; + 51BMuy) . 31

Since v » are orthogonal, the equal sign holds for each component;

M2,aTPMGTEM — ot M HTBMBTBM | 372, TBMZTBM _ _ dor v pTBMHTBM (32

This is equivalent to the block diagonalization conditions (10) and (11) in the TBM basis.
Let us examine the three types of solutions analyzed above. For the trivial solution (19) with
TY =4Y 03, the deformed Yukawa Yis

! There is also a definition of T by vé = % (0, 1, 1), which is equivalent under the phase transformation vé = v3 diag
(1,1,-1).
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. &1 0 0 b 1
Y=|a b or a b |. (33)
a —by —ay by

The mass matrix m is

M a  aia ad L (0 0 0
m:dtzjl aa @ @ +-—10 b2 —b% | or @< b). (34)
M \aa &3 3 2\0 —b} B

The eigenvectors are {@* x b¥)*,a*,bF} and corresponding singular values m; are

a1 > +2as? 253
mig={0, —————}, my=|=2|, (35)
M| M,
or
b1 1% +21bs)? 242
mig=1{0, "2y my=|22]. (36)
|M>| M,

Since a finite m3 is predicted, this is a normal hierarchy (NH) like solution with 63 = 0. Such
Yukawa matrices would be easily realized by flavons with vacuum expectation values (¢1)
(=2, 1, 1), {¢2) < (1, 1, 1), {(¢3) < (0, 1, —1) [62].

Second, for the other trivial solution (22) in which a and b have the same eigenvalues, Y and
Y itself has u — T (anti-)symmetry 7Y = £Y.

3 a b 0 0
Y=|a by| or ap by . (37)
a by —a; —b
The latter is excluded because Y is also rank one. Since the eigenvector vz = LZ(O, 1,—1)

belongs to the zero eigenvalue, this solution is inverted hierarchy (IH) like. In this case, repre-
sentations of two mass values would be cumbersome. However, it can be simpler by combining
it with another Z, symmetry that accompanies TM » mixing described in the next subsections.

Finally, the non-trivial solutions are explored. A solution with a; = | = 0 has no phenomeno-
logical interest because the first row and column of m are the zero vector. Thus, a; and b; are

set to have nonzero values and the parameter » (14) is determined to be r3 = \/ﬁg_zM Z—i From
Eq. (13) (or Eq. (32)) the following constraints are obtained; The symmetric part is
a a i by
at=|(@+a)/2|= b—b+ = (ba+03)/2 |, (38)
(ar+az)/2 ! P\ (b +13)/2
and the antisymmetric part is
0 ~ ~ 0
. .. My by, _ M by
a =\ (a2—a3)/2 :_175_1’ =TI (by—03)/2 | . (39)
—(a2 —az)/2 24 29\ =(by —b3)/2
Since there are two independent conditions, az 3 are determined for given a; and b1 2 3;
. arba+by Mybyby—b
Gy = arby+03 M b1by—03 (40)

b 2 Mra 2
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o _dibatby  Mibiby—bs
T 2 a2

(41)

The original Yukawa matrix Y is obtained by the inverse “rotation” L~!. Since ¥ and Y have
both symmetric and antisymmetric components, they do not have definite symmetry.
The mass matrix (23) is

b?>  biby bib a+L /0 0 0
1+r2 1 194 104 2
me= - 3) biby b2 b +T’3 0 b —p|, 42)
2 \biby L BL 2 \0 —»:

where by = (by & b3)/2. The eigenvectors are {(b* x b~)*, b+, b~} and the singular values are

1+ 4 2
by + bs|? 2| b —b
(|b1|2+| o + b3l W, my= 2 | by — b3| .

43
2 Myy 2 “3)

l—i—r2
mip=1{0, 3
2

Since the v3 direction has a nonzero singular value, this is also an NH-like solution.
3.2. TM, mixing

Recent observations of the non-zero 03 stimulate studies of mixing matrices called TM; »
[99-105];

Urmi = UtemU23, Urtm2 = UtemUi3, (44)
where
I 5 0 10 0
Upm=| -+ L L |, Uyp=10 co sge”i? |,
_f f _Ji 0 —sgei® co
V6 3 V2
co 0 spe”i®
Us= o 1 o |, (45)
—sp€'® 0 co

with ¢p = cos 8, sg = sinf. The absolute values of sinf;3 are
|singy | =sin0/v/3, |sin63 2| =~/2sin6/+/3. (46)

The following formalism is similar to Ref. [62] that gives a detailed analysis of TM; and TM»
mixing in the minimal seesaw model. New points in this paper are that it is presented in an
arbitrary basis and the existence of non-trivial solutions.

The matrix m that predicts TM; has a Z, symmetry by the following Si;

-1 2 2

1
SimS =m, 51=1—2v1<z<>u{=g 2 2 —1]. 47)
2 -1 2
The eigensystem of S; are
Sivp=—vy, Siv23=+v23. (48)
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From this, the symmetry conditions (10) and (11) are
M3, a;*May 3™ = — det M b1 PMby 5N . (49)

By transformation to the TBM basis with Urgm = (v1, v2, v3), the mass matrix m with the
symmetry conditions is

| 1
m™M = Ufgym Urpm = (01, v2, 03)7 (ﬁa ®a’ +—b® bT> (v1.v2.v3),  (50)

1 M
L (@™ 0 0
— = 0 ) (ngivl)z &TNBM&TBM
1 0 agBMagBM (a;l"BM)Z
L[ @P? 0 0
S (P iR v
0 b°Mb] (b3°M)

This m is indeed symmetric under SITBM =diag(—1, 1, 1) in this basis. From this, 613 and m
(with a complex phase) are formally obtained as

|sin6 5" | = sinbrm, /+/3,

~TBM ~TBM TBM ;, TBM
2a,"" ay 2b, "' bs

My M,

tan 29TM1 = (&?BM)Z (b'{BM)Z (aTBM)Z (bgBM)Z (52)
>M1 ;Mz M, M
My 1M 2y L, tBM2
_ b,
" detM( o ( :
My - ~ ~ \2 2
= 2a1 —ay—a +—2b — b2 —b3)”. >
6detM( | —dp —az) 6M22( 1 —b2—D3) (53)

Hereafter mass matrices will be omitted because of their complexity, and we will only focus
on forms of Yukawa matrices and the mass singular values. There are four possibilities for the
trivial solutions of TMy;

S1Y =47 = Y = (x202 + x303, y2v2 + y303) or (X101, y1v1) (54)
a2J2ru3 bz;bj; ;a“l bl
=| & by or | —a1/2 —b1/2 |, (55)
as b3 —a1/2 —by/2
S1¥ =£Yo3 = ¥ = (x2v2 + X303, y191) or (x101, y202 + y303) (56)
a b242rb3 52;53 by
= —&1/2 by or as —b1/2 s (57
—ai/2 b3 ay  —by/2

where x12.3 and yj .3 are complex coefficients. Although §;Y = Y leads to m; = 0 and a NH
solution, mass singular values cannot be displayed without solving a complicated quadratic equa-
tion. A solution with S;Y = —Y is excluded because it is rank one.
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Solutions S Y =4Y 03 lead to finite m; and IH. The mass singular values are

13, My a+as|’

=|—Zp?], ={0, i a3%)} 58

mi My 2! my3 ={ det M (laa]” + 2 +lasz|")} (58)
My 3, ) by + b3 2 2

= — , ={0,|—| (b _— b . 59

or my = oS s mas { » (1b2|” + + 1b317)} (59)

Next, nontrivial solutions are investigated. In order for the two singular values (24) to be
non-zero, @ and b must have v| components. Thus we can set (vy,a) # 0 and (v{, b) #0. The
parameter » (14) can be determined as

VdetM bTBM
r=— YR (60)
My a®™M
By Eq. (49), az 3 can be determined from the other components. Explicitly,
e det M 2by — by — b:
G +ay+ay=—— > (b + by + bs). 1)
M22 2a1 —ay — as
. - det M 2by — by — b3
ar—a3=————-—————(by—D3). (62)
M22 2a1 —apy —as
The mass singular values are obtained as
1+ %
L+ri | orem2 | | TBMp2 7 |1, TBM 2
m; ={0, |——((|b +1b ) [——||b } (63)
O et e PN R
1
o 1472 |b1+b2+b3|2+|b2—b3|2] I+ 3 |2b1—b2—b3|2} .
Y .76%) 3 2 | My 6 '

3.3. TMy mixing and magic symmetry

Similarly, a mass matrix predicting TM; has a Z, symmetry generated by the following S»;

(1 -2 2
SsmSy=m, S=1-200v=-|-2 1 -2]. (65)
3\ 2 g

This symmetry is called the magic symmetry and the matrix m is called magic in which the row
sums and the column sums are all equal to a number « [40]. The eigenvalues of S, are

Svr=—-v3, HVI3=+v13. (66)
From this, the symmetry conditions are

M3, ay " Ma M = — det M b3 PMBTEM. (67)
In the TBM basis, the mass matrix m with these conditions is
TBM T
m = Urgm UtBM (68)

10
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' ( aTBM)Z 0 ;TBM Zl;FBM
=— 0 (ayBM)? 0
M, a"lfBMa3TBM 0 (&3TBM)2
| (b"ll“BM)Z TSM i b"ll“BM b”31“BM
* My TBMO TBM (b2 ™) TJSM 2 ' 09
2 \b;"Vbs 0 (b3°M)

This is indeed symmetric under SgBM =diag(1l, —1, 1) in this basis. From this, 613 and m, are
obtained as

| s1n6?TM2| = ﬁsin@TMz/«/g,

ZéTBM&;‘BM 2b”lFBMbgBM

M, M,

tan 26tm, = @y (b;l‘BM)z @PBM2 | (pTBM)2 (70)
Ml Mz Ml MZ
my= 2 TBM)2 4 (pTBM)2 _ M (@ +ay + az)* + —(bl + by + b3).
detM M 3detM 3Mx
(71

In the case of the magic symmetry, there are three types of solutions as well. The first four
trivial solutions are

SY =4Y = ¥ = (xv1 + x303, Y191 + y303) or (x202, y202) (72)
—ay —as —by —bs ap by

= 52 bz or L~11 b] . (73)
as b3 a b

SY =+Yo3 = ¥ = (x1v1 + X303, y202) or (x202, y1v1 + Y303) 74
—ar —as by ap —by—b3

= ar by | or | a; by . (75)

as by ai b3

The solutions with $;¥ = £V are phenomenologically excluded because they predict my =0 or
m1 3 = 0. In other words, ¥ cannot have magic (anti-)symmetry in this meaning. In the case of
$Y =+Y03, x1, y1 =0 (x3, y3 = 0) leads to a NH (IH) solution.

The mass singular values of the trivial solutions are

=10,

2 (|ay + lay + asl* + 1asl?) ' 3b?

det M } (76)

or ={

3a? ,M—22<|b2|2+ by 4 b3 1% + |b31%)} . (77)

ldetM

Furthermore, if we impose the condition a, = Fas (or by = £b3), m has the u — v symmetry
and the respective signs correspond to IH and NH.

Finally, the non-trivial solution (13) is analysed. Since m; cannot be zero, we can set
\/§&2TBM =3 ;a; #0and ﬁbgBM = ; bi # 0. From the expansions (26) and (27), the pa-
rameter r (14) is determined as

11
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/—d M bTBM
=Y “TEw (78)
M»n a,
From the symmetry conditions (67), a3 are determined. Explicitly,
d tM b;
Yt — iy — iy = — M iV oy ), (79)
M3, 3 ai
_detM 3 bi
a, —az= (b2 — b3), (80)
M3, 3
and the mass values are
1+72 .
r 2 2 2
! 1‘422 ’ 1 } ‘ 3 ’ M22 ‘ 2 ’
2 2 2 144 2
— (0 1+7r; (|2b1—b2—b3| +|b2—b3| ) rs ’Zih’ } (82)
U My 6 2 " M

If we further impose the condition by + b3 = 2b; (b = b3), m has the © — T symmetry, corre-
sponding to a NH (IH) solution.

4. Summary

In this paper, using a formula for the minimal type-I seesaw mechanism by LDL” (or gener-
alized Cholesky) decomposition, conditions of general Z;-invariance of the neutrino mass matrix
m are obtained in an arbitrary basis. The conditions are found to be (Mzza —-M 12b+) (Mzza —

M12b ) = —detM b+b for the Z;-symmetric and -antisymmetric part of a Yukawa ma-

trix Yli Y £TY);/ 2 = (a bi) and the right-handed neutrino mass matrix M;;. In other
words, the symmetrlc and antlsymmetrlc part of b; must be proportional to those of the quantity
a;i=a; — Mzz T12b;. They are equivalent to the condition that m is block diagonalized by eigenvec-
tors e; of the generator 7.

Since e; are orthogonal, we can analyze the eigensystem of mm for a Z,-symmetric m.
Two eigenvectors u1» of mm' coincide with any of those of 7', and the remaining one is a
vector (u; X uy)* orthogonal to them. Furthermore, if the Yukawa matrix does not have the
Z, symmetry, two nonzero neutrino masses are represented without a radical symbol. On the
other hand, in the case of (anti-)symmetric Y with 7Y = %Y, the solution of 7Y = (detT)Y
is phenomenologically rejected because the rank of m is one. In the other solution, the mass
singular values cannot be expressed without solving a complicated quadratic equation. However,
if the other Z, symmetry can be identified, the mass values can be concisely displayed.

These results are applied to three Z, symmetries, the 4 — t symmetry, the TM| mixing, and
the magic symmetry which predicts the TM, mixing. For the case of TM| 7, the symmetry condi-

tions become M222 ;G TBM g BM — _ detM bTBMbTBM and M222 alT%MagBM —detM blT%MbTBM

with components aiTBM and bl.TBM in the TBM basis v 2 3. In particular, for the TM» mixing,
the magic (anti-)symmetric Yukawa matrix with S»Y = £Y is phenomenologically excluded
because it predicts my =0 or m1, m3 =0.

12
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Appendix A. Understanding from the original raw formula

Let us consider the condition (12) without the LDLT decomposition. By rewriting @ to a,
(Mxa — Mxb}h) (Mya; — Miab}) = — det M b} by . (A.1)
By adding this equation with 7 and j interchanged,
Asym((a; M — biM12)a;j] = —Asym[(b; M11 — a; M12)b;], (A.2)

where Asym[x;y;] = xi+ y; X y}' is the antisymmetric part for 7.
They are identical to the conditions TmT T = m in the original raw formula. From Eq. (1),
the mass matrix m is written by

ar b
ey M-y =L e by | (CM2x YD —(M2xY2): —(Max ¥3).
det M by My xY1);, My xYy), (M;xY3),
(A.3)
mij = m[ai(ajMn —biMy) +bi(bjMi1 —a;Mi2)], (A.4)

where (M; xY j); = M;1Yj2 — M;>Y 1. Since the asymmetric parts of the two matrices with rank
one must cancel for T-invariant m, Eq. (A.2) is obtained as the condition. Also, by considering
these conditions from symmetries, the solution can be displayed by a complex orthogonal matrix
O. This point is discussed in the next section.

Appendix B. Understanding from complex orthogonal matrices

The solutions (13) and (15) can also be understood from orthgonal matrices. By defining
X=YVM —1, the mass matrix m is written only in X;

x:(/M”a /Lb), m=Xxx". (B.1)
det M Mry

In order for m to have T symmetry, X = (4, v) must satisfy the following transformation with a
complex orthogonal matrix O;

13
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TX =(Tu, Tv)=+XO. (B.2)

Since T2X = +TX 0 = X 0% = X holds, the matrix O satisfies O = 0~! = OT. In other
words, O is a symmetric orthogonal matrix.

In the case of det O = +1, only O = %13 is allowed since sinz = 0. This corresponds to T -
(anti)symmetric ¥ and Y in Eq. (15), respectively. On the other hand, in the case of det O = —1,

0= (cosz sinz ) ’ (B.3)

sinzg —cosz

and there is no restriction on the complex parameter z. The T -invariant condition becomes

cosz  sing
X0 = (u,v) <sinz —cosz> = (c;u + s;v, s;u —cv)=x(Tu, Tv)y=x£TX, (B4)
where ¢; = cos z, s, = sin z. From this,
1 1
u=—(=xTv+cv), Tu:iz(:tTv—i—cZU):i:st:—(cva:l:v). (B.5)
Sz Sz Sz

From u® = §(u £ Tu) and v* = § (v £ Tv), we obtain

M +1 1
2 gt oyt = Tt Ceot S, —tan 5} | —bt (B.6)
sz 2 27\ My

| M 1 , , 1
2 i =y = iv_ = {—tani, coti} —b . B.7)
det M Sz 2 2°\ My

Obviously, these coefficients satisfy

5
<

c, 1 XCZ:Flz
Sz Sz

-1, (B.8)

and it corresponds to the solution (13). Note that the sign & comes from the parity for 7.

An understanding of these solutions by matrices is as follows. As in the previous paper [96],
we consider a quantity X (1 &= Oo3). This extra o3 has an effect of exchanging b* and b~. For
example, in the case of XO =+4TX,

X(1+003)=X+TXoz3=2@", b )yWM-!, (B.9)
X(1-003)=X—TXo3=2@ ,bHvVM-!. (B.10)

Since Oo3 is written as
O3 = (cz _SZ> =c,1p—ioas,, (B.11)
Sz €
the term is expressed as 1 = Oo3 = 12(1 £ ¢;) F ioas;. From this,

1Fc,

Z

X(1+£ Oo03) =X[ls; Fioo(1 Fc)]=F X F Ooz)io,. (B.12)
For example, matrix elements of the upper sign become

14
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+ bW @ bV ( 01 é)
. _

1 M
= (bt 2, (B.13)
1—c; | My det M

and they correspond to Eqgs. (B.6) and (B.7).

The symmetry condition (12) satisfied by these solutions, i.e. M22 al+ a, = —|M| b+
obviously equivalent to X*X~7 =0 for X* = (X + T X)/2. This condltlon can be rewrltten as
1 1
X+X_T=—X(1j:0)(1:|:0)TXT=iZX(0—OT)XT=0, (B.14)
i

and it is a solution because 07 = O holds.

Furthermore, a matrix representation of the solution 7X = £X O is explored. In the case of
detO = +1, TX+ = £X+ holds and X is symmetric or antisymmetric under 7', as discussed
above. In the case of det O = —1, we consider the following solution by a complex orthogonal
matrix Q and o3 = diag(1, —1).

TX,=Xio3, X|=X10. (B.15)
This X; = (u™, v™) has T-symmetric and -antisymmetric vectors.” The T transformation for X 1
is

TX|=X1030=X0"030. (B.16)

Thus, if we define QTU3Q = 01, this is a symmetric orthogonal matrix with det O1 = —1 and
X satisfies the symmetry (B.2).

TX|=X|0;. (B.17)
Specifically,
_[(cosw —sinw T [ cos2w  —sin2w
Q_<sinw cosw ) = 01=0 U3Q_<—sin2w —cos2w) ' (B.18)

Indeed O; is symmetric, and it agrees with Eq. (B.3) by a suitable redefinition.
Since we can write X = X4 or X1 Q, the general Yukawa matrix for a T-invariant m can be
written by these matrices. In the case of X = X4, Yukawa matrices Y and Y are

Yo=XVM, Yi=YL '=Xx, VML, (B.19)

In other words, Y4 is symmetric or antisymmetric under 7, 7Y+ = £V, and it can be expanded
by eigenvectors of 7" with the same eigenvalues.
In the other case,

F=xvm=x0VM, vy=vL"'=x,0VML". (B.20)

Since X has the form X1 = (u—, v™"), it represents the solution (B.6) and (B.7).
From the diagonalization LML)y~ T =M~ (2), we finally obtain

m=YM'Y"=X:,00"xL,, (B.21)

2 The other solution X, = (ut, v™) can be reached by a permutation with det O = —1 from Xj.
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and m is T-invariant. Therefore, in order to predict T-invariant m, the Yukawa matrix ¥ must
be T-symmetric or antisymmetric, or has degrees of freedom complex orthogonal matrix Q
multiplied to T-covariant X that satisfies T X| = X;03.
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