Conditions of general Z_{2} symmetry and $\mathrm{TM}_{1,2}$ mixing for the minimal type-I seesaw mechanism in an arbitrary basis

Masaki J.S. Yang ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Department of Physics, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
${ }^{\text {b }}$ Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama, 240-8501, Japan

Received 26 April 2022; received in revised form 27 May 2022; accepted 25 June 2022
Available online 1 July 2022
Editor: Hong-Jian He

Abstract

In this paper, using a formula for the minimal type-I seesaw mechanism by $L D L^{T}$ (or generalized Cholesky) decomposition, conditions of general Z_{2}-invariance for the neutrino mass matrix m are obtained in an arbitrary basis. The conditions are found to be $\left(M_{22} a_{i}^{+}-M_{12} b_{i}^{+}\right)\left(M_{22} a_{j}^{-}-M_{12} b_{j}^{-}\right)=$ $-\operatorname{det} M b_{i}^{+} b_{j}^{-}$for the Z_{2}-symmetric and -antisymmetric part of a Yukawa matrix $Y_{i j}^{ \pm} \equiv(Y \pm T Y)_{i j} / 2 \equiv$ $\left(a_{j}^{ \pm}, b_{j}^{ \pm}\right)$and the right-handed neutrino mass matrix $M_{i j}$. In other words, the symmetric and antisymmetric part of b_{i} must be proportional to those of the quantity $\tilde{a}_{i} \equiv a_{i}-\frac{M_{12}}{M_{22}} b_{i}$. They are equivalent to the condition that m is block diagonalized by eigenvectors of the generator T. These results are applied to three Z_{2} symmetries, the $\mu-\tau$ symmetry, the TM_{1} mixing, and the magic symmetry which predicts the TM_{2} mixing. For the case of $\mathrm{TM}_{1,2}$, the symmetry conditions become $M_{22}^{2} \tilde{a}_{1}^{\mathrm{TBM}} \tilde{a}_{2}^{\mathrm{TBM}}=-\operatorname{det} M b_{1}^{\mathrm{TBM}} b_{2}^{\mathrm{TBM}}$ and $M_{22}^{2} \tilde{a}_{1,2}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}}=-\operatorname{det} M b_{1,2}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}}$ with components $\tilde{a}_{i}^{\mathrm{TBM}}$ and b_{i}^{TBM} in the TBM basis $\boldsymbol{v}_{1,2,3}$. In particular, for the TM_{2} mixing, the magic (anti-)symmetric Yukawa matrix with $S_{2} Y= \pm Y$ is phenomenologically excluded because it predicts $m_{2}=0$ or $m_{1}, m_{3}=0$. In the case where Yukawa is not (anti-)symmetric, the mass singular values are displayed without a root sign. © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

[^0]
1. Introduction

The structure of the lepton mixing matrix often involves a certain Z_{2} symmetry of the neutrino mass matrix m. The bi-maximal mixing [1] accompanies the $\mu-\tau$ symmetry [2-32], and the trimaximal mixing [33-39] does the magic symmetry [40]. The tri-bi-maximal (TBM) mixing [41], the combination of these two mixings is realized by the Klein symmetry $K_{4} \simeq Z_{2} \times Z_{2}$ [42-44].

In this paper, using a recently discovered seesaw formula by $L D L^{T}$ decomposition, we investigate conditions of a Z_{2} symmetry in the mass of light neutrinos m for the minimal type-I seesaw mechanism [45-68] in an arbitrary basis. Such formulation can be applied to other generalized $C P$ symmetries (GCP) [69-94] and seesaw mechanisms.

This paper is organized as follows. The next section gives a formula by $L D L^{T}$ decomposition for the minimal type-I seesaw mechanism and conditions of general Z_{2} symmetry in an arbitrary basis. In Sec. 3, we analyze eigensystems of the Z_{2}-symmetric m and its applications. The final section is devoted to a summary.

2. A formula for the minimal type-I seesaw model and conditions of general Z_{2} symmetry in an arbitrary basis

Here we review a formula by $L D L^{T}$ decomposition [95,96] in the minimal seesaw models [45-47]. The Yukawa matrix of neutrinos Y and the mass matrix of right-handed neutrinos M are defined as follows

$$
Y=\left(\begin{array}{ll}
a_{1} & b_{1} \tag{1}\\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right), \quad M=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right),
$$

where a_{i}, b_{i}, and $M_{i j}$ are general complex parameters. By setting the vacuum expectation value of the Higgs field to unity, the mass dimension of $Y_{i j}$ becomes one. This M can be diagonalized by $L D L^{T}$ (or generalized Cholesky) decomposition;

$$
\tilde{M}^{-1}=L^{-1} M^{-1}\left(L^{-1}\right)^{T}=\left(\begin{array}{cc}
\frac{M_{22}}{\operatorname{det} M} & 0 \tag{2}\\
0 & \frac{1}{M_{22}}
\end{array}\right) \equiv\left(\begin{array}{cc}
\frac{1}{\tilde{M}_{1}} & 0 \\
0 & \frac{1}{\tilde{M}_{2}}
\end{array}\right),
$$

where L is a lower unitriangular matrix that has all the diagonal entries equal to one

$$
L=\left(\begin{array}{cc}
1 & 0 \tag{3}\\
-\frac{M_{12}}{M_{22}} & 1
\end{array}\right), \quad L^{-1}=\left(\begin{array}{cc}
1 & 0 \\
\frac{M_{12}}{M_{22}} & 1
\end{array}\right) .
$$

By redefining the phase of the second right-handed neutrino $\nu_{R 2}$, we can choose a basis such that M_{22} is real-positive. A further phase transformation of the first right-handed neutrino $v_{R 1}^{\prime}=$ $e^{i \phi} \nu_{R 1}$ yields $\operatorname{det} M^{\prime}=e^{2 i \phi}\left(M_{11} M_{22}-M_{12}^{2}\right)$. Thus, the phase of $\operatorname{det} M$ can be absorbed and \tilde{M}^{-1} can be chosen as real-positive. If M is strongly hierarchical, the absolute values of these diagonal elements coincide with the first approximation of the physical singular values of M. In other words, it corresponds to an approximate spectral decomposition based on diagonalization by L.

Thus, a deformed Yukawa matrix \tilde{Y} defined as

$$
\tilde{Y} \equiv\left(\begin{array}{cc}
\tilde{\boldsymbol{a}} & \boldsymbol{b}
\end{array}\right) \equiv\left(\boldsymbol{a}-\boldsymbol{b} \frac{M_{12}}{M_{22}}, \boldsymbol{b}\right)=Y\left(\begin{array}{cc}
1 & 0 \tag{4}\\
-\frac{M_{12}}{M_{22}} & 1
\end{array}\right) \equiv Y L
$$

yields a formula for the neutrino mass matrix m in an arbitrary basis,

$$
\begin{align*}
m=\tilde{Y} \tilde{M}^{-1} \tilde{Y}^{T} & =\frac{M_{22}}{\operatorname{det} M}\left(\begin{array}{ccc}
\tilde{a}_{1}^{2} & \tilde{a}_{1} \tilde{a}_{2} & \tilde{a}_{1} \tilde{a}_{3} \\
\tilde{a}_{1} \tilde{a}_{2} & \tilde{a}_{2}^{2} & \tilde{a}_{2} \tilde{a}_{3} \\
\tilde{a}_{1} \tilde{a}_{3} & \tilde{a}_{2} \tilde{a}_{3} & \tilde{a}_{3}^{2}
\end{array}\right)+\frac{1}{M_{22}}\left(\begin{array}{ccc}
b_{1}^{2} & b_{1} b_{2} & b_{1} b_{3} \\
b_{1} b_{2} & b_{2}^{2} & b_{2} b_{3} \\
b_{1} b_{3} & b_{2} b_{3} & b_{3}^{2}
\end{array}\right) \tag{5}\\
& \equiv \frac{1}{\tilde{M}_{1}} \tilde{\boldsymbol{a}} \otimes \tilde{\boldsymbol{a}}^{T}+\frac{1}{\tilde{M}_{2}} \boldsymbol{b} \otimes \boldsymbol{b}^{T} . \tag{6}
\end{align*}
$$

Although it does not correspond to a physical basis for not hierarchical M, this formula is valid in any basis.

If the two three-dimensional vectors $\tilde{\boldsymbol{a}} \equiv\left(\tilde{a}_{i}\right)$ and $\boldsymbol{b} \equiv\left(b_{i}\right)$ are linearly independent, the rank of m becomes two and a massless mode appears. The eigenvector belonging to the zero mode of $m m^{\dagger}$ is proportional to $\tilde{\boldsymbol{a}}^{*} \times \boldsymbol{b}^{*}$ (the complex conjugation of the cross product).

In this paper, we investigate general conditions under which m has a Z_{2} symmetry, using the formula (6) and similar arguments as in the previous paper [96]. We obtain more general results than the previous analysis of $C P$-symmetry.

When a Lagrangian has a Z_{2} symmetry, m satisfies $T m T^{T}=m$ by a matrix T. Such Z_{2} symmetries include $\mu-\tau$ symmetry [2-4] and magic symmetry [40], which has been studied extensively. T is unitary because the symmetry does not change the kinetic term, and T is also Hermitian because $T^{2}=1$ leads to $T=T^{-1}=T^{\dagger}$. Then the three eigenvectors of T belonging to the eigenvalues ± 1 form an orthonormal basis. The vectors $\tilde{\boldsymbol{a}}$ and \boldsymbol{b} can be expanded by the eigenvectors as $\tilde{\boldsymbol{a}}=\tilde{\boldsymbol{a}}^{+}+\tilde{\boldsymbol{a}}^{-}$and $\boldsymbol{b}=\boldsymbol{b}^{+}+\boldsymbol{b}^{-}$. This means that the vectors are divided into symmetric and antisymmetric parts under the transformation;

$$
\begin{equation*}
T \tilde{\boldsymbol{a}}=\tilde{\boldsymbol{a}}^{+}-\tilde{\boldsymbol{a}}^{-}, \quad T \boldsymbol{b}=\boldsymbol{b}^{+}-\boldsymbol{b}^{-} . \tag{7}
\end{equation*}
$$

Note that either eigenspace is one-dimensional because the eigenvalues are $\{+1,+1,-1\}$ or $\{+1,-1,-1\}$ for a nontrivial T.

Since $\operatorname{det} T$ can be changed by redefinitions of fields, it does not lose generality by choosing $\operatorname{det} T=-1$. In this case, the normalized eigenvectors of T consist of \boldsymbol{e}^{-}belonging to the eigenvalue -1 and $\boldsymbol{e}^{+1}, \boldsymbol{e}^{+2}$ belonging to +1 . Using the vector \boldsymbol{e}^{-}, the generator can be written as $T=1-2 \boldsymbol{e}^{-} \otimes \boldsymbol{e}^{-\dagger}$. If $\boldsymbol{e}^{+1 \dagger} \boldsymbol{e}^{+2}=0$ holds, T is diagonalized by a unitary matrix $U=\left(\boldsymbol{e}^{-}, \boldsymbol{e}^{+1}, \boldsymbol{e}^{+2}\right)$;

$$
T^{\prime}=U^{\dagger} T U=\left(\boldsymbol{e}^{-}, \boldsymbol{e}^{+1}, \boldsymbol{e}^{+2}\right)^{\dagger}\left(1-2 \boldsymbol{e}^{-} \otimes \boldsymbol{e}^{-\dagger}\right)\left(\boldsymbol{e}^{-}, \boldsymbol{e}^{+1}, \boldsymbol{e}^{+2}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{8}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

In this basis, a Z_{2}-symmetric m must have the following form,

$$
m^{\prime}=U^{\dagger} m U^{*}=\left(\begin{array}{ccc}
m_{11}^{\prime} & 0 & 0 \tag{9}\\
0 & m_{22}^{\prime} & m_{23}^{\prime} \\
0 & m_{23}^{\prime} & m_{33}^{\prime}
\end{array}\right)
$$

The conditions for m to be such a block diagonal matrix are

$$
\begin{align*}
& \frac{1}{\tilde{M}_{1}}\left(\boldsymbol{e}^{-}, \tilde{\boldsymbol{a}}\right)\left(\boldsymbol{e}^{+1}, \tilde{\boldsymbol{a}}\right)=-\frac{1}{\tilde{M}_{2}}\left(\boldsymbol{e}^{-}, \boldsymbol{b}\right)\left(\boldsymbol{e}^{+1}, \boldsymbol{b}\right), \tag{10}\\
& \frac{1}{\tilde{M}_{1}}\left(\boldsymbol{e}^{-}, \tilde{\boldsymbol{a}}\right)\left(\boldsymbol{e}^{+2}, \tilde{\boldsymbol{a}}\right)=-\frac{1}{\tilde{M}_{2}}\left(\boldsymbol{e}^{-}, \boldsymbol{b}\right)\left(\boldsymbol{e}^{+2}, \boldsymbol{b}\right), \tag{11}
\end{align*}
$$

where $(\boldsymbol{u}, \boldsymbol{v}) \equiv \boldsymbol{u}^{\dagger} \boldsymbol{v}$ is the Hermitian inner product. By multiplying \boldsymbol{e}^{-}and $\left(\boldsymbol{e}^{+1,2}\right)^{T}$ from left and right of Eqs. (10) and (11) respectively, and adding two equations, conditions for m to have a Z_{2} symmetry by T are summarized as

$$
\begin{equation*}
\frac{1}{\tilde{M}_{1}} \tilde{\boldsymbol{a}}^{-} \otimes \tilde{\boldsymbol{a}}^{+T}=-\frac{1}{\tilde{M}_{2}} \boldsymbol{b}^{-} \otimes \boldsymbol{b}^{+T}, \quad M_{22}^{2} \tilde{a}_{i}^{+} \tilde{a}_{j}^{-}=-\operatorname{det} M b_{i}^{+} b_{j}^{-} \tag{12}
\end{equation*}
$$

Thus, $\tilde{\boldsymbol{a}}^{+}$and $\tilde{\boldsymbol{a}}^{-}$are proportional to \boldsymbol{b}^{+}and \boldsymbol{b}^{-}respectively and their coefficients are determined by Eq. (12). Otherwise, two of the four components will be zero vectors. This kind of alignment also seems to be necessary for naturalness in the seesaw mechanism [97].

If $\tilde{a}_{i}^{ \pm}$and $b_{i}^{ \pm} \neq 0_{i}$ holds, we can find solutions to $\tilde{\boldsymbol{a}}^{ \pm}$for given $\boldsymbol{b}^{ \pm}$;

$$
\begin{equation*}
\left(M_{22} \tilde{\boldsymbol{a}}^{+}, M_{22} \tilde{\boldsymbol{a}}^{-}\right)=\left(r \sqrt{\operatorname{det} M} \boldsymbol{b}^{+},-\frac{1}{r} \sqrt{\operatorname{det} M} \boldsymbol{b}^{-}\right) \tag{13}
\end{equation*}
$$

Here, r is a complex constant defined by the non-zero $\tilde{a}_{i}^{ \pm}$and $b_{j}^{ \pm}$,

$$
\begin{equation*}
r \equiv \frac{M_{22}}{\sqrt{\operatorname{det} M}} \frac{\tilde{a}_{j}^{+}}{b_{j}^{+}}=-\frac{\sqrt{\operatorname{det} M}}{M_{22}} \frac{b_{i}^{-}}{\tilde{a}_{i}^{-}} \tag{14}
\end{equation*}
$$

At first glance, the solution (13) seems to have a degree of freedom of sign \pm. Indeed, it is correct that some \tilde{a}_{i} and $-\tilde{a}_{i}$ are solutions to each other. However, they are treated as independent solutions because all of $b_{i}^{ \pm}$and one of $\tilde{a}_{i}^{ \pm}$are required as input parameters to determine the solution uniquely. This fact is also manifest in representations (B.6) and (B.7) by orthogonal matrices, as seen in the Appendix.

There are four trivial cases with each of $\tilde{\boldsymbol{a}}^{ \pm}$and $\boldsymbol{b}^{ \pm}$are $\mathbf{0}$, in which the denominator of r or $1 / r$ can not be defined and $\tilde{a}_{i}^{ \pm}$need not be proportional to $b_{i}^{ \pm}$. In such cases, \tilde{Y} itself has definite symmetry,

$$
\begin{equation*}
T \tilde{Y}=\left\{\tilde{Y}, \tilde{Y} \sigma_{3},-\tilde{Y} \sigma_{3},-\tilde{Y}\right\} \tag{15}
\end{equation*}
$$

where $\sigma_{3} \equiv \operatorname{diag}(1,-1)$. For example, if \tilde{Y} is T-symmetric with $\tilde{a}_{i}^{-}=b_{i}^{-}=0$, we obtain expressions for Y and a from Eq. (4);

$$
\begin{equation*}
a_{i}^{+}=\tilde{a}_{i}^{+}+\frac{M_{12}}{M_{22}} b_{i}^{+}, \quad a_{i}^{-}=0 \tag{16}
\end{equation*}
$$

That is, $T Y=Y$ holds and the original Y also has the T symmetry. Although the same is true for antisymmetric \tilde{Y}, the other two situations are somewhat different. For example, the case of $T \tilde{Y}=\tilde{Y} \sigma_{3}$, i.e. $\tilde{a}_{i}^{-}=b_{i}^{+}=0$, leads to

$$
\begin{equation*}
a_{i}^{-}=\frac{M_{12}}{M_{22}} b_{i}^{-}, \quad a_{i}^{+}=\tilde{a}_{i}^{+} \tag{17}
\end{equation*}
$$

Then, while the antisymmetric components of a_{i} and b_{i} must be proportional, a_{i} can have independent symmetric components. These different behavior influences representations of mass values in the analysis of eigensystems.

3. Analysis of eigensystem and its application

Due to the Z_{2} symmetry, the mass values and eigenvectors can be formally determined for each solution (13) and (15). If Eq. (12), i.e. $M_{22}^{2} \tilde{a}_{i}^{+} \tilde{a}_{j}^{-}=-\operatorname{det} M b_{i}^{+} b_{j}^{-}$is satisfied, the mass matrix m becomes

$$
\begin{equation*}
m=\frac{1}{\tilde{M}_{1}}\left(\tilde{\boldsymbol{a}}^{+} \otimes \tilde{\boldsymbol{a}}^{+T}+\tilde{\boldsymbol{a}}^{-} \otimes \tilde{\boldsymbol{a}}^{-T}\right)+\frac{1}{\tilde{M}_{2}}\left(\boldsymbol{b}^{+} \otimes \boldsymbol{b}^{+T}+\boldsymbol{b}^{-} \otimes \boldsymbol{b}^{-T}\right) . \tag{18}
\end{equation*}
$$

Since the projective components $\tilde{\boldsymbol{a}}^{ \pm}$and \boldsymbol{b}^{\mp} are orthogonal to each other, the sum of respective projections must be rank one unless $\tilde{\boldsymbol{a}}^{ \pm}$and $\boldsymbol{b}^{ \pm}$(or \boldsymbol{b}^{\mp}) are zero vectors. Thus, each of projections must be proportional to the others, as $\tilde{\boldsymbol{a}}^{ \pm} \propto \boldsymbol{b}^{ \pm}$. The behavior of the solutions can be classified into the following three cases.
a. $T \tilde{Y}= \pm Y \sigma_{3} \quad$ First, if each of $\tilde{\boldsymbol{a}}^{\mp}$ and $\boldsymbol{b}^{ \pm}$is $\mathbf{0}$ in the trivial solutions (15), the mass matrix is

$$
\begin{equation*}
m=\frac{1}{\tilde{M}_{1}} \tilde{\boldsymbol{a}}^{ \pm} \otimes \tilde{\boldsymbol{a}}^{ \pm T}+\frac{1}{\tilde{M}_{2}} \boldsymbol{b}^{\mp} \otimes \boldsymbol{b}^{\mp T} \tag{19}
\end{equation*}
$$

The Hermitian matrix $m m^{\dagger}$ becomes

$$
\begin{equation*}
m m^{\dagger}=\left|\frac{\tilde{\boldsymbol{a}}^{ \pm}}{\tilde{M}_{1}}\right|^{2} \tilde{\boldsymbol{a}}^{ \pm} \otimes \tilde{\boldsymbol{a}}^{ \pm \dagger}+\left|\frac{\boldsymbol{b}^{\mp}}{\tilde{M}_{2}}\right|^{2} \boldsymbol{b}^{\mp} \otimes \boldsymbol{b}^{\mp \dagger} \tag{20}
\end{equation*}
$$

where $|\boldsymbol{v}|^{2} \equiv \sum_{i=1}^{3} v_{i}^{*} v_{i}$.
The eigenvectors of $m m^{\dagger}$ are $\left\{\left(\tilde{\boldsymbol{a}}^{ \pm} \times \boldsymbol{b}^{\mp}\right)^{*}, \tilde{\boldsymbol{a}}^{ \pm}, \boldsymbol{b}^{\mp}\right\}$, and the corresponding mass singular values m_{i} are

$$
\begin{equation*}
m_{i}=\left\{0, \frac{\left|\tilde{\boldsymbol{a}}^{ \pm}\right|^{2}}{\left|\tilde{M}_{1}\right|}, \frac{\left|\boldsymbol{b}^{\mp}\right|^{2}}{\left|\tilde{M}_{2}\right|}\right\} \tag{21}
\end{equation*}
$$

In this situation, a matrix $S=1-2 \boldsymbol{v}^{+} \otimes \boldsymbol{v}^{+T}$ defined by the remaining $\boldsymbol{v}^{+}=\tilde{\boldsymbol{a}}^{+}$or \boldsymbol{b}^{+}generates another Z_{2} symmetry of m [42].
b. $T \tilde{Y}= \pm \tilde{Y} \quad$ When \tilde{Y} and Y are T-symmetric or antisymmetric in Eq. (15), the mass matrix is

$$
\begin{equation*}
m=\frac{1}{\tilde{M}_{1}} \tilde{\boldsymbol{a}}^{ \pm} \otimes \tilde{\boldsymbol{a}}^{ \pm T}+\frac{1}{\tilde{M}_{2}} \boldsymbol{b}^{ \pm} \otimes \boldsymbol{b}^{ \pm T} \tag{22}
\end{equation*}
$$

Since the eigenvalues of nontrivial T are $(+1,+1,-1)$ or $(-1,-1,+1)$, the solution of $T Y=$ ($\operatorname{det} T) Y$ is phenomenologically excluded because the rank of m is one. In the other solution, although the eigenvectors of $m m^{\dagger}$ are $\left\{\left(\tilde{\boldsymbol{a}}^{ \pm} \times \boldsymbol{b}^{ \pm}\right)^{*}, \tilde{\boldsymbol{a}}^{ \pm}, \boldsymbol{b}^{ \pm}\right\}$, there is no guarantee that the two vectors $\tilde{\boldsymbol{a}}^{ \pm}$and $\boldsymbol{b}^{ \pm}$are orthogonal. Thus the general representation of mass singular values becomes complicated expressions as displayed in Ref. [98]. This is because that $\tilde{\boldsymbol{a}}$ and \boldsymbol{b} belong to the same eigenvalue of T. If we can specify another Z_{2} symmetry by $S, \tilde{\boldsymbol{a}}$ and \boldsymbol{b} can be decomposed into projections with different eigenvalues of S, so that mass singular values can be determined as in the previous case.
c. Nontrivial solutions In other general situations, by substituting the solution (13) into Eq. (18), the mass matrix m is

$$
\begin{equation*}
m=\frac{1}{M_{22}}\left[\left(1+r^{2}\right) \boldsymbol{b}^{+} \otimes \boldsymbol{b}^{+T}+\left(1+\frac{1}{r^{2}}\right) \boldsymbol{b}^{-} \otimes \boldsymbol{b}^{-T}\right] \tag{23}
\end{equation*}
$$

The eigenvectors of $m m^{\dagger}$ are $\left\{\left(\boldsymbol{b}^{+} \times \boldsymbol{b}^{-}\right)^{*}, \boldsymbol{b}^{+}, \boldsymbol{b}^{-}\right\}$and the mass singular values are

$$
\begin{equation*}
m_{i}=\left\{0,\left|\frac{1+r^{2}}{M_{22}}\right|\left|\boldsymbol{b}^{+}\right|^{2},\left|\frac{1+\frac{1}{r^{2}}}{M_{22}}\right|\left|\boldsymbol{b}^{-}\right|^{2}\right\} . \tag{24}
\end{equation*}
$$

There is another Z_{2} symmetry generated by either $S^{ \pm}=1-2 \boldsymbol{b}^{ \pm} \otimes \boldsymbol{b}^{ \pm T}$. In the following subsections, the results obtained above will be applied to three specific symmetries, the $\mu-\tau$ symmetry, the TM_{1} mixing, and the TM_{2} mixing predicted from the magic symmetry.

3.1. Bi-maximal mixing and $\mu-\tau$ symmetry

Although the exact $\mu-\tau$ symmetry [2] that predicts $\theta_{13}=0$ has now been excluded, let us consider this as a simple example for practice. First, the basis of the TBM mixing is given by

$$
\begin{equation*}
\boldsymbol{v}_{1}=\frac{1}{\sqrt{6}}(2,-1,-1)^{T}, \quad \boldsymbol{v}_{2}=\frac{1}{\sqrt{3}}(1,1,1)^{T}, \quad \boldsymbol{v}_{3}=\frac{1}{\sqrt{2}}(0,1,-1)^{T} . \tag{25}
\end{equation*}
$$

Expanding the vectors $\tilde{\boldsymbol{a}}$ and \boldsymbol{b} in the TBM basis yields

$$
\begin{align*}
\tilde{\boldsymbol{a}} & =\boldsymbol{v}_{1}\left(\boldsymbol{v}_{1}, \tilde{\boldsymbol{a}}\right)+\boldsymbol{v}_{2}\left(\boldsymbol{v}_{2}, \tilde{\boldsymbol{a}}\right)+\boldsymbol{v}_{3}\left(\boldsymbol{v}_{3}, \tilde{\boldsymbol{a}}\right) \equiv \sum_{i=1}^{3} \tilde{a}_{i}^{\mathrm{TBM}} \boldsymbol{v}_{i}, \tag{26}\\
\boldsymbol{b} & =\boldsymbol{v}_{1}\left(\boldsymbol{v}_{1}, \boldsymbol{b}\right)+\boldsymbol{v}_{2}\left(\boldsymbol{v}_{2}, \boldsymbol{b}\right)+\boldsymbol{v}_{3}\left(\boldsymbol{v}_{3}, \boldsymbol{b}\right) \equiv \sum_{i=1}^{3} b_{i}^{\mathrm{TBM}} \boldsymbol{v}_{i} \tag{27}
\end{align*}
$$

where $\tilde{a}_{i}^{\text {TBM }}$ and $b_{i}^{\text {TBM }}$ are components in this basis.
The $\mu-\tau$ symmetry is defined as ${ }^{1}$

$$
T m T=m, \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{28}\\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=1-2 \boldsymbol{v}_{3} \otimes \boldsymbol{v}_{3}^{T}
$$

The eigensystem of T is

$$
\begin{equation*}
T \boldsymbol{v}_{3}=-\boldsymbol{v}_{3}, \quad T \boldsymbol{v}_{1,2}=+\boldsymbol{v}_{1,2} . \tag{29}
\end{equation*}
$$

Since the third eigenvector of $m m^{\dagger}$ is fixed to v_{3}, m_{3} can be formally determined as

$$
\begin{equation*}
m_{3}=\frac{\left(\tilde{a}_{3}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{1}}+\frac{\left(b_{3}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{2}}=\frac{M_{22}}{\operatorname{det} M} \frac{\left(\tilde{a}_{2}-\tilde{a}_{3}\right)^{2}}{2}+\frac{1}{M_{22}} \frac{\left(b_{2}-b_{3}\right)^{2}}{2} . \tag{30}
\end{equation*}
$$

This expression generally includes complex phases. However, the absolute value $\left|m_{3}\right|$ must coincide with the singular value because \boldsymbol{v}_{3} belongs to one-dimensional eigenspace of T (28).

The symmetry condition (12) becomes

$$
\begin{equation*}
M_{22}^{2} \tilde{a}_{3}^{\mathrm{TBM}}\left(\tilde{a}_{1}^{\mathrm{TBM}} \boldsymbol{v}_{1}+\tilde{a}_{2}^{\mathrm{TBM}} \boldsymbol{v}_{2}\right)=-\operatorname{det} M b_{3}^{\mathrm{TBM}}\left(b_{1}^{\mathrm{TBM}} \boldsymbol{v}_{1}+b_{2}^{\mathrm{TBM}} \boldsymbol{v}_{2}\right) . \tag{31}
\end{equation*}
$$

Since $\boldsymbol{v}_{1,2}$ are orthogonal, the equal sign holds for each component;

$$
\begin{equation*}
M_{22}^{2} \tilde{a}_{1}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}}=-\operatorname{det} M b_{1}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}}, \quad M_{22}^{2} \tilde{a}_{2}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}}=-\operatorname{det} M b_{2}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}} \tag{32}
\end{equation*}
$$

This is equivalent to the block diagonalization conditions (10) and (11) in the TBM basis.
Let us examine the three types of solutions analyzed above. For the trivial solution (19) with $T \tilde{Y}= \pm \tilde{Y} \sigma_{3}$, the deformed Yukawa \tilde{Y} is

[^1]\[

\tilde{Y}=\left($$
\begin{array}{cc}
\tilde{a}_{1} & 0 \tag{33}\\
\tilde{a}_{2} & b_{2} \\
\tilde{a}_{2} & -b_{2}
\end{array}
$$\right) \quad or\left($$
\begin{array}{cc}
0 & b_{1} \\
\tilde{a}_{2} & b_{2} \\
-\tilde{a}_{2} & b_{2}
\end{array}
$$\right) .
\]

The mass matrix m is

$$
m=\frac{M_{22}}{\operatorname{det} M}\left(\begin{array}{ccc}
\tilde{a}_{1}^{2} & \tilde{a}_{1} \tilde{a}_{2} & \tilde{a}_{1} \tilde{a}_{2} \tag{34}\\
\tilde{a}_{1} \tilde{a}_{2} & \tilde{a}_{2}^{2} & \tilde{a}_{2}^{2} \\
\tilde{a}_{1} \tilde{a}_{2} & \tilde{a}_{2}^{2} & \tilde{a}_{2}^{2}
\end{array}\right)+\frac{1}{M_{22}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & b_{2}^{2} & -b_{2}^{2} \\
0 & -b_{2}^{2} & b_{2}^{2}
\end{array}\right) \text { or }\left(\tilde{a}_{i} \leftrightarrow b_{i}\right) .
$$

The eigenvectors are $\left\{\left(\tilde{\boldsymbol{a}}^{ \pm} \times \boldsymbol{b}^{\mp}\right)^{*}, \tilde{\boldsymbol{a}}^{ \pm}, \boldsymbol{b}^{\mp}\right\}$ and corresponding singular values m_{i} are

$$
\begin{equation*}
m_{1,2}=\left\{0, \frac{\left|\tilde{a}_{1}\right|^{2}+2\left|\tilde{a}_{2}\right|^{2}}{\left|\tilde{M}_{1}\right|}\right\}, \quad m_{3}=\left|\frac{2 b_{2}^{2}}{\tilde{M}_{2}}\right|, \tag{35}
\end{equation*}
$$

or

$$
\begin{equation*}
m_{1,2}=\left\{0, \frac{\left|b_{1}\right|^{2}+2\left|b_{2}\right|^{2}}{\left|\tilde{M}_{2}\right|}\right\}, \quad m_{3}=\left|\frac{2 \tilde{a}_{2}^{2}}{\tilde{M}_{1}}\right| . \tag{36}
\end{equation*}
$$

Since a finite m_{3} is predicted, this is a normal hierarchy (NH) like solution with $\theta_{13}=0$. Such Yukawa matrices would be easily realized by flavons with vacuum expectation values $\left\langle\phi_{1}\right\rangle \propto$ $(-2,1,1),\left\langle\phi_{2}\right\rangle \propto(1,1,1),\left\langle\phi_{3}\right\rangle \propto(0,1,-1)[62]$.

Second, for the other trivial solution (22) in which $\tilde{\boldsymbol{a}}$ and \boldsymbol{b} have the same eigenvalues, Y and \tilde{Y} itself has $\mu-\tau$ (anti-)symmetry $T Y= \pm Y$.

$$
\tilde{Y}=\left(\begin{array}{ll}
\tilde{a}_{1} & b_{1} \tag{37}\\
\tilde{a}_{2} & b_{2} \\
\tilde{a}_{2} & b_{2}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
0 & 0 \\
\tilde{a}_{2} & b_{2} \\
-\tilde{a}_{2} & -b_{2}
\end{array}\right) .
$$

The latter is excluded because Y is also rank one. Since the eigenvector $\boldsymbol{v}_{3}=\frac{1}{\sqrt{2}}(0,1,-1)$ belongs to the zero eigenvalue, this solution is inverted hierarchy (IH) like. In this case, representations of two mass values would be cumbersome. However, it can be simpler by combining it with another Z_{2} symmetry that accompanies $\mathrm{TM}_{1,2}$ mixing described in the next subsections.

Finally, the non-trivial solutions are explored. A solution with $\tilde{a}_{1}=b_{1}=0$ has no phenomenological interest because the first row and column of m are the zero vector. Thus, \tilde{a}_{1} and b_{1} are set to have nonzero values and the parameter r (14) is determined to be $r_{3}=\frac{M_{22}}{\sqrt{\operatorname{det} M}} \frac{\tilde{a}_{1}}{b_{1}}$. From Eq. (13) (or Eq. (32)) the following constraints are obtained; The symmetric part is

$$
\tilde{\boldsymbol{a}}^{+}=\left(\begin{array}{c}
\tilde{a}_{1} \tag{38}\\
\left(\tilde{a}_{2}+\tilde{a}_{3}\right) / 2 \\
\left(\tilde{a}_{2}+\tilde{a}_{3}\right) / 2
\end{array}\right)=\frac{\tilde{a}_{1}}{b_{1}} \boldsymbol{b}^{+}=\frac{\tilde{a}_{1}}{b_{1}}\left(\begin{array}{c}
b_{1} \\
\left(b_{2}+b_{3}\right) / 2 \\
\left(b_{2}+b_{3}\right) / 2
\end{array}\right),
$$

and the antisymmetric part is

$$
\tilde{\boldsymbol{a}}^{-}=\left(\begin{array}{c}
0 \tag{39}\\
\left(\tilde{a}_{2}-\tilde{a}_{3}\right) / 2 \\
-\left(\tilde{a}_{2}-\tilde{a}_{3}\right) / 2
\end{array}\right)=-\frac{\tilde{M}_{1}}{\tilde{M}_{2}} \frac{b_{1}}{\tilde{a}_{1}} \boldsymbol{b}^{-}=-\frac{\tilde{M}_{1}}{\tilde{M}_{2}} \frac{b_{1}}{\tilde{a}_{1}}\left(\begin{array}{c}
0 \\
\left(b_{2}-b_{3}\right) / 2 \\
-\left(b_{2}-b_{3}\right) / 2
\end{array}\right) .
$$

Since there are two independent conditions, $\tilde{a}_{2,3}$ are determined for given \tilde{a}_{1} and $b_{1,2,3}$;

$$
\begin{equation*}
\tilde{a}_{2}=\frac{\tilde{a}_{1}}{b_{1}} \frac{b_{2}+b_{3}}{2}-\frac{\tilde{M}_{1}}{\tilde{M}_{2}} \frac{b_{1}}{\tilde{a}_{1}} \frac{b_{2}-b_{3}}{2} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{a}_{3}=\frac{\tilde{a}_{1}}{b_{1}} \frac{b_{2}+b_{3}}{2}+\frac{\tilde{M}_{1}}{\tilde{M}_{2}} \frac{b_{1}}{\tilde{a}_{1}} \frac{b_{2}-b_{3}}{2} . \tag{41}
\end{equation*}
$$

The original Yukawa matrix Y is obtained by the inverse "rotation" L^{-1}. Since Y and \tilde{Y} have both symmetric and antisymmetric components, they do not have definite symmetry.

The mass matrix (23) is

$$
m=\frac{\left(1+r_{3}^{2}\right)}{M_{22}}\left(\begin{array}{ccc}
b_{1}^{2} & b_{1} b_{+} & b_{1} b_{+} \tag{42}\\
b_{1} b_{+} & b_{+}^{2} & b_{+}^{2} \\
b_{1} b_{+} & b_{+}^{2} & b_{+}^{2}
\end{array}\right)+\frac{\left(1+\frac{1}{r_{3}^{2}}\right)}{M_{22}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & b_{-}^{2} & -b_{-}^{2} \\
0 & -b_{-}^{2} & b_{-}^{2}
\end{array}\right),
$$

where $b_{ \pm} \equiv\left(b_{2} \pm b_{3}\right) / 2$. The eigenvectors are $\left\{\left(\boldsymbol{b}^{+} \times \boldsymbol{b}^{-}\right)^{*}, \boldsymbol{b}^{+}, \boldsymbol{b}^{-}\right\}$and the singular values are

$$
\begin{equation*}
m_{1,2}=\left\{0,\left|\frac{1+r_{3}^{2}}{M_{22}}\right|\left(\left|b_{1}\right|^{2}+\frac{\left|b_{2}+b_{3}\right|^{2}}{2}\right)\right\}, \quad m_{3}=\left|\frac{1+\frac{1}{r_{3}^{2}}}{M_{22}}\right| \frac{\left|b_{2}-b_{3}\right|^{2}}{2} . \tag{43}
\end{equation*}
$$

Since the v_{3} direction has a nonzero singular value, this is also an NH-like solution.

3.2. $T M_{1}$ mixing

Recent observations of the non-zero θ_{13} stimulate studies of mixing matrices called $\mathrm{TM}_{1,2}$ [99-105];

$$
\begin{equation*}
U_{\mathrm{TM} 1}=U_{\mathrm{TBM}} U_{23}, \quad U_{\mathrm{TM} 2}=U_{\mathrm{TBM}} U_{13}, \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
& U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right), \quad U_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\theta} & s_{\theta} e^{-i \phi} \\
0 & -s_{\theta} e^{i \phi} & c_{\theta}
\end{array}\right), \\
& U_{13}=\left(\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} e^{-i \phi} \\
0 & 1 & 0 \\
-s_{\theta} e^{i \phi} & 0 & c_{\theta}
\end{array}\right), \tag{45}
\end{align*}
$$

with $c_{\theta} \equiv \cos \theta, s_{\theta} \equiv \sin \theta$. The absolute values of $\sin \theta_{13}$ are

$$
\begin{equation*}
\left|\sin \theta_{13}^{\mathrm{TM}_{1}}\right|=\sin \theta / \sqrt{3}, \quad\left|\sin \theta_{13}^{\mathrm{TM}_{2}}\right|=\sqrt{2} \sin \theta / \sqrt{3} \tag{46}
\end{equation*}
$$

The following formalism is similar to Ref. [62] that gives a detailed analysis of TM_{1} and TM_{2} mixing in the minimal seesaw model. New points in this paper are that it is presented in an arbitrary basis and the existence of non-trivial solutions.

The matrix m that predicts TM_{1} has a Z_{2} symmetry by the following S_{1};

$$
S_{1} m S_{1}=m, \quad S_{1}=1-2 \boldsymbol{v}_{1} \otimes \boldsymbol{v}_{1}^{T}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \tag{47}\\
2 & 2 & -1 \\
2 & -1 & 2
\end{array}\right) .
$$

The eigensystem of S_{1} are

$$
\begin{equation*}
S_{1} \boldsymbol{v}_{1}=-\boldsymbol{v}_{1}, \quad S_{1} \boldsymbol{v}_{2,3}=+\boldsymbol{v}_{2,3} \tag{48}
\end{equation*}
$$

From this, the symmetry conditions (10) and (11) are

$$
\begin{equation*}
M_{22}^{2} \tilde{a}_{1}^{\mathrm{TBM}} \tilde{a}_{2,3}^{\mathrm{TBM}}=-\operatorname{det} M b_{1}^{\mathrm{TBM}} b_{2,3}^{\mathrm{TBM}} . \tag{49}
\end{equation*}
$$

By transformation to the TBM basis with $U_{\mathrm{TBM}}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$, the mass matrix m with the symmetry conditions is

$$
\begin{align*}
m^{\mathrm{TBM}} \equiv & U_{\mathrm{TBM}}^{T} m U_{\mathrm{TBM}}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)^{T}\left(\frac{1}{\tilde{M}_{1}} \tilde{\boldsymbol{a}} \otimes \tilde{\boldsymbol{a}}^{T}+\frac{1}{\tilde{M}_{2}} \boldsymbol{b} \otimes \boldsymbol{b}^{T}\right)\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right) \tag{50}\\
= & \frac{1}{\tilde{M}_{1}}\left(\begin{array}{ccc}
\left(\tilde{a}_{1}^{\mathrm{TBM}}\right)^{2} & 0 & 0 \\
0 & \left(\tilde{a}_{2}^{\mathrm{TBM}}\right)^{2} & \tilde{a}_{2}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}} \\
0 & \tilde{a}_{2}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}} & \left(\tilde{a}_{3}^{\mathrm{TBM}}\right)^{2}
\end{array}\right) \\
& +\frac{1}{\tilde{M}_{2}}\left(\begin{array}{ccc}
\left(b_{1}^{\mathrm{TBM}}\right)^{2} & 0 & 0 \\
0 & \left(b_{2}^{\mathrm{TBM}}\right)^{2} & b_{2}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}} \\
0 & b_{2}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}} & \left(b_{3}^{\mathrm{TBM}}\right)^{2}
\end{array}\right) . \tag{51}
\end{align*}
$$

This m is indeed symmetric under $S_{1}^{\mathrm{TBM}}=\operatorname{diag}(-1,1,1)$ in this basis. From this, θ_{13} and m_{1} (with a complex phase) are formally obtained as

$$
\begin{align*}
& \left|\sin \theta_{13}^{\mathrm{TM}_{1}}\right|=\sin \theta_{\mathrm{TM}_{1}} / \sqrt{3}, \\
& \tan 2 \theta_{\mathrm{TM}_{1}}=\left|\frac{\frac{2 \tilde{a}_{2}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}}}{\tilde{M}_{1}}+\frac{2 b_{2}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}}}{\tilde{\tilde{M}}_{2}}}{\left|\frac{\left(\tilde{a}_{3}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{1}}+\frac{\left(b_{3}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{2}}\right|-\left|\frac{\left(\tilde{a}_{2}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{1}}+\frac{\left(b_{2}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{2}}\right|}\right|, \tag{52}\\
& m_{1}=\frac{M_{22}}{\operatorname{det} M}\left(\tilde{a}_{1}^{\mathrm{TBM}}\right)^{2}+\frac{1}{M_{22}}\left(b_{1}^{\mathrm{TBM}}\right)^{2} \\
& \quad=\frac{M_{22}}{6 \operatorname{det} M}\left(\tilde{2} a_{1}-\tilde{a}_{2}-\tilde{a}_{3}\right)^{2}+\frac{1}{6 M_{22}}\left(2 b_{1}-b_{2}-b_{3}\right)^{2} . \tag{53}
\end{align*}
$$

Hereafter mass matrices will be omitted because of their complexity, and we will only focus on forms of Yukawa matrices and the mass singular values. There are four possibilities for the trivial solutions of TM_{1};

$$
\begin{align*}
S_{1} \tilde{Y}= \pm \tilde{Y} \Rightarrow \tilde{Y} & =\left(x_{2} \boldsymbol{v}_{2}+x_{3} \boldsymbol{v}_{3}, y_{2} \boldsymbol{v}_{2}+y_{3} \boldsymbol{v}_{3}\right) \text { or }\left(x_{1} \boldsymbol{v}_{1}, y_{1} \boldsymbol{v}_{1}\right) \tag{54}\\
& =\left(\begin{array}{cc}
\frac{\tilde{a}_{2}+\tilde{a}_{3}}{2} & \frac{b_{2}+b_{3}}{2} \\
\tilde{a}_{2} & b_{2} \\
\tilde{a}_{3} & b_{3}
\end{array}\right) \text { or }\left(\begin{array}{cc}
\tilde{a}_{1} & b_{1} \\
-\tilde{a}_{1} / 2 & -b_{1} / 2 \\
-\tilde{a}_{1} / 2 & -b_{1} / 2
\end{array}\right), \tag{55}\\
S_{1} \tilde{Y}= \pm \tilde{Y} \sigma_{3} \Rightarrow \tilde{Y} & =\left(x_{2} \boldsymbol{v}_{2}+x_{3} \boldsymbol{v}_{3}, y_{1} \boldsymbol{v}_{1}\right) \text { or }\left(x_{1} \boldsymbol{v}_{1}, y_{2} \boldsymbol{v}_{2}+y_{3} \boldsymbol{v}_{3}\right) \tag{56}\\
& =\left(\begin{array}{cc}
\tilde{a}_{1} & \frac{b_{2}+b_{3}}{2} \\
-\tilde{a}_{1} / 2 & b_{2} \\
-\tilde{a}_{1} / 2 & b_{3}
\end{array}\right) \text { or }\left(\begin{array}{cc}
\frac{\tilde{a}_{2}+\tilde{a}_{3}}{2} & b_{1} \\
\tilde{a}_{2} & -b_{1} / 2 \\
\tilde{a}_{3} & -b_{1} / 2
\end{array}\right), \tag{57}
\end{align*}
$$

where $x_{1,2,3}$ and $y_{1,2,3}$ are complex coefficients. Although $S_{1} \tilde{Y}=\tilde{Y}$ leads to $m_{1}=0$ and a NH solution, mass singular values cannot be displayed without solving a complicated quadratic equation. A solution with $S_{1} \tilde{Y}=-\tilde{Y}$ is excluded because it is rank one.

Solutions $S_{1} \tilde{Y}= \pm \tilde{Y} \sigma_{3}$ lead to finite m_{1} and IH. The mass singular values are

$$
\begin{align*}
m_{1} & =\left|\frac{1}{M_{22}} \frac{3}{2} b_{1}^{2}\right|, \quad m_{2,3}=\left\{0,\left|\frac{M_{22}}{\operatorname{det} M}\right|\left(\left|\tilde{a}_{2}\right|^{2}+\left|\frac{\tilde{a}_{2}+\tilde{a}_{3}}{2}\right|^{2}+\left|\tilde{a}_{3}\right|^{2}\right)\right\}, \tag{58}\\
\text { or } m_{1} & =\left|\frac{M_{22}}{\operatorname{det} M} \frac{3}{2} \tilde{a}_{1}^{2}\right|, \quad m_{2,3}=\left\{0,\left|\frac{1}{M_{22}}\right|\left(\left|b_{2}\right|^{2}+\left|\frac{b_{2}+b_{3}}{2}\right|^{2}+\left|b_{3}\right|^{2}\right)\right\} . \tag{59}
\end{align*}
$$

Next, nontrivial solutions are investigated. In order for the two singular values (24) to be non-zero, $\tilde{\boldsymbol{a}}$ and \boldsymbol{b} must have \boldsymbol{v}_{1} components. Thus we can set $\left(\boldsymbol{v}_{1}, \tilde{\boldsymbol{a}}\right) \neq 0$ and $\left(\boldsymbol{v}_{1}, \boldsymbol{b}\right) \neq 0$. The parameter r (14) can be determined as

$$
\begin{equation*}
r_{1}=-\frac{\sqrt{\operatorname{det} M}}{M_{22}} \frac{b_{1}^{\mathrm{TBM}}}{\tilde{a}_{1}^{\mathrm{TBM}}} \tag{60}
\end{equation*}
$$

By Eq. (49), $\tilde{a}_{2,3}$ can be determined from the other components. Explicitly,

$$
\begin{align*}
\tilde{a}_{1}+\tilde{a}_{2}+\tilde{a}_{3} & =-\frac{\operatorname{det} M}{M_{22}^{2}} \frac{2 b_{1}-b_{2}-b_{3}}{2 \tilde{a}_{1}-\tilde{a}_{2}-\tilde{a}_{3}}\left(b_{1}+b_{2}+b_{3}\right), \tag{61}\\
\tilde{a}_{2}-\tilde{a}_{3} & =-\frac{\operatorname{det} M}{M_{22}^{2}} \frac{2 b_{1}-b_{2}-b_{3}}{2 \tilde{a}_{1}-\tilde{a}_{2}-\tilde{a}_{3}}\left(b_{2}-b_{3}\right) . \tag{62}
\end{align*}
$$

The mass singular values are obtained as

$$
\begin{align*}
m_{i} & =\left\{0,\left|\frac{1+r_{1}^{2}}{M_{22}}\right|\left(\left|b_{2}^{\mathrm{TBM}}\right|^{2}+\left|b_{3}^{\mathrm{TBM}}\right|^{2}\right),\left|\frac{1+\frac{1}{r_{1}^{2}}}{M_{22}}\right|\left|b_{1}^{\mathrm{TBM}}\right|^{2}\right\} \tag{63}\\
& =\left\{0,\left|\frac{1+r_{1}^{2}}{M_{22}}\right|\left[\frac{\left|b_{1}+b_{2}+b_{3}\right|^{2}}{3}+\frac{\left|b_{2}-b_{3}\right|^{2}}{2}\right],\left|\frac{1+\frac{1}{r_{1}^{2}}}{M_{22}}\right| \frac{\left|2 b_{1}-b_{2}-b_{3}\right|^{2}}{6}\right\} . \tag{64}
\end{align*}
$$

3.3. $T M_{2}$ mixing and magic symmetry

Similarly, a mass matrix predicting TM_{2} has a Z_{2} symmetry generated by the following S_{2};

$$
S_{2} m S_{2}=m, \quad S_{2}=1-2 \boldsymbol{v}_{2} \otimes \boldsymbol{v}_{2}^{T}=\frac{1}{3}\left(\begin{array}{ccc}
1 & -2 & -2 \tag{65}\\
-2 & 1 & -2 \\
-2 & -2 & 1
\end{array}\right)
$$

This symmetry is called the magic symmetry and the matrix m is called magic in which the row sums and the column sums are all equal to a number α [40]. The eigenvalues of S_{2} are

$$
\begin{equation*}
S_{2} \boldsymbol{v}_{2}=-\boldsymbol{v}_{2}, \quad S_{2} \boldsymbol{v}_{1,3}=+\boldsymbol{v}_{1,3} \tag{66}
\end{equation*}
$$

From this, the symmetry conditions are

$$
\begin{equation*}
M_{22}^{2} \tilde{a}_{2}^{\mathrm{TBM}} \tilde{a}_{1,3}^{\mathrm{TBM}}=-\operatorname{det} M b_{2}^{\mathrm{TBM}} b_{1,3}^{\mathrm{TBM}} \tag{67}
\end{equation*}
$$

In the TBM basis, the mass matrix m with these conditions is

$$
\begin{equation*}
m^{\mathrm{TBM}} \equiv U_{\mathrm{TBM}}^{T} m U_{\mathrm{TBM}} \tag{68}
\end{equation*}
$$

$$
\begin{align*}
= & \frac{1}{\tilde{M}_{1}}\left(\begin{array}{ccc}
\left(\tilde{a}_{1}^{\mathrm{TBM}}\right)^{2} & 0 & \tilde{a}_{1}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}} \\
0 & \left(\tilde{a}_{2}^{\mathrm{TBM}}\right)^{2} & 0 \\
\tilde{a}_{1}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}} & 0 & \left(\tilde{a}_{3}^{\mathrm{TBM}}\right)^{2}
\end{array}\right) \\
& +\frac{1}{\tilde{M}_{2}}\left(\begin{array}{ccc}
\left(b_{1}^{\mathrm{TBM}}\right)^{2} & 0 & b_{1}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}} \\
0 & \left(b_{2}^{\mathrm{TBM}}\right)^{2} & 0 \\
b_{1}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}} & 0 & \left(b_{3}^{\mathrm{TBM}}\right)^{2}
\end{array}\right) . \tag{69}
\end{align*}
$$

This is indeed symmetric under $S_{2}^{\mathrm{TBM}}=\operatorname{diag}(1,-1,1)$ in this basis. From this, θ_{13} and m_{2} are obtained as

$$
\begin{align*}
& \left|\sin \theta_{13}^{\mathrm{TM}}\right|=\sqrt{2} \sin \theta_{\mathrm{TM}_{2}} / \sqrt{3}, \\
& \tan 2 \theta_{\mathrm{TM}_{2}}=\left|\frac{\left.\frac{2 \tilde{a}_{1}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}}}{\tilde{M}_{1}}+\frac{2 b_{1}^{\mathrm{TBM}}{b_{3}^{\mathrm{TBM}}}_{2}^{\tilde{M}_{2}}}{\left|\frac{\left.\tilde{a}_{3}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{1}}+\frac{\left(b_{3}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{2}}\right|-\left\lvert\, \frac{\left(\tilde{a}_{1}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{1}}+\frac{\left(b_{1}^{\mathrm{TBM}}\right)^{2}}{\tilde{M}_{2}}\right.} \right\rvert\,}{}\right|, \tag{70}\\
& m_{2}=\frac{M_{22}}{\operatorname{det} M}\left(\tilde{a}_{2}^{\mathrm{TBM}}\right)^{2}+\frac{1}{M_{22}}\left(b_{2}^{\mathrm{TBM}}\right)^{2}=\frac{M_{22}}{3 \operatorname{det} M}\left(\tilde{a}_{1}+\tilde{a}_{2}+\tilde{a}_{3}\right)^{2}+\frac{1}{3 M_{22}}\left(b_{1}+b_{2}+b_{3}\right)^{2} . \tag{71}
\end{align*}
$$

In the case of the magic symmetry, there are three types of solutions as well. The first four trivial solutions are

$$
\begin{align*}
S_{2} \tilde{Y}= \pm \tilde{Y} \Rightarrow \tilde{Y} & =\left(x_{1} \boldsymbol{v}_{1}+x_{3} \boldsymbol{v}_{3}, y_{1} \boldsymbol{v}_{1}+y_{3} \boldsymbol{v}_{3}\right) \text { or }\left(x_{2} \boldsymbol{v}_{2}, y_{2} \boldsymbol{v}_{2}\right) \tag{72}\\
& =\left(\begin{array}{cc}
-\tilde{a}_{2}-\tilde{a}_{3} & -b_{2}-b_{3} \\
\tilde{a}_{2} & b_{2} \\
\tilde{a}_{3} & b_{3}
\end{array}\right) \text { or }\left(\begin{array}{ll}
\tilde{a}_{1} & b_{1} \\
\tilde{a}_{1} & b_{1} \\
\tilde{a}_{1} & b_{1}
\end{array}\right), \tag{73}\\
S_{2} \tilde{Y}= \pm \tilde{Y} \sigma_{3} \Rightarrow \tilde{Y} & =\left(x_{1} \boldsymbol{v}_{1}+x_{3} v_{3}, y_{2} \boldsymbol{v}_{2}\right) \text { or }\left(x_{2} \boldsymbol{v}_{2}, y_{1} \boldsymbol{v}_{1}+y_{3} \boldsymbol{v}_{3}\right) \tag{74}\\
& =\left(\begin{array}{cc}
-\tilde{a}_{2}-\tilde{a}_{3} & b_{1} \\
\tilde{a}_{2} & b_{1} \\
\tilde{a}_{3} & b_{1}
\end{array}\right) \text { or }\left(\begin{array}{cc}
\tilde{a}_{1} & -b_{2}-b_{3} \\
\tilde{a}_{1} & b_{2} \\
\tilde{a}_{1} & b_{3}
\end{array}\right) . \tag{75}
\end{align*}
$$

The solutions with $S_{2} \tilde{Y}= \pm \tilde{Y}$ are phenomenologically excluded because they predict $m_{2}=0$ or $m_{1,3}=0$. In other words, Y cannot have magic (anti-)symmetry in this meaning. In the case of $S_{2} \tilde{Y}= \pm \tilde{Y} \sigma_{3}, x_{1}, y_{1}=0\left(x_{3}, y_{3}=0\right)$ leads to a NH (IH) solution.

The mass singular values of the trivial solutions are

$$
\begin{align*}
& m_{i}=\left\{0, \frac{M_{22}}{\operatorname{det} M}\left(\left|\tilde{a}_{2}\right|^{2}+\left|\tilde{a}_{2}+\tilde{a}_{3}\right|^{2}+\left|\tilde{a}_{3}\right|^{2}\right),\left|\frac{1}{M_{22}} 3 b_{1}^{2}\right|\right\} \tag{76}\\
& \text { or }=\left\{0,\left|\frac{M_{22}}{\operatorname{det} M} 3 \tilde{a}_{1}^{2}\right|, \frac{1}{M_{22}}\left(\left|b_{2}\right|^{2}+\left|b_{2}+b_{3}\right|^{2}+\left|b_{3}\right|^{2}\right)\right\} . \tag{77}
\end{align*}
$$

Furthermore, if we impose the condition $\tilde{a}_{2}= \pm \tilde{a}_{3}$ (or $b_{2}= \pm b_{3}$), m has the $\mu-\tau$ symmetry and the respective signs correspond to IH and NH .

Finally, the non-trivial solution (13) is analysed. Since m_{2} cannot be zero, we can set $\sqrt{3} \tilde{a}_{2}^{\mathrm{TBM}}=\sum_{i} \tilde{a}_{i} \neq 0$ and $\sqrt{3} b_{2}^{\mathrm{TBM}}=\sum_{i} b_{i} \neq 0$. From the expansions (26) and (27), the parameter r (14) is determined as

$$
\begin{equation*}
r_{2}=-\frac{\sqrt{\operatorname{det} M}}{M_{22}} \frac{b_{2}^{\mathrm{TBM}}}{\tilde{a}_{2}^{\mathrm{TBM}}} . \tag{78}
\end{equation*}
$$

From the symmetry conditions (67), $\tilde{a}_{1,3}$ are determined. Explicitly,

$$
\begin{align*}
2 \tilde{a}_{1}-\tilde{a}_{2}-\tilde{a}_{3} & =-\frac{\operatorname{det} M}{M_{22}^{2}} \frac{\sum_{i} b_{i}}{\sum_{i} \tilde{a}_{i}}\left(2 b_{1}-b_{2}-b_{3}\right), \tag{79}\\
\tilde{a}_{2}-\tilde{a}_{3} & =-\frac{\operatorname{det} M}{M_{22}^{2}} \frac{\sum_{i} b_{i}}{\sum_{i} \tilde{a}_{i}}\left(b_{2}-b_{3}\right), \tag{80}
\end{align*}
$$

and the mass values are

$$
\begin{align*}
m_{i} & =\left\{0,\left|\frac{1+r_{2}^{2}}{M_{22}}\right|\left(\left|b_{1}^{\mathrm{TBM}}\right|^{2}+\left|b_{3}^{\mathrm{TBM}}\right|^{2}\right),\left|\frac{1+\frac{1}{r_{2}^{2}}}{M_{22}}\right|\left|b_{2}^{\mathrm{TBM}}\right|^{2}\right\} \tag{81}\\
& =\left\{0,\left|\frac{1+r_{2}^{2}}{M_{22}}\right|\left(\frac{\left|2 b_{1}-b_{2}-b_{3}\right|^{2}}{6}+\frac{\left|b_{2}-b_{3}\right|^{2}}{2}\right),\left|\frac{1+\frac{1}{r_{2}^{2}}}{M_{22}}\right| \frac{\left|\sum_{i} b_{i}\right|^{2}}{3}\right\} . \tag{82}
\end{align*}
$$

If we further impose the condition $b_{2}+b_{3}=2 b_{1}\left(b_{2}=b_{3}\right), m$ has the $\mu-\tau$ symmetry, corresponding to a $\mathrm{NH}(\mathrm{IH})$ solution.

4. Summary

In this paper, using a formula for the minimal type-I seesaw mechanism by $L D L^{T}$ (or generalized Cholesky) decomposition, conditions of general Z_{2}-invariance of the neutrino mass matrix m are obtained in an arbitrary basis. The conditions are found to be $\left(M_{22} a_{i}^{+}-M_{12} b_{i}^{+}\right)\left(M_{22} a_{j}^{-}-\right.$ $\left.M_{12} b_{j}^{-}\right)=-\operatorname{det} M b_{i}^{+} b_{j}^{-}$for the Z_{2}-symmetric and -antisymmetric part of a Yukawa matrix $Y_{i j}^{ \pm} \equiv(Y \pm T Y)_{i j} / 2 \equiv\left(a_{j}^{ \pm}, b_{j}^{ \pm}\right)$and the right-handed neutrino mass matrix $M_{i j}$. In other words, the symmetric and antisymmetric part of b_{i} must be proportional to those of the quantity $\tilde{a}_{i} \equiv a_{i}-\frac{M_{12}}{M_{22}} b_{i}$. They are equivalent to the condition that m is block diagonalized by eigenvectors \boldsymbol{e}_{i} of the generator T.

Since \boldsymbol{e}_{i} are orthogonal, we can analyze the eigensystem of $m m^{\dagger}$ for a Z_{2}-symmetric m. Two eigenvectors $\boldsymbol{u}_{1,2}$ of $m m^{\dagger}$ coincide with any of those of T, and the remaining one is a vector $\left(\boldsymbol{u}_{1} \times \boldsymbol{u}_{2}\right)^{*}$ orthogonal to them. Furthermore, if the Yukawa matrix does not have the Z_{2} symmetry, two nonzero neutrino masses are represented without a radical symbol. On the other hand, in the case of (anti-)symmetric Y with $T Y= \pm Y$, the solution of $T Y=(\operatorname{det} T) Y$ is phenomenologically rejected because the rank of m is one. In the other solution, the mass singular values cannot be expressed without solving a complicated quadratic equation. However, if the other Z_{2} symmetry can be identified, the mass values can be concisely displayed.

These results are applied to three Z_{2} symmetries, the $\mu-\tau$ symmetry, the TM_{1} mixing, and the magic symmetry which predicts the TM_{2} mixing. For the case of $\mathrm{TM}_{1,2}$, the symmetry conditions become $M_{22}^{2} \tilde{a}_{1}^{\mathrm{TBM}} \tilde{a}_{2}^{\mathrm{TBM}}=-\operatorname{det} M b_{1}^{\mathrm{TBM}} b_{2}^{\mathrm{TBM}}$ and $M_{22}^{2} \tilde{a}_{1,2}^{\mathrm{TBM}} \tilde{a}_{3}^{\mathrm{TBM}}=-\operatorname{det} M b_{1,2}^{\mathrm{TBM}} b_{3}^{\mathrm{TBM}}$ with components $\tilde{a}_{i}^{\mathrm{TBM}}$ and b_{i}^{TBM} in the TBM basis $\boldsymbol{v}_{1,2,3}$. In particular, for the TM_{2} mixing, the magic (anti-)symmetric Yukawa matrix with $S_{2} Y= \pm Y$ is phenomenologically excluded because it predicts $m_{2}=0$ or $m_{1}, m_{3}=0$.

CRediT authorship contribution statement

Masaki J.S. Yang: Methodology, Formal analysis, Writing

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This study is financially supported by JSPS Grants-in-Aid for Scientific Research No. 18H01210 and MEXT KAKENHI Grant No. 18H05543.

Appendix A. Understanding from the original raw formula

Let us consider the condition (12) without the $L D L^{T}$ decomposition. By rewriting $\tilde{\boldsymbol{a}}$ to \boldsymbol{a},

$$
\begin{equation*}
\left(M_{22} a_{i}^{+}-M_{12} b_{i}^{+}\right)\left(M_{22} a_{j}^{-}-M_{12} b_{j}^{-}\right)=-\operatorname{det} M b_{i}^{+} b_{j}^{-} . \tag{A.1}
\end{equation*}
$$

By adding this equation with i and j interchanged,

$$
\begin{equation*}
\operatorname{Asym}\left[\left(a_{i} M_{22}-b_{i} M_{12}\right) a_{j}\right]=-\operatorname{Asym}\left[\left(b_{i} M_{11}-a_{i} M_{12}\right) b_{j}\right] \tag{A.2}
\end{equation*}
$$

where $\operatorname{Asym}\left[x_{i} y_{j}\right] \equiv x_{i}^{+} y_{j}^{-}+x_{i}^{-} y_{j}^{+}$is the antisymmetric part for T.
They are identical to the conditions $T m T^{T}=m$ in the original raw formula. From Eq. (1), the mass matrix m is written by

$$
\begin{align*}
m & =Y M^{-1} Y^{T}=\frac{1}{\operatorname{det} M}\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right)\left(\begin{array}{ccc}
-\left(\boldsymbol{M}_{2} \times \boldsymbol{Y}_{1}\right)_{z} & -\left(\boldsymbol{M}_{2} \times \boldsymbol{Y}_{2}\right)_{z} & -\left(\boldsymbol{M}_{2} \times \boldsymbol{Y}_{3}\right)_{z} \\
\left(\boldsymbol{M}_{1} \times \boldsymbol{Y}_{1}\right)_{z} & \left(\boldsymbol{M}_{1} \times \boldsymbol{Y}_{2}\right)_{z} & \left(\boldsymbol{M}_{1} \times \boldsymbol{Y}_{3}\right)_{z}
\end{array}\right), \tag{A.3}\\
m_{i j} & =\frac{1}{\operatorname{det} M}\left[a_{i}\left(a_{j} M_{22}-b_{j} M_{21}\right)+b_{i}\left(b_{j} M_{11}-a_{j} M_{12}\right)\right], \tag{A.4}
\end{align*}
$$

where $\left(\boldsymbol{M}_{i} \times \boldsymbol{Y}_{j}\right)_{z} \equiv M_{i 1} Y_{j 2}-M_{i 2} Y_{j 1}$. Since the asymmetric parts of the two matrices with rank one must cancel for T-invariant m, Eq. (A.2) is obtained as the condition. Also, by considering these conditions from symmetries, the solution can be displayed by a complex orthogonal matrix O. This point is discussed in the next section.

Appendix B. Understanding from complex orthogonal matrices

The solutions (13) and (15) can also be understood from orthgonal matrices. By defining $X \equiv \tilde{Y} \sqrt{\tilde{M}^{-1}}$, the mass matrix m is written only in X;

$$
\begin{equation*}
X=\left(\sqrt{\frac{M_{22}}{\operatorname{det} M}} \tilde{\boldsymbol{a}} \quad \sqrt{\frac{1}{M_{22}}} \boldsymbol{b}\right), \quad m=X X^{T} . \tag{B.1}
\end{equation*}
$$

In order for m to have T symmetry, $X=(u, v)$ must satisfy the following transformation with a complex orthogonal matrix O;

$$
\begin{equation*}
T X=(T u, T v)= \pm X O \tag{B.2}
\end{equation*}
$$

Since $T^{2} X= \pm T X O=X O^{2}=X$ holds, the matrix O satisfies $O=O^{-1}=O^{T}$. In other words, O is a symmetric orthogonal matrix.

In the case of $\operatorname{det} O=+1$, only $O= \pm 1_{3}$ is allowed $\operatorname{since} \sin z=0$. This corresponds to T (anti)symmetric \tilde{Y} and Y in Eq. (15), respectively. On the other hand, in the case of $\operatorname{det} O=-1$,

$$
O=\left(\begin{array}{cc}
\cos z & \sin z \tag{B.3}\\
\sin z & -\cos z
\end{array}\right),
$$

and there is no restriction on the complex parameter z. The T-invariant condition becomes

$$
X O=(u, v)\left(\begin{array}{cc}
\cos z & \sin z \tag{B.4}\\
\sin z & -\cos z
\end{array}\right)=\left(c_{z} u+s_{z} v, s_{z} u-c_{z} v\right)= \pm(T u, T v)= \pm T X
$$

where $c_{z} \equiv \cos z, s_{z} \equiv \sin z$. From this,

$$
\begin{equation*}
u=\frac{1}{s_{z}}\left(\pm T v+c_{z} v\right), \quad T u= \pm \frac{c_{z}}{s_{z}}\left(\pm T v+c_{z} v\right) \pm s_{z} v=\frac{1}{s_{z}}\left(c_{z} T v \pm v\right) . \tag{B.5}
\end{equation*}
$$

From $u^{ \pm}=\frac{1}{2}(u \pm T u)$ and $v^{ \pm}=\frac{1}{2}(v \pm T v)$, we obtain

$$
\begin{align*}
& \sqrt{\frac{M_{22}}{\operatorname{det} M}} \tilde{\boldsymbol{a}}^{+}=u^{+}=\frac{c_{z} \pm 1}{s_{z}} v^{+}=\left\{\cot \frac{z}{2},-\tan \frac{z}{2}\right\} \sqrt{\frac{1}{M_{22}}} \boldsymbol{b}^{+}, \tag{B.6}\\
& \sqrt{\frac{M_{22}}{\operatorname{det} M}} \tilde{\boldsymbol{a}}^{-}=u^{-}=\frac{c_{z} \mp 1}{s_{z}} v^{-}=\left\{-\tan \frac{z}{2}, \cot \frac{z}{2}\right\} \sqrt{\frac{1}{M_{22}}} \boldsymbol{b}^{-} . \tag{B.7}
\end{align*}
$$

Obviously, these coefficients satisfy

$$
\begin{equation*}
\frac{c_{z} \pm 1}{s_{z}} \times \frac{c_{z} \mp 1}{s_{z}}=-1, \tag{B.8}
\end{equation*}
$$

and it corresponds to the solution (13). Note that the sign \pm comes from the parity for T.
An understanding of these solutions by matrices is as follows. As in the previous paper [96], we consider a quantity $X\left(1 \pm O \sigma_{3}\right)$. This extra σ_{3} has an effect of exchanging \boldsymbol{b}^{+}and \boldsymbol{b}^{-}. For example, in the case of $X O=+T X$,

$$
\begin{align*}
& X\left(1+O \sigma_{3}\right)=X+T X \sigma_{3}=2\left(\tilde{\boldsymbol{a}}^{+}, \boldsymbol{b}^{-}\right) \sqrt{\tilde{M}^{-1}} \tag{B.9}\\
& X\left(1-O \sigma_{3}\right)=X-T X \sigma_{3}=2\left(\tilde{\boldsymbol{a}}^{-}, \boldsymbol{b}^{+}\right) \sqrt{\tilde{M}^{-1}} \tag{B.10}
\end{align*}
$$

Since $O \sigma_{3}$ is written as

$$
O \sigma_{3}=\left(\begin{array}{cc}
c_{z} & -s_{z} \tag{B.11}\\
s_{z} & c_{z}
\end{array}\right)=c_{z} 1_{2}-i \sigma_{2} s_{z}
$$

the term is expressed as $1 \pm O \sigma_{3}=1_{2}\left(1 \pm c_{z}\right) \mp i \sigma_{2} s_{z}$. From this,

$$
\begin{equation*}
X\left(1 \pm O \sigma_{3}\right) \frac{1 \mp c_{z}}{s_{z}}=X\left[1_{2} s_{z} \mp i \sigma_{2}\left(1 \mp c_{z}\right)\right]=\mp X\left(1 \mp O \sigma_{3}\right) i \sigma_{2} \tag{B.12}
\end{equation*}
$$

For example, matrix elements of the upper sign become

$$
\begin{align*}
\left(\tilde{\boldsymbol{a}}^{+}, \boldsymbol{b}^{-}\right) \sqrt{\tilde{M}^{-1}} & =\frac{-s_{z}}{1-c_{z}}\left(\tilde{\boldsymbol{a}}^{-}, \boldsymbol{b}^{+}\right) \sqrt{\tilde{M}^{-1}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =\frac{s_{z}}{1-c_{z}}\left(\sqrt{\frac{1}{M_{22}}} \boldsymbol{b}^{+},-\sqrt{\frac{M_{22}}{\operatorname{det} M}} \tilde{\boldsymbol{a}}^{-}\right) \tag{B.13}
\end{align*}
$$

and they correspond to Eqs. (B.6) and (B.7).
The symmetry condition (12) satisfied by these solutions, i.e. $M_{22}^{2} \tilde{a}_{i}^{+} \tilde{a}_{j}^{-}=-|M| b_{i}^{+} b_{j}^{-}$is obviously equivalent to $X^{+} X^{-T}=0$ for $X^{ \pm} \equiv(X \pm T X) / 2$. This condition can be rewritten as

$$
\begin{equation*}
X^{+} X^{-T}=\frac{1}{4} X(1 \pm O)(1 \mp O)^{T} X^{T}= \pm \frac{1}{4 i} X\left(O-O^{T}\right) X^{T}=0 \tag{B.14}
\end{equation*}
$$

and it is a solution because $O^{T}=O$ holds.
Furthermore, a matrix representation of the solution $T X= \pm X O$ is explored. In the case of $\operatorname{det} O=+1, T X_{ \pm}= \pm X_{ \pm}$holds and X is symmetric or antisymmetric under T, as discussed above. In the case of $\operatorname{det} O=-1$, we consider the following solution by a complex orthogonal matrix Q and $\sigma_{3} \equiv \operatorname{diag}(1,-1)$.

$$
\begin{equation*}
T X_{1}=X_{1} \sigma_{3}, \quad X_{1}^{\prime}=X_{1} Q \tag{B.15}
\end{equation*}
$$

This $X_{1}=\left(u^{+}, v^{-}\right)$has T-symmetric and -antisymmetric vectors. ${ }^{2}$ The T transformation for X_{1}^{\prime} is

$$
\begin{equation*}
T X_{1}^{\prime}=X_{1} \sigma_{3} Q=X_{1}^{\prime} Q^{T} \sigma_{3} Q \tag{B.16}
\end{equation*}
$$

Thus, if we define $Q^{T} \sigma_{3} Q \equiv O_{1}$, this is a symmetric orthogonal matrix with $\operatorname{det} O_{1}=-1$ and X_{1}^{\prime} satisfies the symmetry (B.2).

$$
\begin{equation*}
T X_{1}^{\prime}=X_{1}^{\prime} O_{1} \tag{B.17}
\end{equation*}
$$

Specifically,

$$
Q \equiv\left(\begin{array}{cc}
\cos w & -\sin w \tag{B.18}\\
\sin w & \cos w
\end{array}\right) \Rightarrow O_{1}=Q^{T} \sigma_{3} Q=\left(\begin{array}{cc}
\cos 2 w & -\sin 2 w \\
-\sin 2 w & -\cos 2 w
\end{array}\right)
$$

Indeed O_{1} is symmetric, and it agrees with Eq. (B.3) by a suitable redefinition.
Since we can write $X=X_{ \pm}$or $X_{1} Q$, the general Yukawa matrix for a T-invariant m can be written by these matrices. In the case of $X=X_{ \pm}$, Yukawa matrices Y and \tilde{Y} are

$$
\begin{equation*}
\tilde{Y}_{ \pm}=X_{ \pm} \sqrt{\tilde{M}}, \quad Y_{ \pm}=\tilde{Y} L^{-1}=X_{ \pm} \sqrt{\tilde{M}} L^{-1} \tag{B.19}
\end{equation*}
$$

In other words, $Y_{ \pm}$is symmetric or antisymmetric under $T, T Y_{ \pm}= \pm Y$, and it can be expanded by eigenvectors of T with the same eigenvalues.

In the other case,

$$
\begin{equation*}
\tilde{Y}=X \sqrt{\tilde{M}}=X_{1} Q \sqrt{\tilde{M}}, \quad Y=\tilde{Y} L^{-1}=X_{1} Q \sqrt{\tilde{M}} L^{-1} \tag{B.20}
\end{equation*}
$$

Since X_{1} has the form $X_{1}=\left(u^{-}, v^{+}\right)$, it represents the solution (B.6) and (B.7).
From the diagonalization $L^{-1} M^{-1}\left(L^{T}\right)^{-1}=\tilde{M}^{-1}$ (2), we finally obtain

$$
\begin{equation*}
m=Y M^{-1} Y^{T}=X_{ \pm, 1} Q Q^{T} X_{ \pm, 1}^{T} \tag{B.21}
\end{equation*}
$$

[^2]and m is T-invariant. Therefore, in order to predict T-invariant m, the Yukawa matrix Y must be T-symmetric or antisymmetric, or has degrees of freedom complex orthogonal matrix Q multiplied to T-covariant X_{1} that satisfies $T X_{1}=X_{1} \sigma_{3}$.

References

[1] V.D. Barger, S. Pakvasa, T.J. Weiler, K. Whisnant, Phys. Lett. B 437 (1998) 107, arXiv:hep-ph/9806387.
[2] T. Fukuyama, H. Nishiura, arXiv:hep-ph/9702253, 1997.
[3] C.S. Lam, Phys. Lett. B 507 (2001) 214, arXiv:hep-ph/0104116.
[4] E. Ma, M. Raidal, Phys. Rev. Lett. 87 (2001) 011802, arXiv:hep-ph/0102255, Erratum: Phys. Rev. Lett. 87 (2001) 159901.
[5] K.R.S. Balaji, W. Grimus, T. Schwetz, Phys. Lett. B 508 (2001) 301, arXiv:hep-ph/0104035.
[6] Y. Koide, H. Nishiura, K. Matsuda, T. Kikuchi, T. Fukuyama, Phys. Rev. D 66 (2002) 093006, arXiv:hep-ph/ 0209333.
[7] T. Kitabayashi, M. Yasue, Phys. Rev. D 67 (2003) 015006, arXiv:hep-ph/0209294.
[8] P.F. Harrison, W.G. Scott, Phys. Lett. B 547 (2002) 219, arXiv:hep-ph/0210197.
[9] W. Grimus, L. Lavoura, Phys. Lett. B 579 (2004) 113, arXiv:hep-ph/0305309.
[10] Y. Koide, Phys. Rev. D 69 (2004) 093001, arXiv:hep-ph/0312207.
[11] A. Ghosal, arXiv:hep-ph/0304090, 2003.
[12] I. Aizawa, M. Ishiguro, T. Kitabayashi, M. Yasue, Phys. Rev. D 70 (2004) 015011, arXiv:hep-ph/0405201.
[13] A. Ghosal, Mod. Phys. Lett. A 19 (2004) 2579.
[14] Y. Koide, Phys. Lett. B 607 (2005) 123, arXiv:hep-ph/0411280.
[15] R.N. Mohapatra, W. Rodejohann, Phys. Rev. D 72 (2005) 053001, arXiv:hep-ph/0507312.
[16] T. Kitabayashi, M. Yasue, Phys. Lett. B 621 (2005) 133, arXiv:hep-ph/0504212.
[17] A.S. Joshipura, Eur. Phys. J. C 53 (2008) 77, arXiv:hep-ph/0512252.
[18] N. Haba, W. Rodejohann, Phys. Rev. D 74 (2006) 017701, arXiv:hep-ph/0603206.
[19] Z.-z. Xing, H. Zhang, S. Zhou, Phys. Lett. B 641 (2006) 189, arXiv:hep-ph/0607091.
[20] Y.H. Ahn, S.K. Kang, C.S. Kim, J. Lee, Phys. Rev. D 73 (2006) 093005, arXiv:hep-ph/0602160.
[21] A.S. Joshipura, B.P. Kodrani, Phys. Lett. B 670 (2009) 369, arXiv:0706.0953.
[22] J.C. Gomez-Izquierdo, A. Perez-Lorenzana, Phys. Rev. D 82 (2010) 033008, arXiv:0912.5210.
[23] Z.-z. Xing, Y.-L. Zhou, Phys. Lett. B 693 (2010) 584, arXiv:1008.4906.
[24] S.-F. Ge, H.-J. He, F.-R. Yin, JCAP 1005 (2010) 017, arXiv:1001.0940.
[25] H.-J. He, F.-R. Yin, Phys. Rev. D 84 (2011) 033009, arXiv:1104.2654.
[26] H.-J. He, X.-J. Xu, Phys. Rev. D 86 (2012) 111301, arXiv:1203.2908.
[27] Z.-Z. Xing, Z.-h. Zhao, Rept. Prog. Phys. 79 (2016) 076201, arXiv:1512.04207.
[28] X.-G. He, Chin. J. Phys. 53 (2015) 100101, arXiv:1504.01560.
[29] H.-J. He, W. Rodejohann, X.-J. Xu, Phys. Lett. B 751 (2015) 586, arXiv:1507.03541.
[30] Z.-z. Xing, J.-y. Zhu, Chin. Phys. C 41 (2017) 123103, arXiv:1707.03676.
[31] J.C. Gómez-Izquierdo, Eur. Phys. J. C 77 (2017) 551, arXiv:1701.01747.
[32] T. Fukuyama, PTEP 2017 (2017) 033B11, arXiv:1701.04985.
[33] P.F. Harrison, W.G. Scott, Phys. Lett. B 535 (2002) 163, arXiv:hep-ph/0203209.
[34] R. Friedberg, T.D. Lee, HEPNP 30 (2006) 591, arXiv:hep-ph/0606071.
[35] J.D. Bjorken, P.F. Harrison, W.G. Scott, Phys. Rev. D 74 (2006) 073012, arXiv:hep-ph/0511201.
[36] X.-G. He, A. Zee, Phys. Lett. B 645 (2007) 427, arXiv:hep-ph/0607163.
[37] W. Grimus, L. Lavoura, JHEP 09 (2008) 106, arXiv:0809.0226.
[38] K.S. Channey, S. Kumar, J. Phys. G 46 (2019) 015001, arXiv:1812.10268.
[39] H.-C. Bao, X.-Y. Zhao, Z.-H. Zhao, arXiv:2104.05394, 2021.
[40] C.S. Lam, Phys. Lett. B 640 (2006) 260, arXiv:hep-ph/0606220.
[41] P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530 (2002) 167, arXiv:hep-ph/0202074.
[42] C.S. Lam, Phys. Rev. D 74 (2006) 113004, arXiv:hep-ph/0611017.
[43] C.S. Lam, Phys. Lett. B 656 (2007) 193, arXiv:0708.3665.
[44] C.S. Lam, Phys. Rev. Lett. 101 (2008) 121602, arXiv:0804.2622.
[45] E. Ma, D.P. Roy, U. Sarkar, Phys. Lett. B 444 (1998) 391, arXiv:hep-ph/9810309.
[46] S.F. King, Phys. Lett. B 439 (1998) 350, arXiv:hep-ph/9806440.
[47] P.H. Frampton, S.L. Glashow, T. Yanagida, Phys. Lett. B 548 (2002) 119, arXiv:hep-ph/0208157.
[48] Z.-z. Xing, Z.-h. Zhao, Rept. Prog. Phys. 84 (2021) 066201, arXiv:2008.12090.
[49] W.-1. Guo, Z.-z. Xing, Phys. Lett. B 583 (2004) 163, arXiv:hep-ph/0310326.
[50] V. Barger, D.A. Dicus, H.-J. He, T.-j. Li, Phys. Lett. B 583 (2004) 173, arXiv:hep-ph/0310278.
[51] J.-w. Mei, Z.-z. Xing, Phys. Rev. D 69 (2004) 073003, arXiv:hep-ph/0312167.
[52] S. Chang, S.K. Kang, K. Siyeon, Phys. Lett. B 597 (2004) 78, arXiv:hep-ph/0404187.
[53] W.-1. Guo, Z.-z. Xing, S. Zhou, Int. J. Mod. Phys. E 16 (2007) 1, arXiv:hep-ph/0612033.
[54] T. Kitabayashi, Phys. Rev. D 76 (2007) 033002, arXiv:hep-ph/0703303.
[55] X.-G. He, W. Liao, Phys. Lett. B 681 (2009) 253, arXiv:0909.1463.
[56] R.-Z. Yang, H. Zhang, Phys. Lett. B 700 (2011) 316, arXiv:1104.0380.
[57] K. Harigaya, M. Ibe, T.T. Yanagida, Phys. Rev. D 86 (2012) 013002, arXiv:1205.2198.
[58] T. Kitabayashi, M. Yasuè, Phys. Rev. D 94 (2016) 075020, arXiv:1605.04402.
[59] G. Bambhaniya, P.S. Bhupal Dev, S. Goswami, S. Khan, W. Rodejohann, Phys. Rev. D 95 (2017) 095016, arXiv: 1611.03827.
[60] C.-C. Li, G.-J. Ding, Phys. Rev. D 96 (2017) 075005, arXiv:1701.08508.
[61] Z.-C. Liu, C.-X. Yue, Z.-h. Zhao, JHEP 10 (2017) 102, arXiv:1707.05535.
[62] Y. Shimizu, K. Takagi, M. Tanimoto, JHEP 11 (2017) 201, arXiv:1709.02136.
[63] Y. Shimizu, K. Takagi, M. Tanimoto, Phys. Lett. B 778 (2018) 6, arXiv:1711.03863.
[64] N. Nath, Z.-z. Xing, J. Zhang, Eur. Phys. J. C 78 (2018) 289, arXiv:1801.09931.
[65] D.M. Barreiros, R.G. Felipe, F.R. Joaquim, JHEP 01 (2019) 223, arXiv:1810.05454.
[66] N. Nath, Mod. Phys. Lett. A 34 (2019) 1950329, arXiv:1808.05062.
[67] X. Wang, S. Zhou, JHEP 05 (2020) 017, arXiv:1910.09473.
[68] Z.-h. Zhao, JHEP 11 (2021) 170, arXiv:2003.00654.
[69] G. Ecker, W. Grimus, W. Konetschny, Nucl. Phys. B 191 (1981) 465.
[70] G. Ecker, W. Grimus, H. Neufeld, Nucl. Phys. B 247 (1984) 70.
[71] M. Gronau, R.N. Mohapatra, Phys. Lett. B 168 (1986) 248.
[72] G. Ecker, W. Grimus, H. Neufeld, J. Phys. A 20 (1987) L807.
[73] H. Neufeld, W. Grimus, G. Ecker, Int. J. Mod. Phys. A 3 (1988) 603.
[74] P. Ferreira, H.E. Haber, J.P. Silva, Phys. Rev. D 79 (2009) 116004, arXiv:0902.1537.
[75] F. Feruglio, C. Hagedorn, R. Ziegler, JHEP 07 (2013) 027, arXiv:1211.5560.
[76] M. Holthausen, M. Lindner, M.A. Schmidt, JHEP 04 (2013) 122, arXiv:1211.6953.
[77] G.-J. Ding, S.F. King, A.J. Stuart, JHEP 12 (2013) 006, arXiv:1307.4212.
[78] I. Girardi, A. Meroni, S. Petcov, M. Spinrath, JHEP 02 (2014) 050, arXiv:1312.1966.
[79] C. Nishi, Phys. Rev. D 88 (2013) 033010, arXiv:1306.0877.
[80] G.-J. Ding, S.F. King, C. Luhn, A.J. Stuart, JHEP 05 (2013) 084, arXiv:1303.6180.
[81] F. Feruglio, C. Hagedorn, R. Ziegler, Eur. Phys. J. C 74 (2014) 2753, arXiv:1303.7178.
[82] P. Chen, C.-C. Li, G.-J. Ding, Phys. Rev. D 91 (2015) 033003, arXiv:1412.8352.
[83] G.-J. Ding, S.F. King, T. Neder, JHEP 12 (2014) 007, arXiv:1409.8005.
[84] G.-J. Ding, Y.-L. Zhou, JHEP 06 (2014) 023, arXiv:1404.0592.
[85] M.-C. Chen, M. Fallbacher, K. Mahanthappa, M. Ratz, A. Trautner, Nucl. Phys. B 883 (2014) 267, arXiv:1402. 0507.
[86] C.-C. Li, G.-J. Ding, JHEP 05 (2015) 100, arXiv:1503.03711.
[87] J. Turner, Phys. Rev. D 92 (2015) 116007, arXiv:1507.06224.
[88] W. Rodejohann, X.-J. Xu, Phys. Rev. D 96 (2017) 055039, arXiv:1705.02027.
[89] J. Penedo, S. Petcov, A. Titov, JHEP 12 (2017) 022, arXiv:1705.00309.
[90] N. Nath, R. Srivastava, J.W. Valle, Phys. Rev. D 99 (2019) 075005, arXiv:1811.07040.
[91] M.J.S. Yang, Phys. Lett. B 806 (2020) 135483, arXiv:2002.09152.
[92] M.J.S. Yang, Chin. Phys. C 45 (2021) 043103, arXiv:2003.11701.
[93] M.J.S. Yang, Nucl. Phys. B 972 (2021) 115549, arXiv:2103.12289.
[94] M.J.S. Yang, PTEP 2022 (2021) 013B12, arXiv:2104.12063.
[95] M.J.S. Yang, PTEP 2022 (2022) 051B01, arXiv:2112.14402.
[96] M.J.S. Yang, arXiv:2202.10067, 2022.
[97] M.J.S. Yang, PTEP 2022 (2022) 043B05, arXiv:2110.10907.
[98] T. Fujihara, et al., Phys. Rev. D 72 (2005) 016006, arXiv:hep-ph/0505076.
[99] C.H. Albright, W. Rodejohann, Eur. Phys. J. C 62 (2009) 599, arXiv:0812.0436.
[100] C.H. Albright, A. Dueck, W. Rodejohann, Eur. Phys. J. C 70 (2010) 1099, arXiv:1004.2798.
[101] X.-G. He, A. Zee, Phys. Rev. D 84 (2011) 053004, arXiv:1106.4359.
[102] C. Luhn, Nucl. Phys. B 875 (2013) 80, arXiv:1306.2358.
[103] C.-C. Li, G.-J. Ding, Nucl. Phys. B 881 (2014) 206, arXiv:1312.4401.
[104] S.F. King, Y.-L. Zhou, Phys. Rev. D 101 (2020) 015001, arXiv:1908.02770.
[105] R. Krishnan, A. Mukherjee, S. Goswami, JHEP 09 (2020) 050, arXiv:2001.07388.

[^0]: * Correspondence to: Department of Physics, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.

 E-mail address: yang@krishna.th.phy.saitama-u.ac.jp.

[^1]: 1 There is also a definition of T by $v_{3}^{\prime}=\frac{1}{\sqrt{2}}(0,1,1)$, which is equivalent under the phase transformation $v_{3}^{\prime}=v_{3}$ diag $(1,1,-1)$.

[^2]: ${ }^{2}$ The other solution $X_{2}=\left(u^{+}, v^{-}\right)$can be reached by a permutation with det $O=-1$ from X_{1}.

