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1 Introduction

The study of entanglement entropy has contributed crucially to progress across theoretical
physics. For instance, entanglement entropy has played an integral part in understanding
the nature of quantum field theories [1], as well as understanding topological order in
quantum many-body systems [2, 3]. Additionally, in holography, a fundamental outcome
of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence is the relation
between entanglement entropies in the CFT and geometric entropies σ of codimension-
2 extremal surfaces in the AdS bulk. This relation is described by the Ryu-Takayanagi
(RT) correspondence [4, 5], or by its covariant generalization, the Hubeny-Rangamani-
Takayanagi (HRT) correspondence [6]. In the limit where the bulk is described by Einstein-
Hilbert gravity, the geometric entropy σ is just A/4G where A is the area of the surface,
though higher derivative terms in the action provide additional corrections to σ [7].

Given an HRT surface defined by a boundary region R, the area AHRT [R] of this HRT
surface is hence of great interest (even without reference to its CFT dual). In particular,
one can think of AHRT [R] as a quantum operator in the bulk by promoting it from its
classical role as a function on the gravitational phase space. The action of this operator in
semiclassical gravity was studied directly in [8], where it was found to generate a boundary-
condition-preserving kink transformation. As will be described in more detail in section 2.1
below, this transformation acts as a relative boost between the entanglement wedges on
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either side of the HRT surface. Prior to the explicit study of the action of AHRT [R]
in [8], there were many closely related results in various contexts [9–15], which suggested
a similar form for the transformation. Most relevant to our work here are [16–20], which
suggested that the HRT area action would generate this boost-like transformation based
on comparison with modular Hamiltonians. These modular Hamiltonians are given by the
expression K = − log ρ for some state ρ.

In [8] we determined the action of AHRT [R] in the gravitational phase space, working
in AdSD Einstein-Hilbert gravity and including arbitrary minimally coupled matter. To
understand the action on the phase space, the paper calculated Poisson brackets between
AHRT [R] and certain gravitational data. Semiclassically, these Poisson brackets correspond
to commutators, up to a factor of i. That paper also computed explicit Poisson brackets
between HRT areas defined by different boundary regions R in the Poincaré AdS ground-
state for 2 + 1 Einstein-Hilbert gravity. This calculation proceeded by starting with the
boundary stress tensor algebra, then extending it to an area commutator via the Leibniz
rule. The goal of the current work is to extend the results of [8] to 2 + 1-dimensional
asymptotically AdS spacetimes with a chiral boundary CFT, by which we mean a CFT
with unequal left and right central charges.

The present work is inspired by [21], where the authors find an explicit expression for
the modular commutator [22, 23] in 1 + 1D chiral CFTs. This modular commutator is
defined as J(A,B,C)ρ = ⟨[KAB,KBC ]⟩, where KAB and KBC are the boundary modular
Hamiltonians associated with regions AB and BC, respectively, ρ = ρABC is some state,
and ⟨. . .⟩ denotes expectation values in that state. For contiguous CFT intervals A, B, and
C on a Cauchy surface Σ, the authors of [21] find a modular commutator given by

J(A,B,C)Ω = πcL
6 (2ηv − 1)− πcR

6 (2ηu − 1) (1.1)

where cL, cR are the left and right central charge, respectively, |Ω⟩ is the vacuum state on
Σ, and u = t−x and v = t+x are light cone coordinates. Additionally, ηu = (u1−u2)(u3−u4)

(u1−u3)(u2−u4)

and ηv = (v1−v2)(v3−v4)
(v1−v3)(v2−v4) , where (u1, v1) and (u2, v2) are the anchor points of region A,

(u2, v2) and (u3, v3) are the anchor points of region B, and (u3, v3) and (u4, v4) are the
anchor points of region C.

We would like to compare eq. (1.1) to bulk area commutators for general pure states
in the bulk. By the Jafferis-Lewkowycz-Maldacena-Suh (JLMS) relation [24], we have
KR = Aext

4G +Kbulk+Scorrections, where Aext is the area of an extremal surface corresponding
to the boundary region R, Kbulk is the modular Hamiltonian of the bulk region enclosed by
the extremal surface, and Scorrections arise when computing quantum corrections. These
include Wald-like terms and higher derivative corrections, allowing for terms built from
extrinsic curvatures. In semiclassical gravity, we can safely ignore Kbulk, giving σ[R] ≈ KR,
where σ may include the higher derivative corrections found in Scorrections. However, this
introduces a potential subtlety: σ[R] ≈ KR is true in any state, whereas the modular
commutator is given by a commutator of vacuum modular Hamiltonians.

We can remedy this issue by noting that, in the bulk semiclassical approximation,

eiλσ |ψ⟩ ≈ eiλKψ |ψ⟩ (1.2)
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for a modular Hamiltonian Kψ defined by the holographic pure state |ψ⟩, and some ar-
bitrary parameter λ.1 This is enough to compute expectation values of commutators. In
particular, we find ⟨[KAB,KBC ]⟩Ω = ⟨[σ[AB], σ[BC]]⟩Ω for KAB, KBC defined in the state
|Ω⟩. In Einstein-Hilbert gravity, σ is an HRT area. In this case, eq. (1.1) reduces to
J(A,B,C)Ω = πc

3 (ηv − ηu). This is exactly the area commutator computed in [8].
We now wish to extend the derivation of area commutators to find agreement with the

full modular commutator in eq. (1.1). To do this, we need to modify our bulk spacetime so
that it is dual to a boundary CFT with cL ̸= cR. This can be accomplished by adding to
the Einstein-Hilbert action a gravitational Chern-Simons term, which is a higher-derivative
term that preserves bulk diffeomorphism invariance, but which introduces a gravitational
anomaly in the dual CFT. This anomaly manifests as either a non-conservation of the
boundary stress tensor or, equivalently, as an anti-symmetric part of the boundary stress
tensor, thus allowing for chiral behavior in our boundary CFT. This anomaly arises due to
the theory’s sensitivity to the choice of coordinate system at the boundary. In 2 + 1 bulk
dimensions, the resulting bulk theory is known as topologically massive gravity (TMG);
see [26–28] for original references. Previous work studying TMG in a holographic context
includes [29–32].

In TMG, due to the presence of the bulk Chern-Simons term, the geometric entropy is
no longer given by just the HRT area. Instead, the geometric entropy is given by the HRT
area plus an extra term, as derived from the bulk perspective in [33] (using methods based
on those in [34]). We will call this the TMG geometric entropy, and denote the correspond-
ing quantum operator as σTMG[R]. We can gain more intuition about the TMG geometric
entropy by comparing with Einstein-Hilbert gravity, where we can think of the HRT area
as the action of a massive particle propagating in the bulk. In contrast, in TMG, the geo-
metric entropy is given by the action of a massive spinning particle in the bulk. See [35, 36]
for other studies on entanglement entropy in the presence of gravitational anomalies.

Using the TMG geometric entropy computed in [33], we derive vacuum expectation
values of commutators of σTMG, which indeed match the modular commutator in eq. (1.1).
We also derive the Hamiltonian flow generated by σTMG in semiclassical gravity. This
direct calculation is a first step in understanding the action of geometric entropies in general
higher-derivative gravitational theories. References [8, 20] suggest that geometric entropy
flow should remain a boundary-condition-preserving kink transformation, even with the
inclusion of higher-derivative corrections to the Einstein-Hilbert action. This conjecture
will be studied further in [37]. Our work here is an explicit verification of this hypothesis
for TMG.

As a final comment before proceeding with an outline of the paper, we note that [38]
showed that chiral CFTs admit no lattice regularization due to the gravitational anomaly.
That reference also argued that this is an obstruction to defining and interpreting entan-
glement entropy of subregions in chiral CFTs. A potential resolution is that one can define
entanglement entropy in another way, perhaps by topological-regulation (thinking of the
chiral CFT as induced on some boundary by a higher-dimensional non-chiral CFT) or via

1This approximation will be explained in detail in the forthcoming work [25].
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a lattice-continuum correspondence (see, e.g., [39]). Or, it is possible entanglement entropy
cannot be defined, but that derivatives of the entanglement entropy still make sense.2 We
will not attempt to resolve this issue in this paper. We simply note that it is subtle and
remains an open question in the literature.

In section 2.1, we reformulate the derivation of the phase space flow generated by HRT
areas in the language of Peierls brackets [40], which are equivalent to the more familiar
Poisson brackets but are more convenient for our purposes. We then use this same Peierls
bracket method to compute TMG geometric entropy flow in section 2.2. The result is a
boundary-condition-preserving kink transformation, which is exactly the transformation
found for HRT area flow [8]. This result holds in spacetimes without matter. More gener-
ally, it holds to first order in the flow parameter for spacetimes with matter fields whose
action is algebraic in the metric. This includes the usual two-derivative scalar, Yang-Mills,
and Proca fields.

In section 3, we compute the algebra of TMG entropy operators. We use the bulk
perspective throughout this calculation, taking special care to include the Chern-Simons
contribution to the boundary stress tensor in section 3.1, and computing σTMG for general
states in Poincaré AdS3 in section 3.2. In section 3.3, we calculate the σTMG algebra in
the vacuum using TMG geometric entropy flow, and in section 3.4 we calculate the σTMG

algebra in general states using the stress tensor algebra. We provide this calculation to
make contact with [8], and as an independent check on our main result in section 2.2. In
section 3.4.1, we extend the work of [21] by finding the TMG entropy algebra for disjoint
boundary regions A, B, and C. Finally, in section 4, we conclude with some comments
and possible future directions.

2 Geometric entropy flow

This section derives the geometric flow induced by the TMG geometric entropy σTMG.
The result applies to asymptotically AdS3 spacetimes with negative cosmological constant
Λ and without matter. It also holds to first order in the flow parameter λ in spacetimes with
matter fields whose action is algebraic in the metric, i.e., “standard matter”. In order to
quantify the entropy flow, we compute Peierls brackets between the geometric entropy and
data on a particular Cauchy slice. In the bulk semiclassical approximation, Peierls brackets
describe commutatation relations between operators (up to the usual factor of i). Impor-
tantly, a Peierls brakcet {A,B} is only well-defined if both A and B are gauge-invariant.

In the dual CFT, we consider the entanglement entropy of an achronal region R. In
semiclassical Einstein-Hilbert gravity, the associated geometric entropy is given by 1/4G
times the area of the corresponding HRT surface, which is the minimal codimension-2
extremal surface anchored to ∂R that satisfies the homology constraint of [41]. As we will
see, in TMG the geometric entropy is instead given by 1/4G times the area of some surface
γ (which lies in a Cauchy slice Σ), plus an additional term related to other data on Σ.
The surface γ is the one which extremizes the entropy functional σTMG. The surface γ

2We thank Jon Sorce for his insight on the lattice regularization issue and its potential resolutions.
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generally differs from the HRT surface one would find for cL = cR, but they are the same
when matter is not present [33].

Our Peierls bracket analysis will focus on the effect of geometric entropy flow on Cauchy
data on Σ. One can then solve the equations of motion to find the action on the rest of the
spacetime. In particular, we compute the bracket between the geometric entropy σ and Kij ,
the extrinsic curvature of the codimension-1 surface Σ. Readers unfamiliar with the Peierls
bracket may wish to consult [42] (and references therein) for background information.

The procedure to compute Peierls brackets starts by adding σ as a source to the action.
Then, we solve the new equations of motion to find the retarded and advanced solutions
for the extrinsic curvature, denoted as D−Kij

tot and D+Kij
tot, respectively. The rest of the

data on Σ remains unchanged. Finally, the desired Peierls bracket is defined by{
σ,Kij(x)

}
= D−Kij

tot(x)−D+Kij
tot(x). (2.1)

Section 2.1 computes {AHRT [R]/4G,Kij(x)} in Einstein-Hilbert gravity to illustrate the
Peierls bracket method. We then compute {σTMG[R],Kij(x)} in section 2.2.

2.1 Revisiting HRT area flow in semiclassical Einstein-Hilbert gravity

In this section, we directly compute Peierls brackets in asymptotically AdSD Einstein-
Hilbert gravity with standard matter. This commutator was previously computed in [8]
using the canonical commutation relations of Einstein-Hilbert gravity; here, we instead use
the ADM formalism [43] and the Peierls bracket method. We perform this calculation as
a simple illustration of this method, before applying it to the more complicated case of
TMG. As we will show, our result here matches the previous result.

In the ADM formalism, we decompose the metric according to

ds2 = (−N2 +NiN
i)dt2 + 2N idxdt+ hijdx

idxj , (2.2)

where xi are coordinates in a Cauchy slice Σ and hij is the induced metric on Σ. Using
this decomposition, up to boundary terms the action can be written as [44]

I =
∫
M
dtdD−1x

√
−g

[ 1
16πG(R− 2Λ) + LM

]
=
∫
M
dtdD−1xN

√
h

[ 1
16πG(r −K2 +KijK

ij − 2Λ) + LM
]
,

(2.3)

where M is the entire bulk manifold, r is the Ricci scalar on Σ, LM is the matter La-
grangian, and Kij is the extrinsic curvature on Σ. The extrinsic curvature is defined as

Kij =
1
2N (ḣij −DiNj −DjNi), (2.4)

with Di the covariant derivative on Σ. We write the trace of Kij as K = hijK
ij .

Following the Peierls bracket method, we now add the geometric entropy defined by
a boundary region R as a source to the action. For semiclassical Einstein-Hilbert gravity,
the geometric entropy is given by 1/4G times the area of the HRT surface γ corresponding
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to the boundary region R. Additionally, we choose Σ so that it contains γ. The HRT area
is given by [8]

AHRT [R]
4G = 1

4G

∫
γ
dD−2w

√
q(w)

= 1
4G

∫
M
dtdD−1x

√
q(x)δΣ(γ, x)δ(t− tΣ),

(2.5)

where qAB is the metric on the HRT surface, δΣ(γ, x) is a one-dimensional Dirac delta-
function on the Cauchy slice which localizes x to γ, and tΣ is the time associated with the
Cauchy slice. Adding this to the action in eq. (2.3) with (infinitesimal) weight λ gives the
modified action

I ′ =
∫
M
dtdD−1x

(
N

16πG

√
h(x, t)[r(x, t)−K2(x, t) +Kij(x, t)Kij(x, t)− 2Λ]

+N
√
h(x, t)LM (x, t) + λ

4G

√
q(x)δΣ(γ, x)δ(t− tΣ)

)
.

(2.6)

Next, we set δI ′ = 0 and solve the resulting equations of motion. The modification of
the action introduces a new term containing δ(t − tΣ), and so, to cancel this term in the
equation of motion, we need another term proportional δ(t− tΣ). As we will show, this can
be achieved with an ansatz in which advanced and retarded solutions of the induced metric
remain continuous but in which advanced and retarded solutions for Kij involve terms pro-
portional to a Heaviside-function Θ(t−tΣ). We will denote the retarded solution by D−Kij

tot
and the advanced solution by D+Kij

tot. Below, we will focus only on “relevant” terms in the
equation of motion. This simply means we will only keep terms proportional to δ(t − tΣ)
which, with the above ansatz, are simply those containing time-derivatives of D±Kij

tot.
To find δI ′, we need to understand the functional derivatives of hij and qij with respect

to hij . These are given [8] by

δhkl(x)
δhij(y)

= δikδ
j
l δ

(D−1)(x− y) (2.7)

δqAB(x)
δhij(y)

= ∂yi

∂x̃A
∂yj

∂x̃B
δ(D−2)
γ (x, x̃(y))δΣ(γ, y). (2.8)

We also need to understand the variation of Kij with respect to hij , which is

δKkl(x)
δhij(y)

= 1
2N ∂t

(
δhkl(x)
δhij(y)

)
, (2.9)

and which can be evaluated fully using eq. (2.7). Finally, we need the variation of AHRT [R]
with respect to hij , which is given by

δAHRT [R]
δhij(y)

= 1
2

∫
M
dtdD−1x

δqAB(x)
δhij(y)

qAB(x)δΣ(γ, x)δ(t− tΣ), (2.10)

where, when the metric and Kij are evaluated at tΣ, we do not write their explicit t-
dependence. We will evaluate this fully by inserting eq. (2.8). This provides all of the
pieces needed to evaluate the variation of the modified action.
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Keeping only the relevant terms, we have

δI ′rel=
1

16πG

∫
dt
√
h(t,y)δhij(t,y)

(
∂t[K(t,y)hij(t,y)−Kij(t,y)] (2.11)

+2πλ
√
q(x̃(y))√
h(y)

qAB(x̃(y)) ∂y
i

∂x̃A
∂yj

∂x̃B
δ(t− tΣ)δΣ(γ,y)

)
.

Notice that LM does not factor into our calculation as long as it does not contain any
extrinsic curvature components. This is true for standard matter, as defined above. We
will now solve for the effect of the new source term at first order in λ about a background
solution of the λ = 0 theory. For source strength λ, we write the extrinsic curvature at
this order in the form

Kij(t, y) = K̃ij(t, y) + λD±Kij
tot(t, y), (2.12)

where K̃ij is the original extrinsic curvature of the λ = 0 background.3 As discussed above,
D±Kij

tot must contain terms with Θ(t−tΣ), but it can also contain continuous terms. Thus,
we can write D±Kij

tot = D±Kij +D±Kij
cont, where D±Kij contains all Heaviside-function

terms and D±Kij
cont contains all continuous terms. Since the continuous terms in the

advanced and retarded solutions must agree on Σ, their difference vanishes in the Peierls
bracket, and we can rewrite eq. (2.1) as

{AHRT [R],Kij(tΣ, y)} = D−Kij(tΣ, y)−D+Kij(tΣ, y). (2.13)

We now wish to solve for the advanced and retarded solutions to evaluate this Peierls
bracket.

Plugging eq. (2.12) into eq. (2.11) and setting δI ′rel = 0, we have

∂tD
±Kij(t, y)− hkl(t, y)∂tD±Kkl(t, y)hij(t, y)

= 2π
√
q(x̃(y))√
h(y)

qAB(x̃(y)) ∂y
i

∂x̃A
∂yj

∂x̃B
δΣ(γ, y)δ(t− tΣ).

(2.14)

Integrating over time4 and performing a trace reverse gives our two solutions

D−Kij(t, y) = 2π
√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ)
(
qAB(x̃(y)) ∂y

i

∂x̃A
∂yj

∂x̃B
− hij(y)

)
(2.15)

D+Kij(t, y) = −2π
√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(tΣ − t)
(
qAB(x̃(y)) ∂y

i

∂x̃A
∂yj

∂x̃B
− hij(y)

)
. (2.16)

Finally, using the Peierls bracket definition in eq. (2.1), we arrive at our result{
AHRT [R]

4G ,Kij(tΣ, y)
}
= 2π

√
q(x̃(y))√
h(y)

δΣ(γ, y)
(
qAB(x̃(y)) ∂y

i

∂x̃A
∂yj

∂x̃B
− hij(y)

)
= −2πδ̂Σ(γ, y) ⊥i⊥j ,

(2.17)

3The calculation of HRT area flow is unaffected by the smoothness of K̃ij , which is important for
including matter in the background spacetime. This is explained in more detail at the end of this section.

4Because the induced metric hij depends on time, our expressions for D±Kij are not the exact results of
these integrals. Instead, eq. (2.15) and (2.16) give only the discontinuous terms. If we expand each metric as
a power series in t, then our expressions for D±Kij come from considering only the term proportional to θ(t−
tΣ); higher-order terms in the metric give continuous terms which do not contribute to the Peierls bracket.
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2πλ
γ Σ(Corig)

Σ(Cnew)

(a)

∂Σ

∂R

D(R̄) D(R)

Corig
∣∣∣∣
∂Σ

= Cnew
∣∣∣∣
∂Σ

(b)

Figure 1. The geometry of the boundary-condition-preserving kink transformation. Figure 1a
shows the transformation of the Cauchy data on Σ in the bulk, from Corig to Cnew. The flow
induces a relative boost with parameter 2πλ between the left and right sides of Σ. Figure 1b
depicts the transformation induced in the boundary, showing the domains of dependence D(R) of
R and D(R̄) of R̄. ∂R is the intersection between the boundary and γ, and ∂Σ is the boundary of
a smooth bulk Cauchy surface Σ in the original spacetime. On the surface ∂Σ, Corig = Cnew. All
boundary observables on that surface are preserved by the flow generated by AHRT [R].

where ⊥i is the unit normal to γ in Σ, and δ̂Σ(γ, y) =
√
q(x̃(y))√
h(y)

δΣ(γ, y) is a one-dimensional
Dirac delta-function of the proper distance between x and γ measured along geodesics in
Σ orthogonal to γ. Since hij remains unchanged under the addition of the source term σ,
the Peierls bracket {AHRT [R], hij(tΣ, y)} vanishes. The flow thus adds a δ-function (times
−2πλ) to K⊥⊥, but leaves all other initial data on Σ unchanged. This precisely matches
our previous result for the HRT area flow in [8], which we arrived at using the standard
Poisson brackets of phase space variables on the Cauchy slice.

How can we understand this result geometrically? We can integrate eq. (2.17) to yield
the effect of a finite flow by a parameter λ, and we see that the flow induced by the HRT
area introduces a relative boost in Σ, on either side of γ. This “kinks” the data on the
Cauchy slice in the bulk, as shown in figure 1a, and the rest of the solution is determined
by the equations of motion. However, we must take special care with boundary conditions.
In particular, since Σ represents a definite instant of time, the boundary of Σ (∂Σ) must
remain fixed due to the asymptotic AdS boundary conditions. This is shown in figure 1b.
Following [8], we refer to this transformation as a boundary-condition-preserving kink
transformation.

The treatment of boundary conditions is in contrast to the original kink transformation
introduced in [20]. Defining K[γ] as the generator of this original kink transformation by λ,
then K[γ] has the same bulk action as AHRT [R]/4G but has different boundary conditions
as K[γ] would instead introduce a relative boost on either side of ∂R, the boundary of
γ. In particular, this K[γ] also acts as a relative boost at the boundary. Then, defining
HR to be (2π times) the generator of the boundary one-sided boost (taken to generate
flow toward the future in the right wedge), the relation can be expressed in the form
AHRT [R]

4G = HR +K[γ]. This notation will be useful in section 3.3.
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As a final comment, we note that integrating the flow to finite λ requires an understand-
ing of the Peierls Bracket evaluated at certain background solutions that are non-smooth as
well as at those that are smooth. This is because, if we take a smooth background solution
and apply HRT area flow, then the solution immediately becomes non-smooth due to the
kink transformation. In the analysis above, we allowed for non-smooth K̃ij , so there is no
obstruction to integrating to finite λ. However, as we will see, integrating to finite λ is
more difficult for TMG entropy flow.

2.2 Entropy flow in TMG

We now apply the Peierls bracket method to TMG in spacetimes asymptotic to AdS3 with
standard matter. In this theory, the bulk action is

I = IEH − βICS , (2.18)

where IEH is the Einstein-Hilbert action and ICS is the Chern-Simons action, defined as

ICS =
∫
M

Tr
[
ΓdΓ + 2

3Γ
3
]
. (2.19)

The constant β measures the anomaly coefficient. It is defined as

β = cL − cR
96π , (2.20)

and we can use this to write the left and right central charges as cL = c0 + 48πβ and
cR = c0 − 48πβ, where c0 = 3/2G is the central charge in the absence of the Chern-Simons
term. For more information on the notation used above, we refer the reader to, e.g., [29].

Again, we have a boundary region R and its corresponding HRT surface γ. We are
interested in calculating the Peierls bracket between σTMG[R], the geometric entropy de-
termined by R, and Kij , the extrinsic curvature of a Cauchy slice Σ containing γ. To do
so, we add σTMG as a source to the action, take the variation, and solve the equations of
motion. Thus, we are interested in solutions to the equation

δIEH − βδICS + λδσTMG[R] = 0. (2.21)

In section 2.1, we calculated the relevant terms of δIEH . As we will show, these terms will
again be the only relevant terms in our TMG calculation. We are left with computing the
relevant terms in δICS and δσTMG[R].

In what follows, we will fix our gauge so that N = 1 and N i = 0. As we mentioned
above, this gauge-fixing is allowed because a Peierls bracket {A,B} must have gauge-
invariant A and B.

2.2.1 Calculating δσT MG[R]

In TMG, the geometric entropy is modified by an additional term, and so is no longer given
by the HRT area. Instead, by equation (3.26) of [33], the TMG geometric entropy defined
by a boundary region R is given by

σTMG[R] =
1
4G

∫
γ
ds

(√
gµνẊµẊν − 32πGβν̃ · ∇ν

)
, (2.22)
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where γ is the curve in spacetime that extremizes σTMG. The first term in the expression
gives the area of γ. Without matter, γ is the HRT surface one would find for cL = cR, and
so the first term is the usual HRT area term. However, with matter present, γ generally
differs from the HRT surface. At each point of γ the vectors νµ, ν̃µ define an orthonormal
frame in the orthogonal plane. Now, the exact Poincaré AdS3 solution has the metric

ds2 = 1
z2 (−dt

2 + dx2 + dz2), (2.23)

where we set lAdS = 1. Our spacetime is asymptotically AdS3, so we can take our metric
to asymptote to eq. (2.23) and use the corresponding coordinates (t, x) to specify vectors
on the boundary. We define the normal frame at the boundary as ν∂ = ∂t and ν̃∂ = ∂x.
We choose a Cauchy slice Σ so that it contains γ. The surface γ has two endpoints, and, in
general, they do not have the same t-coordinates but they do lie on the same spacelike line
on the boundary. We are free to choose Σ to asymptote to that line, which is a boost of
the constant t slice by some boost parameter α. Then, we can define the boundary vectors,

nµ∂ = (coshα,− sinhα, 0) (2.24)
⊥µ
∂ = (− sinhα, coshα, 0) (2.25)

where nµ is the vector normal to Σ and ⊥µ is the vector normal to γ in Σ, and nµ∂ and ⊥µ
∂

are the boundary values of these vectors. Thus, in the bulk, we must have

νµ = coshα(nµ + tanhα ⊥µ) (2.26)
ν̃µ = coshα(tanhαnµ+ ⊥µ). (2.27)

Plugging into the last term in the action, we have

ν̃µ∇νµ =⊥µ vσKµσ

=⊥i vjKij ,
(2.28)

where, since ⊥µ and vµ lie within Σ, we denote them with Latin indices.
Let us define the area of a surface ξ as A[ξ, g], where g is the spacetime metric. Using

our above result in eq. (2.22), we get

σTMG[R] =
A[γ, g]
4G − 8πβ

∫
γ
ds ⊥k vlKkl(s)

= A[γ, g]
4G − 8πβ

∫
γ
dx
√
q(x) ⊥k vlKkl(x).

(2.29)

We now wish to vary the geometric entropy. In general, there are two components to this
variation: the variation with respect to the surface and the variation with respect to g.
However, because γ extremizes σTMG, the variation with respect to the surface vanishes
when evaluated at γ. So, we need only consider variations with respect to the metric, and
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can treat γ as fixed.5 This yields

δσTMG[R] =
δ̃A[γ,g]
4G −8πβ

∫
γ
dx
√
q(x)

[
⊥k vlδKkl(x)+δ(⊥k vl)Kkl(x)

+ δ
√
q(x)√
q(x)

⊥k vlKkl(x)
]

= δ̃A[γ,g]
4G −8πβ

∫
M
dtd2x

√
q(x)

[
⊥k vlδKkl(x)+δ(⊥k vl)Kkl(x)

+ δ
√
q(x)√
q(x)

⊥k vlKkl(x)
]
δΣ(γ,x)δ(t− tΣ),

(2.30)

where δ̃A[γ, g] is the variation of the area at fixed γ, as given by eq. (2.10).6 As before,
when the metric and Kij are evaluated at tΣ, we do not write their explicit t-dependence.
We also have expressions for δKij and δqij , so all that is left to understand is the variation
of ⊥k vl. We have

0 = δ(hij ⊥i⊥j) =⊥i⊥j δhij + 2 ⊥i δ ⊥i, (2.31)

which gives

δ ⊥i= −1
2 ⊥i⊥k⊥l δhkl + ζvi, (2.32)

where ζ is an unknown constant. Similarly, we can write

0 = δ(hijvivj) = vivjδhij + 2viδvi, (2.33)

which gives

δvi = −1
2v

ivkvlδhkl + η ⊥i, (2.34)

where η is a constant. Since we can treat γ as a fixed surface, the only components of δvi

we need are those which keep it normalized. Hence, η = 0, so

δvi = −1
2v

ivkvlδhkl. (2.35)

To solve for ζ, we now use

0 = δ(hij ⊥i vj) =⊥i vjδhij + ζ, (2.36)

yielding ζ = − ⊥i vjδhij . Thus, we have

δ ⊥i= −1
2 ⊥i⊥k⊥l δhkl − vi ⊥k vlδhkl. (2.37)

5For a more detailed argument on why we treat γ as fixed, we refer the reader to the discussion at the
start of section 2.1 in [8].

6While eq. (2.10) was defined as the HRT area variation, it holds more generally as the variation of an
area A[ξ, g] with respect to the metric.
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We can now use eq. (2.10) for the area variation, eq. (2.35) for the variation of vi, and
eq. (2.37) for the variation of ⊥i in eq. (2.30). This gives

δσTMG[R] =
∫
dt
√
q(x̃(y))

(
− 4πβ ⊥i vjδ′(t− tΣ)

+ 1
8Gq

AB(x̃(y)) ∂y
i

∂x̃A
∂yj

∂x̃B
δ(t− tΣ)− 8πβvkvlKkl(y) ⊥i vjδ(t− tΣ)

− 4πβ ⊥k vlKkl(y) ⊥i⊥j δ(t− tΣ)− 4πβ ⊥k vlKkl(y)vivjδ(t− tΣ)

+ 4πβqAB(x̃(y)) ∂y
i

∂x̃A
∂yj

∂x̃B
⊥k vlKkl(y)δ(t− tΣ)

)
δΣ(γ, y)δhij(y).

(2.38)

As in Einstein-Hilbert gravity, the source variation includes terms proportional to a Dirac
delta function, δ(t − tΣ). However, unlike the previous case, the first term in eq. (2.38)
contains a time derivative of a delta function, denoted as δ′(t − tΣ). We thus need other
terms in the equation of motion to be proportional to δ-functions and δ-function deriva-
tives, so they can cancel these new terms. As we will show in section 2.2.2, there will be
terms in the equation of motion containing ∂2

tD
±Kij

tot, so we can use the same ansatz as
before. Namely, we will choose the advanced and retarded solutions of the induced metric,
D±hij , to be continuous, but choose solutions of the extrinsic curvature, D±Kij

tot, to have
discontinuous terms proportional to a Heaviside-function.

As before, we will focus below only on “relevant” terms in the equation of motion. In
this case, the relevant terms are ones containing ∂tD±Kij

tot or ∂2
tD

±Kij
tot; with our ansatz,

these will give the necessary δ(t− tΣ) and δ′(t− tΣ) terms.

2.2.2 Calculating δICS

The variation of ICS , as given in [30], is

δICS = −2
∫
M
dtd2x

√
hCµνδgµν , (2.39)

where Cµν is the Cotton tensor. In 3-dimensions, the Cotton tensor is

Cµν = ϵµασ∇α

(
Rνσ −

1
4δ

ν
σR

)
= ϵµασ∂αR

ν
σ + ϵµασΓναλRλσ − ϵµασΓλασRνλ −

1
4ϵ

µαν∇αR.

(2.40)

It is of course important that all equations of motion are satisfied. However, for the
purposes of this calculation, we need only consider the equations involving the µ = i, ν = j

components of the Cotton tensor, where i, j are spatial indices. This is because variations
of σTMG[R] depend only on the induced metric, and not on any other metric components.
Thus, these are the parts of the equation of motion changed by the introduction of the
source, and all the other equations are constraints. The Bianchi identities guarantee that
if the constraints are satisfied on any surface (e.g., to the past in a retarded solution) and
if the equations of motion studied in this section are satisfied, the constraints will continue
to hold on any surface. As a result, we need not explicitly check that the constraints are
satisfied, and we may focus our attention on the remaining equations of motion.
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After some cancellations, the spatial components of the Cotton tensor are

Cij = 1
2

(
ϵiασ∂αR

j
σ + ϵiασΓjαλR

λ
σ + ϵjασ∂αR

i
σ + ϵjασΓiαλRλσ

)
, (2.41)

where we made explicit the symmetry under exchange of i and j. As above, we are only in-
terested in contributions containing a time derivative of the extrinsic curvature. Evaluating
eq. (2.41) in the gauge N = 1 and N i = 0, and keeping only relevant terms, we arrive at

Cijrel =
1
2ϵ

itk
(
∂2
tK

j
k − 4∂t(KlkK

lj) + ∂t(KKj
k) +Kj

l ∂tK
l
k −Kj

k∂tK

)
+ 1

2ϵ
jtk
(
∂2
tK

i
k − 4∂t(KlkK

li) + ∂t(KKi
k) +Ki

l∂tK
l
k −Ki

k∂tK

)
.

(2.42)

Using eq. (2.7) and the identity

δhij(x) =
δhij(x)
δhkl(y)

δhkl(y), (2.43)

we plug into eq. (2.39), yielding

δICS,rel = −
∫
dt
√
h(t, y)ϵitk

(
∂2
tK

j
k(t, y)− 4∂t(Klk(t, y)K lj(t, y))

+ ∂t(K(t, y)Kj
k(t, y)) +Kj

l (t, y)∂tK
l
k(t, y)

−Kj
k(t, y)∂tK(t, y)

)
δhij(t, y)

−
∫
dt
√
h(t, y)ϵjtk

(
∂2
tK

i
k(t, y)− 4∂t(Klk(t, y)K li(t, y))

+ ∂t(K(t, y)Ki
k(t, y)) +Ki

l (t, y)∂tK l
k(t, y)

−Ki
k(t, y)∂tK(t, y)

)
δhij(t, y).

(2.44)

We now have equations for the relevant terms in δICS , δσTMG[R] from eq. (2.38), and
δIEH from eq. (2.11). In the next section, we combine these equations together to solve
the equation of motion.

2.2.3 Solving the modified equations of motion

To find the Peierls bracket, we start by using our expressions for δIEH , δσTMG[R], and
δICS in eq. (2.21). As in section 2.1, we write Kij = K̃ij + λD±Kij

tot, where K̃ij is the
extrinsic curvature before introducing the source λσTMG[R]. As stated above, the modified
extrinsic curvature, D±Kij

tot, has terms proportional to a Heaviside-function. It can also
have terms containing (t − tΣ)Θ(t − tΣ) (i.e., a sharp corner), which, under two time
derivatives, becomes a δ-function. We will thus write

D±Kij
tot = D±Kij +D±K̄ij +D±Kij

other, (2.45)

where D±Kij contains all Θ-function terms, D±K̄ij contains all corner terms, and
D±Kij

other contains any other continuous terms that come along for the ride (which, of
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course, will not contribute any δ-functions, even under the action of second derivatives).
To find the Peierls bracket we use eq. (2.13), and hence we do not need to find the explicit
expression for any continuous terms.

In contrast to the calculation of HRT area flow in section 2.1, the flow calculation in
this section does depend on the smoothness of K̃ij . For the remainder of this section, we
will take K̃ij to be smooth. This generally suffices to derive the flow only at first order in
λ around smooth solutions (see the comments at the end of section 2.1). Without matter,
the extension to all orders turns out to be trivial, since these spacetimes are always locally
AdS3, and the kink is just a coordinate artifact. While we expect our result to hold when
matter is present, we save a proof of this for future work. At the moment, our results hold
only at first order in λ when matter is present.

Using our new expression for Kij in eq. (2.46) and taking λ small, we obtain an
equation relating the terms proportional to δ(t− tΣ),

0 = − 1
16πG

√
h(t, y)[∂tD±Kij(t, y)− ∂tD

±K(t, y)hij(t, y)]

+ β
√
h(t, y)ϵitk

(
∂2
tD

±K̄j
k(t, y)− 4K̃ lj(t, y)∂tD±Klk(t, y)

− 4K̃lk(t, y)∂tD±K lj(t, y) + K̃j
k(t, y)∂tD

±K(t, y) + K̃(t, y)∂tD±Kj
k(t, y))

+ K̃ lj(t, y)∂tD±Klk(t, y)− K̃j
k(t, y)∂tD

±K(t, y)
)

+ β
√
h(t, y)ϵjtk

(
∂2
tD

±K̄i
k(t, y)− 4K̃ li(t, y)∂tD±Klk(t, y)

− 4K̃lk(t, y)∂tD±K li(t, y) + K̃i
k(t, y)∂tD±K(t, y) + K̃(t, y)∂tD±Ki

k(t, y))

+ K̃ li(t, y)∂tD±Klk(t, y)− K̃i
k(t, y)∂tD±K(t, y)

)
+
√
q(x̃(y))δΣ(γ, y)δ(t− tΣ)

( 1
8Gq

AB(x̃(y)) ∂y
i

∂x̃A
∂yj

∂x̃B

− 4πβ ⊥k vlKkl(y) ⊥i⊥j −4πβ ⊥k vlKkl(y)vivj

− 8πβvkvlKkl(y) ⊥(i vj) + 4πβqAB(x̃(y)) ∂y
i

∂x̃A
∂yj

∂x̃B
⊥k vlKkl(y)

)
,

(2.46)

and another equation relating terms proportional to δ′(t− tΣ),

∂2
t (ϵitkD±Kj

k(t, y) + ϵjtkD±Ki
k(t, y)) = 4π

√
q(x̃(y))√
h(y)

δΣ(γ, y) ⊥(i vj)δ′(t− tΣ). (2.47)

Integrating the latter equation twice on both sides, we get an equation for the retarded
and advanced solutions, respectively:

ϵitkD−Kj
k(t, y) + ϵjtkD−Ki

k(t, y) = 4π
√
q(x̃(y))√
h(y)

δΣ(γ, y) ⊥(i vj)Θ(t− tΣ), (2.48)

ϵitkD+Kj
k(t, y) + ϵjtkD+Ki

k(t, y) = −4π
√
q(x̃(y))√
h(y)

δΣ(γ, y) ⊥(i vj)Θ(tΣ − t). (2.49)
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For now we will work with the retarded solution, saving the advanced solution for later.
Contracting eq. (2.48) with ⊥i⊥j and vivj , we find

⊥k vjD
−Kj

k(t, y) = 0 and vk ⊥j D
−Kj

k(t, y) = 0. (2.50)

To obtain the above equation, we used ⊥i ϵ
itk = vk and viϵitk = − ⊥k. To derive these, we

note that, due to the normalization and orthogonality constraints of ⊥i, vi, and na, we have

⊥i ϵ
i0k = ±vk. (2.51)

This then gives ⊥i vkϵ
i0k = ±1, and so ⊥k viϵ

i0k = ∓1. We then have

viϵ
i0k = ∓ ⊥k . (2.52)

In what follows, we choose the plus sign in eq. (2.51) and so we have the minus sign in
eq. (2.52). We choose these signs so that our result in the limit cL = cR matches what
we find for Einstein-Hilbert gravity. This choice of sign appears to be consistent with
standard conventions, e.g. in [45].

Now that we have derived these useful identities, let us contract eq. (2.48) with ⊥i

vj + vi ⊥j , yielding

(vivj− ⊥i⊥j)D−Kij(t, y) = 2π
√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ). (2.53)

These are thus the only components of the solution that survive. We can therefore write
the solution as

D−Kij(t, y) = 2π
√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ)(cvvivj + c⊥ ⊥i⊥j), (2.54)

with cv − c⊥ = 1.
We now must solve for cv and c⊥. We start by contracting eq. (2.46) with ⊥i⊥j +vivj .

Under this contraction, many terms will cancel out, and we are left with

0 = − 1
16πG

√
h(t, y)(⊥i⊥j +vivj)∂tD−Kij(t, y) + 1

8πG

√
h(y)∂tD−K(t, y)

+ β
√
h(y)(⊥i⊥j +vivj)ϵitkK lj(t, y)∂tD−Klk(t, y)

+ β
√
h(t, y)(⊥i⊥j +vivj)ϵjtkK li(t, y)∂tD−Klk(t, y)

+ 1
8G

√
q(x̃(y))δΣ(γ, y)δ(t− tΣ)− 4πβ

√
q(x̃(y)) ⊥k vlKkl(y)δΣ(γ, y)δ(t− tΣ).

(2.55)

Substituting the right-hand side of eq. (2.54) into the equation above, we find
1
8G(c⊥ + cv) + 4πβ(cv − c⊥) ⊥k vkKkl(y) = − 1

8G + 4πβ ⊥k vlKkl(y). (2.56)

Since cv − c⊥ = 1, the equation above reduces to c⊥ + cv = −1. Then we have c⊥ = −1
and cv = 0. Using eq. (2.54), we obtain the retarded solution

D−Kij(t, y) = −2π
√
q(x̃(y))√
h(y)

δΣ(γ, y)Θ(t− tΣ) ⊥i⊥j

= −2πδ̂Σ(γ, y)Θ(t− tΣ) ⊥i⊥j .

(2.57)
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To solve for the advanced solution, D+Kij , we start from eq. (2.49) and follow the
same steps as for the retarded solution. We thus obtain

D+Kij(t, y) = 2πδ̂Σ(γ, y)Θ(tΣ − t) ⊥i⊥j . (2.58)

Combining equations (2.57) and (2.58) yields the Peierls bracket{
σTMG[R],Kij(tΣ, y)

}
= −2πδ̂Σ(γ, y) ⊥i⊥j . (2.59)

This is our main result, and it agrees exactly with eq. (2.17), the result for Einstein-Hilbert
gravity. The action of σTMG[R] is thus the same as the HRT area action, generating a
boundary-condition-preserving kink transformation as shown in figure 1. In particular, we
can write the relation σTMG[R] = HR + K[γ] as before, where HR is the generator of the
boundary one-sided boost and K[γ] is the kink transform.

3 Geometric entropy commutators

In this section, we aim to reproduce the modular commutator result of [21], but from the
bulk perspective. We do this in two ways: by using the results above, and by using the
boundary stress tensor algebra. We indeed find agreement between our results and [21].
In addition, the nature of our calculation allows us to easily extend the results of [21] to
disjoint boundary regions. This is difficult in their setting as the modular commutator is
defined only for three contiguous boundary regions.

We work in topologically massive gravity with negative cosmological constant and with-
out matter, for spacetimes asymptotic to Poincaré AdS3. Spacetimes of this form are always
diffeomorphic to TMG in Poincaré AdS3. Thus, if we start in TMG in vacuum Poincaré
AdS3, we can obtain any other spacetime of this form via a boundary conformal transfor-
mation. Defining u = t− x and v = t+ x, the Poincaré AdS3 metric of eq. (2.23) becomes

ds2 = 1
z2 (−dudv + dz2). (3.1)

Then a boundary conformal transformation will be a map (u, v) → (U(u), V (v)), such
that the boundary metric becomes

ds2
∂ = −dUdV = −e2σ−(U)e2σ+(V )dudv. (3.2)

We see the flat boundary metric is rescaled by some conformal factor e2σ−(U)e2σ+(V ).
We start in section 3.1 by deriving the change of the boundary stress energy tensor due

to this conformal transformation. Then, in section 3.2, we write the renormalized geometric
entropy in this theory. In section 3.3 we calculate the effect of TMG entropy flow on the
stress energy tensor. We then use the geometric flow given by eq. (2.59) to calculate,
in vacuum Poincaré AdS3 and with a specific choice of boundary region R, commutators
between TMG entropies defined by different boundary regions. In section 3.4 we generalize
these results to include general R and all spacetimes diffeomorphic to vacuum Poincaré
AdS3 (which, in particular, include planar black holes). Finally, in section 3.4.1, we use
our results to understand the entropy algebra with disjoint boundary regions.
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3.1 The boundary stress energy tensor

We write the full boundary stress energy tensor in TMG as T̃ij = Tij − TCSij , where Tij is
the stress tensor in Einstein-Hilbert gravity and TCSij represents the contribution from the
Chern-Simons term to the stress tensor. If we know the variation for the Chern-Simons
term in the action, then T ijCS can be found by evaluating

δICS = 1
2

∫
∂M

T ijCSδgij
√
gd2x

= −1
2

∫
∂M

TCSij δgij
√
gd2x.

(3.3)

We know δICS from eq. (2.39), however we will instead use the form of the variation found
in [29]. Hence, the variation takes the form

δICS = 2β
∫
∂M

d2x
√
gRηjηkδgijϵ

iηk + β

∫
∂M

d2x
√
g[2Kk

i δKkj − ΓkliδΓlkj ]ϵij

− β

∫
M
d3x

√
g∇β(Rβρµν)ϵγµνδgγβ .

(3.4)

In our work below we will use a Fefferman-Graham expansion, writing the metric as

ds2 = dη2 + gijdx
idxj , (3.5)

where we define gij as an expansion about the boundary metric g(0)
ij : gij = e2ηg

(0)
ij +g(2)

ij +. . ..
For Poincaré AdS in 2+1-dimensions, we have the Minkowski metric on the boundary, and

g
(2)
ij = κTij . (3.6)

In vacuum Poincaré AdS3 all terms in eq. (3.4) independently vanish, and so δICS = 0.
The first term vanishes since Rηjηk ∝ δjk for large η, and the last term vanishes since the
curvature is covariantly constant. The vanishing of the second term is not as obvious, but
it is due to that fact that g(0)

ij = ηij , and Tij = 0. We thus see that the original TCS (i.e.,
before the conformal transformation) is zero.

We will now apply a conformal transformation to eq. (3.4), then extract the stress
energy tensor. Since we are perturbing about a flat boundary metric, all terms vanish
except the extrinsic curvature term (we refer the reader to [29] for more details):

Kk
i δKkjϵ

ij = −gkl(2)g
(0)
li δg

(0)
kj ϵ

ij + . . .

= κTkig
(0)
jl δg

kl
(0)ϵ

ij + . . . .
(3.7)

Using eq. (3.3), we can extract TCSki , yielding

TCSkl = −4κβTkig
(0)
jl ϵ

ij . (3.8)

(This verifies that TCSkl = 0 when Tki = 0 in the vacuum.) Now, under the conformal
transformation in eq. (3.2), the stress tensor will transform as [46]

Tabdx
adxb → T originalab dxadxb + c0

12π [∂
2
uσ − (∂uσ)2]du2 + c0

12π [∂
2
vσ − (∂vσ)2]dv2. (3.9)
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Hence, applying this transformation to Tki in eq. (3.8), we get

TCSab dx
adxb → −4κβ

(
c0
12πg

(0)
uv ϵ

uv[∂2
uσ − (∂uσ)2]du2

− c0
12πg

(0)
uv ϵ

uv[∂2
vσ − (∂vσ)2]dv2

)
→ 4β([∂2

uσ − (∂uσ)2]du2 − [∂2
vσ − (∂vσ)2]dv2)

→ 4β([∂2
Uσ + (∂Uσ)2]dU2 − [∂2

V σ + (∂V σ)2]dV 2).

(3.10)

where we used the fact that the original stress tensor is zero. To obtain the second line of
the equation, we use the convention ϵtx = −1 to get

ϵuv = ∂u

∂t

∂v

∂x
ϵtx + ∂u

∂x

∂v

∂t
ϵxt = −2. (3.11)

Finally, under a conformal transformation from the vacuum, the full stress tensor in
this theory becomes

T̃ijdx
idxj → 1

12π (c0 − 48πβ)[∂2
Uσ + (∂Uσ)2]dU2

+ 1
12π (c0 + 48πβ)[∂2

V σ + (∂V σ)2]dV 2

→ cR
12π [∂

2
Uσ + (∂Uσ)2]dU2 + cL

12π [∂
2
V σ + (∂V σ)2]dV 2.

(3.12)

We define the TMG stress tensor components as T̃UU (U) = cL
12π [∂

2
Uσ + (∂Uσ)2] and

T̃V V (V ) = cL
12π [∂

2
V σ + (∂V σ)2]. By comparison with eq. (3.9), we see that T̃UU (U) =

cL
c0
TUU (U) and T̃V V (V ) = cR

c0
TV V (V ). We note that these relations are more obvious from

the CFT perspective, where, under Wick rotation, we can relate the u and v terms of the
stress tensor to holomorphic and anti-holomorphic parts T (z) and T (z̄), respectively. Then
we replace c0 with cR in T (z) and with cL in T (z̄). Here, however, we wished to understand
the stress tensor transformation from the bulk perspective.

3.2 Geometric entropy in TMG asymptotic to Poincaré AdS3

The geometric entropy of TMG is given by eq. (2.22), as proven by [33] using the replica
trick. Now suppose we have a 1+1D chiral CFT region R anchored at (u1, v1) and (u2, v2).
We take R to be the straight line segment between the anchor points. In vacuum Poincaré
AdS3, the non-renormalized TMG entropy can be written as [36]

σ̃vac
TMG[R] =

cL
12 ln

(
(v1 − v2)2

ϵv1ϵv2

)
+ cR

12 ln
(
(u1 − u2)2

ϵu1ϵu2

)
(3.13)

where ϵui and ϵvi for i = 1, 2 are the cut-offs in the u and v directions for each anchor point.
To maintain translation invariance we can choose ϵu1 = ϵu2 = ϵu and ϵv1 = ϵv2 = ϵv. Then,
to renormalize the TMG entropy, we follow the standard approach of adding counterterms
and taking the limit ϵ→ 0:

σvac
TMG[R] = lim

ϵ→0

(
σ̃vac
TMG[R] +

cL
6 ln ϵv +

cR
6 ln ϵu

)
= cL

6 ln |v1 − v2|+
cR
6 ln |u1 − u2|.

(3.14)
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The renormalized entropy is not invariant under the conformal transformation (u, v) →
(U(u), V (v)) given in eq. (3.2). This conformal transformation consists of two parts: a
diffeomorphism taking u → U(u) and v → V (v), and a Weyl rescaling of the metric. The
metric is invariant under such a transformation, but eq. (3.13) is not, because the cut-offs
transform as

ϵvi → e2σ+(Vi)ϵvi , (3.15)

ϵui → e2σ−(Ui)ϵui . (3.16)

If one wishes to use the same cut-offs before and after the conformal transformation, then
the renormalized entropy is defined via the same subtraction, and so transforms by adding
σ±:

σTMG[R] = σvac
TMG[R] +

cL
6 [σ+(V1) + σ+(V2)] +

cR
6 [σ+(U1) + σ+(U2)].

= cL
6 ln |v2 − v1|+

cL
6 ln |u1 − u2|

+ cL
6 [σ+(V1) + σ+(V2)] +

cR
6 [σ+(U1) + σ+(U2)].

(3.17)

This is the renormalized TMG entropy, which is of course similar to the result for the
renormalized HRT area under a conformal transformation, except with c0 replaced by cL
in anti-holomorphic terms and by cR in holomorphic terms.

In particular, in Poincaré AdS3 in Einstein-Hilbert gravity, we instead have

AHRT [R]
4G = c0

6 (AV (V1, V2) +AU (U1, U2)) (3.18)

up to a possible constant term which will not factor into our analysis, with

AV (V1, V2) = ln |v(V2)− v(V1)|+ σ+(V1) + σ+(V2), (3.19)
AU (U1, U2) = ln |u(U1)− u(U2)|+ σ−(U1) + +σ−(U2). (3.20)

Hence, we can write the TMG entanglement entropy in terms of the U and V pieces of the
HRT-area as simple rescaling:

σTMG[R] =
cL
6 AV (V1, V2) +

cR
6 AU (U1, U2). (3.21)

In what follows, we will use this expression to rewrite the entropy commutators in [8].

3.3 Entropy algebra from geometric flow

We will now use the geometric picture of TMG entropy flow to compute the action of
σTMG[R] on the stress tensor, and the commutator between the TMG entropies of two
different boundary regions. As discussed above, this entropy flow kinks Σ in the bulk, but
preserves ∂Σ. In this section, we work in asymptotically Poincaré AdS3 TMG without
matter and without black holes, although we will later generalize to spacetimes allowing
planar black holes. We follow the same approach as in section 3 of [8], and refer the
reader to the discussion there for more details. Our goal here is to review the essential
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parts of that calculation, and to note any differences (or lack thereof) between TMG and
Einstein-Hilbert gravity.

Our result for the geometric action of the σTMG flow agrees precisely with
that for (1/4G times the) HRT-area flow in Einstein-Hilbert gravity. In particular,
{σ[R]/4G,Kij(y)} has not changed with the addition of the Chern-Simons term, and we
still have σ[R] = HR +K[γ]. The kink transform K[γ] introduces a relative boost between
the two sides of γ, and so leaves γ invariant. In asymptotically Poincaré AdS3 TMG, the
action of K[γ] on the boundary introduces a gravitational anomaly, but this anomaly does
not change the equations of motion: the equations of motion change by the addition of
the Cotton tensor, which vanishes in Poincaré AdSD. Nor does K[γ] change the boundary
metric in the boosted wedge. Hence, the action of K[γ] leaves TMG invariant, and we need
only consider the action of HR, which must be a boundary conformal transformation. This
is the transformation which “undoes” the boundary action of the kink transformation, and
so is a boost with a rapidity we will denote as 2πλ.

As in [8], we take the action of HR to be a map (u, v) → (U(u), V (v)) defined by (3.2).7

We can specify the conformal factor explicitly by taking a boundary region R0, which is
the half-line x ∈ [0,∞) at t = 0 on the boundary at z = 0, and considering the extremal
surface corresponding to R0. Without matter, this extremal surface is the HRT surface
γR0 , and it is the bulk geodesic at x = t = 0 for all z. Then

U = ue−2πλΘ(−U), V = V e2πλΘ(V ), (3.22)

giving
σ−(U) = −πλΘ(−U), σ+(V ) = πλΘ(V ). (3.23)

Plugging into eq. (3.12), the stress tensor under the action of σTMG[R0] is

TV V = cL
12π (λδ

′(V ) + πλ2[δ(V )]2) (3.24)

TUU = cR
12π (λδ

′(U) + πλ2[δ(U)]2). (3.25)

We can also calculate the effect of σTMG[R0] on another TMG entropy defined by a different
boundary region R. This is the same calculation as in Einstein-Hilbert gravity: we write
σTMG[R] under the conformal transformation defined in eq. (3.22), thus giving it explicit
λ dependence. We write this transformed entropy as σTMG,λ[R]. Then

{σTMG[R0], σTMG[R]} = d

dλ
σTMG,λ[R]

∣∣∣∣
λ=0

= −πcL3
V1Θ(−V1V2)
V2 − V1

− πcR
3

U1Θ(−U1U2)
U1 − U2

.

(3.26)

In the next section, we generalize this result to spacetimes diffeomorphic to subregions of
vacuum Poincaré AdS3; in particular, we will now be able to include planar black holes.
We also generalize to commutators between TMG entropies defined by arbitrary boundary
regions.

7Note, however, that the purpose of this conformal transformation is different than the purpose of the
transformation introduced in eq. (3.2).
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3.4 Entropy algebra from stress tensors

Now, we consider spacetimes diffeomorphic to subregions of vacuum Poincaré AdS3. By
allowing for certain singular conformal transformations from the vacuum, i.e. ones where
we specify the boundary conditions v(V = ∞) = 0 and u(U = ∞) = 0, our solutions
asymptote to M > 0 planar black holes. Otherwise, for solutions that asymptote to
Poincaré AdS3, we choose v(V = 0) = 0 and u(U = 0) = 0. Let us now proceed with a
calculation of the commutator between the geometric entropies of two different boundary
regions. We do this by starting from the stress tensor algebra (i.e, the Virasoro algebra
with the appropriate chiral central charge), then use the Leibniz rule to get the TMG
entropy algebra. We mainly include this section as an independent check on our TMG
entropy flow calculation in section 2.2. We also include it to make contact with [8]: in [8],
we calculated the geometric entropy commutator in Einstein-Hilbert gravity following this
same method of starting from the stress tensor algebra.

The boundary stress tensor algebra in Einstein-Hilbert gravity is [47]

{TV V (V ), TV V (V ′)} = 2TV V (V ′)δ′(V −V ′)−T ′
V V (V ′)δ(V −V ′)− c0

24πδ
′′′(V −V ′), (3.27)

and similarly for the algebra of TUU . Suppose we have the boundary region R anchored
at (U1, V1) and (U2, V2), and the boundary region R′ anchored at (U ′

1, V
′

1) and (U ′
2, V

′
2).

Without loss of generality, we take U1 > U2, V1 < V2, U ′
1 > U ′

2, and V ′
1 < V ′

2 . Then, the
Leibniz rule is used to obtain the HRT area algebra from the Virasoro algebra:{

AHRT [R]
4G ,

AHRT [R′]
4G

}
=
∫
dV dV ′dV̄ dV̄ ′ 1

4G
∂AHRT [R]
∂σ+(V )

∂σ+(V )
∂TV V (V ′){TV V (V

′), TV V (V̄ ′)}

× ∂σ+(V̄ )
∂TV V (V̄ ′)

1
4G

∂AHRT [R′]
∂σ+(V̄ )

+
∫
dUdU ′dŪdŪ ′ 1

4G
∂AHRT [R]
∂σ−(U)

∂σ−(U)
∂TUU (U ′){TUU (U

′), TUU (Ū ′)}

× ∂σ−(Ū)
∂TUU (Ū ′)

1
4G

∂AHRT [R′]
∂σ−(Ū)

.

(3.28)

In TMG, using the stress tensor components defined after eq. (3.12), the Virasoro
algebra becomes

{T̃V V (V ), T̃V V (V ′)} = cL
c0

{TV V (V ), TV V (V ′)}E−H (3.29)

{T̃UU (U), T̃UU (U ′)} = cR
c0

{TUU (U), TUU (U ′)}E−H . (3.30)

where the E-H subscript stands for Einstein-Hilbert. The other terms in the integrals are
related to their Einstein-Hilbert counterparts as

∂σTMG[R]
∂σ+(V ) = cL

4Gc0

∂AHRT [R]
∂σ+(V ) and ∂σTMG[R]

∂σ−(U) = cR
4Gc0

∂AHRT [R]
∂σ−(U) , (3.31)
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and
∂σ+(V )
∂T̃V V (V ′)

= c0
cL

∂σ+(V )
∂TV V (V ′) and ∂σ−(U)

∂T̃UU (U ′)
= c0
cR

∂σ−(U)
∂TUU (U ′) . (3.32)

Putting this all together, eq. (3.28) becomes

{
σTMG[R], σTMG[R′]

}
= cL
c0

{ 1
4GAV (V1, V2),

1
4GAV (V

′
1 , V

′
2)
}

+ cR
c0

{ 1
4GAU (U1, U2),

1
4GAU (U

′
1, U

′
2)
}
.

(3.33)

In Einstein-Hilbert gravity, we had

{ 1
4GAV (V1, V2),

1
4GAV (V

′
1 , V

′
2)
}
= πc0

6


2ηv − 1, V ′

1 < V1 < V ′
2 < V2

1− 2ηv, V1 < V ′
1 < V2 < V ′

2

0, otherwise
(3.34)

{ 1
4GAU (U1, U2),

1
4GAU (U

′
1, U

′
2)
}
= πc0

6


2ηu − 1, U ′

2 < U2 < U ′
1 < U1

1− 2ηu, U2 < U ′
2 < U1 < U ′

1

0, otherwise,
(3.35)

where we define the cross ratios ηu = (u1−u′1)(u2−u′2)
(u1−u2)(u′1−u′2) and ηv = (v1−v′1)(v2−v′2)

(v1−v2)(v′1−v′2) . So, plugging
these into eq. (3.33), the entanglement entropy algebra in TMG is given by

{σTMG[R], σTMG[R′]}

= πcL
6


2ηv − 1, V ′

1 < V1 < V ′
2 < V2

1− 2ηv, V1 < V ′
1 < V2 < V ′

2

0, otherwise
+ πcR

6


2ηu − 1, U ′

2 < U2 < U ′
1 < U1

1− 2ηu, U2 < U ′
2 < U1 < U ′

1

0, otherwise.

(3.36)

This agrees with the result of [21], given in eq. (1.1). In vacuum Einstein-Hilbert gravity,
the entropy commutator vanishes when we restrict all anchor points to lie on a constant time
slice on the boundary. However, in TMG, this configuration instead gives a non-vanishing
result. For x′1 < x1 < x′2 < x2,

{σTMG[R], σTMG[R′]} = πc−
6 (2η − 1), (3.37)

with c− = cL − cR and η = (x1−x′1)(x2−x′2)
(x1−x2)(x′1−x′2) . This again agrees with [21].

3.4.1 Disjoint intervals

We can also apply our results to slightly more general situations than those considered
in [21]. In particular, in the semiclassical approximation, their result calculates the com-
mutator between σTMG[AB] and σTMG[BC], the geometric entropies of boundary regions
AB and BC, respectively, where A, B and C are contiguous. See figure 2 for an illustration.
By contrast, the commutators calculated in this work can be defined for disjoint intervals
A, B and C. This is because, in eq. (2.22), the TMG entropy is defined as an integral over
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Planar boundary

U
V

A

B

C γ2

γ1

Figure 2. For contiguous CFT regions A, B, and C, we can draw γ1, the extremal surface
corresponding to region AB, and γ2, the extremal surface corresponding to region BC. This is
the configuration studied in [21], where the authors find the modular commutator J(A,B,C)Ω,
equivalent to the commutator between the TMG entropies of AB and BC.

the extremal surface. Hence, if we have a disconnected surface, the integral splits into two,
and the contributions from each piece are additive.

For instance, take B and C to be disjoint. We take the anchor points of A to be (U1, V1)
and (U2, V2), the anchor points of B to be (U2, V2) and (U3, V3), and the anchor points of C
to be (U4, V4) and (U5, V5). Additionally, we will define a new region D between B and C,
that is anchored at (U3, V3) and (U4, V4). Then the bulk extremal surfaces corresponding
to boundary region BC have two possible configurations, as shown in figure 3. Thus,
σTMG[BC] is given by the configuration with minimal entropy:

σTMG[BC] = min
[
σTMG[B] + σTMG[C], σTMG[BDC] + σTMG[D]

]
. (3.38)

We can hence define σTMG[BC] in terms of TMG entropies defined by contiguous boundary
regions, and thus compute σTMG commutators.

In particular, in the disconnected phase (the left diagram in figure 3), both σTMG[B]
and σTMG[C] commute separately with the σTMG[AB]. Then,

{σTMG[AB], σTMG[BC]}disconnected = 0. (3.39)

In the connected phase (the right diagram of figure 3), we see that σTMG[D] commutes with
σTMG[AB], but σTMG[BCD] and σTMG[AB] do not commute. Without loss of generality,
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Planar boundary

U
V

A
B

C

D
γ1

γ2

Planar boundary

U
V

A
B

C

D
γ1

γ2

Figure 3. For contiguous CFT regions A and B, and disconnected region C, we can draw γ1, the
extremal surface corresponding to region AB, and γ2, the extremal surface corresponding to region
BC. We label the region between B and C as region D. As opposed to the contiguous case, γ2 splits
into two surfaces. In the left figure, γ2 is the HRT surface corresponding to region B combined with
the HRT surface corresponding to C. In the right figure, γ2 is the HRT surface corresponding to
region BDC combined with the HRT surface corresponding to D. This is a configuration we can
now study using eq. (3.36).

we choose U1 > U3, V1 < V3, U2 > U5, and V2 < V5. This yields

{σTMG[AB], σTMG[BC]}connected

= πcL
6


2ηv − 1, V2 < V1 < V5 < V3

1− 2ηv, V1 < V2 < V3 < V5

0, otherwise
+ πcR

6


2ηu − 1, U5 < U3 < U2 < U1

1− 2ηu, U3 < U5 < U1 < U2

0, otherwise.

(3.40)

Thus, we have a generalization of eq. (1.1) to disjoint boundary intervals.

4 Discussion

This work began by studying the flow on the covariant phase space induced by geometric
entropy in topologically massive gravity, computed in spacetimes asymptotic to AdS3 with
standard matter. In terms of Cauchy data on a Cauchy slice Σ containing the HRT surface,
we found exactly the same result as in [8] for HRT area flow in Einstein-Hilbert gravity. In
particular, the flow leaves the induced metric invariant but shifts the extrinsic curvature
by a δ-function as described by eq. (2.59), essentially boosting the entanglement wedge of
R relative to that of the complementary region. Without matter, this result holds to all
orders in the flow parameter λ; with matter, our result holds only to first order in λ. We
save the generalization to finite λ for future work.
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After deriving the geometric entropy flow, we used it to explicitly compute the commu-
tator between TMG entropies defined by different boundary CFT regions. We also derived
this commutator by extrapolating from the stress tensor algebra. Our commutators agree
with the modular commutator found in [21], the original motivation for this work. We
concluded with a short discussion about applying our results to disjoint boundary regions,
which is difficult to do with the modular commutator.

It is perhaps surprising that geometric entropy flow in TMG is precisely the same
as HRT area flow in Einstein-Hilbert gravity. Arriving at this result through the Peierls
bracket method was rather complicated, and required many cancellations between terms.
This suggests there may be a more elegant way to approach this calculation, which would
make the physical mechanisms behind these cancellations more obvious. Understanding
this result more fully could allow generalizations to higher dimensional theories with bound-
ary chiral CFTs, and potentially to theories with other types of higher derivative terms.
Geometric entropy flow in higher derivative theories of gravity will be explored in [37]. Our
work here is an important first step to understanding geometric entropy flow more generally.

In the same vein, our Peierls bracket calculation could be extended to higher di-
mensional theories with boundary chiral CFTs. Explicit formulas for the corresponding
geometric entropies have been computed in, for example, 3 + 1, 4 + 1, and 6 + 1 bulk
dimensions [35, 48]. The Peierls bracket calculation for geometric entropy flow in higher
dimensions would then follow the same steps as in our work here (expect would be consid-
erably more complicated). As already mentioned, it would thus be helpful to have a more
elegant understanding of our result instead of resorting to an explicit calculation.

It would also be interesting to compute explicit TMG entropy commutators in more
general configurations, e.g. with matter present or in higher dimensions. Indeed, this has
not yet been done for HRT area commutators in Einstein-Hilbert gravity. Additionally,
area commutators may have further implications tensor network models, as will be explored
in the forthcoming work [49, 50]. We would also like to understand the implications of our
TMG entropy commutator on tensor network constructions, especially since TMG is an
example of a higher derivative theory.
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