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A search for time-integrated CP violation in the Cabibbo-suppressed decay D0 → π−π+π0 is performed 
using for the first time an unbinned model-independent technique known as the energy test. Using 
proton–proton collision data, corresponding to an integrated luminosity of 2.0 fb−1 collected by the 
LHCb detector at a centre-of-mass energy of 

√
s = 8 TeV, the world’s best sensitivity to CP violation 

in this decay is obtained. The data are found to be consistent with the hypothesis of CP symmetry with 
a p-value of (2.6 ± 0.5)%.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The decay D0 → π−π+π0 (charge conjugate decays are im-
plied unless stated otherwise) proceeds via a singly Cabibbo-
suppressed c → dud transition with a possible admixture from a 
penguin amplitude. The interference of these amplitudes may give 
rise to a violation of the charge-parity symmetry (CP violation), 
which may be observed as an asymmetry in the total rates, or in 
the distribution of events over the Dalitz plot. Contributions from 
particles that are not described in the Standard Model (SM) and 
participate in the loops of the penguin amplitude can enhance the 
O (10−3) CP violation effects expected within the SM [1]. Therefore 
CP violation in D0 → π−π+π0 decays provides sensitivity to such 
non-SM physics.

In addition to this direct CP violation, time-integrated CP asym-
metry in D0 → π−π+π0 decays can also receive an indirect con-
tribution arising from either the D0–D0 mixing or interference in 
decays following mixing. While direct CP asymmetry depends on 
the decay mode, indirect CP violation is expected to be the same 
for all CP eigenstates. Recent time-dependent measurements of 
D0 → π−π+ , K −K + decays constrain the indirect CP asymmetry 
to the O (10−3) level [2].

The decay D0 → π−π+π0 is dominated by the ρ(770) reso-
nances, with the ρ meson decaying into a pair of pions, which 
lead to the final states ρ0π0, ρ+π− , and ρ−π+ . Higher-mass ρ
and f0 resonances, as well as f2(1270) and σ(400) particles only 
contribute with fractions at the percent level or less [3].

Singly Cabibbo-suppressed charm decays have recently received 
a significant attention in the literature (see e.g. Ref. [1]). A par-
ticular interest in the decay D0 → π−π+π0 was pointed out 
in Ref. [4], where the authors derived isospin relations between 
the different D → ρπ amplitudes and discussed the possibility of 
identifying contributions from non-SM physics using CP violation 
measurements.

Previously, the most sensitive search for CP violation in this 
decay was performed by the BaBar Collaboration [5]. Their result 
excluded CP-violating effects larger than a few percent. The results 
presented here are based on a signal sample that is about eight 
times larger and have higher precision. This is the first CP violation 
analysis performed at the LHCb experiment with decays involving 
π0 mesons.

As π−π+π0 is a self-conjugate final state and accessible to 
both D0 and D0 decays, flavour tagging of the D mesons is per-
formed through the measurement of the soft pion (πs) charge in 
the D∗+ → D0π+

s decay.
The method exploited in this Letter, called the energy test [6,7], 

verifies the compatibility of the observed data with CP symmetry. 
It is sensitive to local CP violation in the Dalitz plot and not to 
global asymmetries. The unbinned technique applied here is used 
for the first time. A visualisation method is also used that allows 
identification of regions of the Dalitz plot in which CP violation 
is observed. As this model-independent method cannot identify 
which amplitudes contribute to the observed asymmetry, a model-
dependent analysis would be required in the case of a signal for a 
non-zero CP asymmetry.

2. Detector and reconstruction

The LHCb detector [8] is a single-arm forward spectrometer 
covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area 
silicon-strip detector located upstream of a dipole magnet with a 
bending power of about 4 Tm, and three stations of silicon-strip 
detectors and straw drift tubes placed downstream of the magnet. 
The combined tracking system provides a measurement of momen-
tum, p, with a relative uncertainty that varies from 0.4% at low 
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momentum to 0.6% at 100 GeV/c. The minimum distance of a track 
to a primary vertex, the impact parameter (IP), is measured with 
a resolution of (15 + 29/pT) μm, where pT is the component of p
transverse to the beam, in GeV/c. Charged hadrons are identified 
using two ring-imaging Cherenkov detectors. Photon, electron and 
hadron candidates are identified by a calorimeter system consisting 
of scintillating-pad and preshower detectors, an electromagnetic 
calorimeter and a hadronic calorimeter. Muons are identified by a 
system composed of alternating layers of iron and multiwire pro-
portional chambers.

The trigger consists of a hardware stage, based on high-pT sig-
natures from the calorimeter and muon systems, followed by a 
two-level software stage, which applies partial event reconstruc-
tion. The software trigger at its first level requires at least one 
good quality track associated with a particle having high pT and 
high χ2

IP, defined as the difference in χ2 of the primary pp inter-
action vertex (PV) reconstructed with and without this particle.

A dedicated second-level trigger partially reconstructs D0 →
π−π+π0 candidates coming from D∗+ → D0π+

s decays using 
only information from the charged particles. These requirements 
ensure the suppression of combinatorial background without dis-
torting the acceptance in the decay phase space. The π−π+ pair is 
combined with a pion to form a D∗+ candidate, which is accepted 
if it has pT greater than 2.5 GeV/c and a difference of invariant 
masses m(π−π+π+

s ) − m(π−π+) < 285 MeV/c2. All the charged-
particle tracks used must have good quality, pT > 0.3 GeV/c and 
p > 3.0 GeV/c, while the charged pions from the D0 decays must 
also have high χ2

IP. The π−π+ combination is required to form a 
good quality secondary vertex significantly displaced from the PV, 
while the soft pion must originate from the PV.

The inclusive D∗+ trigger was introduced at the start of 2012. 
The data collected by the LHCb experiment in 2012 corresponds 
to an integrated luminosity of 2 fb−1 of pp collisions collected at 
a centre-of-mass energy of 8 TeV. The magnetic field polarity is 
reversed regularly during the data taking with approximately half 
the data collected at each polarity to reduce the overall effect of 
any charge-dependent detection and reconstruction efficiency.

In this analysis, the two π0 categories reconstructed in LHCb 
are exploited [9]. These are pions for which both final state pho-
tons are reconstructed separately (resolved pions), as well as pions 
that have higher momentum (typically pT > 2 GeV/c) and thus a 
smaller opening angle of the two photons (merged pions). These 
π0 mesons are detected in the calorimeter as one merged cluster 
which is further split into two subclusters based on the expected 
shape of the photon shower. The merged pions make up about 30% 
of the reconstructed π0 mesons. Among the resolved π0 mesons 
there are also candidates made of photons which, after interact-
ing with detector material, have converted into an e+e− pair. The 
two π0 samples provide coverage of complementary regions of the 
D0 → π−π+π0 Dalitz plot and thus the use of both contributes 
significantly to the sensitivity of the analysis.

3. Event selection

The offline selection is split into a pre-selection, which follows 
the trigger selection, and a selection based on a boosted decision 
tree (BDT) [10,11]. All the D∗+ candidates are required to pass 
both levels of the software trigger. In addition, the pre-selection 
requires more stringent kinematic criteria than those applied in 
the trigger; in particular pT > 0.5 GeV/c is required for all the D0

decay products to reduce the combinatorial background. For re-
solved π0 mesons, the di-photon invariant mass has to be within 
15 MeV/c2 of the known π0 mass, this corresponds to about three 
times the m(γ γ ) resolution. The invariant mass of merged pho-
tons, due to its lower resolution, is required to be within the range 

Fig. 1. Distribution of �m with fit overlaid for the selected data set with (a) resolved 
and (b) merged π0 candidates. The lines show the fit results for total signal (dot-
dashed red), widest Gaussian signal component (dotted red), background (dashed 
green), and total (solid blue). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

of 75–195 MeV/c2. The purity of the merged π0 sample is never-
theless significantly higher with respect to the resolved π0, as it 
benefits from large transverse energy and much lower combinato-
rial background.

Cross-feed from D0 → K −π+π0 decays, with a kaon misiden-
tified as a pion, is reduced with requirements on the π± particle 
identification based on the ring-imaging Cherenkov detectors.

The D0 candidates satisfying the above criteria and having in-
variant mass m(π−π+π0) within 40 (60) MeV/c2 of the known 
D0 mass are accepted in the resolved (merged) sample; this range 
corresponds to approximately four times the m(π−π+π0) resolu-
tion. The D∗+ candidates, formed with the D0 and π+

s candidate, 
have their entire decay chain refitted requiring that the D∗+ can-
didate originates from the corresponding PV, and π0 and D0 can-
didates have their nominal masses. This improves the D∗+ mass 
resolution and the resolution in the D0 → π−π+π0 Dalitz plot, 
while a requirement put on the fit quality efficiently suppresses 
the background. This requirement also suppresses the contribution 
from the D∗+ mesons originating from long-lived b-hadrons. The 
remainder of this component is not affected by CP asymmetries in 
b-hadrons since the flavour tag is obtained from the D∗+ meson.

This preliminary selection is followed by a multivariate analysis 
based on a BDT. Signal and background samples used to train the 
BDT are obtained by applying the sPlot technique [12] to a quarter 
of the real data. The sWeights for signal and background separation 
are determined from a fit to the distribution of the mass differ-
ence, �m ≡ m(π−π+π0 π+

s ) − m(π−π+π0), separately for the 
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Fig. 2. Dalitz plot of the (a) resolved, (b) merged and (c) combined D0 → π−π+π0 data sample. Enhanced event densities in the phase-space corners originate from the 
ρ(770) resonances.
resolved and merged samples. The BDT uses the variables related 
to the kinematic and topological properties of the signal decays, 
as well as the π0 quality. It is trained separately for the resolved 
and merged data categories. The most discriminating variables in 
the resolved sample are pT(π

+
s ), pT(D0) and pT(π

0), while in the 
merged sample these are pT(π

+
s ), pT(D0) and the D0 χ2

IP. The 
optimal value of the BDT discriminant is determined by estimat-
ing the D∗+ signal significance for various requirements on the 
BDT output. It retains approximately 75% (90%) of the resolved 
(merged) signal events while removing 90% (55%) of the back-
ground. Fig. 1 shows the �m distributions for the selected data 
set for events with resolved and merged π0 candidates. The sig-
nal shapes, fitted in Fig. 1 with a sum of three Gaussian functions, 
significantly differ between both samples reflecting the different 
π0 momentum resolutions. The lower momentum resolution of 
the merged π0 mesons relative to the resolved π0 mesons makes 
the core part of the merged signal distribution wider, while the 
low-pT π0 mesons contributing to the resolved signal enlarge its 
tail component. The background shape is fitted using a second-
order polynomial multiplied by 

√
1 − mπ+/�m.

The final signal sample is selected requiring |�m − 145.4| <
1.8 MeV/c2, which corresponds to roughly four times the effec-
tive �m resolution. The effective resolution is similar for both 
resolved and merged π0 samples when averaging the narrow and 
broad components of the peak. This gives 416 × 103 resolved and 
247 × 103 merged signal candidates with a purity of 82% and 91%, 
respectively. The Dalitz plot of the final signal sample is shown in 
Fig. 2. The smaller number of candidates in the low m2(π+π−)

region compared with the high m2(π+π−) region is due to ac-
ceptance effects related to the π0 reconstruction as discussed in 
Section 5.

4. Energy test method

Model-independent searches for local CP violation are typically 
carried out using a binned χ2 approach to compare the relative 
density in the Dalitz plot of a decay and its CP-conjugate sample 
(see for example [5,13]). A model-independent unbinned statisti-
cal method called the energy test was introduced in Refs. [6,7]. 
Ref. [14] suggests applying this method to Dalitz plot analyses and 
demonstrates the potential to obtain improved sensitivity to CP vi-
olation over the standard binned approach. This Letter describes 
the first application of this technique to experimental data.

In this method a test statistic, T , is used to compare average 
distances in phase space, based on a metric function, ψi j , of pairs 
of events i j belonging to two samples of opposite flavour. It is de-
fined as

T =
n∑

i, j>i

ψi j

n(n − 1)
+

n∑
i, j>i

ψi j

n(n − 1)
−

n,n∑
i, j

ψi j

nn
, (1)

where the first and second terms correspond to a metric-weighted 
average distance of events within n events of one flavour and n
events of the opposite flavour, respectively. The third term mea-
sures the weighted average distance of events in one flavour sam-
ple to events of the opposite flavour sample. The normalisation 
factors in the denominator remove the impact of global asym-
metries. If the distributions of events in both flavour samples are 
identical, T will fluctuate around a value close to zero.

The metric function should be falling with increasing distance 
dij between events i and j, in order to increase the sensitiv-
ity to local asymmetries. A Gaussian metric is chosen, defined as 
ψi j ≡ ψ(dij) = e−d2

i j/2σ 2
with a tunable parameter σ , which de-

scribes the effective radius in phase space within which a local 
asymmetry is measured. Thus, this parameter should be larger 
than the resolution of dij and small enough not to dilute locally 
varying asymmetries.

The distance between two points in phase space is usually mea-
sured as the distance in the Dalitz plot. However, this distance 
depends on the choice of the axes of the Dalitz plot. This depen-
dence is removed by using all three invariant masses to determine 
the distance, dij , calculated as the length of the displacement vec-

tor ��xij = (m2, j
12 − m2,i

12 , m2, j
23 − m2,i

23 , m2, j
13 − m2,i

13 ), where the 1, 2, 3
subscripts indicate the final-state particles. Using all three invari-
ant masses does not add information, but it avoids an arbitrary 
choice that could impact the sensitivity of the method to different 
CP violation scenarios.

In the case of CP violation, the average distances entering in 
the third term of Eq. (1) are larger, which, because of the char-
acteristics of the metric function, leads to a reduced magnitude 
of this term. Therefore larger CP asymmetries lead to larger val-
ues of T . This is translated into a p-value under the hypothesis 
of CP symmetry by comparing the nominal T value observed in 
data to a distribution of T values obtained from permutation sam-
ples, where the flavour of each candidate is randomly reassigned 
to simulate samples without CP violation. The p-value for the no 
CP violation hypothesis is obtained as the fraction of permutation 
T values greater than the nominal T value.

A statistical uncertainty of the p-value is obtained as a binomial 
standard deviation. If large CP violation is observed, the observed 
T value is likely to lie outside the range of permutation T values. 
In this case the permutation T distribution can be fitted with a 
generalised extreme value (GEV) function, as demonstrated in Refs. 
[6,7] and verified in large simulation samples for this analysis. The 
GEV function is defined as
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Fig. 3. Distribution of permutation T values fitted with a GEV function for the simulated sample and showing the nominal T value as a vertical line for (a) 2% CP violation 
in the amplitude and (b) 1◦ phase CP violation of the ρ+ resonance.

Fig. 4. (a), (c) Ti value distributions, and (b), (d) local asymmetry significances for (top) 2% CP violation in the amplitude and (bottom) 1◦ phase CP violation of the ρ+
resonance.
f (T ;μ,δ, ξ) = N

[
1 + ξ

(
T − μ

δ

)](−1/ξ)−1

× exp

{
−

[
1 + ξ

(
T − μ

δ

)]−1/ξ}
, (2)

with normalisation N , location parameter μ, scale parameter δ, 
and shape parameter ξ . This function is set to zero for T > μ −δ/ξ

for ξ > 0, and for T < μ − δ/ξ for ξ < 0. Fig. 3 shows an example 
T value distribution with a GEV function fit for a simulated data 
set including CP violation (see Section 5).

The p-value from the fitted T distribution can be calculated as 
the fraction of the integral of the function above the nominal T

value. The uncertainty on the p-value is obtained by randomly re-
sampling the fit parameters within their uncertainties, taking into 
account their correlations, and by extracting a p-value for each 
of these generated T distributions. The spread of the resulting 
p-value distribution is used to set 68% confidence uncertainties. 
A 90% confidence upper limit is quoted where no significantly non-
zero p-value can be obtained from the fit.

The number of available permutations is constrained by the 
available computing time. The default p-value extraction uses the 
counting method as long as at least three permutation T values 
are found to be larger than the observed T value. Beyond that, 
the p-value is extracted by integrating the fitted GEV function. The 
p-values presented here are based on 1000 permutations for the 



162 LHCb Collaboration / Physics Letters B 740 (2015) 158–167

default data results and on 100 permutations for the sensitivity 
studies.

A visualisation of regions of significant asymmetry is obtained 
by assigning an asymmetry significance to each event. The contri-
butions of a single event of one flavour, Ti , and a single event of 
the opposite flavour, T i , to the total T value are given by

Ti = 1

2n(n − 1)

n∑
j �=i

ψi j − 1

2nn

n∑
j

ψi j,

T i = 1

2n(n − 1)

n∑
j �=i

ψi j − 1

2nn

n∑
j

ψi j. (3)

Example Ti distributions for the simulated CP violating data 
sets are shown in Fig. 4(a), (c); events contributing with Ti of the 
largest magnitude point to CP violation regions. However, the CP
asymmetry arising from the ρ+ amplitude difference (Fig. 4(a)) 
produces a global asymmetry, n > n. Through the normalisation
factors in Eq. (3), this leads to negative Ti regions for approxi-
mately m2(π+π0) > 2 GeV2/c4, where the numbers of D0 and D0

mesons are equal.
Having obtained the Ti and T i values for all events, a permu-

tation method is also used here to define the level of significance. 
The distributions of the smallest negative and largest positive Ti
values of each permutation, T min

i and T max
i , are used to assign sig-

nificances of negative and positive asymmetries, respectively. Posi-
tive (negative) local asymmetry significances are Ti values greater 
(smaller) than the fraction of the T max

i (T min
i ) distribution that cor-

responds to the significance level. The same procedure is applied 
to the T i distribution, leading to a Dalitz plot with an inverted 
asymmetry pattern.

The asymmetry significances for each simulated event are plot-
ted on a Dalitz plot (see Fig. 4(b), (d)). If an amplitude difference 
exists between CP-conjugate states of a resonance, the region of 
significant asymmetry appears as a band around the mass of the 
resonance on the plot. If a phase difference is present instead, 
regions of positive and negative asymmetry appear around the res-
onance on the plot, indicating the phase shift.

The practical limitation of this method is that the number 
of mathematical operations scales quadratically with the sample 
size. Furthermore, a significant number of permutations is required 
to get a sufficient precision on the p-value. In this analysis the 
method is implemented using parallelisation on graphics process-
ing units (GPUs) [15].

5. Sensitivity studies

The interpretation of the results requires a study of the sensi-
tivity of the present data sample to different types of CP violation. 
The sensitivity is examined based on simplified Monte Carlo sam-
ples generated according to the model described in Ref. [3] using 
the generator package Laura++ [16].

The selection efficiency has to be taken into account in these 
studies as it varies strongly across phase space. This efficiency is 
measured using a sample of events based on the full LHCb de-
tector simulation. In the simulation, pp collisions are generated 
using Pythia [17,18] with a specific LHCb configuration [19]. De-
cays of hadronic particles are described by EvtGen [20], in which 
final-state radiation is generated using Photos [21]. The interac-
tion of the generated particles with the detector and its response 
are implemented using the Geant4 toolkit [22,23] as described 
in Ref. [24]. The efficiency is shown to vary as a function of the 
π+π− invariant mass, while it is found to be constant with re-
spect to other variables. The resulting efficiency curves for merged 

Fig. 5. The selection efficiency as a function of m(π+π−). The efficiency for the 
combined sample is fitted with a straight line.

Table 1
Overview of sensitivities to various CP violation scenarios. �A and �φ denote, re-
spectively, change in amplitude and phase of the resonance R .

R (�A, �φ) p-value (fit) Upper limit

ρ0 (4%, 0◦) 3.3+1.1
−3.3 × 10−4 4.6 × 10−4

ρ0 (0%, 3◦) 1.5+1.7
−1.4 × 10−3 3.8 × 10−3

ρ+ (2%, 0◦) 5.0+8.8
−3.8 × 10−6 1.8 × 10−5

ρ+ (0%, 1◦) 6.3+5.5
−3.3 × 10−4 1.4 × 10−3

ρ− (2%, 0◦) 2.0+1.3
−0.9 × 10−3 3.9 × 10−3

ρ− (0%, 1.5◦) 8.9+22
−6.7 × 10−7 4.2 × 10−6

and resolved π0 mesons as well as for the combined sample are 
shown in Fig. 5. The small m(π+π−) range corresponds to π0

candidates with high momentum and is primarily covered by the 
merged π0 sample. The overall efficiency in this region is low as 
the integrated merged π0 identification efficiency is lower than for 
the resolved sample and decreases after its turn-on as the π0 mo-
mentum increases. This affects in particular the ρ0 resonance, as 
it lies entirely within the low acceptance region.

For further studies, the efficiency, based on the fitted curve, is 
then applied to simplified Monte Carlo data sets by randomly dis-
carding events based on the candidate’s position in phase space. 
Background events are simulated by resampling phase-space dis-
tributions extracted from �m sideband regions. Inclusion of the 
background does not significantly reduce the sensitivity to the CP
violation scenarios discussed below. This is due to the low level of 
background and due to it being CP symmetric within the present 
sensitivity.

Various CP asymmetries are introduced by modifying, for a 
chosen D0 flavour, either the amplitude or the phase of one of 
the three intermediate ρ resonances dominating the π−π+π0

phase space. The resulting sensitivities are shown in Table 1. The 
p-values, including their statistical uncertainties, are obtained from 
fits of GEV functions to the T value distributions and 90% confi-
dence limits are given in addition.

The sensitivity is comparable to that of the BaBar analysis [5]
for the ρ0 resonance and significantly better for the ρ+ and ρ−
resonances. This is expected due to the variation of the selection 
efficiency across phase space, which disfavours the ρ0 region.

The sensitivity of the method also depends on the choice of the 
metric parameter σ . Studies indicate good stability of the mea-
sured sensitivity for values of σ between 0.2 and 0.5 GeV2/c4, 
which are well above the resolution of the dij and small compared 
to the size of the phase space. The value σ = 0.3 GeV2/c4 yields 
the best sensitivity to some of the CP violation scenarios studied 
and was chosen, prior to the data unblinding, as the default value. 
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The optimal σ value may vary with different CP violation scenar-
ios. Hence the final results are also quoted for several values of σ .

The standard binned method [13] is also applied to the simu-
lated data sets. This study shows that the energy test provides re-
sults compatible with, and equally or more precise than the binned 
method.

There are two main sources of asymmetry that may degrade 
or bias the results. One is an asymmetry that may arise from 
background events and the other is due to particle detection asym-
metries that could vary across phase space.

Background asymmetries are tested by applying the energy test 
to events in the upper �m sideband, �m > 150 MeV/c2. No sig-
nificant asymmetry is found. In addition, simplified simulation data 
sets are produced by generating signal candidates without CP vio-
lation and background candidates according to background distri-
butions in data, separately for D0 and D0 candidates and thus al-
lowing for a background-induced asymmetry. These samples show 
a distribution of p-values consistent with the absence of any asym-
metry. Further tests using a binned approach [13] confirm this 
conclusion. These are carried out on the �m sideband data sample 
as well as on background samples obtained using the sPlot tech-
nique based on the �m fits in Fig. 1. Both approaches show no 
indication of a background asymmetry. As the background present 
in the signal region is found to be CP symmetric, it is simply in-
cluded in the T value calculation discussed in Section 4.

Local asymmetries are expected to arise, at a level below the 
current sensitivity, due to the momentum dependence of π+/π−
detection asymmetries in combination with the different kinematic 
distributions of π+ and π− in certain regions of phase space.

These effects are tested using the Cabibbo-favoured decay 
D0 → K −π+π0 as a control mode. This channel is affected by 
kaon detection asymmetries, which are known to be larger than 
pion detection asymmetries and thus should serve as a conser-
vative test. The data sample is split into eight subsets, each of 
which contains approximately the same amount of data as the sig-
nal sample. The energy test yields p-values between 3% and 74%, 
which is consistent with the assumption that detection asymme-
tries are below the current level of sensitivity. A further test is 
conducted by splitting the control mode data sample by the po-
larity of the spectrometer dipole magnet, which yields two large 
approximately equal-sized samples. The resulting p-values of 8%
and 15% show no evidence of sizable biases due to detector asym-
metries.

6. Results and conclusions

The application of the energy test to all selected D0 →
π−π+π0 candidates using a metric parameter of σ = 0.3 GeV2/c4

yields T = 1.84 × 10−6. The permutation T value distribution is 
shown in Fig. 6(a). By counting the fraction of permutations with 
a T value above the nominal T value in the data, a p-value of 
(2.6 ± 0.5) × 10−2 is extracted. Alternatively, extrapolation from a 
fit to the GEV function gives a p-value of (2.1 ± 0.3) × 10−2. The 
significance levels of the Ti values are shown in Fig. 6(b). A small 
phase-space region dominated by the ρ+ resonance contains can-
didates with a local positive asymmetry exceeding 1σ significance. 
Varying the metric parameter results in the p-values listed in Ta-
ble 2; all the p-values are at the 10−2 level.

The data sample has been split according to various criteria to 
test the stability of the results. Analyses of sub-samples with op-
posite magnet polarity, with different trigger configurations, and 
with fiducial selection requirements removing areas of high local 
asymmetry of the tagging soft pion from the D∗+ decay all show 
good consistency of the results.

Table 2
Results for various metric parameter values. The 
p-values are obtained with the counting method.

σ [GeV2/c4] p-value

0.2 (4.6 ± 0.6) × 10−2

0.3 (2.6 ± 0.5) × 10−2

0.4 (1.7 ± 0.4) × 10−2

0.5 (2.1 ± 0.5) × 10−2

Fig. 6. (a) Permutation T value distribution showing the fit function and the mea-
sured T value as a red line. (b) Visualisation of local asymmetry significances. The 
positive (negative) asymmetry significance is set for the D0 candidates having pos-
itive (negative) contribution to the measured T value, respectively (see Section 4). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

In summary, a search for time-integrated CP violation in the 
Cabibbo-suppressed decay D0 → π−π+π0 is performed using a 
novel unbinned model-independent technique. The analysis has 
the best sensitivity from a single experiment to CP violation in this 
decay. The data are found to be consistent with the hypothesis of 
CP symmetry with a p-value of (2.6 ± 0.5)%.
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