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Abstract The optical properties of rotating black holes in
Kaluza–Klein theory described by the total mass, spin, and
electric and magnetic charges are investigated in detail. Using
a developed general relativistic ray-tracing code to calculate
the motion of photons, shadows of Kaluza–Klein black holes
are generated. The properties of the shadow and the light
deflection angle around these black holes are also studied in
order to put constraints on the parameters of Kaluza–Klein
black holes using M87* shadow observations. The possibility
of imposing constraints on Kaluza–Klein black holes using
shadow observations is investigated. Moreover, we find that
small charges (electric and magnetic) of the black hole can
meet these constraints. We conclude that with the current
precision of the M87* black hole shadow image observa-
tion by the EHT collaboration, the shadow observations of
Kaluza–Klein black holes are indistinguishable from that of
the Kerr black hole. Much better observational accuracy than
the current capabilities of the EHT collaboration are required
in order to place verified constraints on the parameters of
modified theories of gravity in the strong field regime.
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1 Introduction

The existing and rapidly growing experimental and obser-
vational data on astrophysical black hole candidates do not
yet substantially support the idea that they should be well
described by the Kerr spacetime metric. There are still open
windows for consideration of other solutions within general
relativity and/or modified theories of gravity [1–10]. Thus,
one needs to think of how to test gravity theories through dif-
ferent observational and experimental data in both the weak
and strong field regimes.

Existing observational and experimental tests of gravity
theories (see, e.g. [11]) cannot determine the metric coef-
ficients of the Kerr spacetime with high accuracy. There is
still hope that quickly developing technologies will lead to
improved accuracy and help determine the physical charac-
teristics of Kerr black holes with high confidence. The first
ever image or so-called shadow of the supermassive black
hole (SMBH) at the center of the galaxy M87 has been cap-
tured using the VLBI (Very Long Baseline Interferometry)
technique by the Event Horizon Telescope (EHT) collabo-
ration [12,13]. The obtained shadow of the SMBH M87* is
consistent with expectations for the Kerr black hole shadow
as predicted by general relativity. However, there is still a
degeneracy problem since other axially-symmetric solutions
within general relativity or modified theories of gravity can,
in principle, mimic the Kerr spacetime parameters [14,15].
Several papers have also shown that weakly naked singular-
ities also mimic black holes very well [16,17].

Particularly the shadows of axially-symmetric Kerr-like
black hole solutions have been investigated and the deviation
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from the Kerr black hole has been analyzed [18–39]. Detailed
studies of the observable quantities of the black hole shadow
in various theories of gravity can be found in [39–66].

Among the numerous alternative theories of gravity, the
one proposed by Kaluza and Klein at the beginning of the
20th century has its own interesting features. Being pro-
posed as a classical field theory, it can also be interpreted
in the frameworks of quantum mechanics and string theory.
The Kaluza–Klein theory is a five-dimensional theory and
includes gravitational, electromagnetic, and scalar fields. The
effects of a compact fifth dimension have been searched for
in experiments at the Large Hadron Collider [67] without
any success up to now. Astrophysical tests of the Kaluza–
Klein theory have been performed using analysis of the equa-
tions of motion and its application to galactic motion/rotation
curves [68]. Particularly, the shadow of one of the black hole
solutions of the theory has been studied in [24]. On the other
hand, future modifications and improvements of gravitational
wave observations may give some constraints on the the-
ory [69–71]. In [72,73], the authors have studied the effects
of the Kaluza–Klein theory on the precession of a gyroscope
and possible tests using X-ray spectroscopy. Here we plan to
extend our previous studies by considering the shadow cast
by a black hole within the Kaluza–Klein theory.

Several solutions have been obtained within the Kaluza–
Klein theory describing compact objects and particularly
black holes [74]. In Refs. [75–77] one may find dif-
ferent spherically-symmetric solutions of the theory. The
axially-symmetric solutions of the Kaluza–Klein theory have
been obtained in Refs. [78–80] for the cases of four- and
five-dimensional spacetimes. The black hole solution with
squashed horizon has been studied in [81,82]. The solutions
for black holes in higher dimensional spacetimes have been
obtained in [83].

In this paper, we study the optical properties of rotating
black holes in Kaluza–Klein theory described by the four
parameters of total mass, spin, electric and magnetic charges.
The paper is organized as follows: The spacetime metric of
a Kaluza–Klein black hole is presented and its properties are
described in Sect. 2. Section 3 is devoted to the development
of the ray-tracing code for studying the photon motion and
obtaining the black hole shadow. In Sect. 4, the shadow of
the Kaluza–Klein black hole is explored and, in addition, the
light deflection angle for gravitational lensing by the black
hole is studied. Finally, we summarize our main results in
Sect. 5.

2 Spacetime metric

For the spacetime metric, the notation developed in [72]
will be used. In order to maintain consistency with our
geometrized system of units, we adopt the convention of

setting the speed of light, c0, to unity, i.e., c0 = 1. Addi-
tionally, the covariant derivatives represented by ∇α and the
coordinate systems xα are used within the framework of the
general metric ansatz for five-dimensional space-time. This
ansatz encapsulates the spatial dimensions, xi , x4 aligns with
the time coordinate, t , and x5 designates the fifth or extra
dimension, ψ . There are three fields involved in the simplest
Kaluza–Klein theory: gravity, the dilaton, and the gauge field.
The canonical form of the action in the Einstein frame can
be written as follows:

S =
∫ √−g

(
R

κ
+ 1

4
e
√

3κσ FαβF
αβ + 1

2
∇ασ∇ασ

)
d4x,

(1)

where
√−g represents the determinant of the four-

dimensional metric tensor, R is the Ricci scalar, σ is a dilaton
scalar field, Fαβ is the gauge field, κ = √

16πG and G is
the gravitational constant. The metric in the Kaluza–Klein
theory is given as

ds2 = H2

H1
(dψ + �)2 − H3

H2
(dt + T )2

+H1

(
dr2

	
+ dθ2 + 	

H3
sin2θdφ2

)
, (2)

where

H1 = r2 + a2 cos2 θ + r(p − 2m) + p(p − 2m)(q − 2m)

2(p + q)

− p

2m(p + q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ,

H2 = r2 + a2 cos2 θ + r(q − 2m) + q(p − 2m)(q − 2m)

2(p + q)

− q

2m(p + q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ,

H3 = r2 + a2 cos2 θ − 2mr, 	 = r2 + a2 − 2mr,

(3)

and the one-forms are given by

� = − 1

H2

[
2Q(r + p − 2m

2
) +

√
q3(p2 − 4m2)

4m2(p + q)
a cos θ

]
dt

− 1

H2

[
2P(H2 + a2 sin2 θ) cos θ +

√
(p2 − 4m2)

4m2(p + q)3

× [(p + q)(pr − m(p − 2m)) + q(p2 − 4m2)]a sin2 θ

]
dφ,

T = (pq + 4m2)r − m(p − 2m)(q − 2m)

2m(p + q)H3

√
pq sin2 θdφ.

(4)
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The physical mass M , angular momentum J , electric
charge Q, and magnetic charge P are included in the solu-
tion via four free parameters, m, a, p, and q, respectively.
The relations are written as:

M = p + q

4
, J =

√
pq(pq + 4m2)

4m(p + q)
a,

Q2 = q(q2 − 4m2)

4(p + q)
, P2 = p(p2 − 4m2)

4(p + q)
. (5)

The four dimensional version of the metric in the Einstein
frame is given by

ds̄2 = −H3

ρ2 dt2 − 2
H4

ρ2 dtdφ + ρ2

	
dr2

+ρ2dθ2 +
(

−H2
4 + ρ4	 sin2 θ

ρ2H3

)
dφ2 (6)

where

H1

M2 = 8(b − 2)(c − 2)b

(b + c)3 + 4(b − 2)x

b + c
+ x2

− 2b
√

(b2 − 4)(c2 − 4)α cos θ

(b + c)2 + α2 cos2 θ,

H2

M2 = 8(b − 2)(c − 2)c

(b + c)3 + 4(c − 2)x

b + c
+ x2

− 2c
√

(b2 − 4)(c2 − 4)α cos θ

(b + c)2 + α2 cos2 θ,

H3

M2 = x2 + α2 cos2 θ − 8x

b + c
,

	

M2 = x2 + α2 − 8x

b + c
,

H4

M3 = 2
√
bc [(bc + 4)(b + c)x − 4(b − c)(c − 2)] α sin2 θ

(b + c)3 ,

(7)

and ρ = √
H1H2. Here α, b, c, and x are the dimensionless

parameters that are defined as α ≡ a/M , b ≡ p/m, c ≡
q/m, and x ≡ r/M . From Eq. (5), the free parameter m can
be related to the physical mass M as

m = 4M

b + c
. (8)

The Kaluza–Klein metric reduces to the Kerr metric when the
electric and magnetic charges vanish, and the spin parame-
ter α equals the Kerr solution’s dimensionless spin a∗. The
spacetime has two horizons

r± = m ±
√
m2 − a2, (9)

which are obtained by solving 	 = 0. In terms of the dimen-
sionless parameters Eq. (9) becomes

x± = 4 ± √
16 − α2(b + c)2

b + c
. (10)

The Reissner-Nordstrom solution of general relativity is
obtained by setting b = c and α = 0. We recover the Kerr
solution when b = c = 2. However, the Kerr-Newman solu-
tion is not recovered when the magnetic charge vanishes. For
our analysis, we consider the case when b = c, which is a
black hole with electric and magnetic charges. Note that this
case can only be considered as a toy-model, since macro-
scopic black holes have a negligible electric charge.

Next, we make sure that the spacetime does not pos-
sess any pathologies. The bounds on the free parameters are
obtained by preserving the metric structure everywhere out-
side the horizon. First, from the definitions of Q2 and P2 in
Eq. (5), we get the following constraints: q ≥ 2m, p ≥ 2m,
or b ≥ 2, c ≥ 2. Plugging these into Eq. (10), we come to
the bound on α:

α2 ≤ 1 or − 1 < α < 1. (11)

The upper bound of b (b = c) can be obtained by using
Eqs. (10)–(11) as

2 ≤ b ≤ 2

|α| . (12)

3 Ray-tracing code for photons

The photon sphere of a black hole spacetime separates
geodesics falling into the event horizon from those escap-
ing to spatial infinity [84]. We observe the photon sphere
in the form of the black hole shadow. In the case of generic
spacetimes, we cannot solve the null-geodesic equations ana-
lytically and we have to solve the photon motion numerically
in order to calculate the shadow. In the Kerr spacetime, the
photon sphere is described by an analytical solution that is
used to calculate the shadow. The Kaluza–Klein black hole
metric we are studying is not separable and, therefore, the
shadow will be calculated numerically by applying a general
relativistic ray-tracing code, which will be described below.

The ray-tracing code we apply calculates photon trajec-
tories near the black hole and is based on the code used
in [15,39,85], which was first described in [86]. To obtain the
equations that represent t- and φ- component of the photon
position, we exploit the property of all stationary and axisym-
metric spacetimes, namely, that a test particle’s four momen-
tum is related to the specific energy E and the z-component
of the specific angular momentum Lz as pt = −E and
pφ = Lz . These relations lead to two first-order differen-
tial equations

dt

dλ′ = − Bgtφ + gφφ

gtt gφφ − g2
tφ

, (13)
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dφ

dλ′ = gtφ + Bgtt
gtt gφφ − g2

tφ

, (14)

where λ′ ≡ E/λ denotes the normalized affine parameter
and B ≡ Lz/E is the impact parameter.

The r - and θ -components of the photon position are
obtained by solving the second-order geodesic equations for
a generic axisymmetric metric

d2r

dλ′2 = −�r
tt

(
dt

dλ′

)2

− �r
rr

(
dr

dλ′

)2

− �r
θθ

(
dθ

dλ′

)2

−�r
φφ

(
dφ

dλ′

)2

− 2�r
tφ

(
dt

dλ′

) (
dφ

dλ′

)

−2�r
rθ

(
dr

dλ′

) (
dθ

dλ′

)
, (15)

d2θ

dλ′2 = −�θ
t t

(
dt

dλ′

)2

− �θ
rr

(
dr

dλ′

)2

− �θ
θθ

(
dθ

dλ′

)2

−�θ
φφ

(
dφ

dλ′

)2

− 2�θ
tφ

(
dt

dλ′

) (
dφ

dλ′

)

−2�θ
rθ

(
dr

dλ′

) (
dθ

dλ′

)
, (16)

where the Christoffel symbols of the metric are given by �σ
μν .

We set the reference frame and coordinate system in such
a way that the black hole is at the origin and z-axis coincides
with the axis of the spin angular momentum. In the code we
set the physical mass as M = 1, since the shape of the black
hole shadow does not depend on the physical mass M , which
only affects the size of the shadow. In the calculations, the
distance, azimuthal angle, and polar angle of the observing
screen are set to d = 1000, θ = ι, and φ = 0, respectively.
The relations ᾱ = rscr cos(φscr ) and β̄ = rscr sin(φscr ) link
the polar coordinates rscr and φscr used on the screen and the
celestial coordinates (ᾱ, β̄) on the observer’s sky.

The system of equations (15)–(16) are evolved backwards
in time, since only the final positions and momenta of the
photons are known. Each photon originates with some initial
coordinates on the screen having a four-momentum perpen-
dicular to the screen. The latter condition is necessary for
modeling the position of the screen located very far from
the source, since photons hitting the screen at spatial infinity
would move perpendicular to the screen at a distance of d.

Each photon’s initial position and four-momentum in the
Boyer–Lindquist coordinates of the black hole spacetime are
expressed as [87]

ri =
(
d2 + ᾱ2 + β̄2

)1/2
, (17)

θi = arccos

(
d cos ι + β̄ sin ι

ri

)
, (18)

φi = arctan

(
ᾱ

d sin ι − β̄ cos ι

)
, (19)

and
(

dr

dλ′
)
i
= d

ri
, (20)

(
dθ

dλ′
)
i
=

− cos ι + d
r2
i
(d cos ι + β̄ sin ι)

√
r2
i − (d cos ι + β̄ sin ι)2

, (21)

(
dφ

dλ′
)
i
= −ᾱ sin ι

ᾱ2 + (d sin ι − β̄ cos ι)2
, (22)

(
dt

dλ′
)
i
= − gtφ

gtt

(
dφ

dλ′
)
i

+
√√√√ g2

tφ

g2
t t

(
dφ

dλ′
)2

i
−

[
grr
gtt

(
dr

dλ′
)2

i
+ gθθ

gtt

(
dθ

dλ′
)2

i
+ gφφ

gtt

(
dφ

dλ′
)2

i

]
.

(23)

We can find the component (dt/dλ′)i from the fact that the
norm of the photon four-momentum is zero. The conserved
quantity B required in Eqs. (13) and (14) can be calculated
from the initial conditions.

The initial conditions on the screen are sampled by the
code in the following way. The location of the shadow
boundary separating photons falling into the horizon from
those fleeing into spatial infinity is searched in the range
0 ≤ rscr ≤ 20 for each φscr in the range 0 ≤ φscr ≤ 2π and
in increments π/180. Photons intersecting r = rhor + δr ,
with δr = 10−6, are considered captured in the horizon,
while all other photons reach r > d = 1000, hence escap-
ing to spatial infinity. The accurate value of rscr that rep-
resents the shadow boundary for current φscr is determined
by zooming in the boundary to an accuracy δrscr ∼ 10−3.
This methodology can accurately calculate the black hole
shadow more efficiently than fine sampling the entire screen.
Figure 1 shows the shadow silhouettes calculated using the
ray-tracing code for α = [0.0, 0.5, 0.9] and several values of
the deformation parameter b at an inclination angle ι = 0◦.
Figures 2 and 3 illustrate the same images calculated at incli-
nation angles ι = 45◦ and ι = 90◦. When ι = 0◦, the
shadow images are circles with different sizes affected by
α and b. For α 
= 0, the barycenter of the images moves
away from the center and the distortion of the shadow from a
circle increases as spin increases. Also, the same effects are
achieved by increasing b for fixed α.

4 Shadow of Kaluza–Klein black holes

In this section, we will study the apparent shape of the
Kaluza–Klein black hole shadow. We consider the celestial
coordinates ᾱ and β̄ (see [47,88] for reference) defined as,

ᾱ = lim
r0→∞

(
−r2

0 sin ι
dφ

dr

)
(24)

β̄ = lim
r0→∞

(
r2

0
dθ

dr

)
(25)
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Fig. 1 Shadow images calculated using the ray-tracing code at an incli-
nation angle ι = 0◦. Left panel: shadow silhouettes for α = 0.0 with
b = [2, 3, 500]. Central panel: shadow silhouettes for α = 0.5 with

b = [2, 3, bmax ]. Right panel: shadow silhouettes for α = 0.9 with
b = [2.0, 2.11, bmax ]. bmax = 2

α
. As expected, these shadow images

are circles, and only their size is affected by α and b

Fig. 2 Shadow images calculated using the ray-tracing code at an incli-
nation angle ι = 45◦. Left panel: shadow silhouettes for α = 0.0 with
b = [2, 3, 500]. Central panel: shadow silhouettes for α = 0.5 with
b = [2, 3, bmax ]. Right panel: shadow silhouettes for α = 0.9 with

b = [2.0, 2.11, bmax ]. bmax = 2
α

. It is easy to see that as the spin
parameter increases the barycenter of the images moves away from the
center and the distortion of the shadow from a circle increases. Also,
same effects are achieved by increasing b for fixed α

Fig. 3 Shadow images calculated using the ray-tracing code at an incli-
nation angle ι = 90◦. Left panel: shadow silhouettes for α = 0.0 with
b = [2, 3, 500]. Central panel: shadow silhouettes for α = 0.5 with
b = [2, 3, bmax ]. Right panel: shadow silhouettes for α = 0.9 with

b = [2.0, 2.11, bmax ]. bmax = 2
α

. Similar to the case with ι = 45◦,
increasing the spin causes horizontal displacement and distortion from
a circle. Same effects are achieved by increasing b for fixed α
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Fig. 4 Density plot of the shadow parametrizations; asymmetry
parameter A (top left panel), horizontal displacement D (top right panel)
and average radius 〈R〉 (bottom panel). The black solid line at α = 2/b

marks the upper boundary of the parameter b. The Kerr case is recovered
for b = 2, the left edge of the plot

where r0 denotes the distance between the observer and black
hole and ι is the inclination angle between the black hole
spin axis and the observer’s line of sight. We will apply the
coordinate independent formalism used in [39] to describe
the relationship between the shape of the shadow and the
deformation parameter. The horizontal displacement from
the center of the image D, the average radius of the sphere
〈R〉, and the asymmetry parameter A parametrize the shape
of the shadow. We will get similar results with any other
chosen parametrizations (see e.g. [40,89]). The horizontal
displacement D registers the shift of the shadow center from
the center of the black hole, and it is defined as

D ≡ |ᾱmax − ᾱmin|
2

, (26)

where ᾱmax and ᾱmin represent the maximum and minimum
horizontal coordinates of the image on the observing screen,
respectively. We can safely ignore the vertical displacement
of the image, since the spacetime in which we are working
is axisymmetric. The average radius 〈R〉 defines the average
distance between the boundary and the center of the shadow,
which is defined by

〈R〉 ≡ 1

2π

∫ 2π

0
R(ϑ)dϑ, (27)

where R(ϑ) ≡ [
(ᾱ − D)2 + β̄(ᾱ)2

]1/2
and ϑ ≡ tan−1

[β̄(ᾱ)/ᾱ)]. The asymmetry parameter A characterizes the
distortion of the shadow from a circle, and it is defined by

A ≡ 2

[
1

2π

∫ 2π

0
(R − 〈R〉)2 dϑ

]1/2

. (28)

Figure 4 shows the density plot of the shadow parametriza-
tions: asymmetry parameter A (top left panel), horizontal dis-
placement D (top right panel) and average radius 〈R〉 (bottom
panel). The black solid curves mark the upper boundary of
the parameter b (α = 2/b). By varying b, the same values
of the asymmetry parameter A and the horizontal displace-
ment D can be obtained for different values of α. As we
can see, α is the main parameter that affects the values of
D and A, and b is the main parameter that affects < R >.
Additionally, the influence of the parameter α on both A and
D manifests distinct behaviors. In the former case, α exhibits
a power-law relationship, while in the latter case, the impact
is approximately linear.

4.1 Deflection angle

Here we calculate the deflection angle of photons that pass
near the black hole using the modified version of the ray-
tracing code described above. The calculation algorithms are
similar to those discussed in Sect. 3. We restrict the entire
photon trajectories to the equatorial plane of the Kaluza–
Klein black hole. We initialize photons on the screen with
certain celestial coordinates (ᾱ, β̄). Setting ᾱ 
= 0, β̄ = 0
and ι = π/2 in Eqs. (17)–(23) lead to θ = π/2, θ̇ = 0 with
non-zero ṙ , φ̇, so we obtain the photon trajectories lying in
the equatorial plane. ᾱ is chosen in such a way that photons
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Fig. 5 The deflection angle (α̂) of photons with impact parameter x0 = B for α = 0.0 (top left panel), α = 0.5 (top right panel) and α = 0.9
(bottom panel). b = 2 corresponds to the Kerr case

with the impact parameter B approach the photon ring of the
black hole at the minimum coordinate differenced = 10−7M
without crossing it. The deflection angle from a straight line
is calculated by capturing the initial and final positions of
the photon. Figure 5 illustrates the calculated values of the
deflection angle α̂/π as a function of photons with impact
parameter B for α = [0.0, 0.5, 0.9]. Increasing b shifts the
impact parameter x0 = B towards lower values. This can
be explained by an increase of the horizontal displacement
and a distortion from a circle. Figure 6 shows the deflec-
tion angles and shadow images for several values of the spin
parameter α with maximum allowed b. We can see that the
deflection angles are nearly the same. Also, from the corre-
sponding shadow images, the horizontal displacement and
the distortion take similar values.

4.2 A simple constraint of the Kaluza–Klein black hole
parameters using the M87* results

Now we plan to study whether one can place constraints on
the parameters of a Kaluza–Klein BH using the M87* black

hole shadow observations. We follow the precept of [12] that
EHT observations are related to the shadow of a rotating
Kerr BH. Based on the results from the shadow of M87* BH
observations, we constrain the parameter b (assuming c = b)
and the spin of the Kaluza–Klein black hole using the average
radius (Eq. 27) and the asymmetry parameter (Eq. 28) of the
BH shadow. Note that this approach is a simplification of the
correct analysis, in which the calculated shadows should be
convolved with the response of the instrument, followed by
a final comparison of the output data with EHT data.

According to observations made by the EHT collabora-
tion, the angular size of the observed shadow is 	θsh =
42 ± 3μas, and a deviation δ from circularity is less than
10%

δ = 1

〈R〉
[

1

2π

∫ 2π

0
(R − 〈R〉)2dϑ

]1/2

δ = A

2〈R〉 ≤ 0.1

Furthermore, we take the standard values for the distance
to M87∗ to be D = (16.8±0.8)Mpc and the total mass of the
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Fig. 6 Deflection angles and shadow images for several values of the spin parameter α with maximum allowed b. We can see that the deflection
angles are nearly same. Also, from the corresponding shadow images, the horizontal displacement and the distortions take similar values

object to be M = (6.5 ± 0.7)× 109M�. Taking into account
the accepted values of physical quantities, the average radius
of the BH shadow is evaluated as

〈R〉 = D	θsh

2M
= 5.50 ± 0.75.

In Fig. 7, the average radius and the asymmetry parame-
ter of the BH shadow are shown for different values of the
parameters α and b. Here, we have taken the inclination angle
to be ι = 17◦, which the observed M87 jet axis makes with
respect to the line of sight. Moreover, according to the obser-
vations by EHT collaboration, the BH spin lies within the
range 0.5 ≤ α∗ ≤ 0.94, where α∗ = J/M2 (here J is the
angular momentum of BH).

The maximum value for the BH shadow radius is 6.25.
For the Kaluza–Klein black hole, the greatest value is the
average radius of the shadow ≈ 5.20, so we have a limit on
the size of the BH shadow from below, i.e. as 〈R〉 ≥ 4.75.
Given the spin range 0.5 ≤ α∗ ≤ 0.94 and using Eq. (5),
we plot the curves α∗ = 0.5 and α∗ = 0.94 (red lines in
Fig. 7) as well as the line 〈R〉 = 4.75. As a result, we obtain
the largest possible upper bound for the parameterb, b < b0,
where b0 = 2.52. With such a constraint, the asymmetry
parameter A of the BH shadow is always less than 0.05.

4.3 Images of a Kaluza–Klein black hole surrounded with
thin accretion disk

In this subsection we explore the Novikov–Thorne model
of a thin accretion disk around a Kaluza–Klein black hole.
To obtain an image of the accretion disk around the black
hole, we use the ray-tracing code developed and presented in
Sect. 3. A pivotal component in the creation of the image of
a thin disk involves the radiation flux emission profile. When
considering a massive test particle that orbits the metric in the
Kaluza–Klein theory on a circular orbit within the equatorial

plane (θ = π/2), the effective potential for the particle takes
the form:

Veff(r) = −1 + E2gφφ + 2ELgtφ + L2gtt
g2
tφ − gtt gφφ

. (29)

The specific energy E and the specific angular momentum
L can be expressed as:

E = − gtt + �gtφ√−gtt − 2�gtφ − �2gφφ

, (30)

L = �gφφ + gtφ√−gtt − 2�gtφ − �2gφφ

, (31)

where � is the angular velocity

� =
−gtφ,r ±

√
−

(
g2
tφ,r + gφφ,r gtt,r

)

gφφ,r
. (32)

The inner edge of the thin accretion disk is determined
by the innermost stable circular orbit (ISCO). The ISCO’s
location is derived from the following conditions:

Veff(r) = V ′
eff(r) = V ′′

eff(r) = 0. (33)

Figure 8 illustrates the radius of the innermost stable cir-
cular orbit (rI SCO ) as a function of the parameter b for differ-
ent values of the parameter α based on the solution derived
from Eq. (33). As evident from the figure, the value of rI SCO

decreases as the parameters α and b increase.
By selecting initial conditions for photons as the photons

cross the accretion disk, one can calculate the energy flux for
them as

F(r) = − Ṁ

4π
√−g

�′

(E − �L)2

∫ r

rin

(E − �L)L ′dr , (34)
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Fig. 7 The curves α∗ = 0.5 and α∗ = 0.94 (red lines) as well as the line 〈R〉 = 4.75 are plotted for given BH spin range of 0.5 ≤ α∗ ≤ 0.94. A
constraint for the parameter b < b0, where b0 = 2.52 is obtained according to which the asymmetry parameter A of the BH shadow is always less
than 0.05

Fig. 8 The ISCO as a function of the parameter b for different values
of the parameter α = [0.0, 0.4, 0.7, 0.85]

where Ṁ = dM/dt is the mass accretion rate and rin is
the radius of the inner edge of the accretion disk, which is
equivalently equal to rI SCO .

The photon flux as detected by a distant observer is

Fobs = g4
red F (35)

where gred is the redshift factor which comprises the effects
of both gravitational redshift and Doppler shift

gred = kμu
μ
o

kνuν
e

=
√−gtt − 2gtφ� − gφφ�2

1 − B�
(36)

Figure 9 illustrates images of the accretion disk for
the case when the inclination angle ι = 17◦ and 80◦
and for the different values of BH parameters α and
b.

One can observe that with an increase of the values of
the parameters α and b, the photon ring starts to disap-
pear due to the fact that the BH image with the accretion
disk completely or partially overlaps the photon ring. As
rI SCO decreases with increasing parameters α and b, the
photon ring begins to overlap with the inner edge of the
disk. We hope to compare our results with images of thin
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Fig. 9 Synthetic images of an accretion disk around a Kaluza–Klein black hole with the inclination angle ι = 17◦ (top panel) and 80◦ (bottom
panel) for different values of the BH parameters α and b
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accretion disks from future X-ray interferometric missions
[90].

5 Conclusions

Our results on the optical properties of a rotating black hole
in Kaluza–Klein theory described by the parameters of total
mass, spin, electric and magnetic charges can be summarized
as follows:

• The photon motion in the close environment of a rotat-
ing black hole in Kaluza–Klein theory is extensively
explored. The photon sphere produced by the photons
at the last stable orbits shifts towards the central object
under the effect of magnetic and electric charges.

• For the gravitational lensing in strong field regime, the
deflection angle of photons that pass near the boundary
of the shadow of the rotating Kaluza–Klein black hole
are obtained numerically using the developed ray-tracing
code for the photon motion. The obtained results indicate
that the deflection angle of photons decrease with the
increase of electric and magnetic charges.

• Numerous synthetic BH shadows are generated and
their properties, together with the light deflection angle,
around a Kaluza–Klein black hole are studied. Then
synthetic images of Kaluza–Klein black holes are com-
pared with the EHT observations of the M87* SMBH
shadow in order to put constraints on the parameters of
a Kaluza–Klein BH. The constraint on the upper limit
of the dimensionless magnetic (electric) charge of the
BH is obtained as 2.52. The upper limit of the asym-
metry parameter of the BH shadow is obtained as 0.05.
From the number of BH images generated, the cases
i = 17, α = 0.7, b = 2.00 and b = 2.34 are found
to most closely match that of the M87* images observed
by the EHT collaboration.
We can conclude that, based on the current precision of
the M87* black hole shadow image observation by the
EHT collaboration, the shadow observations of Kaluza–
Klein BHs are almost indistinguishable from that of Kerr
BHs. Much better observational accuracy than the current
capabilities of the EHT collaboration are required in order
to place verified constraints on the parameters of modified
theories of gravity in the strong field regime. In the future,
with improved measurements from the EHT on α∗, it is
likely that the bound on b0 will become more stringent.
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