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We investigate the superradiant (in)stability of the extremal multicharge static black holes in the STU
supergravity model, which reduce to the Reissner-Nordström (RN) black hole when all the charges are
equal. We first show that the frequency of quasibound states is necessarily complex and obtain the
corresponding superradiant condition. We then study the effective potential of the Schrödinger-like
equation associated with the radial function of the charged scalar field. We find that trapping-well
configurations can emerge with either a single peak or double peaks. We numerically obtain the
corresponding unstable quasibound states, organized under the overtone number, as well as how the
charged black holes deviate from the RN black hole. We find that the STU black holes are superradiantly
unstable as long as not all the charges are equal, indicating that the superradiant stability of the extremal RN
black hole is a fine-tuning result in the framework of the STU supergravity model.
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I. INTRODUCTION

With the detection of gravitational waves from two
merging black holes and photo images of black holes
[1,2], an increasing amount of evidence suggests that black
holes, predicted by Einstein’s theory of general relativity,
exist in our Universe. An important method to probe the
black holes is to investigate the linear perturbations of
matter or gravitational fields in the black hole background.
These perturbations are typically described by second-
order differential equations. The nature of the black hole
horizon requires that the boundary conditions of these
linearized fields must be ingoing. We must also require that
the fields are all finite at the asymptotic infinity. This leads
to three inequivalent classes of asymptotic boundary
conditions:

(i) Scattering processes: There are both ingoing and
outgoing modes.

(ii) Quasinormal modes: There are outgoing modes
only.

(iii) Quasibound states (QBS): The fields vanish.
Specifically for a massive scalar particle field of massmp, if
its frequency is sufficiently high (ω > mp) so that it is free
and wavelike in the asymptotic infinity, one can either

study the scattering process by not imposing any boundary
condition, or study the quasinormal modes which reveal the
(in)stability of the system by imposing only the outgoing
boundary condition at infinity. When ω < mp, the wave
functions either exponentially diverge or converge and the
quasibound states are the latter case.
In a scattering process, we typically expect that the

amplitude of an ingoing (incident) mode is bigger than that
of the corresponding outgoing (reflection) mode. However,
the opposite superradiance effect can arise in rotating or
charged black holes [3–7], indicating that the scattering
process can actually extract charges and/or angular
momenta, and hence the energies from black holes. This
phenomenon occurs for low-frequency excitations with
ω < ωc, where ωc is a certain critical value that depends on
the mass, angular momentum, and electric charge of the
black hole. (See a review on superradiance [8].)
A brutal force implementation of the third boundary

condition was first introduced by Press and Teukolsky [3].
They considered putting a mirror outside the black hole
horizon such that the fields would all vanish asymptotically.
It turns out the bounded scalar perturbation of a Kerr black
hole can be exponentially amplified by extracting energy
from the black hole, leading to a bomb effect. This black
hole bomb mechanism was later realized naturally using
massive scalar fields since they fall off exponentially at
the asymptotic infinity for low-frequency excitations,
leading to the superradiant instability of the Kerr or
Kerr-Newmann black hole [9–13]. Interestingly, for
asymptotic anti–de Sitter (AdS) spaceimes, the AdS
boundary can provide such a “mirror” and superradiant
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instability can indeed arise in both charged static and
rotating black holes [14–19]. In this paper, we shall
consider only four-dimensional black holes that are
asymptotic to the Minkowski spacetime.
Typically a black hole has three conserved quantities: the

mass M, angular momentum J, and electric charge Q. For
scalar field perturbations, it can be easily established that
there is no superradiant effect or instability of neutral static
black holes such as the Schwarzschild black hole. The
superradiant effects were known to arise in both static and
rotating black holes. There is hitherto no example of
superradiant instability when J ¼ 0. Recently, it was shown
that the Reissner-Nordström (RN) black hole is super-
radiantly stable [20–22]. Particularly, in [20], Hod exam-
ined the two necessary conditions for the existence of
superradiant instability: (a) There exists an ωc > 0 such
that we can impose the superradiant condition ω < ωc.
(b) There exists a potential well to trap the quasibound
states. It was shown that the two conditions could not be
simultaneously satisfied for the extremal RN black hole.
In this paper, we study the superradiant instability of the

RN black hole from the perspective of more fundamental
theories such as strings and supergravities, where the
extremal RN black hole emerges as a special Bogomol'nyi-
Prasad-Sommerfield (BPS) state. Specifically we consider
STU supergravity, which is a special class of Einstein-
Maxwell–dilaton theories involving four Maxwell fields
and three dilaton scalars [23]. The theory admits a general
class of four-charge black hole solutions and they reduce to
the RN black hole when all the charges are exactly equal.
The BPS (no-force) condition implies that in the extremal
limit, the RN black hole can be viewed as a bound state
with threshold binding energy of the four more fundamen-
tal ingredients that have origins as strings and branes in
D ¼ 10 or 11 dimensions, e.g., [24]. We consider an
additional massive scalar field charged under all the four
Maxwell fields and we find that superradiant condition
ω < ωc can be satisfied for the generic black hole charge
configuration. When all the four black hole charges are
equal, it can be demonstrated that there is no potential well
when ω < ωc. However, we find that a potential well can
always form as long as the four charges of the extremal
black hole are not all exactly the same. Furthermore, our
numerical analysis indicates that the extremal STU black
holes can all be superradiantly unstable provided that the
black hole charges are not the same, regardless how small
the difference is. Our results are the first in literature
where the superradiant instability is demonstrated in
spherically symmetric and static black holes.
The paper is organized as follows. In Sec. II, we briefly

introduce the STU supergravity model and the associated
extremal charged black hole with four Uð1Þ charges. By
introducing a charged scalar perturbation, we obtain the
radial wave equation, giving the boundary condition for the
quasibound states. In Sec. III, we illustrate three necessary

conditions for superradiant instability. We then analyze the
conserved flux near the horizon for the superradiant
condition and point out the equivalence between super-
radiant instability and unstable quasibound states. We give
a no-go theorem of superradiant instability for the
extremal RN black hole that emerges from four equal
charges. In Sec. IV, we numerically construct the quasi-
bound states by the shooting method and analyze the
superradiant instability spectrum. Our results indicate that
the extremal STU black holes are unstable as long as not
all the charges are equal. In Sec. V, the conclusion and
some further discussions are given. In Appendix A, we
analyze the asymptotic boundary conditions of the radial
wave function in tortoise coordinates. In Appendix B,
we prove that the frequencies of quasibound states and
also quasinormal modes are necessarily complex. We put
most of the plots and graphs of numerical results in
Appendix C.

II. MODEL SETUP

The STU supergravity model in four dimensions is the
low-energy effective theory of six-dimensional string
reduced on 2-torus [23]. The minimal field content of
the bosonic sector consists of the metric gμν and four
Maxwell fields (Ã1, Ã2, Ã3, Ã4), in addition to the three
dilatonic scalars and three axions that form three SLð2;RÞ
complex scalars. For our purpose of studying the properties
of electrically charged and static black holes, the axions
decouple and the relevant Lagrangian is (e.g., [24])

L¼ ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂φ⃗Þ2−1

4

X4
i¼1

ea⃗i·φ⃗F̃2
i

�
;

a⃗1¼ð1;1;1Þ; a⃗2 ¼ð1;−1;−1Þ; a⃗3¼ð−1;1;−1Þ;
a⃗4¼ð−1;−1;1Þ; φ⃗¼ðφ1;φ2;φ3Þ; F̃i¼ dÃi: ð2:1Þ

The theory admits an exact solution of static charged black
holes. In the extremal limit, the solution is

ds2¼−ðH̃1H̃2H̃3H̃4Þ−1
2dt2þðH̃1H̃2H̃3H̃4Þ12ðdr2þr2dΩ2

2Þ;
e
1
2
a⃗i·φ⃗¼H̃−1

i ðH̃1H̃2H̃3H̃4Þ14; Ãi¼ðH̃−1
i −1Þdt;

H̃i¼1þ4Q̃i

r2
; ð2:2Þ

where Q̃i are the electric charges. The mass and entropy of
these extremal black hole are

M ¼ Q̃1 þ Q̃2 þ Q̃3 þ Q̃4;

S ¼ 16π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̃1Q̃2Q̃3Q̃4

q
: ð2:3Þ

Note that Q̃i’s here are non-negative. When the electric
charges Q̃i are all equal, the scalars all decouple and the
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solution becomes the extremal RN black hole. Thus in
string theory, the RN black hole is not a fundamental
object, but a bound state with threshold binding energy of
fundamental ingredients that have higher dimensional
origins as strings and branes. The reason we focus on
extremal black holes is that they represent the balance
between attractive and repulsive forces, and therefore the
superradiant instability is most likely to occur.
The STU model can be further truncated to involve only

one scalar and two Maxwell fields. Two situations can
arise. One is to set Ã1 ¼ Ã2 and Ã3 ¼ Ã4 and the other is to
set Ã2 ¼ Ã3 ¼ Ã4. In both cases, the relevant Lagrangian
can be cast into [25]

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

4
eα1ϕF2

1 −
1

4
eα2ϕF2

2

�
; ð2:4Þ

where F1 ¼ dA1 and F2 ¼ dA2. The dilaton coupling
constants ðα1; α2Þ satisfy

α1α2 ¼−1; N1α1þN2α2¼ 0; N1þN2 ¼ 4: ð2:5Þ

The ðN1; N2Þ ¼ ð2; 2Þ and (1, 3) cases reduce to the two
above special simplified STU models, respectively. In
particular, the (1, 3) case can be obtained from circle
reduction of five-dimensional minimum supergravity, and
A1 is the Kaluza-Klein vector. Charged black holes for
generic ðN1; N2Þ were obtained in [25] and the extremal
solutions are

ds2 ¼ −ðHN1

1 HN2

2 Þ−1
2dt2 þ ðHN1

1 HN2

2 Þ12ðdr2 þ r2dΩ2
2Þ;

Ai ¼
ffiffiffiffiffi
Ni

p
ðH−1

i − 1Þdt; ϕ ¼
X2
i¼1

1

2
αiNi logHi;

Hi ¼ 1þ 4Qiffiffiffiffiffi
Ni

p
r
: ð2:6Þ

Note that when Q1ffiffiffiffi
N1

p ¼ Q2ffiffiffiffi
N2

p , the above reduces to the

extremal RN black hole, as we have discussed earlier.
The truncated two-charge system is much simpler than the
full STU model, while keeping the essential feature that the
RN black hole is a bound state.
In order to study the superradiant instability,we consider a

larger theory with additional massive scalar Φ, charged
under all the fourUð1Þ fields. The linear perturbation of this
scalar is governed by its charged Klein-Gordon equation

ðgμνDμDν −m2
pÞΦ ¼ 0;

Dμ ≔ ∇μ − iq̃1Ã1μ − iq̃2Ã2μ

− iq̃3Ã3μ − iq̃4Ã4μ; ð2:7Þ

in the background (2.2), where ðmp; q̃iÞ denote the funda-
mental mass and charges of the scalar. While we have

mp > 0, the fundamental charges q̃i’s can be positive or
negative, associated with particles or antiparticles. By
contrast, Q̃i’s are all positive. It should be mentioned that
although the charged massive scalar Φ can arise from the
Kaluza-Klein reduction, it is expected to have a nonminimal
couplingwith themassless scalars of STU supergravity, as it
does with the Kaluza-Klein vector. Therefore, the toy model
(2.7) that we consider in this paper is likely to break the
supersymmetry.
Since the background is spherically symmetric, static,

and electrically charged, the general solution can be
expressed as linear superpositions of different frequency
modes:

Φ ¼ e−iωtRðrÞYlmðθ;φÞ; ð2:8Þ

where Yl;m’s are spherical harmonics. The KG equation
now reduces to

−r2
d
dr

�
r2
dR
dr

�
þ UR ¼ 0; ð2:9Þ

with

UðrÞ¼lðlþ1Þr2þm2
pr4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H̃1H̃2H̃3H̃4

q

− r4
�
ωþ

X4
i¼1

q̃iðH̃−1
i −1Þ

�2

H̃1H̃2H̃3H̃4: ð2:10Þ

Note that only l, not m, of Yl;m enters the reduced wave
equation. In the regions of both the near horizon (r → 0)
and infinity (r → ∞), the radial wave function RðrÞ can be
solved asymptotically:

RðrÞjr→0 ∼ ei
#ðω−ωcÞ

r ; RðrÞjr→∞ ∼
e−

ffiffiffiffiffiffiffiffiffiffiffi
m2

p−ω2
p

r

r
; ð2:11Þ

where

ωc ≡ q̃1 þ q̃2 þ q̃3 þ q̃4: ð2:12Þ

Note that we have chosen the ingoing boundary condition
on the horizon so that the coefficient “#” of ω is positive.
The ei=r factor above near the horizon r → 0 is the
characteristic wavelike behavior near the horizon of an
extremal black hole, which in our case, has the AdS2 × S2

near-horizon geometry. (For nonextremal black holes we
would have ei logðr−rþÞ instead.) It is important to note that
we do not take the decoupling limit here and hence we do
not probe the whole AdS2 × S2 geometry.
The quantity ωc is certain critical value that determines

whether the black hole energy can be extracted; we shall
discuss this presently. Here ωc depends only on the
fundamental charges; it is the sum of them all. At the
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asymptotic infinity, whenmp < ω, the solution is wavelike,
describing scattering processes in general, or quasinormal
modes if we impose further the outgoing boundary con-
dition asymptotically.
In this paper, we focus on the quasibound states where

ω < mp; ð2:13Þ

such that the wave function falls off exponentially at the
asymptotic infinity. It has a consequence, as in the case of
quasinormal modes, that the frequency must be discrete.
Furthermore, as we show in Appendix B, the frequency
must be complex, namely

ωQBS ¼ ωr þ iωi; ð2:14Þ

where ωr and ωi denote the real and imaginary parts of
ωQBS, respectively. The existence of such bound states with
positive ωi indicates that they will grow exponentially with
time and therefore the system is unstable at the linear level.
The focus of this paper is to analyze this superradiant
instability for the charged black holes in the STU model.

III. SUPERRADIANT CONDITION FOR
COMPLEX FREQUENCIES

There are important differences between quasibound
states(or quasinormal modes) and those associated with
the scattering processes. In the latter case, the frequency ω
is real, while the former typically involves complex
frequencies. It is thus important to obtain the corresponding
superradiant conditions of the two different situations.

A. Superradiant condition for scattering processes

We first review the superradiant condition for the
scattering processes. As a concrete example, we illustrate
this by using the extremal black hole of the STU model.
The superradiant scattering is typically discussed in the
tortoise coordinates, which we give in Appendix A. For the
appropriately scaled radial wave function (A1), we have,
with mp < ω,

R̄ ¼
(
T e−iðω−ωcÞy y → −∞

Ie−i
ffiffiffiffiffiffiffiffiffiffiffi
ω2−m2

p

p
y þRei

ffiffiffiffiffiffiffiffiffiffiffi
ω2−m2

p

p
y y → ∞;

ð3:1Þ

where ωc for the extremal STU black holes is given by
(2.12), and I ,R, and T denote the incident, reflection, and
transmission coefficients, respectively. The conservation of
the Wroskian determinant associated with the radial wave
function

Wjy→−∞ ¼ Wjy→∞; where W ¼ R̄� dR̄
dy

− R̄
dR̄�

dy
; ð3:2Þ

implies that

jRj2 ¼ jI j2 − ω − ωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p

q jT j2: ð3:3Þ

Thus when ω < ωc, the reflecting amplitude is larger
than the incident amplitude, namely jRj2 > jI j2. It is
important to note that in this scattering process, the
frequency ω is real. The situation changes for quasibound
states where ω is complex and we shall discuss this in the
next subsection.

B. Superradiant condition for quasibound states

As shown in Appendix B, the frequency of the quasi-
bound states is necessarily complex. The superradiant
condition of the previous subsection is thus nonapplicable.
In order to derive the new condition, we followed the
observation [26] that the energy momentum tensor asso-
ciated with the charged scalar perturbation is not conserved,
but there still exists an energy conserved current. Specially,
the energy momentum tensor associated with the complex
scalar perturbation gives

TΦ
μν ¼ DðμΦD†

νÞΦ
† −

1

2
gμνðDρΦD†

ρΦ† −m2
pΦΦ†Þ: ð3:4Þ

However, it is straightforward to verify that

∇μTΦ
μν ¼

�X4
k¼1

qkF̃kνρ

�

×

�X4
j¼1

Φ†Φq̃jÃ
ρ
j þ iðΦ†∇ρΦ−Φ∇ρΦ†Þ

�
≠ 0:

ð3:5Þ

The reason why it is not conserved is that at the perturba-
tion level, the source term contributed by four Uð1Þ fields
ðÃ1; Ã2; Ã3; Ã4Þ has been neglected. Following the method
given in [26], we find a new “energy momentum tensor”

T̃μν ¼
X
j¼r;i

2∇μΦj∇νΦj − gμν

�
∇ρΦj∇ρΦj

þ
�X4

i

q̃iÃ
ρ
i

�
2

Φ2
j

�
−m2

pΦ2
j ; ð3:6Þ

where Φr ¼ 1
2
ðΦþΦ†Þ and Φi ¼ 1

2i ðΦ −Φ†Þ. Although
this new energy momentum tensor does not satisfy the
conservation law either, namely∇μT̃μν ≠ 0, there does exist
a conserved energy current that satisfies the conservation
law, namely

JμE ¼ T̃μ
ν

� ∂
∂t
�

ν

; ∇μJ
μ
E ¼ 0: ð3:7Þ
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In the case of the quasibound states with complex frequen-
cies, we can read off the growth rate of total energy outside
of the horizon from JμE that

∂E
∂t ¼ 2ωiE; where E ¼

Z
V

ffiffiffiffiffiffi
−g

p
J0E: ð3:8Þ

The growth rate of the total energy outside the horizon
depends on the sign of the imaginary part of the quasibound
state. A state is stable when its ωi ≤ 0, but unstable
when ωi > 0.
We now derive a necessary condition for the superradiant

instability. The conservation law Eq. (3.7) implies that

∂
∂t

Z
V
J0E ¼ ClmJrE

����r→∞

r→0

; ð3:9Þ

where Clm ¼ R
YlmY�

lm sin θdθdφ ¼ 4π
2lþ1

. Recall that
the radial wave function decays exponentially and
it gives a vanishing energy current at the spatial infinity.
Equation (3.8) and Eq. (3.9) give

2Eωi ∝ −ðjωj2 − ωcωrÞ; ð3:10Þ

where the proportionality coefficient is positive. We there-
fore conclude that a necessary condition is

jωj2
ωr

< ωc: ð3:11Þ

This condition however is not restrictive enough to guide
our numerical calculation since it involves also the
unknown ωi. When ωi ¼ 0, the above condition reduces
to the one of the scattering process discussed earlier.
However, for complex ω, we can do better. This is because
the superradiant condition derived from the energy current
does not give any detail constraints on the conserved
charge. The linear perturbation has also a charged con-
served current defined as the Klein-Gordon product:

iIμQ ¼ Φ†DμΦ −ΦðDμΦÞ†; ð3:12Þ

which satisfies the charged conservation law, ∇μI
μ
Q ¼ 0.

Similar to the case of energy flux, the growth rate of total
charge outside the horizon can be given as

∂Q
∂t ¼ 2ωiQ; where Q ¼

Z
V

ffiffiffiffiffiffi
−g

p
I0Q: ð3:13Þ

Note that this is a global charge, not the black hole electric
charges Q̃i or the scalars’ fundamental charges qi’s. The
growth rate of the total charge depends on the sign of ωi,
whose positive values imply instability.
To obtain the condition for the associated superradiant

condition, we adopt the charge conservation law ∇μIμ ¼ 0
and the Gauss law, giving

∂Q
∂t ¼ Clm

Z
V
IrQ

����r→∞

r→0

: ð3:14Þ

Due to the exponential decay of the charged scalar
leading to vanishing charged current at the spatial infinity,
we arrive at

2Qωi ∝ −ðωr − ωcÞ: ð3:15Þ

For unstable states, we must have positive ωi; we thus
obtain a practical condition for superradiant instability:

ωr < ωc: ð3:16Þ

Note that this condition automatically implies the earlier
condition (3.11). Since the quasibound states also require
that ω < mp, the above condition does not constrain the
relation between the scalar’s mass mp and its fundamental
charge q that determines ωc. On the other hand, for
scattering processes or quasinormal modes, the condition
ω > mp implies that the scalar must satisfymp < q for it to
experience the superradiant effect.

C. Trapping-well condition

In order to discuss superradiant instability, it is necessary
to construct first the quasibound states. To study the
existence of such states, it is instructive to cast Eq. (2.8)
in terms of the Schrödinger-like equation. To do so, we
define R̃ ¼ rR such that the function R̃ satisfies the
Schrödinger-like equation

−
d2R̃
dr2

þ VeffR̃ ¼ ω2R̃; ð3:17Þ

where r ∈ ð0;∞Þ and the potential for the general four-
charge background (2.2) is

Veff ¼ ω2 þ U
r4

¼ ω2 þm2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H̃1H̃2H̃3H̃4

q
−
�
ω −

X4
i¼1

4q̃iQ̃i

rH̃i

�2

× H̃1H̃2H̃3H̃4 þ
lðlþ 1Þ

r2
: ð3:18Þ

Although it is not quite the same as the Schrödinger
equation since the eigenvalue ω2 appears in the potential
Veff as well, we expect that a bound state arises only when
its corresponding potential has a trapping well. To study the
shape of VeffðrÞ, we note that
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Veff ∼
� α

r4 ; r → 0;

m2
p þ β

r ; r → ∞;
ð3:19Þ

with

α ¼ −256
�
ω −

X4
i¼1

q̃i

�
2Y4
i¼1

Q̃i;

β ¼ 8
X4
i¼1

q̃iQ̃i þ 2ðm2
p − 2ω2Þ

X4
i¼1

Q̃i: ð3:20Þ

Note that it is important that we take all Qi’s nonvanishing
and hence α is nonzero. Thus we see that α < 0, but β can
be both positive or negative. The negative α is consistent
with the fact that r ¼ 0 horizon is not the end of the space.
It is a coordinate singularity, not an infinite potential
barrier; it describes the other asymptotic region in the
tortoise coordinates. For positive β, there can be at least one
maximum for which Veff is positive. In general, there can
be odd numbers of extrema and the existence of a trapping
well requires at least three extrema. For negative β, there
can be no extremum, or an even number of extrema. We
find trapping wells with two extrema. We illustrate the
shapes of VeffðrÞ of the two different types of trapping
wells in Fig. 1.
The above discussion assumed that ωwas real. However,

as we show in Appendix B, the frequency for a quasibound
state is necessarily complex. Thus we have in general

Veff ¼ Vr
eff þ iVi

eff ; ω2 ¼ ðω2Þr þ iðω2Þi: ð3:21Þ

The real and complex parts of the Schrödinger-like equa-
tion (3.17) are

−
d2R̃r

dr2
þ Vr

effR̃r ¼ ðω2ÞrR̃r þ ðVi
eff − ðω2ÞiÞR̃i;

−
d2R̃i

dr2
þ Vr

effR̃i ¼ ðω2ÞrR̃i − ðVi
eff − ðω2ÞiÞR̃r; ð3:22Þ

where R̃r þ iR̃i ¼ R̃. It is clear that for realω, bothRr andRi
independently satisfy the same equation. They become
coupled equations when ωi is nonvanishing. Our numerical
analysis indicates thatωi=ωr < 10−6 for all the bound states.
Therefore, in the coupled equations, Rr and Ri provide
perturbative sources for the same leading equation forRi and
Rr, respectively. In this perturbative approach, the existence
of trapping well can be determined by considering the real
ω only.

D. No superradiant instability of the RN black hole

Having determined the necessary conditions for the
superradiant instability, we can search for bound-state
solutions of (3.17). This in general requires numerical
calculations. However, in some simpler cases, we can
determine from the effective potential that bound states
are nonexisting. Such an example is provided by the RN
black hole, which arises from the STU model by taking
Q̃1 ¼ Q̃2 ¼ Q̃3 ¼ Q̃4 ¼ Q=2. As was argued previously,
we consider the case with real ω. The bound-state boundary
condition and superradiant condition are

ω < mp; ω < ωc: ð3:23Þ
To examine the shape of Veff , we define two positive real
numbers ðx; yÞ:

mp ¼ ωð1þ xÞ; ωc ¼ ωð1þ yÞ: ð3:24Þ

We find that the effective potential becomes

Veff ¼ ðxþ 1Þ2ω2 þ 4Qω2ðx2 þ 2xþ yÞ
r

þ lðlþ 1Þ þ 4Q2ω2ðx2 þ 2x − ðy − 4ÞyÞ
r2

−
16Q3ðy − 1Þyω2

r3
−
16Q4y2ω2

r4
: ð3:25Þ

The bound-state condition and superradiant condition
require that

r

Veff

r

Veff

FIG. 1. Two types of trapping wells can arise in Veff . The left has one peak; the well lies between the peak and the asymptotic infinity.
The right has two peaks with the well sandwiched between.
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x > 0; y > 0: ð3:26Þ

We see that the leading 1=r falloff at large r is positive and
the potential is negative as r → 0. This implies that we must
have at least three extrema at r > 0 in order to have any
bound states. We find

V 0
eff ¼

−4Qω2ðx2 þ 2xþ yÞ
r5

U;

U ¼ r3 þ a2r2 þ a1rþ a0; ð3:27Þ

where

a2 ¼
lðlþ 1Þ þ 4Q2ω2ðx2 þ 2x − ðy − 4ÞyÞ

2Qω2ðx2 þ 2xþ yÞ ;

a1 ¼ −
12Q2ðy − 1Þy
x2 þ 2xþ y

; a0 ¼ −
16Q3y2

x2 þ 2xþ y
: ð3:28Þ

It is clear that U has three roots ðr1; r2; r3Þ. If these three
roots are all positive, then we must have

a0 < 0; a1 > 0; a2 < 0: ð3:29Þ

The first equality is automatically satisfied, but

�
a1 > 0∶ → y < 1;

a2 < 0∶ → y > 4:
ð3:30Þ

Thus the conditions for having three real positive roots
cannot be satisfied for this case.
As an example, the associated effective potential Veff for

l ¼ 1, mp ¼ 1, ω ¼ 0.9, q̃i ¼ 1
4
, and Q ¼ 2 is plotted in

Fig. 2. It is obvious that even though the superradiant
condition and bound-state condition Eq. (3.23) are satis-
fied, the superradiant instability will not be triggered on
since there is no trapping well for the effective potential. Of
course, the true bound states require that the frequencyω be
complex, in which case the discussion is far more

complicated. However, our numerical analysis indicates,
for all the bound states associated with the STU charged
black holes, that ωi=ωr < 10−6 and therefore the above
conclusion is valid.
The absence of a trapping well in the effective potential

illustrates that the interaction or the force between the
charged scalar and the RN black hole is too “simply”
structured involving only the gravitational attraction and
charge repulsion. In order to create a trapping well, addi-
tional attractive force is necessarily outside the horizon of
the black hole. This is one of the reasons why we study
STU black holes which involve not only the Maxwell fields
but also the dilatonic scalar fields that can give nontrivial
interactions and therefore create possibly the needed
trapping wells.

IV. SUPERRADIANT INSTABILITY OF STU
BLACK HOLES

In the previous section, we show that in the RN black
hole limit where all the charges are equal, there is no
superradiant instability, regardless of the configuration of
the fundamental charges q̃i. In this section, we show that
superradiance can develop instability when Q̃i are not all
equal. For simplicity, we shall consider the simplified two-
charge solution Eq. (2.6). In this case, the radial equation
takes the same form of (2.9), but with

UðrÞ ¼ −r4HN1

1 HN2

2

�
ω −

X2
i¼1

4
ffiffiffiffiffi
Ni

p
qiQi

rHi

�2

þm4
pr4H

N1=2
1 HN2=2

2 þ lðlþ 1Þr2: ð4:1Þ

In addition, the effective potential in the Schrödinger-like
equation (3.17) is given by

Veff ¼ ω2 þm2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HN1

1 HN2

2

q
−
�
ω −

X2
i¼1

4
ffiffiffiffiffi
Ni

p
qiQi

rHi

�2

×HN1

1 HN2

2 þ lðlþ 1Þ
r2

; ð4:2Þ

where we require that the frequency ω satisfy both the
bound-state condition and superradiant condition:

ω < mp; ω < ωc ¼
ffiffiffiffiffiffi
N1

p
q1 þ

ffiffiffiffiffiffi
N2

p
q2: ð4:3Þ

In the RN black hole limit, Q1=
ffiffiffiffiffiffi
N1

p ¼ Q2=
ffiffiffiffiffiffi
N2

p
, it is

straightforward to show that Veff has no trapping well and
hence there is no superradiant instability.

A. Effective potentials with trapping well

The effective potential with trapping-well configura-
tion does arise when the four charges in the STU model
are not all equal. In this paper, we shall focus on the

1 2 3 4 5 6
r

−50

50

100

150

200
Veff

FIG. 2. As an illustration, we plot the effective potential of the
scalar radial wave in the extremal RN black hole for l ¼ 1,
mp ¼ 1, ω ¼ 0.9, q̃i ¼ 1

4
, and Q ¼ 2. This feature of having one

extremal turns out to be generic when both the ω < mp and ω <
ωc conditions are satisfied.
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ðN1; N2Þ ¼ ð2; 2Þ and (1, 3) examples that are the special
cases in STU supergravity. As was mentioned earlier, there
are two types of trapping wells, shown in Fig. 1, depending
on whether the leading falloff parameter β of the potential
(3.19) is positive or negative. Here we present some
concrete examples.
If we choose parameters ðω; mp; q1; q2;l; Q1; Q2Þ ¼

ð18=100; 2=10; 2=10; 0; 1; 1; 8Þ, the potential has two
extrema for both ðN1; N2Þ ¼ ð2; 2Þ and (1,3) cases. In
the former case, the peak Vmax

eff ¼ 2.93 at r ¼ 1.34 and the
trapping-well minimum Vmin

eff ¼ −0.0326 at r ¼ 7.27. In
the latter case, we have Vmax

eff ¼ 51.99 at r ¼ 0.39 and
Vmin
eff ¼ −6.14 at r ¼ 1.24. The potentials all have the shape

of the left panel in Fig. 1.
If we choose the corresponding parameters as (499=1000,

5=10, 2=10, 2=10, 1, 10, 1=10), the potential has instead
three extrema: one trapping-well minimum sandwiched
between two peaks. For ðN1; N2Þ ¼ ð2; 2Þ the peaks 685
and 0.26 are located at r ¼ 0.07 and 68.33, with the
minimum −192 at 0.21. For ðN1; N2Þ ¼ ð1; 3Þ, the mini-
mum −0.11 at 1.51 is sandwiched between the two peaks
3983 and 0.29 located at 0.019 and 25.22 respectively. These
potentials have the shape of the right panel in Fig. 1.
While the existence of a trapping-well potential is an

encouraging sign, it does not guarantee that quasibound
states must exist, since the existence depends on both the
width and depth of the trapping well. We therefore adopt a

numerical approach next to search for the quasibound states
in the parameter space where trapping wells arise.

B. Numerical setup: The shooting method

Here we briefly discuss our numerical approach for
calculating the quasibound states. While the Schrödinger-
like equation (3.17) guides us to find the parameter regions
where solutions may exist, we actually use Eq. (2.9) and its
boundary condition Eq. (2.11) to construct explicit numerical
solutions. We adopt the shooting method to perform numeri-
cal calculations. As shown in Appendix B, the frequency of
these states must be complex, ω ¼ ωr þ iωi, and the sign of
ωi plays a defining role whether a state is stable or unstable.
However, the imaginary part of the frequency is generally
small, compared to its real part. (See also the case of Kerr
black hole in [12].) In order to avoid the cutoff error, accuracy
issues must be taken care of in order to obtain the trustworthy
results.
First we take the following asymptotic ansatz of the

radial function as the boundary conditions near the horizon
and asymptotic infinity:

Rðr → 0Þ ∼ ei
χ1ðω−ωcÞ

r r−2iχ2
Xn1
i¼0

rihi

����
r¼ϵc

;

Rðr → ∞Þ ∼ e−krrχ3
Xn2
i¼0

gi
ri

����
r¼rc

; ð4:4Þ
where

χ1 ¼ 16N−N1=4
1 N−N2=4

2 QN1=2
1 QN2=2

2 ;

χ2 ¼ N−N1=4
1 N−N2=4

2 Q−1þN1=2
1 Q−1þN2=2

2 ð2N2Q1q2 þ 2N1q1Q2 þ ðN3=2
2 Q1 þ N3=2

1 Q2Þðω − ωcÞÞ;

χ3 ¼ 1 − 2kð
ffiffiffiffiffiffi
N1

p
Q1 þ

ffiffiffiffiffiffi
N2

p
Q2Þ þ

m2
pð

ffiffiffiffiffiffi
N1

p
Q1 þ

ffiffiffiffiffiffi
N2

p
Q2Þ − 4ðq1Q1 þ q2Q2Þω
k

;

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p − ω2

q
; ωc ¼

ffiffiffiffiffiffi
N1

p
q1 þ

ffiffiffiffiffiffi
N2

p
q2: ð4:5Þ

Since the equation is linear, we set h0 ¼ 1 ¼ g0 without loss of generality, and we can obtain the coefficients ðhi; giÞ
analytically by solving the radial equation order by order. We present the explicit ðh1; g1Þ here:

h1 ¼
i

32ðω − ωcÞ
�
16m2

p þ
16ðlðlþ 1Þ þ 2χ2ðiþ 2χ2ÞÞ

χ1
−
ðN1N2Þ3=2χ1

Q1Q2

�
ω2 − 2ω

�
q2ðN2 − 1Þ

�
1ffiffiffiffiffiffi
N2

p −
Q1

N3=2
1 Q2

�

þ q1ðN1 − 1Þ
�

1ffiffiffiffiffiffi
N1

p −
Q2

N3=2
2 Q1

���
þ q21

� ffiffiffiffiffiffi
N1

p
Q2ð2N1 − 3Þ
N3=2

2 Q1

− N1 þ 2

�
þ q22

� ffiffiffiffiffiffi
N2

p
Q1ð2N2 − 3Þ
N3=2

1 Q2

− N2 þ 2

�

þ 2q1q2

�ðN1 − 1ÞQ2

N2Q1

þ ðN2 − 1ÞQ1

N1Q2

−
N1N2 − 3ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2

p
��

;

g1 ¼
1

2k
ðlðlþ 1Þ − χ3ð1 − 2kð

ffiffiffiffiffiffi
N1

p
Q1 þ

ffiffiffiffiffiffi
N2

p
Q2 þ χ3ÞÞ −

8ð ffiffiffiffiffiffi
N1

p
Q2 −

ffiffiffiffiffiffi
N2

p
Q1ÞðN1q1Q2 − N2q1Q1Þωffiffiffiffiffiffiffiffiffiffiffiffi

N1N2

p

− ð4ðQ2
1 þQ2

2Þðk2 − ω2Þ þ ð2ð
ffiffiffiffiffiffi
N1

p
Q1 þ

ffiffiffiffiffiffi
N2

p
Q2Þω − 4ðq1Q1 þ q2Q2ÞÞ2ÞÞ: ð4:6Þ
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The expressions for higher-order coefficients become in-
creasingly complicated and we shall not give them here.
These power series expansions are necessary since the
radial equation is singular on the r ¼ 0 horizon and we
cannot either take the r ¼ ∞ boundary condition literally in
the numerical approach. We denote ϵc and rc as the
numerical cutoffs for the horizon and asymptotic infinity,
respectively. In general, the cutoff error can be numerically
controlled under the maximum ofOðϵn1þ1

c Þ andOð 1

r
n2þ1
c

Þ by
the expansion power ðn1; n2Þ. For the larger orders ðn1; n2Þ
of the power expansions, we can use the smaller integration
range ½ϵc; rc� for the desired accuracy.
Using the Runge-Kutta method, we integrate numeri-

cally from ϵc to some midpoint ri, obtaining a numerical
solution R1; we also obtain the solution R2 by integrating
from rc to ri. If R1 and R2 describe the same solution in
different regions, then they should match at ri. To match the
solutions obtained from different regions, we require the
Wronskian of R1, R2 at the middle point ri to vanish,
namely,

WðR1; R2Þ ¼
R1R0

2 − R2R0
1

jR1jjR2j
����
r¼ri

¼ 0: ð4:7Þ

[It is important to note that the matching condition is
invariant under Ri → ciRi for any nonvanishing constant
ðc1; c2Þ; therefore, we could have chosen h0 ¼ 1 ¼ g0
without loss of generality.] To implement this matching
condition numerically, we consider an appropriate small
dimensionless number Wc such that we require

rWðR1; R2Þjr¼ri < Wc: ð4:8Þ

Having established the shooting method for calculating
the quasibound states, we can start by selecting a real ω
such that the corresponding Veff has a trapping well. We use
a numerical finding root program to obtain the correct
complex ωQBM that satisfies the numerical Wronskian
condition (4.8). We then incrementally scan the ω in an
appropriate range and obtain the spectrum of the quasi-
bound states. We can set ωr positive without loss of
generality, and we look for solutions with positive ωi such
that the wave function has an exponentially increasing
factor eωit, signaling superradiant instability.
Our numerical analysis indicates that the frequency ratio

ϖ ≡ ωi=ωr is smaller than 10−6, and therefore we need to
increase our numerical accuracy so that the results are
trustworthy. However, the higher accuracy requirement
when ϖ is about 10−13 makes the calculation time-
consuming. We thus set the cutoffs of the near horizon
and the infinity to be ϵh ∼ 10−2 and rc ∼ 102, respectively,
and take the expansion order ðn1; n2Þ ¼ ð10; 10Þ. This
leads to the cutoff errors under 10−21. Furthermore, we
take the numerical Wronskian condition parameter

Wc ∼ 10−16. We believe that this ensures that ϖ of the
quasibound states can be numerically calculated within
sufficient accuracy in the range 10−6 ∼ 10−13. We carry out
these calculation for both ðN1; N2Þ ¼ ð2; 2Þ and (1, 3) cases
and present the results next.

C. Numerical Results

In this subsection, we present our numerical results of
quasibound states with superradiant instability. We set
l ¼ 1 for all our numerical calculation. It is useful to
define a dimensionless parameter ϵ that measures the
deviation of the STU black hole from the RN black hole:

ϵ≡
ffiffiffiffiffiffi
N1

p
Q2ffiffiffiffiffiffi

N2

p
Q1

− 1: ð4:9Þ

The RN black hole corresponds to ϵ ¼ 0, for which there is
no superradiant instability. The mass of the extremal black
hole is then given by

M ¼ Q1ffiffiffiffiffiffi
N1

p ð4þ N2ϵÞ: ð4:10Þ

It is clear that ϵ lies in the region −1 < ϵ < ∞. The purpose
of this paper is not to be exhaustive and we focus on the
cases with ϵ > 0. (When N1 ¼ N2 ¼ 2, the negative region
of ϵ is equivalent to that of ϵ > 0.)

1. Effective potential with single peak

In this subsection, we present the partial spectrum of the
quasibound states with superradiant instability, arising from
the trapping-well potential with a single peak. In other
words, we choose parameters such that the potential Veff
has the shape of the left panel in Fig. 1. As in the case of the
Schrödinger equation where the energy is quantized for
bound states, the complex frequency of our classical
quasibound states are also quantized. The characteristics
of the quantization can be described by the “overtone”
number n, which counts the number of the peaks of the
radial wave function jRðrÞj. The n ¼ 1; 2;…, correspond
to the ground state, first-excited and second-excited
states, etc.
In Fig. 3 of Appendix C, we plot some explicit low-lying

examples of jRðrÞj (n ¼ 1; 2; 3) for various parameters. In
all the plots we have fixed mp ¼ 2

10
, q1 ¼ 2

10
, q2 ¼ 0, and

Q1 ¼ 1. (Recall that we set l ¼ 1 for all our numerical
calculation.) Note that in these plots we have normalized
radial wave equation byZ

rc

ϵh

ffiffiffiffiffiffi
−ḡ

p jRðrÞj2 ¼ 1; ð4:11Þ

where ḡ denotes the determinant of the background metric.
Although we present jRj graphs for n ¼ 1, 2, 3, we actually
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obtained the results for all the low-lying examples up to and
including n ¼ 10. The complex frequencies of these quasi-
bound states are summarized in Tables I and II.

In a quantum-mechanical system, ωr would be the
quantized energy of the system and the overtone number
n would describe the energy level. For our classical

FIG. 3. Here we plot the normalized radial function jRðrÞj for low-lying quasibound states (n ¼ 1, 2, 3) for black hole of various
parameters. These states are characterized by that the radial function falls off exponentially as r → ∞. Fixed parameters are mp ¼ 2

10
,

q1 ¼ 2
10
, q2 ¼ 0, and Q1 ¼ 1.

TABLE I. The explicit complex frequencies of low-lying overtone states withmp ¼ 2
10
, q1 ¼ 2

10
, q2 ¼ 0, andQ1 ¼ 1 in the ðN1; N2Þ ¼

ð2; 2Þ case.
n ϵ ¼ 2.5 ϵ ¼ 5 ϵ ¼ 8

1 0.19568þ 1.8307 × 10−8i 0.18108þ 4.0846 × 10−7i 0.16555þ 5.5423 × 10−7i
2 0.19773þ 1.2333 × 10−9i 0.18741þ 5.9368 × 10−7i 0.17332þ 1.8124 × 10−6i
3 0.19864þ 7.1132 × 10−9i 0.19144þ 5.5701 × 10−7i 0.17937þ 1.5825 × 10−6i
4 0.19910þ 4.2111 × 10−9i 0.19400þ 4.4175 × 10−7i 0.18398þ 1.7047 × 10−6i
5 0.19937þ 2.6307 × 10−9i 0.19565þ 3.2839 × 10−7i 0.18748þ 1.6231 × 10−6i
6 0.19954þ 1.7313 × 10−9i 0.19674þ 2.3987 × 10−7i 0.19012þ 1.4352 × 10−6i
7 0.19964þ 1.1917 × 10−9i 0.19749þ 1.7591 × 10−7i 0.19211þ 1.2145 × 10−6i
8 0.19972þ 8.5168 × 10−10i 0.19801þ 1.3074 × 10−7i 0.19362þ 1.0027 × 10−6i
9 0.19977þ 6.2818 × 10−10i 0.19839þ 9.8786 × 10−8i 0.19577þ 8.1840 × 10−7i
10 0.19981þ 4.7578 × 10−10i 0.19868þ 7.5958 × 10−8i 0.19566þ 6.6543 × 10−7i

TABLE II. The explicit complex frequencies of low-lying overtone states with mp ¼ 2
10
, q1 ¼ 2

10
, q2 ¼ 0, and Q1 ¼ 1 in the

ðN1; N2Þ ¼ ð1; 3Þ case.
n ϵ ¼ 2 ϵ ¼ 2.5 ϵ ¼ 3.5

1 0.17028þ 5.3213 × 10−7i 0.16253þ 5.9330 × 10−7i 0.15031þ 4.4746 × 10−7i
2 0.17769þ 1.0241 × 10−6i 0.17036þ 1.2805 × 10−6i 0.15810þ 1.1444 × 10−6i
3 0.18320þ 1.2619 × 10−6i 0.17650þ 1.7653 × 10−6i 0.16460þ 1.8423 × 10−6i
4 0.18728þ 1.2735 × 10−6i 0.18131þ 1.9846 × 10−6i 0.17005þ 2.3954 × 10−6i
5 0.19028þ 1.1522 × 10−6i 0.18508þ 1.9873 × 10−6i 0.17462þ 2.7524 × 10−6i
6 0.19250þ 9.7835 × 10−7i 0.18804þ 1.8513 × 10−6i 0.17846þ 2.9196 × 10−6i
7 0.19415þ 8.0070 × 10−7i 0.19034þ 1.6454 × 10−6i 0.18168þ 2.9307 × 10−6i
8 0.19537þ 6.4235 × 10−7i 0.19215þ 1.4182 × 10−6i 0.18439þ 2.8276 × 10−6i
9 0.19629þ 5.1069 × 10−7i 0.19357þ 1.1985 × 10−6i 0.18666þ 2.6498 × 10−6i
10 0.19699þ 4.0521 × 10−7i 0.19469þ 1.0009 × 10−6i 0.18856þ 2.4297 × 10−6i
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quasibound states, ωr is also a monotonously increasing
function of n with the ground state (n ¼ 1) having the
lowest frequency. On the other hand, ωi does not change
monotonously as we increase n, indicating that the most
unstable mode in general is neither the ground state, nor the
most excited state. Intriguingly, we find that the n depend-
ence of complex frequency can be accurately fitted with
some simple close-form functions:

ωr

M
¼ 1þ a1n

1þ b1n
ω0
r ;

ωi

M
¼ 1þ a2n2

1þ b2n2 þ c2n4
ω0
i ; ðn ¼ 1; 2; 3;…Þ: ð4:12Þ

The coefficients ðωr0 ; a1; b1;ωi0 ; a2; b2Þ depend on all the
variables of the theory and the charge parameters of the
solution. For the dataset in Tables I and II, we give these
coefficients in Table III.
In Appendix C, we present Figs. 4 and 5, where we plot

the dimensionless real and imaginary frequencies ωr=M
and ωi=M with respect to the overtone number n for
various ϵ’s. The dots are the actual numerical results for the
low-lying overtone numbers and the solid lines are pro-
duced by the fitting functions. As we can see from Fig. 4
and Fig. 5, our conjectured formulas in (4.12) match with
the quantized frequency strikingly well. The results show
that ωrðnÞ increases monotonously while ωiðnÞ can have a
maximum. The results also indicate that for large n, we
have

ωr − ω0
r ∼ −

1

n
; ωi ∼

ω0
i

n2
: ð4:13Þ

Thus, the instability is not caused by modes with large
overtones.
We now turn to the discussion of how ωi depends on the

charge configuration, described by the dimensionless
parameter ϵ. This is important since we have already seen
that there is no quasibound state when ϵ ¼ 0. We thus
naturally expect that quasibound states would emerge only
for sufficiently large ϵ. We focus our discussion for over-
tone numbers n ¼ 1 and n ¼ 2. We also fixed parameters
mp ¼ 2

10
and q1 ¼ 2

10
and q2 ¼ 0. We present our results in

Fig. 6 of Appendix C. To better describe the ϵ dependence,

we find that the numerical data can be fitted by an
exponential function, given by

log
ωi

M
¼ a3ϵ−

N1þN2
2 þb3ϵ−

N2
2 þc3ϵ−

N1
2 þd3þe3ϵ

N1
2 þf3ϵ

N2
2 :

ð4:14Þ

In the case of ðN1; N3Þ ¼ ð1; 3Þ, the values of the coef-
ficients ða3; b3; c3; d3; e3; f3Þ are given in Table IV.
For the case of ðN1; N2Þ ¼ ð2; 2Þ, Eq. (4.14) reduces to a

simpler function:

log
ωi

M
¼ ã3ϵ−2 þ b̃3ϵ−1 þ c̃3 þ d̃3ϵ: ð4:15Þ

The coefficients ðã3; b̃3; c̃3; d̃3Þ are given in Table V.
Our numerical data of ωi run from 10−12 to 10−6 as ϵ

increases from a small value to a larger one, and that is quite
a few orders of magnitude. For this reason, we plot our
results in Fig. 6, using logarithmic logðωi=MÞ. The plots
illustrate that our conjectured curve functions fit with the
data remarkably well.
We now examine the example of ðN1; N2Þ ¼ ð2; 2Þ and

n ¼ 1 in further detail. We have computed quasibound
states for parameter ϵ from about 1 to 12. We see that the
imaginary part of the dimensionless frequency has a
maximum of ∼10−6 around ϵ ∼ 6, and it becomes vanish-
ingly small (ϵ ∼ 10−12) as ϵ ∼ 1. This appears to have
confirmed our earlier expectation that quasibound states

TABLE III. The explicit coefficients of the fitting functions in Eq. (4.12).

(N1; N2) ϵ ω0
r a1 b1 ω0

i a2 b2 c2

(2, 2) 2.5 0.0275 4.87 4.26 3.31 × 10−9 0.0328 0.174 0.0153
5 0.0165 0.977 0.783 3.00 × 10−8 0.484 0.0577 0.0157
8 0.0107 0.417 0.299 2.17 × 10−8 0.984 0.0667 0.00352

(1, 3) 2 0.0156 0.476 0.356 3.23 × 10−8 0.814 0.0753 0.00510
2.5 0.0130 0.348 0.243 2.81 × 10−8 1.03 0.0756 0.00236
3.5 0.00963 0.230 0.144 1.41 × 10−8 1.40 0.0530 0.000548

TABLE IV. The value of ða3; b3; c3; d3; e3; f3Þ for the fitting
function Eq. (4.14) in the ðN1; N2Þ ¼ ð1; 3Þ case.
n a3 b3 c3 d3 e3 f3

1 8.43 −21.5 9.62 −9.65 −6.49 0.295
2 21.5 −59.0 93.5 −99.3 25.1 −1.04

TABLE V. The value of coefficients ðã3; b̃3; c̃3; d̃3Þ for the
fitting function Eq. (4.15) in the ðN1; N2Þ ¼ ð2; 2Þ case.
n ã3 b̃3 c̃3 d̃3

1 −1.97 −16.9 −11.5 0.422
2 2.09 −22.9 −10.2 −0.403
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cease to exist for sufficiently small ϵ. This feature remains
true for the n ¼ 2 states, or for the ðN1; N2Þ ¼ ð1; 3Þ
theory.
However, there is a caveat in our above discussion, since

we set q2 ¼ 0. We might naively conclude that the black
holes with small enough ϵ might be exempted from
superradiant instability. This obviously appears to be
consistent with the fact that the RN black hole (ϵ ¼ 0)
is stable. However, the situation changes if we turn on the
q2 parameter. To illustrate this, we consider the ðN1; N2Þ ¼
ð2; 2Þ example and the leading falloff of the large-r
expansion of the effective potential is

Veff ¼ m2
p þ

β

r
þOð1=r2Þ; ð4:16Þ

where

β¼ 2Q1ð2
ffiffiffi
2

p
ðxþyωÞþ ϵð

ffiffiffi
2

p
ðx−ω2Þþ4q2ωÞÞ;

x¼m2
p−ω2> 0; y¼

ffiffiffi
2

p
ðq1þq2Þ−ω> 0: ð4:17Þ

As was explained earlier, for Veff to have one peak, we must
have β < 0. This is not possible for the RN black hole with
ϵ ¼ 0. When q2 ¼ 0, we find that β can only be negative
for sufficiently large ϵ since ω < mp. However, if we turn
on q2 and let it be negative, then we can have negative β
even for smaller ϵ. Of course, the condition y > 0 restricts
how negative q2 can go. Analogous results can be found for
the ðN1; N2Þ ¼ ð1; 3Þ theory.
It becomes clear why trapping wells can exist in STU

black holes while they do not in the RN black hole. Having
negative β is a sign that the overall force becomes attractive
at the asymptotic infinity, and this requirement can be
arranged in the STU theory since we can have additional
antiparticles with negative q2 that is attractive when it
interacts with Q2. These attractive components, mediated
also through the dilaton scalar, create an effective potential
with a trapping well. This also implies that superradiant
instability could exist as long as the STU black hole has not
degenerated to become the RN black hole and hence the
dilatonic scalars are not vanishing.
However, having found the condition for negative β

provides only the necessary condition for the quasibound
states and we still resort to numerical calculations for more
quasibound states. We start from the least unstable state
among those in Fig. 6, namely ϵ ¼ 1 and q2 ¼ 0, for which
we have seen that ωi=M ∼ 10−14 is vanishingly small.
Figure 6 appears to suggest that black holes with smaller ϵ,
e.g., ϵ ¼ 0.5, would become stable. However, if we fix the
parameters mp ¼ 2

10
, q1 ¼ 2

10
, Q1 ¼ 1, and ϵ ¼ 1, but turn

on q2 so that q2=q1 runs from 0 to some small negative
number, we find that ωi=M dramatically increases by a few
orders of magnitude. Explicitly, from the panels of the first
row in Fig. 7 of Appendix C, in which we plot the ωi=M in
terms of the fundamental charge ratio of q2=q1. We see that

when this ratio is zero, ωi=M is vanishingly small, around
10−14. However, it increases from 10−14 to around the
maximum 10−10 and then decreases again, as we make the
ratio more and more negative.
We therefore select q2 ¼ −0.048, corresponding to the

maximum of ωi=M ≈ 3.8 × 10−10, and fix also parameters
mp ¼ 2

10
, q1 ¼ 2

10
, Q1 ¼ 1. We construct more quasibound

states by decreasing ϵ from 1 to some smaller number. We
find that the instability modes exist for smaller ϵ, with
ωi=M decreasing to 10−13 as ϵ runs from 1 to around 0.3.
Similarly, in the case of q2 ¼ −0.048, the fitting functions
in Eq. (4.15) for ωi=M with respect to ϵ are also valid, and
the panels of the second row of Fig. 7 show that they fit
remarkably well. The coefficients ðã3; b̃3; c̃3; d̃3Þ are
explicitly given in Table VI.
The above results strongly suggest that STU black holes

with nonvanishing ϵ are always unstable. Indeed, from
(4.17), we can see that no matter how small ϵ ≠ 0 is, we can
always increase q1 positively and make q2 more negative so
that β becomes negative while keeping q1 þ q2 fixed to
satisfy the superradiant condition. Concretely, we obtain
unstable quasibound states for Q1 ¼ 1, ϵ ¼ 0.01, with the
complex frequency

ω ¼ 0.1927þ 3.752 × 10−8i; ð4:18Þ

when we choose mp ¼ 2
10
, q1 ¼ 20.2, q2 ¼ −20. We may

therefore conclude that the superradiant stability of the RN
black hole is a fine-tuning result from the perspective of the
STU supergravity model.

2. Effective potential with double peaks

As was discussed earlier, at large r, the leading falloff of
Veff takes the form of (4.16). In the previous subsection, we
consider the case with β < 0, in which case the potential
has a single peak. Here, we consider the possibility of
β > 0, in which case a potential trapping well necessarily
involves two peaks. For simplicity, we only investigate the
ðN1; N2Þ ¼ ð2; 2Þ example. A simple way to achieve β > 0
is to take q2 ¼ q1, in which case we have

β ¼ 2
ffiffiffi
2

p
ðQ1 þQ2Þω2ðx2 þ 2xþ yÞ; ð4:19Þ

where x > 0 and y > 0 are defined by (3.24) with
ωc ¼ 2

ffiffiffi
2

p
q1. As we have shown, for the RN black hole

TABLE VI. The value of coefficients ðã3; b̃3; c̃3; d̃3Þ for the
fitting function Eq. (4.15) in ðN1; N2Þ ¼ ð2; 2Þ, q2 ¼ −0.048
case.

n ã3 b̃3 c̃3 d̃3

1 0.247 −3.35 −24.1 5.53
2 0.1819 −2.92 −26.1 6.33

ZHAN-FENG MAI, RUN-QIU YANG, and H. LÜ PHYS. REV. D 105, 024070 (2022)

024070-12



with Q2 ¼ Q1, the potential Veff shapes like Fig. 2 and
therefore has no trapping well. It turns out that if we take an
alternative limit with Q1 ¼ 0 (or equivalently Q2 ¼ 0),
there is no trapping well either. However, trapping well
does arise when we keep Q2=Q1 sufficiently large, but not
too large, corresponding to a large but not too large ϵ,
defined by (4.9).
In what follows, we illustrate the superradiant instability

associated with quasibound states in the trapping-well
potential with double peaks. We fix parameters
mp ¼ 5

100
, q1 ¼ q2 ¼ 2

100
, Q2 ¼ 100, and let Q1 run from

1 to 0.04, corresponding to ϵ running from 99 to 2499.
We begin with presenting the quasibound states with

fixed Q1 ¼ 1 (ϵ ¼ 99) and Q1 ¼ 0.1 (ϵ ¼ 999) for some
low-lying overtone number n. We find that the complex
frequency as a function of n can also be fitted with our
conjectured formulas in Eq. (4.12), with coefficients
ðωr0 ; a1; b1;ωi0 ; a2; b2Þ given in Table VII. As we can
see from Fig. 8, the solid lines drawn by the fitting
functions match with the numerical data quite well.
Finally, we turn to investigate how the dimensionless

instability parameter ωi=M changes according to the value
of ϵ. Similarly, we study only the ground state (n ¼ 1) and
the first-excited state (n ¼ 2) as examples. As was men-
tioned, we expect that the quasibound states do not exist for
small ϵ and neither for ϵ that is too large. In Fig. 9, we
present logðωi=MÞ as functions of ϵ that runs from 99 to
2499. Even though we have obtained a large region of ϵ, we
find that our conjectured formula Eq. (4.15) with coef-
ficients given in Table VIII can fit the data perfectly well.

V. CONCLUSIONS

In this paper, we studied superradiant instability by
constructing quasibound states of charged Klein-Gordon
scalar equation in the background of extremal charged
black holes of the STU supergravity model. The general
black hole carries four Uð1Þ charges and when they are all

equal, it reduces to the RN black hole. We were motivated
by the fact that the RN black hole seems to be exempted
from the superradiant instability and we would like to study
this phenomenon from the perspective of these more
general charged black holes.
We first addressed some theoretical aspects of the

subject. We proved that all quasibound states, as well as
the quasinormal modes, necessarily involve complex
frequencies. This motivated us to establish superradiant
boundary conditions for such states with complex frequen-
cies. Owing to the extra Uð1Þ fields and scalars in the STU
model, the effective potential of the Schrödinger-like
equation governing the radial wave function has far richer
structure than the one associated with the RN black hole.
For simplicity, we reduced the general STU model to
involve only one scalar and two Uð1Þ fields. The reduced
system with the nontrivial dilaton captures the essence of
the STU model.
We found that for suitable parameters, there exist two

types of trapping wells: those with single peak and those
with double peaks. Using the numerical shooting method,
we found that both potential wells could trap quasibound
states with positive imaginary frequency, indicating super-
radiant instability. These are the first examples in literature
where superradiant instability is demonstrated for spheri-
cally symmetric and static black holes. We obtained how
the complex frequency of the quasibound states depended
on the overtone number, as well as the parameter ϵ that
measures the deviation of the STU black holes from the RN
black hole.
Our results indicate that STU charged black holes are

superradiant unstable as long as the charges are not equal.
In other words, no matter how small ϵ is, we can always
find superradiant instability associated with appropriate
fundamental charged massive scalar particles and antipar-
ticles. Therefore, the superradiant stability of the RN black
hole is a fine-tuning result in the framework of the STU
supergravity theory.
Our results appears to contradict the common belief that

extremal charged black holes in STU supergravity, which
preserve a certain fractions of supersymmetry, should be
stable against perturbation. While it is certainly true that the
charged massive scalar field Φ could arise in the Kaluza-
Klein spectrum when we examine the origin of the STU
model from M theory or strings, we expect that such a Φ
should have nonminimal couplings with other massless
scalar fields in the STU model. The toy model (2.7) is thus

TABLE VII. The explicit ðωr0 ; a1; b1;ωi0 ; a2; b2Þ for Eq. (4.12) in the ðN1; N2Þ ¼ ð2; 2Þ case, with mp ¼ 5
100

, q1 ¼ q2 ¼ 2
100

,
Q2 ¼ 100. The corresponding ωrðnÞ and ωiðnÞ produce the solid lines in Fig. 8.

ϵ ω0
r a1 b1 ω0

i a2 b2 c2

99 2.90 × 10−4 0.147 0.101 2.49 × 10−9 0.76 0.0271 0.000807
999 2.58 × 10−4 0.0794 0.0344 1.59 × 10−8 0.621 0.0704 0.000466

TABLE VIII. The value of coefficients ðã3; b̃3; c̃3; d̃3Þ for the
fitting function Eq. (4.15) in the ðN1; N2Þ ¼ ð2; 2Þ case, with
mp ¼ 5

100
, q1 ¼ q2 ¼ 2

100
, Q2 ¼ 100.

n ã3 b̃3 c̃3 d̃3

1 −197 −184 −17.3 −0.000116
2 132 −203 −16.5 −0.000163
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likely to break the supersymmetry. Nevertheless, the ease of
having superradiant instability indicates that one should
reexamine the issue further within supergravity. It is clear
that the electric repulsion and gravity attraction associated
with RN black hole and the superradiant particle is too
simple for the effective potential to have a potential well.
The scalar fields in the STU model can yield both attractive
and repulsive long-ranged forces, and this makes it possible
for creating a potential trapping well. It is thus of great
interest to study generally how scalar fields affect the
superradiant (in)stability of black holes with the scalar hair.
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APPENDIX A: TORTOISE COORDINATES

To investigate the asymptotic behavior of quasibound
states, it is useful to introduce the following definition of
tortoise coordinate y and radial function transformation R̄:

dy
dr

¼ðH̃1H̃2H̃3H̃4Þ12; R̄≡ðH̃1H̃2H̃3H̃4Þ−1=4
RðrÞ
r

; ðA1Þ

where y → −∞ as r → 0while y → ∞ as r → ∞. Then the
radial equation can be written in standard wave equation

−
d2R̄
dy2

þ ŪðyÞR̄¼ 0; Ū¼−ðω−QðyÞÞ2þVðyÞ; ðA2Þ

where

QðyÞ¼
X4
i¼1

qið1− H̃−1
i Þ;

VðyÞ¼lðlþ1Þ
r2H̃

þ m2
pffiffiffiffi
H̃

p −
5H̃0

16H̃3
þ H̃00

4H̃2
; H̃¼

Y4
i¼1

H̃i:

ðA3Þ

The potential Ū has the following asymptotic behavior:

Ūjy→−∞∼−ðω−ωcÞ2; Ūy→∞ ¼m2
p−ω2> 0: ðA4Þ

With such asymptotic behavior of Ũ, we will arrive at the
asymptotic solution of R̃ that

R̄ ∝
� e−iðω−ωcÞy y → −∞

e−
ffiffiffiffiffiffiffiffiffiffiffi
m2

p−ω2
p

y y → ∞;
ðA5Þ

where we discarded the divergent mode and the wave
function decays exponentially at infinity, giving rise to a

quasibound state. Compared to the original r variable, in
the two asymptotic regions, we have

y ∼ −
1

r
; R̄ ∼ R; as r → 0; y ∼ r;

R̄ ∼
1

r
R; as r → ∞: ðA6Þ

Equation (A5) can then be translated to the boundary
conditions in r coordinate, namely, Eq. (2.11). Thus, we see
that r ¼ 0 horizon with ingoing boundary condition is not
an infinite potential barrier, but a nonrepulsive asymptotic
region.
It is worth remarking that when ω > mp, the function R̄

becomes wavelike also as y → ∞. A quasinormal mode is
defined as the one with outgoing boundary condition only,

namely, R̄ ∼ ei
ffiffiffiffiffiffiffiffiffiffiffi
ω2−m2

p

p
y as y → ∞.

APPENDIX B: A PROOF OF COMPLEX
FREQUENCIES

Theorem 1. The time frequency ω of quasinormal
modes or quasibound states cannot be a real number.
Proof.—We begin by assuming that the frequency of

quasinormal modes or quasibound states is a real number.
By performing integration by parts on the radial equation
Eq. (A2), we have

R̄�
n
dR̄n

dy

����ϵ
−ϵ

¼
Z

ϵ

−ϵ
ðjR̄0

nj2 − ððωn −QðyÞÞ2 − VðyÞÞjR̄nj2Þdy;

ðB1Þ

where a prime denotes a derivative with respect to y. We set
ϵ ≫ 1, but not infinity, to avoid divergence. With boundary
conditions that define either the quasinormal modes or
quasibound states, the left-hand side of Eq. (B1) gives

quasinormal modes∶ R̄�
n
dR̄n

dy

����ϵ
−ϵ

¼ i

�
jc1j2ðω − ωcÞ þ jc2j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p

q �
; m2

p < ω2

quasibound states∶ R̄�
n
dR̄n

dy

����ϵ
−ϵ

¼ ijc1j2ðω − ωcÞ; m2
p > ω2; ðB2Þ

which is purely imaginary. On the other hand, the right-
hand side of Eq. (B1) must be real, since ω, QðyÞ and VðyÞ
are all real, i.e.,Z

ϵ

−ϵ
ðjR̄0

nj2 − ððωn −QðyÞÞ2 − VðyÞÞjR̄nj2Þdy ∈ R: ðB3Þ

The contradiction shows that neither the quasinormal
modes nor quasibound states can have a real time
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frequency. It should be pointed that our proof relies only on
the boundary conditions of either quasinormal modes or
quasibound states. It does not depend on the details such as
VðyÞ and QðyÞ, and therefore the statement is completely
general.

APPENDIX C: PLOTS AND FIGURES

In this appendix, we give our plots and figures discussed
in Sec. IV. The explanations of graphs are provided by the
captions and also the associated discussions in the
main text.

FIG. 5. Here we plot the ωr=M and ωi=M with respect to the overtone n for various ϵ, for the case of ðN1; N2Þ ¼ ð1; 3Þ. The solid lines
are produced by the corresponding fitting functions in (4.12). We see that our fitting functions match the data remarkably well. Fixed
parameters are mp ¼ 2

10
, q1 ¼ 2

10
, q2 ¼ 0, and Q1 ¼ 1.

FIG. 4. Here we plot the ωr=M and ωi=M with respect to the overtone n for various ϵ, for the case of ðN1; N2Þ ¼ ð2; 2Þ. The solid lines
are produced by the corresponding fitting functions in (4.12). We see that our fitting functions match the data remarkably well. Fixed
parameters are mp ¼ 2

10
, q1 ¼ 2

10
, q2 ¼ 0, and Q1 ¼ 1.
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FIG. 6. The plot of logðωi=MÞ with respect to ϵ in ðN1; N2Þ ¼ ð2; 2Þ and ðN1; N2Þ ¼ ð1; 3Þ examples. Fixed parameters are mp ¼ 2
10
,

q1 ¼ 2
10
, q2 ¼ 0, and Q1 ¼ 1.

FIG. 7. In the first row, we plot the ωi=M in terms of the fundamental charge ratio q2=q1, with fixed parameters mp ¼ 2
10
, q1 ¼ 2

10
,

Q1 ¼ 1, and ϵ ¼ 1. We see that ϵ ¼ 1 state can actually become quite unstable as we run q2 towards some negative value, with
q2 ¼ −0.048 giving the maximum instability of order 10−10. In the second row, therefore choosing q2 ¼ −0.048, we plot the logωi=M
with respect to ϵ. This establishes that the ϵ ¼ 0.3 black hole is also unstable.
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