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Abstract: High-energy partons (E � T ) traveling through a quark-gluon plasma lose

energy by splitting via bremsstrahlung and pair production. Regardless of whether or not

the quark-gluon plasma itself is strongly coupled, an important question lying at the heart

of philosophically different approaches to energy loss is whether the high-energy partons of

an in-medium shower can be thought of as a collection of individual particles, or whether

their coupling to each other is also so strong that a description as high-energy “particles”

is inappropriate. We discuss some possible theorists’ tests of this question for simple

situations (e.g. an infinite, non-expanding plasma) using thought experiments and first-

principles quantum field theory calculations (with some simplifying approximations). The

physics of in-medium showers is substantially affected by the Landau-Pomeranchuk-Midgal

(LPM) effect, and our proposed tests require use of what might be called “next-to-leading

order” LPM results, which account for quantum interference between consecutive splittings.

The complete set of such results is not yet available for QCD but is already available for

the theory of large-Nf QED. We therefore use large-Nf QED as an example, presenting

numerical results as a function of Nfα, where α is the strength of the coupling at the

relevant high-energy scale characterizing splittings of the high-energy particles.
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1 Introduction and preview of results

1.1 Overview

Consider the cartoon in figure 1a depicting energy loss of a high-energy parton traversing a

lower-energy quark-gluon plasma (QGP) produced in a relativistic heavy-ion collision. This

figure and this paper focus on the in-medium evolution, ignoring the complications of both

(i) early-time initial vacuum-like radiation associated with the hard parton-level collision

that scattered the high-energy parton out of the beam direction in the first place and

(ii) the late-time hadronization when a high-energy parton leaves the quark-gluon plasma.

Generically, energy loss of high-energy relativistic particles traveling through a medium

is dominated by bremsstrahlung and pair production, as depicted by the splittings in the

cartoon. In detail, this picture of energy loss implicitly assumes that the high-energy

particle and its high-energy daughters and granddaughters et cetera may be thought of

as individual particles, which in quantum field theory implies a perturbative description

of the states of the high-energy particles (even if the underlying quark-gluon plasma is

strongly coupled). Such a perturbative treatment requires that the running QCD coupling

αs(µ) be “small” at the relevant scale µ that characterizes the high-energy splittings. This

is in contrast to the separate question of whether the quark-gluon plasma itself is weakly-

or strongly-coupled, which depends on the strength of αs at QGP scales, such as αs(T ) or

αs(ξ
−1), where T is the temperature and ξ is the QGP chromo-electric screening length.

Though real-world quark-gluon plasmas are generally considered to be strongly cou-

pled (or to at the very least require complicated reorganizations of small-coupling expan-

sions [1]), the situation has been less clear with regard to the coupling of each high-energy

parton to its daughters in the energy-loss picture of figure 1. On the “weakly-coupled

splitting” side, there is a large literature built upon the formalism of Baier et al. [2–4]

and Zakharov [5, 6] (BDMPS-Z), which treats high-energy partons as individual parti-

cles. At high energy, the dependence of splitting on medium properties may (with caveats)

for many purposes be summarized by the medium parameter q̂, whether the medium it-

self is weakly or strongly coupled. q̂ is the proportionality constant in the relationship

〈Q2
⊥〉 = q̂∆z, where Q⊥ is the transverse momentum that a high-energy parton picks up,
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(a) (b)

Figure 1. (a) A cartoon of in-medium energy loss of a high-energy parton traversing a quark-

gluon plasma. (Initial vacuum-like radiation associated with the hard event that created the initial

particle is not shown. Vacuum-like radiation and then hadronization of a high-energy particle that

leaves the medium is also not shown.) (b) Depiction of a branch that deposits all of its energy in

the medium.

relative to its initial direction of motion, after passing through length ∆z of the medium.

Alternatively, on the “strongly-coupled splitting” side, where high-energy partons cannot

be treated individually, there are studies of how energy loss behaves at extremely large

coupling in QCD-like theories with gravity duals [7–9].1 Because of all the complexities

that enter describing the many different stages of relativistic heavy-ion collisions, it has

been difficult to settle the issue of weakly vs. strongly coupled splitting from experimental

data. So it would be useful to have theoretical calculations we could do, for some simplified

thought experiments, that would shed light on whether we are in the weakly-coupled or

strongly-coupled splitting limit for energy loss.

As we shall review, previous authors [12–14] have made leading-log studies of the cor-

rection to BDMPS-Z splitting rates due to additional, softer gluon bremsstrahlung happen-

ing simultaneously with the underlying splitting process. They found that such corrections

are large but are also universal in the sense that they are completely absorbed (at leading

log level) by accounting for similar corrections to q̂. One may then pose a refined question

about the merits of a weakly-coupled splitting picture of in-medium showering: how large

are the corrections to this picture that cannot be absorbed into an effective value of q̂?2

1For an example of a phenomenological model that attempts to combine certain aspects of both the

weakly-coupled and strongly-coupled pictures of splitting, see the hybrid model of refs. [10, 11].
2There is precedent for a similar distinction in a very different context: for calculations of a weakly-self-

interacting quark gluon plasma [that is, αs(gT ) small, which we do not assume here], calculations of the

shear viscosity to entropy ratio η/s of the quark-gluon plasma find that the next-to-leading order (NLO)

correction in αs(gT ) is very large but almost completely accounted for by the also-large NLO correction to

q̂ [15]. (Technically, the calculation covers only “almost” all next-to-leading order contributions to η/s [15].)

We should emphasize that their expansion in the quark-gluon plasma coupling is not our expansion in the

high-energy splitting coupling, and what they call a NLO correction to q̂ is something that in our expansions

will already be part of the leading-order value of q̂, which we will later refer to as q̂(0).

– 2 –
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In this paper, we will give some examples of measures that can be used in theory

thought experiments to address this question, and we will discuss advantages and disad-

vantages of those measures. Though our ultimate motivation is to eventually address the

question for QCD, the full set of QCD calculations required is not yet available. Here we

will show concrete results for a different theory: large-Nf QED. For that case, we give

quantitative measures of the size of corrections to the weakly-coupled splitting picture as

a function of the size of NfαEM.

For the sake of simplicity, we are going to focus on high-energy particles which com-

pletely stop and deposit their energy in the medium, like the first branch of figure 1a,

isolated in figure 1b. Phenomenologically, one could view this as a choice to focus on par-

tons whose energy is large compared to that of typical plasma particles but not so large

that they punch all the way through the plasma. Alternatively, one could instead consider

arbitrarily high energy partons but imagine, as a theory exercise, that the extent of the

plasma were large enough for them to stop completely. Whether in-medium showers of

high-energy particles have weakly-coupled or strongly-coupled splittings in this case is an

interesting and important first question. And studying that limit provides a way to exam-

ine the issue independent of the complicated details necessary to discuss all cases relevant

to the full phenomenology of energy loss.

Throughout, we will use the phrase “quark-gluon plasma” as a generic term for the

QCD background generically produced in heavy-ion collisions without committing to any

more specific, detailed picture of that background other than that scattering of high-energy

particles from the medium can be characterized by some value of q̂.

1.2 Overlapping formation times

In any single example of a shower, the exact time or place where each splitting occurred

has some ambiguity, and the extent of that uncertainty is known as the formation time or

formation length for that splitting. In terms of calculations of the splitting rate, consider

multiplying an amplitude times a conjugate amplitude to get a rate. The formation time

corresponds, parametrically, to the largest time difference |t − t̄| for which a splitting at

time t in the amplitude non-negligibly interferes with the same splitting at time t̄ in the

conjugate amplitude, as depicted in figure 2. At high energy, the corresponding formation

length in the direction of motion is the same as the formation time (times the speed of

light), and they grow with energy. For example, for bremsstrahlung with energy xE from

a parton with energy E, the formation length is parametrically3

lform ∼

√
x(1− x)E

q̂
(gluon bremsstrahlung), (1.1a)

lform ∼

√
(1− x)E

xq̂
(photon bremsstrahlung), (1.1b)

3For a very brief review of formation times in the language of this paper, see section II.A.1 of ref. [16].

The QED formation time essentially goes back to Migdal [19], though he did not use this language. (q̂tform
is proportional to what Migdal would call m2/s for bremsstrahlung and m2/s̄ for pair production.)

– 3 –
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Figure 2. Interference between high-energy bremsstrahlung at time t in the amplitude and time

t̄ in the conjugate amplitude, as the high-energy particles repeatedly scatter (represented by the

brown dots) by small angles from the medium. In QCD, the particle represented by the non-curly

line could be a quark or a gluon. For photon bremsstrahlung, photon scattering from the medium

can be ignored.

(a) (b)

Figure 3. An example of an in-medium shower like figure 1b, but here depicting the ambiguity of

the longitudinal position of each splitting by an oval that represents the formation length. (a) shows

the case where there is no interference between splittings; (b) shows a case where two consecutive

splittings overlap.

in the limit of a thick medium. When the formation time becomes large compared to

the mean free path for collisions with the medium, as in figure 2, it causes a reduction

in the bremsstrahlung rate known as the Landau-Pomeranchuk-Migdal (LPM) effect [17,

18],4 [19]. A similar reduction occurs for pair production.

In figure 3a, we show a shower where we have qualitatively depicted the formation

lengths for each splitting by ovals. This picture implicitly assumes a hierarchy of scales

in which the distance between consecutive splittings is large compared to the formation

lengths for each splitting, so that the probability of each splitting is independent. If true,

one may take as a starting point for simulating this type of in-medium shower a calculation

(or model) of single-splitting rates. As simulation time progresses, one could roll dice every

time increment to determine whether a new splitting happened in that time interval. Such

a model of independent dice rolls for each splitting assumes that the chance of two or more

consecutive splittings having overlapping formation times, such as depicted in figure 3b, is

small.

Consider for a moment the case of nearly-democratic splittings, where the two daugh-

ters of each splitting have roughly comparable energy. In general, at very high energy,

4These two papers are also available in English in L. Landau, The Collected Papers of L.D. Landau,

Pergamon Press, New York U.S.A. (1965).
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lform/α

lform lform

Figure 4. The hierarchy of scales (1.2).

each formation length of scattering from the medium offers one chance for splitting, and

the chance of such a splitting is parametrically of order the coupling α associated with the

splitting vertex. The typical distance lrad between consecutive splittings is then

lrad ∼
lform

α
. (1.2)

If the relevant value of α is small enough, this leads to the hierarchy of scales shown in

figure 4, leading to the picture of independent splittings in figure 3a. The probability of

any two particular splittings overlapping, like the two in figure 3b, would be O(α).

Since α runs and depends on scale, we need to identify the relevant renormalization

scale for the α in (1.2). That α characterizes the strength of the vertex where the high-

energy parent splits into its high-energy daughters, and the scale we need is therefore the

distance scale characterizing the separation of the daughters during the splitting process,

i.e. during the formation time. That separation b is transverse and so is related by the

uncertainty principle Q⊥ ∼ 1/b to the relative transverse momentum Q⊥ ∼
√
q̂tform that

the high-energy particles pick up during the splitting process. So we are interested in

α(Q⊥), with (1.1) giving

Q⊥ ∼ (q̂E)1/4. (1.3)

The above argument that (1.3) is the relevant scale for α is qualitative, but it has been

checked by explicit calculation in the case of large-Nf QED [16].

Note that though this scale grows with energy E, it does not grow quickly! For example,

for q̂ ∼ 1 GeV3 for quark-gluon plasmas and E as large as ∼ 100 GeV, the parametric

estimate (1.3) is Q⊥ ∼ only a few GeV (in the theoretical limit of a thick medium). If

α(Q⊥) is too big, then splittings will usually overlap, and we cannot then use a weakly-

coupled description of splittings. A way to diagnose this problem is to first formally assume

α is small, calculate the corrections to shower development due to overlapping formation

times, and then see how large those corrections are when one evaluates them for realistic

values of α. If the corrections are of order 20%, for example, then the basic picture of

weak-splitting behind figures 1 and 3a is reasonable. If the corrections are 200%, then it is

not, and the number of high-energy particles present at any moment in the shower would

not (even approximately) be a well-defined concept.

Throughout this paper, the coupling α will generally refer to α(Q⊥) [and not to α(T )].

– 5 –
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1.3 Stopping distances

Hard bremsstrahlung is more efficient at decreasing the energy of particles in the shower

than soft bremsstrahlung. In more general language, nearly-democratic splittings are more

efficient for development of the shower than splittings where one of the daughters is soft.

To study the size of overlap effects on the development and stopping of showers, we would

like to find simple quantities that naturally weight different processes by how much they

contribute to the degradation of the energies of the particles in the shower. A natural

quantity to consider is simply the characteristic length of the shower to where it ends and

deposits its energy into the medium. We’ll generically refer to this as the average “stopping

distance” `stop.

There are different variants of stopping length one could define. If the original high-

energy particle carries a conserved charge, like fermion number, then one could track the

statistical distribution ρ(z) of the charge density deposited in the medium as a function

of distance z from the initial position of the initial high-energy particle.5 (Transverse

displacements will be small compared to z, so we need not distinguish between distance

and longitudinal distance.) Following ref. [20], we then define the average “charge stopping

distance” as the first moment of the distribution:

`
(charge)
stop ≡ 〈z〉ρ ≡

1

q0

∫ ∞
0

dz z ρ(z), (1.4a)

where q0 is the charge of the initial particle (e.g. q0=1). Alternatively, we could do the

same with the energy density ε(z) deposited in the medium to define an “energy stopping

distance”,

`
(energy)
stop ≡ 〈z〉ε ≡

1

E

∫ ∞
0

dz z ε(z). (1.4b)

In principle, the very last stage for particles from the shower stopping in the medium

— when their energies finally become comparable to the characteristic energy scale T of the

plasma — is not described by the high-energy approximations that we shall use throughout

this paper. Fortunately, the effect of that last stage has only a parametrically small effect

on the stopping length for showers initiated by high-energy particles E � T [20]. To see

this, consider the scale (1.2) characterizing the distance between consecutive splittings. For

nearly-democratic splittings, this is

lrad(E) ∼ 1

α

√
E

q̂
. (1.5)

As a crude estimate, imagine that the energies of individual particles drop by a factor of 2

5Once deposited, charge will then flow with the medium and also diffuse hydrodynamically. Our defini-

tion here of ρ(z) does not follow that evolution but instead refers to where the charge was deposited when

it became part of the medium.

– 6 –
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with each splitting. Then the total distance the shower would propagate would be

`stop(E) ∼ lrad(E) + lrad(
1

2
E) + lrad(

1

4
E) + lrad(

1

8
E) + · · ·

∼ 1

α

√
E

q̂
+

1

α

√
E

2q̂
+

1

α

√
E

4q̂
+

1

α

√
E

8q̂
+ · · · . (1.6)

This is a convergent series giving, parametrically,

`stop(E) ∼ 1

α

√
E

q̂
∼ lrad(E). (1.7)

The error in the treatment of stopping when the particles degrade to energy of order T is

just a piece of order lrad(T ) ∼ α−1
√
T/q̂ in the series (1.6) and so is suppressed by

√
T/E

compared to the sum (1.7).

We could now ask what effect overlapping formation times have on these stopping

lengths. Is it a small or large effect for relevant sizes of the coupling α? Consider an

expansion

`stop = `
(0)
stop + ∆`stop +O(α2`stop). (1.8)

Here `
(0)
stop is the result in the approximation that no splittings interfere with each other, in

which case the statistical development of the shower can be computed based just on single-

splitting probabilities. ∆`stop is the O(α`stop) correction due to overlapping formation

lengths, computed in the formal limit that α is small. We might then consider taking the

ratio
∆`stop

`
(0)
stop

= O(α) (1.9)

as our measure of whether splitting in showers is weakly or strongly coupled for a given

size of α.

There is a problem with this measure for QCD. In the parametric estimates lead-

ing to (1.9), we have so far only discussed nearly-democratic splitting. However, soft

gluon bremsstrahlung (x�1) is associated with shorter formation lengths than hard gluon

bremsstrahlung, as reflected in the small x dependence of (1.1a). That means that soft

gluon bremsstrahlung is less LPM suppressed and so happens more often than hard gluon

bremsstrahlung. Various authors [12–14] have found that overlap effects of soft-gluon

bremsstrahlung during harder-gluon bremsstrahlung, as depicted in figure 5, correct the

harder emission probability by an amount that is formally suppressed by order6

αs ln2

(
L

τ0

)
(1.10)

instead of αs, where τ0 characterizes the scale of the mean-free path for scattering from the

medium and reflects a characteristic scale of the medium. (Here we write αs instead of α

6If the medium is expanding, ref. [21] shows in detail that the L in (1.10) should be replaced by ∼
min(L, τ) where τ is the characteristic time of expansion (at the time of the splitting). In our paper, we

consider a static medium for simplicity of designing theory tests of weak vs. strong splitting.

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
0
0
4

so
ft

Figure 5. An example of overlapping formation lengths associated with soft gluon emission from

a harder bremsstrahlung gluon. For QCD, softer gluon emission corresponds to shorter formation

lengths (the green region) than harder gluon emission (the magenta region). This type of process

contributes to the double logarithm in (1.11).

because this part of the discussion is specific to QCD and does not apply to QED.) In the

context of a thick medium, as considered in this paper, the L in the logarithm should be

interpreted as the formation time for the harder splitting. If the harder splitting is nearly

democratic, then L ∼
√
E/q̂ and so the effect of a soft emission during a nearly-democratic

splitting is suppressed by order

αs ln2

(
E

q̂τ2
0

)
, (1.11)

which is no suppression at all for energy large enough that the double log compensates for

the smallness of αs(Q⊥).

This effect on splitting rates will result in the same soft double-log enhancement to

the ratio considered in (1.9), so that

∆`stop

`
(0)
stop

= O
(
αs ln2(E/q̂τ0)

)
. (1.12)

However, the double-log corrections to splitting rates have a very special form [12–14]: they

can be absorbed into a redefinition of the effective value of q̂, exactly corresponding to the

result of an earlier calculation [22] of the double-log soft-bremsstrahlung correction δq̂ to

the definition of q̂ itself. At first order in α, in leading-log approximation, they found

δq̂R ≈
CAαs

2π
q̂

(0)
R ln2

(
L

τ0

)
, (1.13)

where R indicates the color representation of the particle whose deflection is being described

by q̂, where CA=Nc is the quadratic Casimir for the adjoint color representation (i.e.

for a bremsstrahlung gluon), and where ≈ is our notation for leading-log approximation.

Moreover, the leading logs can be summed to all orders in αs [22] with the result that

the effective value of q̂ scales with L as q̂eff ∼ Lγ [12] for sufficiently large values of L,

with γ = 2
√
CAαs/π. For splitting in the limit of a thick medium, this corresponds to the

scaling

q̂eff(E) ∼ E γ/2 = E
√
CAαs/π (1.14)

for the effective q̂ to use in calculations of nearly-democratic splitting. If inserted into the

parametric formula (1.7) for the stopping length, this gives

`stop ∝ E
1
2(1− γ

2 ) ∼ E
1
2

[
1−
√
CAαs/π

]
, (1.15)

up to yet higher order corrections in the exponent. This is an important result for theory

because it explains how, in QCD-like theories where strong-coupling results are also known

– 8 –
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(namely theories that have gravity duals), the weak-coupling behavior `stop ∝ E1/2 can

change as αs is increased to move toward the known strong-coupling behavior `stop ∝
E1/3 [7–9]. The above E−γ/4 relative correction from soft overlapping emissions to the

weak-splitting result E1/2 is a parametrically large effect at large E, even if γ were small.

Moreover, the relative correction γ/2 to the exponent is controlled by the size of
√
αs rather

than (the parametrically smaller) αs.

The upshot is that it has already been known for some time that corrections due to

overlapping formation lengths are very significant in the case of overlap with soft emissions,

but that this effect can be absorbed into an effective value of q̂. On the more phenomeno-

logical side, Zakharov [24] has recently calculated that other, non-logarithmic corrections

to q̂ at relative order αs are comparably important in applications of interest and can

change the sign of the effect.

In this paper, we want to address the question of how large are the corrections due to

overlapping formation times that cannot simply be absorbed into an effective value of q̂?

There are two ways to do this. One is to look for some different measure that is insensitive

to the size of q̂ in the first place and so avoids double-log enhanced corrections. We’ll

propose a (partly) successful choice in section 1.4 below.

Alternatively, one can re-organize the expansion (1.8) so that the q̂ used in the leading

term is calculated using the effective value q̂eff of q̂ instead of the original value q̂(0), where

q̂eff = q̂(0) + δq̂ when formally expanded to first order in α. There is an ambiguity in

exactly how one defines q̂eff in this context, however, because the identification of the

scale L in (1.13) as the formation length ∼
√
E/q̂ is only a parametric identification of

scale. Similar to ambiguities associated with choosing renormalization scale in perturbation

theory, or factorization scales for defining parton distribution functions at next-to-leading

order, the exact choice of L here is a matter of convention as long as one chooses L ∼
√
E/q̂

in order to eliminate the large double logarithm in the re-organized small-α expansion.

(There are further concerns one can have about sub-leading, single log terms, but we leave

that for later discussion.)

Though we have motivated our discussion with QCD applications, in this paper we are

going to give example calculations for the case of large-Nf QED, where Nf is the number

of electron flavors. For this theory, all the overlap corrections to BDMPS-Z splitting rates

that will be needed are already available [16]. (The only reason for the large-Nf limit

was to reduce the number of diagrams that needed to be calculated in ref. [16].) The

behavior of the LPM effect in QED is qualitatively similar to the LPM effect in QCD

for the case of nearly-democratic bremsstrahlung or pair production but is qualitatively

different for the case of softer bremsstrahlung. In QCD there is less LPM suppression

of softer bremsstrahlung; in QED there is more. In particular, QED does not have the

double-log enhancement (1.12). It does, however, have a different type of logarithm (which

QCD also has): for any quantity that depends on coupling α at leading order, the next-to-

leading-order (NLO) correction will necessarily have logarithmic dependence on the choice

of renormalization scale. As we’ll discuss, this logarithm has the form

∆`stop

`
(0)
stop

= O

(
NfαEM ln

(
µ

(q̂E)1/4

))
+O(NfαEM). (1.16)
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Figure 6. The relative size ∆`stop/`
(0)
stop of the NLO correction in large-Nf QED to charge stopping

length `chargestop , versus NfαMS(µ0) for µ0 ≡ (q̂E)1/4. The different lines correspond to different choices

(µ0/5, µ0/2, µ0, 2µ0, 5µ0) of the renormalization scale µ used in the calculation of ∆`stop/`
(0)
stop.

The features of this graph are discussed in section 4.

As discussed qualitatively before in the context of (1.3), the renormalization scale should

be chosen of order Q⊥ ∼ (q̂E)1/4, here in order to eliminate large logarithms (1.16) in the

expansion of `stop in α. But, like our discussion of L for absorbing QCD double logs, the

exact choice to make for µ is ambiguous. Since our goal is to judge the relative size of NLO

corrections, we must therefore account for this ambiguity by considering a reasonable range

of µ. Figure 6 previews our large-Nf QED results for the size of the relative correction

∆`stop/`stop to the charge stopping length `charge
stop as a function of NfαEM, where the different

curves give a sense of the ambiguities associated with varying the choice of µ around

(q̂E)1/4. The central line is given by

∆`stop/`
(0)
stop = −1.302NfαEM

(
(q̂E)1/4

)
. (1.17)

We will comment at the end of the paper on what one might take away from this and other

QED results.

1.4 Shape of stopping distribution

Ideally, it would be nice if in the QCD case we could sidestep the scale ambiguities as-

sociated with absorbing the corrections to q̂ and instead construct a thought-experiment

observable that is independent of the size of q̂. We have a (partly) successful proposal

(we’ll explain the caveat “partly” later on) which has the added benefit of pushing the

renormalization-scale ambiguity of α(µ) off to next-to-next-to-leading order (NNLO).

The average stopping distance `stop was the first moment (1.4) of the spatial distribu-

tion ρ(z) or ε(z) of where charge or energy is deposited by the shower. But one could also

ask after the width σ of the region across which those quantities are deposited, as depicted

in figure 7. As we’ll see later, both σ and `stop are of the same order:

σ ∼ `stop ∼
1

α

√
q̂

E
. (1.18)
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Figure 7. The stopping distance and width characteristic of where charge or energy is deposited

by a shower. (The above curve is presented here for qualitative purposes, but the shape depicted

just happens to be the precise leading-order numerical result for QED charge deposition ρ(z) —

see appendix B. In that case, the specific “∼ σ” line shown above has length 2σ.)

So the scale of q̂ will cancel if we consider their ratio σ/`stop. We propose computing the

dimensionless ratio,

σ

`stop
≡
[
〈z2〉 − 〈z〉2

]1/2
〈z〉

, (1.19)

which could be taken for either the deposited charge or deposited energy distributions,

similar to (1.4). We will discuss how to compute the formal expansion of (1.19) in powers

of α(Q⊥), writing

σ

`stop
=

(
σ

`stop

)(0) [
1 + χα+O(α2)

]
. (1.20)

Here, as in (1.8), the superscript “(0)” indicates an approximation based only on the results

for single splitting rates, ignoring overlapping formation length effects. χα represents the

relative size of the effect of overlapping formation lengths on σ/`stop, calculated to first

order in α. Our proposed test is whether or not χα is at least somewhat small compared to

1. One may also look at dimensionless ratios involving higher moments of the distributions,

but for the moment we focus on (1.19).

Note from (1.18) that the leading-order dependence on α will also cancel in the ratio

σ/`stop. Since the leading-order term (σ/`stop)(0) in (1.20) is independent of α = α(µ),

there will be no explicit ln µ dependence in the NLO correction. So there will be no

explicit renormalization scale ambiguity when we discuss the relative size χα of the NLO

correction as a function of α. In contrast, we had to deal with the ambiguity when discussing

the relative size of the NLO correction in the expansion (1.8) of `stop because there the

leading-order result `
(0)
stop depended on α.

As a concrete example, a preview of our results in large-Nf QED of the relative size

χα of the NLO correction to σ/`stop is

χα = −0.870NfαEM. (1.21)
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Figure 8. The relative size χα of the NLO correction in large-Nf QED to the ratio σ/`stop for the

deposited charge distribution. The horizontal axis is Nfα, where it is not necessary for this ratio

at this order to distinguish the precise choice of renormalization scale (or scheme) other than that

µ ∼ (q̂E)1/4 parametrically.

We plot this in figure 8 for the sake of visual comparison to figure 6. The two measures

give roughly similar conclusions for large-Nf QED: for Nfα ' 1, overlap corrections are

large, in which case the weakly-coupled splitting picture (as in figure 1) of the high-energy

particles in showers would not be a very good picture. In contrast, for Nfα ≤ 0.2, the

overlap corrections are only a modest effect.

It was of course a foregone conclusion that parametrically the weakly-coupled splitting

picture would break down at Nfα ∼ 1, but it was not previously clear whether quantita-

tively that meant Nfα ' 1 or Nfα/2π ' 1 or something else.

1.5 Why not talk about dE/dz?

It is more common and traditional to package discussions of energy loss into the evaluation

of the rate dE/dz of energy loss of a particular particle per unit length of medium. So why

have we instead been focusing on stopping lengths and the charge deposition distribution?

As we’ll explain in section 2.2, the definition of dE/dz becomes ambiguous, in the general

case, once one considers corrections from overlapping formation times. In this paper, our

philosophy is to consider tests of the importance of overlapping formation times which can

be applied in general situations.

That said, it will turn out that dE/dz is unambiguously defined for the example we use

for numerics in this paper: electron energy loss in large-Nf QED. (It is also well defined for

quark energy loss in large-Nc QCD.) So for this case, we can make contact with the more

traditional dE/dz by showing in figure 9 a plot of the relative size ∆(dE/dz)/(dE/dz)(0)

of the NLO correction to dE/dz, analogous to our plot in figure 6 for ∆`stop/`
(0)
stop.

1.6 Outline

In the next section, we first state a little more clearly some of our assumptions. Then we

present in the main text the simplest derivations (that will be adequate for the explicit
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case of large-Nf QED analyzed in this paper) of the moments 〈zn〉 of the charge deposition

distribution ρ(z). From those results, we derive explicit integral formulas for ∆`stop/`stop

and the measure χα in terms of leading-order and NLO contributions to differential rates

dΓ/dx for splitting. We leave discussion of energy stopping distances, and more general

techniques that can handle QCD double logarithms, to appendices. In section 3, we then

discuss in more detail the origin of the leading-order and NLO contributions to the relevant

rates dΓ/dx, making contact with the explicit results and expressions given for large-Nf

QED rates derived in ref. [16], which are then used to produce our final numerical results

of figures 6 and 8. The NLO contributions to the splitting rates contain both (i) overlap

corrections ∆Γ/dx dy for two consecutive emissions (like the overlap shown in figure 3b),

and (ii) corresponding NLO virtual corrections to leading-order, single-splitting results. At

the moment, (ii) has not yet been computed for (large-Nc) QCD but has been for large-Nf

QED. In section 4, we discuss more about renormalization scale dependence and discuss

how the breakdown of QED at high momentum scales (the Landau pole) is not a concern

even for the relatively large values of NfαEM we have investigated.

In large part, we motivated consideration of the relative size χα of the NLO correction

to σ/`stop (figure 8) by looking for tests of strong vs. weak splitting that would be insensitive

to corrections to q̂. Section 5 discusses why we anticipate that, for QCD, this particular

test will be only partly successful at eliminating sensitivity to q̂eff . Finally, we offer our

conclusions in section 6.

2 Stopping distributions

2.1 Simplifying assumptions

For simplicity, both for the sake of calculation and the sake of constructing as simple a

thought experiment as possible to test weakly-coupled vs. strongly-coupled splitting, we

will treat the underlying value of q̂ as constant in space and time. In contrast, the properties

of quark-gluon plasmas produced in actual heavy-ion collisions depend on both.

In quoting results for large-Nf QED, we will make a further simplification. This theory

does not have the NLO double-log enhancements (1.10), but that does not mean that

the value of q̂ relevant to splitting calculations is independent of formation length and

so of energy. For QED, there is already (single) logarithmic dependence in the value of

leading-order q̂(0). (For a very brief review qualitatively comparing and contrasting the

QED and QCD energy dependence of q̂ in the language of this paper, see, for example,

appendix C of ref. [16].) Since our interest is not so much in the details of large-Nf QED

but in using it as an example for the calculation of overlap corrections, we will bypass

this particular complication and simply treat q̂(0) as independent of energy. One could do

better if interested: for QED (unlike QCD) the tentative assumption NfαEM

(
(q̂E)1/4)� 1

of weak splitting in our calculation at large energy means that the QED plasma itself is also

weakly coupled, NfαEM(gT )� 1. So, if desired, one could use a perturbative calculation of

the relevant q̂(0) and its scale dependence. Since this is unnecessarily specific to the QED

case, we’ve chosen to avoid complicating our presentation and will treat q̂(0) as constant.
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Figure 9. Like figure 6 but here for the relative size ∆(dE/dz)/(dE/dz)(0) of NLO corrections to

the electron energy loss rate.

2.2 More assumptions for the analysis in the main text

In the main text, we will focus on charge deposition rather than energy deposition because

it is simpler to discuss at NLO. We leave discussion of energy deposition to appendix A.

We will also focus in the main text on the simplest derivations that will get us results

for our example of large-Nf QED, and leave discussion of more complicated situations

to the appendices. In particular, we focus here on situations where the net “charge”

carried by the parent of each splitting is unambiguously carried by just one, identifiable

daughter of that splitting, with more general discussions in appendix A. Graphically, this

corresponds to simply following the original fermion line through the entire shower, such

as the red line depicted in figure 10, and then asking for the probability distribution for

where that red line comes to a stop in the medium. If the splittings do not overlap (e.g.

as in a calculation that used only leading-order results for splitting processes), there would

be no problem: we could unambiguously identify the red line of figure 10. At next-to-

leading order, however, overlapping formation times allow the possibility of non-negligible

interference between different final-state fermions, as shown by figure 11a. However, this

interference is suppressed in large N . For both large-Nf QED and large-Nc QCD, it is

suppressed (after summing over final fermion flavors or colors) compared to figure 11b, for

which the direct heir of the original fermion is unambiguous: the chance that the original

fermion and the photon/gluon-produced pair have the same flavor or color is 1/Nf or 1/Nc

suppressed, and distinguishable fermions cannot be confused with one another. In large-Nc

QCD, both figures 11a, 11b are suppressed compared to figure 11c after summing over final

colors, and figure 11c has no ambiguity regarding which daughter carries the quark number

of the initial quark.

The advantage of cases where we can make this assumption is that, freed from having

to follow anything but the single red line through any given shower like figure 10, all that is
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Figure 10. The red (heavy) line above shows an example of following an initial fermion through

a shower to see where it is deposited. When the NLO effect of overlapping formation times is

considered, this picture is only valid in certain theories like large-Nf QED (see text).

(a)

3

2
1

×
*3

2
1

vs.

3

2
1

2

or

(b)

2

(c)

Figure 11. For overlapping formation time contributions to the splitting of a fermion, a comparison

of contributions to the rate where identification of the direct heir of the parent fermion (a) is or

(b), (c) is not ambiguous. (a), (b) apply to both QED and QCD (with the wavy line a photon or

gluon respectively), whereas (c) applies only to QCD. (b) dominates over (a) in large-Nf QED, and

(c) dominates over both (a) and (b) in large-Nc QCD.

needed to determine charge stopping can be packaged into a single differential rate dΓ/dξ

for that red-line particle to reduce its longitudinal momentum by a factor of ξ. In a purely

leading-order analysis, this rate would represent the bremsstrahlung process of figure 12a.

For a NLO analysis, it would also include the corrections to that rate due to overlapping

formation time effects with the next splitting, such as depicted in figures 12b and 12c.7

The rate dΓ/dξ has the added convenience that many of the contributions to overlapping

double splitting cancel each other in dΓ/dξ, which simplifies computational work and is

one reason we focus on charge deposition instead of energy deposition in this paper. We’ll

discuss the cancellations more concretely in section 3. Here, we will just assume that the

formula for dΓ/dξ is known through next-to-leading order.

The ambiguity of following the red line in figure 11a is also the reason that the fermion

energy loss rate dE/dz is ambiguous (beyond leading order) outside of the large-N limit.

In what follows, we first discuss a general equation (given the above assumptions) whose

solution determines the statistical distribution of charge ρ(z) in terms of splitting rates

dΓ/dξ. After, we will discuss the fairly simple solution for the moments of ρ if one ignores

logarithmic factors in rates. We then present a trick for extending that analysis to the

case where next-to-leading-order splitting rates contain terms involving single logarithms

of energy, which will cover the case of large-Nf QED. Finally, we mention (and then defer

to the appendices) a different and computationally more difficult method that could be

used in the case of more-complicated dependence on energy, such as double logarithms.

7For a very generic description of treating overlap corrections as contributions to rates, see the discussion

in section I.A of ref. [23].
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ξE
E

ξE
E

(a) (b) (c)
ξE

E

Figure 12. Examples of processes which would contribute to the calculation of the differential

rate dΓ/dξ at which a particle carrying a conserved charge (such as fermion number) degrades in

energy: (a) leading-order bremsstrahlung; (b) the NLO effect of a subsequent splitting that has

an overlapping formation time with the bremsstrahlung; (c) a virtual correction to the leading-

order bremsstrahlung (with overlapping formation time). In the case of large-Nc QCD, the initial

particle would be a quark (for study of charge deposition), but the particles in the real or virtual

pair produced in (b) or (c) would be gluons.

2.3 Integro-differential equation for the charge distribution ρ(z)

Let ρ(E, z) be the distribution of charge deposition from an initial charge of energy E. To

find an equation for ρ in terms of splitting rates, consider ρ(E, z+∆z) where ∆z is tiny, and

think of traveling the distance z+∆z as first traveling ∆z followed by traveling distance z.

In the first ∆z, the particle has a chance of not splitting at all, in which case the chance

of traveling the remaining distance z will just be ρ(E, z). Alternatively, there is a chance

that the particle splits in the first ∆z, reducing its energy to ξE, in which case the chance

of traveling the remaining distance is ρ(ξE, z). In formulas,

ρ(E, z+∆z) ' [1− Γ(E) ∆z] ρ(E, z) +

∫ 1

0
dξ

dΓ

dξ
(E, ξ) ∆z ρ(ξE, z), (2.1)

where Γ(E) is the splitting rate for a particle with energy E. Re-arranging terms and

taking the limit ∆z → 0,

∂ρ(E, z)

∂z
= −Γ(E) ρ(E, z) +

∫ 1

0
dξ

dΓ

dξ
(E, ξ) ρ(ξE, z), (2.2)

which can be rewritten as

∂ρ(E, z)

∂z
= −

∫ 1

0
dξ

dΓ

dξ
(E, ξ)

[
ρ(E, z)− ρ(ξE, z)

]
. (2.3)

The total LPM splitting rate Γ =
∫

(dΓ/dξ)dξ is typically infrared (IR) divergent from

soft bremsstrahlung (at leading order in QCD and from NLO overlap corrections in large-

Nf QED), corresponding to ξ → 1 above. However, the factor ρ(E, z) − ρ(ξE, z) in the

integrand of (2.3) will give an extra suppression as ξ → 1 that makes that ξ integral finite.

So, even though we introduced IR-divergent quantities in the derivation of (2.3), the final

equation is IR-safe.

The above argument for the ρ equation, as well as what we will do next, was inspired

by related arguments made directly for the first moment `stop of ρ in ref. [20]. It is also

reminiscent of evolution equations explored in refs. [25, 26] for the distribution N(E, x, t)

of shower particles in longitudinal momentum fraction x as a function of time t=z, except
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that here we focus directly on the spatial distribution ρ of deposition and need not keep

track of the detailed distribution N in x.8

2.4 Warm-up: charge stopping with no logarithms

2.4.1 Results for moments

Our simple parametric estimate (1.5) showed that splitting rates scale with energy as E−1/2.

If we ignore logarithmic corrections (e.g. from energy dependence of α and q̂), the simple

energy scaling allows us to derive simple results for stopping lengths `stop, and for other

moments of the deposited charge distribution, in terms of dΓ/dξ. To see this, pull out the

explicit energy dependence of the splitting rate by writing

dΓ

dξ
(E, ξ) = E−ν

dΓ̃

dξ
(ξ) (2.4)

where

ν =
1

2
. (2.5)

(The only reason we introduce the symbol ν for the power 1
2 is that later it will help

in generalizing this analysis to the case of single logarithms.) Because the rate scales as

E−ν , the distance that the charge travels before stopping in the medium will scale as E+ν .

Let’s factor this scaling out of the probability distribution ρ(E, z) by replacing it with a

probability distribution ρ̃(z̃) in terms of z̃ ≡ z/Eν , normalized so that ρ dz = ρ̃ dz̃. That is,

ρ(E, z) = E−ν ρ̃(E−νz). (2.6)

Plugging (2.4) and (2.6) into the ρ equation (2.3) gives

∂ρ̃(E−νz)

∂z
= −

∫ 1

0
dξ

dΓ̃

dξ

[
E−ν ρ̃(E−νz)− (ξE)−ν ρ̃

(
(ξE)−νz

)]
, (2.7)

which can be rewritten as

dρ̃(z̃)

dz̃
= −

∫ 1

0
dξ

dΓ̃

dξ

[
ρ̃(z̃)− ξ−ν ρ̃

(
ξ−ν z̃

)]
. (2.8)

As an aside, we note that numerical solution of this equation for leading-order QED split-

ting was used to generate the precise shape of ρ(z) shown as an example in figure 7 (see

appendix B).

Now multiply both sides by z̃n and integrate over z̃ to get (after integration by parts

on the left-hand side of the equation) a recursive relationship between the moments of the

probability distribution ρ̃:

− n〈z̃n−1〉 = −
∫ 1

0
dξ

dΓ̃

dξ

[
〈z̃n〉 − (ξν)n〈z̃n〉

]
, (2.9)

8Refs. [25–27] studied N(E, x, t) using leading-order splitting rates and found that they could make a

great deal of interesting and useful progress in finding closed-form analytic results if they modified the

leading-order LPM rate dΓ/dξ to a not-too-different mathematical function that agrees arbitrarily well as

ξ approaches 0 or 1 and differs a bit in the middle. We will not make that replacement in our work, and

we will be including NLO corrections, which have a more complicated structure.
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giving

〈z̃n〉 =
n〈z̃ n−1〉∫ 1

0 dξ
dΓ̃
dξ [1− ξnν ]

. (2.10a)

From now on, we will assume that the charge q0 of the particle initiating the shower is

normalized to be q0=1, so that ρ is normalized such that 〈1〉 = 1. The case n=1 of (2.10a)

then gives the formula

`stop = 〈z〉 = Eν〈z̃〉 =
Eν∫ 1

0 dξ
dΓ̃
dξ [1− ξν ]

, (2.10b)

in agreement with ref. [20].9 But the recursion relation (2.10a) derived here lets us find

higher moments like 〈z̃2〉 and so σ = Eν
√
〈z̃2〉 − 〈z̃〉2.

2.4.2 Measures of size of NLO correction

We’ll now expand (2.10) to first order in α to get formulas for the measures ∆`stop/`
(0)
stop

and χα of the relative size of corrections to showering from overlapping formation times.

To this end, decompose the splitting rate dΓ/dξ into its leading order piece (the usual LPM

calculation for single splitting) and its NLO correction:

dΓ

dξ
' dΓ(0)

dξ
+
dΓ(NLO)

dξ
. (2.11)

The NLO piece is suppressed by O(α) compared to the leading-order rate, and the ' above

just indicates that we are ignoring yet-higher order terms, suppressed by O(α2) or more.

Plugging (2.11) into (2.10b) and expanding `stop ' `(0)
stop + ∆`stop gives

∆`stop

`
(0)
stop

= −
∫ 1

0 dξ
dΓ̃(NLO)

dξ [1−
√
ξ]∫ 1

0 dξ
dΓ̃(0)

dξ [1−
√
ξ]

. (2.12)

We find the structure of later equations to be a little clearer if we use the alternative

notation
∆`stop

`
(0)
stop

= −Avg[1−
√
ξ](NLO)

Avg[1−
√
ξ](0)

, (2.13)

where we define leading and next-to-leading order rate-weighted averages of any function

f(ξ) as

Avg[f(ξ)](0) ≡
∫ 1

0
dξ

dΓ̃(0)

dξ
f(ξ), Avg[f(ξ)](NLO) ≡

∫ 1

0
dξ

dΓ̃(NLO)

dξ
f(ξ). (2.14)

Similarly, plugging (2.11) into the n=2 case

〈z̃2〉 =
2˜̀

stop∫ 1
0 dξ

dΓ̃
dξ [1− ξ]

(2.15)

9Specifically (3.7)–(3.8) of ref. [20], where the 1−x there is the ξ here.
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of (2.10a) gives

σ

`stop
=

σ̃
˜̀
stop

=

√√√√〈z̃2〉 − ˜̀2
stop

˜̀2
stop

'
(

σ

`stop

)(0)

[1 + χα] (2.16)

with

χα =
Avg[(1−

√
ξ)2](NLO)

2 Avg[(1−
√
ξ)2](0)

− Avg[1− ξ](NLO)

2 Avg[1− ξ](0)
. (2.17)

A feature of (2.17) worth noting is that if the next-to-leading order rate dΓ(NLO)/dξ

contains a piece that is any ξ-independent constant times the leading-order rate dΓ(0)/dξ,

that piece will completely cancel between the two terms of (2.17) and so will not contribute

at all to χα. So, for instance, if the NLO rate were to contain contributions correspond-

ing to ξ-independent NLO corrections to the q̂ appearing in the leading-order rate, such

corrections to q̂ would not contribute to χα. This was part of our earlier motivation to

consider the ratio σ/`stop and thence χα.

2.5 Charge stopping with single logarithms

We now generalize the previous analysis to a case that will cover QED in the approximations

used in this paper. Consider the parametric formula (1.5) for the distance lrad between

nearly-democratic splittings. Taking its inverse, the correspond splitting rate is

Γ ∼ α
√
q̂

E
(nearly-democratic splittings). (2.18)

In general, the leading-order splitting rate (dΓ/dξ)(0) is proportional to the α = α(µ)

associated with the splitting vertex, like in the parametric formula above. As previ-

ously discussed, the renormalization and running of α means that logarithms ln(µ/Q⊥)

must therefore appear at next-to-leading order, similar to (1.16). Specifically, for large-Nf

QED, ref. [16] found by explicit calculation that the rate (2.11) has leading-order behavior

dΓ(0)/dξ ∝ E−1/2, like (2.4) and (2.18), but NLO corrections of the form10

dΓ(NLO)

dξ
= −β0αEM

dΓ(0)

dξ
ln

(
µ

(q̂E)1/4

)
+ E−1/2 × (something independent of E), (2.19)

where here

β0 =
2Nf

3π
(QED) (2.20)

10Our choice for how to write the argument of the explicit logarithm in (2.19) does not mean that the

appropriate scale for α(Q⊥) is (q̂E)1/4 [the nearly-democratic splitting estimate] for any value of ξ. But

since ln(µ/[f(ξ) (q̂E)1/4]) can be written as ln(µ/(q̂E)1/4) − ln
(
f(ξ)

)
for any ξ-dependence f(ξ), the ξ

dependence of the scale can be absorbed into the last term of (2.19). Here, the adjustments we need to

make to our previous derivation of formulas for moments of the stopping distribution will only revolve

around the dependence of the argument of the logarithm on E, not on ξ.
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is the coefficient in the 1-loop renormalization group β-function for αEM. We’ll find it

convenient to rewrite (2.19) as

dΓ(NLO)

dξ
=

1

4
β0αEM

dΓ(0)

dξ
lnE

+ E−1/2 × (something independent of E). (2.21)

In this section, we consider generally cases like (2.21) where the NLO corrections to

the leading-order rate may have, in addition to terms with energy dependence E−1/2, a

term with energy dependence E−1/2 lnE proportional to the leading-order rate. Similar

to (2.4), we will scale out all the explicit factors of E−1/2 by writing

dΓ

dξ
(E, ξ) = E−1/2dΓ̃

dξ
(E, ξ) ' E−1/2

{
dΓ̃(0)

dξ
(ξ) +

1

4
β0α

dΓ̃(0)

dξ
(ξ) lnE +

dΓ̃(NLO′)

dξ
(ξ)

}
,

(2.22)

where NLO′ means all the NLO terms except the lnE term. In principle, the coefficient

“1
4β0” above could represent any coefficient of any sort of NLO single-log correction to

the leading-order result, but we will use the notation 1
4β0 relevant to the QED applica-

tion (2.21).

We can now use the following trick. Through next-to-leading order, (2.22) is equiva-

lent to

dΓ

dξ
(E, ξ) ' E−ν

{
dΓ̃(0)

dξ
(ξ) +

dΓ̃(NLO′)

dξ
(ξ)

}
≡ E−ν dΓ̂

dξ
(ξ) (2.23)

with

ν =
1

2
− 1

4
β0α. (2.24)

This allows us to use the same formulas (2.10) that we derived for moments in the previous

section, except that ν is now (2.24). Accounting for this difference in ν when we expand

in α, (2.13) and (2.17) are modified to

∆`stop

`
(0)
stop

= −Avg[1−
√
ξ](NLO)

Avg[1−
√
ξ](0)

− β0αAvg[
√
ξ ln ξ](0)

4 Avg[1−
√
ξ](0)

(2.25)

and

χα =
Avg[(1−

√
ξ)2](NLO′)

2 Avg[(1−
√
ξ)2](0)

− Avg[1− ξ](NLO′)

2 Avg[1− ξ](0)

+
β0αAvg[(

√
ξ − ξ) ln ξ](0)

4 Avg[(1−
√
ξ)2](0)

− β0αAvg[ξ ln ξ](0)

4 Avg[1− ξ](0)
. (2.26)

These are the formulas that we will use later with large-Nf QED results for dΓ/dξ in order

to produce figures 6 and 8.
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2.6 Charge stopping with double logarithms, etc.

For cases (such as QCD) where the NLO contribution to dΓ/dξ contains terms with more

complicated energy dependence than E−1/2 lnE, we have not figured out a way to get

formulas as simple as (2.25) and (2.26) for our tests of overlap corrections to shower de-

velopment. One could turn to direct numerical simulation of the original equation (2.3)

for ρ(E, z), but in the general case we have not so far figured out any particularly efficient

way (numerically or otherwise) to solve the equation and cleanly isolate the expansion of

that solution to first order in α. We present a different approach in appendix C, which has

been relegated to an appendix because (i) it is more complicated to derive and will be more

complicated to implement numerically, and (ii) the previous results (2.25) and (2.26) are

all that we will need for the large-Nf QED results presented in this paper. Also, since we

do not yet have full QCD results for dΓ/dξ, we leave the task of numerically implementing

the procedure described in appendix C to later work.

Note that, because all our measures of the size of NLO corrections are linear in

dΓ(NLO)/dξ, one could use different techniques for different contributions to dΓ(NLO)/dξ

and then sum together the results. So, if desired, (2.25) and (2.26) could be used to calcu-

late the contribution to ∆`stop/`stop and χα from all terms of dΓ(NLO)/dξ except the ln2E

term, and then just the ln2E contribution could be evaluated using some other method

like appendix C.

3 The example of large-Nf QED

3.1 The relevant diagrams

In preceding sections, we have talked abstractly about the rate dΓ/dξ relevant to following

the original charged particle through the medium in cases (like large N) where the original

particle’s heir is always identifiable, even at next-to-leading order. Here we will relate this

dΓ/dξ, for large-Nf QED, to the specific diagrams and results of ref. [16]. In the conventions

of ref. [16], the leading-order rate dΓ(0)/dξ is given by the time-ordered interference diagram

figure 13 (plus its complex conjugate) for e→ γe; the NLO corrections due to overlapping

real-double splitting e → γe → eēe are given by figure 14 (plus complex conjugates);

and the NLO virtual corrections to single splitting are given by figure 15 (plus complex

conjugates). Each diagram represents a contribution to the rate for the process, which is

the product of an amplitude (represented by the blue part) times a conjugate amplitude

(represented by the red part). In each diagram, only the high-energy particles are explicitly

shown, but each high-energy particle is interacting an arbitrary number of times with the

medium, and a medium average is performed. See refs. [16, 23, 28] for more detail. The

vertical photon lines with bars across them represent photons with longitudinal polarization

in light-cone gauge, which produce instantaneous interactions in light-cone time, whereas

the unbarred photon lines represent transverse photons.

All together, the dΓ/dξ discussed earlier in this paper is

dΓ

dξ
' dΓ(0)

dξ
+
dΓ(NLO)

dξ
, (3.1a)
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Figure 13. Leading-order time-ordered diagram for e → γe. Blue represents a contribution to

the amplitude and red represents a contribution to the conjugate amplitude. Repeated interactions

with the medium are present but not explicitly shown. This diagram should be added to its complex

conjugate by taking 2 Re[· · · ].

(a) (b) (c)

(d) (e) (f) (g)

Figure 14. Time-ordered interference diagrams for e → eēe in large-Nf QED [16]. Complex

conjugates should also be included by taking 2 Re[· · · ] of the above.

(i) (j) (k)(h)

(l) (m) (n)

Figure 15. Time-ordered interference diagrams for the virtual correction to e → γe in large-Nf

QED [16]. Again, complex conjugates should be included by taking 2 Re[· · · ].

where the first term corresponds to figure 13 and where

dΓ(NLO)

dξ
=

(∫ 1

0
dye

[
∆ dΓ

dξ dye

]
e→eēe

)
+

[
∆ dΓ

dξ

](NLO)

e→γe

= 2 Re

(∫ 1

0
dye

[
∆ dΓ

dξ dye

]
(a–g)

)
+ 2 Re

[
∆ dΓ

dξ

]
(h–n)

. (3.1b)

In the last equation, the two terms correspond respectively to figures 14 and 15. ξ is called

xe in ref. [16] and is the factor by which the original charge loses energy via single or

overlapping double splitting. ye represents the momentum fraction of the pair-produced

electron relative to the photon that produced it. The ∆ in ∆ dΓ indicates that one should

subtract from figure 14 for e→ eēe the result one would get instead if one simply combined
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the leading-order formulas for the rate of e → γe with that for γ → ēe. In this way,

double counting is avoided when using dΓ/dξ to generate shower development, and ∆ dΓ

represents the corrections to the rate due to overlapping formation times. See section I.A

of ref. [23] for more explanation. The ∆ dΓ in the second term of (3.1b) indicates a similar

subtraction [16] for figure 15, where the second splitting is virtual.

Ref. [16] shows that there is a simple relationship (called there a back-end transforma-

tion) that relates the double-splitting diagrams (a), (b), (c), (e), (g) to the virtual diagrams

(h), (i), (j), (l), (n) respectively. For the particular combination (3.1b) [in which the double-

splitting diagrams are simply integrated over ye without any other factors], these diagrams

in fact cancel each other and so do not need to be evaluated. Another relationship was

found between (m) and (e), in a way that we have since discovered is related to (f) as11

2 Re

[
dΓ

dξ

]
(m)

= 2 Re

∫ 1

0
dye

[
dΓ

dξ dye

]
(f)

. (3.2)

Putting all these cancellations and relations together, (3.1b) can be simplified to

dΓ(NLO)

dξ
= 2 Re

[
dΓ

dξ

]
(k)

+ 2 Re

∫ 1

0
dye

([
dΓ

dξ dye

]
(d)

+ 2

[
dΓ

dξ dye

]
(f)

)
. (3.3)

The “∆” designation in ∆ dΓ has been dropped because the diagrams where that distinction

was important (diagrams (a)–(c) [23] and the related virtual diagrams) have canceled. In

consequence, for calculations of the charge stopping distance in large-Nf QED, we need

evaluate just three of the NLO interference diagrams: the double-emission diagrams (d)

and (f) and the virtual correction diagram (k).

3.2 Formulas and numerical integrals

Formulas for relevant diagrams can be found in appendix A of ref. [16]. There we use

variables xe and ye to parametrize the momentum fractions of daughters, where the relation

to the ξ and ye used above is

xe ≡ ξ, ye ≡ (1− xe)ye. (3.4)

ye is the momentum fraction of the pair-produced electron relative to the initial fermion

of the double-splitting or virtual process, rather than relative to the photon. The leading-

order rate is12

dΓ(0)

dxe
≡
[
dΓ

dxe

]
LO

= 2 Re

[
dΓ

dxe

]
xx̄

(3.5a)

11One finds this relationship if one simply writes out the expressions for diagrams (m) and (f) or evaluates

the two diagrams numerically using the formulas of ref. [16].
12The leading-order rate formula (3.5) is equivalent to the 1956 result by Migdal [19] if the latter is

packaged into more modern, general notation. (See, for example, appendix C.4 of ref. [16] for a translation.)

The QCD analogs, not shown here, trace back to BDMPS [2–4] and Zakharov [5, 6].
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with [
dΓ

dxe

]
xx̄

=
αEM

2π
Pe→e(xe) iΩ0, (3.5b)

Pe→e(xe) =
1 + x2

e

1− xe
, Ω0 =

√
−i(1− xe)q̂

2xeE
. (3.5c)

For next-to-leading order, formulas for the differential rates in (3.3) above are given

by ref. [16] eqs. (A33), (A35), and (A41). The rate for the virtual diagram has the form

[
dΓ

dxe

]
(k)

≡
[
dΓ

dxe

](ren)

xyyx̄

= −NfαEM

3π

[
dΓ

dxe

]
xx̄

(
ln

(
µ2

(1−xe)EΩi

)
+ γE − 2 ln 2 +

5

3

)

+

∫ 1−xe

0
dye

[
dΓ

dxe dye

](subtracted)

xyyx̄

, (3.6)

involving an integral over the loop momentum fraction ye, with [dΓ/dxe dye]
(subtracted)
xyyx̄ given

by ref. [16] eq. (A43). Renormalization of diagram (k) has been carried out in the MS-bar

scheme (MS), and so αEM = αEM(µ) is the MS-bar renormalized coupling. Most of the

differential rate formulas involves integrals

dΓ

dxe dye
∝
∫ ∞

0
d(∆t)D(xe, ye,∆t

)
(3.7)

of complicated functions D(xe, ye,∆t). These integrals must be done numerically because

we have failed in most cases to do them analytically. Subsequently, an integral over ye
or equivalently ye must be performed in (3.1b) and (3.6) to obtain dΓ/dξ. Finally, in-

tegrals over ξ must be done to test NLO effects on shower development, such as (2.25)

and (2.26). All told, that’s a triple numerical integral (ξ, ye,∆t) [equivalently (xe, ye,∆t)]

of a complicated integrand.

We found even the initial integration (3.7) over ∆t to be numerically expensive for

[dΓ/dxe dye]
(subtracted)
xyyx̄ . Presumably, more efficient numerical methods could be developed,

but we took the following approach. We evaluated [dΓ/dxe dye]
(subtracted)
xyyx̄ for an appropri-

ately chosen mesh of points in the (ξ, ye) plane. The function has integrable divergences in

various limits such as ξ→0 or 1 and/or ye→0. Accounting for these divergences, we then

figured out a way to numerically construct an interpolating function throughout the (ξ, ye)

integration region. Using that interpolation, we then performed the final integration over

(ξ, ye) by brute force with standard integration software (Mathematica [29]). Both the

divergent limiting behavior and our method of interpolation are described in appendix D.

3.3 Results

Our main numerical results have already been displayed in figures 6 and 8, which were

generated by using the above formulas for dΓ/dξ in (2.25) and (2.26) respectively. The

additional plot figure 9 of the size of NLO corrections to dE/dz (which is well defined for
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large-Nf QED) is given by

∆(dE/dz)

(dE/dz)(0)
=

Avg[1− ξ](NLO)

Avg[1− ξ](0)
, (3.8)

since (1− ξ)E is the energy lost when the original electron goes from energy E to ξE.

4 Renormalization scale dependence of ∆`stop/`
(0)
stop

We now give a little more detail about the renormalization scale dependence of our result

for ∆`stop/`
(0)
stop.

A physical quantity, like `stop, should not depend on the choice of renormalization scale

µ if computed to all orders and expressed in terms of either (i) other physical quantities, or

(ii) things that can in principle be extracted from other physical quantities. An example of

the latter is MS-bar αEM(µ0) at some specific choice of scale µ0 that is expressed in terms

of physical quantities, like our µ0 ≡ (q̂E)1/4 chosen in figure 6. But generally, when one

truncates a small-coupling expansion at some finite order, the result does have µ dependence

— the size of the variation with µ is formally of order the size of yet-higher-order corrections

which have not been calculated, which in our case would be NNLO. But the evaluation of

`stop through NLO order (for constant q̂(0)) is an exception. Our expression for `
(0)
stop+∆`stop

(but neither term individually) is actually µ-independent provided one correspondingly uses

the 1-loop approximation to the renormalization group equation for α(µ).

This feature is a consequence of the leading-order result `
(0)
stop being order α−1. Consider

the solution
1

α(µ)
=

1

α(µ0)
− β0 ln

(
µ

µ0

)
(4.1)

to the 1-loop renormalization group equation

∂α(µ)

∂ lnµ
= β0 α

2(µ). (4.2)

In order for the stopping length to be µ-invariant through NLO, and given that `
(0)
stop ∝ α−1,

the stopping length must have an expansion through NLO in α of the form

`stop '
A

α(µ)
+

[
Aβ0 ln

(
µ

µ0

)
−B

]
, (4.3)

where A and B are expressions that depend on q̂(0) and E but not on µ or α(µ). But

then (4.1) means that the right-hand side of (4.3) does not depend at all on the value of µ

if one uses 1-loop renormalization group equations for α(µ).

The reason that our results for

∆`stop

`
(0)
stop

=
`stop

`
(0)
stop

− 1 (4.4)

nonetheless depend on µ is because the leading-order result `
(0)
stop = A/α(µ) depends on µ

implicitly through α(µ). Note that in figure 6, we have chosen to keep the physics constant
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as we vary µ by taking the horizontal axis to be Nfα(µ0) rather than Nfα(µ). Specifically,

using (4.1) and the µ-independence of (4.3), we can rewrite (4.4) as

∆`stop

`
(0)
stop

= − (B/A)− β0 ln(µ/µ0)

[α(µ0)]−1 − β0 ln(µ/µ0)
. (4.5)

This expression sheds some light (at least algebraically) on the special value of Nfα(µ0) in

figure 6 where there is no µ dependence: it corresponds to the value α(µ0) = A/B = 0.77,

for which the µ-dependent numerator and denominator cancel each other in (4.5). [The

value of B in (4.3) given by our results happens to be positive.] This exact cancellation of

µ dependence for this special point is seemingly just an artifact of working to 1-loop order

in our analysis of ∆`stop/`
(0)
stop and the running of α(µ).

There is nothing special about the µ = µ0 line in figure 6 being straight for the

particular choice µ0 = (q̂E)1/4. If we had instead plotted Nf α(2µ0) on the horizontal axis,

it would have been the µ = 2µ0 line that would have been straight.

It is interesting to look at how ∆`stop/`
(0)
stop behaves over a much wider range of µ than

shown in figure 6. The µ-dependence is shown in figure 16 for the two cases Nfα(µ0) = 0.1

and 1.0, for a range of µ that gets nonsensically far away from µ0. The vertical dashed line

denotes the location, in the case Nfα(µ0) = 1.0, where the 1-loop α(µ) blows up to +∞
and continuum QED breaks down as a sensible theory: the Landau pole

ΛL = µ0 e
1/β0α(µ0). (4.6)

Note here that even for Nfα(µ0) = 1.0, the Landau pole is still two orders of magnitude

away from the physics scale µ0, and so our calculations are sensible. Another way of saying

this is that for some sorts of physics, like the running of the coupling, Nfα(µ0) = 1.0

can be considered a somewhat small coupling, whereas for the question of whether or not

overlapping formation time effects are negligible in a medium, we have seen from figures 6

and 8 that it is a moderately large coupling.

5 Caveats for χα test of strong vs. weak-coupled splitting

In the introduction, we motivated our discussion of the relative NLO correction χα in the

expansion σ/`stop ' (σ/`stop)(0)(1 + χα) as a (partly) successful method for testing the

size of NLO corrections that could not be absorbed into q̂. Here we explain the caveat

“partly”, which applies to the situation of double-log corrections to q̂ in QCD.

The idea was that corrections to q̂ would cancel between the numerator and denomi-

nator in σ/`stop. This is true of energy-independent corrections to q̂, but the situation is

more subtle for corrections that depend logarithmically on energy.

5.1 Warm up/review for a single logarithm

It will be instructive to imagine a theory where the NLO corrections to q̂ depended on a

single logarithm of energy that, so that

δq̂(E) ≈ Aαq̂(0) ln(E/q̂τ2
0 ) (for illustration only) (5.1a)
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Figure 16. µ-dependence of [Nfα(µ0)]−1 ∆`stop/`
(0)
stop over a nonsensically large range of µ. The

two curves are for Nfα(µ0) = 0.1 (blue) and Nfα(µ0) = 1.0 (orange). The factor of [Nfα(µ0)]−1

scaling the vertical axis is there just to make the two curves comparable on the same plot, given

that ∆`stop/`
(0)
stop is of order Nfα.

for some O(1) constant A, giving

dΓ(NLO)

dξ
(E, ξ) ≈ dΓ(0)

dξ
(E, ξ)× 1

2
A ln(E/q̂τ2

0 ) (for illustration only) (5.1b)

since dΓ(0)/dξ scales like
√
q̂/E. In this paper, depending on context, the symbol E

sometimes refers (as above) to the energy of the parent of some splitting or overlapping

double-splitting somewhere in the shower, and it sometimes instead refers to the energy

of the particle that initiated the entire shower. To avoid confusion, let’s call the latter

E0 here, and write E = yE0 for the parent of the NLO splitting in (5.1b), where y is the

longitudinal momentum fraction of that splitting’s parent relative to the total energy of

the shower. Then (5.1) may be rewritten as

δq̂(E) ≈ Aαq̂(0) ln(yE0/q̂τ
2
0 )

= Aαq̂(0) ln(E0/q̂τ
2
0 ) +Aαq̂(0) ln y

= (large logarithm constant) + Aαq̂(0) ln y, (5.2a)

giving

dΓ(NLO)

dξ
(E, ξ) ≈ dΓ(0)

dξ
(E, ξ)× (large logarithm constant) +

dΓ(0)

dξ
(E, ξ)× 1

2
A ln y. (5.2b)

The potentially large first term in (5.2a) is a constant addition to q̂ and so the first term

in (5.2b) should cancel in the calculation of the ratio σ/`stop. We’ve seen that explicitly in

the discussion after (2.17). The second term in (5.2b) does not generate large logarithms

because, as discussed in the introduction with regard to (1.6), the late-time evolution of the

shower (small y above) does not contribute significantly to stopping distances. In formulas,

the effect of the ln y term in (5.2b) would be precisely the Avg[· · · ln ξ](0) terms in (2.26)
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[with the constant “ 1
4β0” there identified as the 1

2A of (5.1b)]. Those Avg[· · · ln ξ](0) terms

represent convergent integrals over ξ and do not generate any logarithmic enhancement of

the result for χα.

5.2 Double logarithms

Now consider in contrast a double-log correction to q̂, as in QCD:

δq̂(E) ≈ Aαq̂(0) ln2(yE0/q̂τ
2
0 )

= Aαq̂(0) ln2(E0/q̂τ
2
0 ) + 2Aαq̂(0) ln(E0/q̂τ

2
0 ) ln y +Aαq̂(0) ln2 y

= (double-log enhanced constant) + (single-log enhanced constant) ln y

+Aαq̂(0) ln2(y). (5.3)

The first term above, which is the largest, is a constant and so will not contribute to

σ/`stop and so will not affect χα. The last term will not give any large-log contribution to

σ/`stop because stopping distances are not sensitive to small y. But the middle term can

be expected to give a single-log enhanced contribution to σ/`stop and so to χα.

We characterized our proposal of studying χα as only partly successful because it

manages to avoid double-log corrections (as well as avoiding all non-log corrections to q̂),

but there will be an issue with sub-leading logarithms in QCD. For QED, there are no

double logs, and so this difficulty does not arise there.

6 Conclusion

In this paper, we have proposed various simple characteristics of in-medium showers that

can be used to test the size of overlapping formation time corrections, in an attempt to

distinguish weakly vs. strongly-coupled splitting pictures of shower development. Part of

our motivation was to find a measure insensitive to corrections that can be absorbed into q̂.

We found one for QED, but our proposal seems like it would run into difficulty at the level

of sub-leading logarithms in QCD. This underscores the importance of understanding how

to account for and absorb subleading logarithms in ongoing research on the calculation and

structure of overlapping formation time corrections in QCD.

We used large-Nf QED as a concrete example in this paper, finding, for example, that

the effect of overlapping formation times is modest (the weak-splitting picture appears

good) for NfαEM(Q⊥) ' 0.2, but is roughly a 100% effect for NfαEM(Q⊥) ' 1. One is of

course tempted to rashly speculate about how this might or might not translate to the

QCD analog CAαs=Ncαs of NfαEM, but that would be premature. For one thing, the

infrared behavior of the LPM effect in QED and QCD is very different. The completed

set of rates needed for a (large Nc) QCD NLO calculation of shower characteristics will

hopefully be available in the future, but the issue of subleading logarithms will then need

to be understood.

In large-Nf QED, the results of figure 6 indicate that the net effect of overlapping

formation times is to reduce the stopping length (corresponding to an increase in dE/dz).

It would be nice to have a simple physical picture for understanding this sign of the result.

– 28 –



J
H
E
P
0
5
(
2
0
1
9
)
0
0
4

Acknowledgments

We thank Yacine Mehtar-Tani for useful conversations and the CERN theory group for

their hospitality during the time this work was completed. This work was supported, in

part, by the U.S. Department of Energy under Grant No. DE-SC0007984.

A Energy stopping distance and other generalizations

Here, we will generalize the analysis of section 2.4 to moments 〈zn〉 of the energy deposition

distribution ε(z), though we will not follow through with numerics in this paper. We will

also then adapt the analysis to discuss formulas for moments of the charge deposition

distribution when not in a large-N limit (e.g. for Nf=1 QED).

A.1 Energy deposition

In what follows, we use the term “species” to distinguish different types of particles: e.g.

quark vs. gluon in QCD or electron vs. photon in QED.

A.1.1 1 → 2 splitting: single species

We start by imaging the simplest case: only 1→2 splittings of particles in the shower,

like in leading-order calculations of shower development. We also start by considering just

one species of particle, like a shower initiated by a gluon in large-Nc QCD, where only

g → gg would be relevant. The analog, for energy deposition, of the charge deposition

equation (2.2) is

∂ε(E, z)

∂z
= −Γ(E) ε(E, z) +

1

2

∫ 1

0
dξ

dΓ

dξ
(E, ξ)

[
ξ ε(ξE, z) + (1−ξ) ε

(
(1−ξ)E, z

)]
. (A.1)

Here ξ and 1−ξ represent the longitudinal momentum fractions of the two daughters in a

splitting. The overall factor of 1
2 in front of the integral is the final-state identical-particle

symmetry factor, since we are focusing for the moment on the case that the two daughters

(as well as the parent) of any splitting are the same species. There are two terms in

the integrand, as opposed to just one in (2.2), because both daughters carry some of the

energy of the parent, so the future evolution of both contribute to where the energy of the

shower will be deposited. Since the energies of the two daughters are weighted by ξ and

1−ξ respectively, their individual distributions of where they deposit their energy should

be weighted accordingly in their contribution to where the parent distributes its energy,

which is the origin of the factors ξ and 1−ξ multiplying the corresponding daughter’s ε

inside the square brackets above.

One may combine terms to rewrite (A.1) as

∂ε(E, z)

∂z
= −1

2

∫ 1

0
dξ

dΓ

dξ
(E, ξ)

[
ε(E, z)− ξ ε(ξE, z)− (1−ξ) ε

(
(1−ξ)E, z

)]
. (A.2)

One could also use the ξ ↔ 1−ξ symmetry associated with having two identical daughters

to simplify to

∂ε(E, z)

∂z
= −1

2

∫ 1

0
dξ

dΓ

dξ
(E, ξ)

[
ε(E, z)− 2ξ ε(ξE, z)

]
, (A.3)

but, for the sake of later generalization, we will find it useful to stay with (A.2).
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Now consider the case where rates may be taken to scale with energy as E−ν , as in

sections 2.4 and 2.5 of the main text. Write

ε(E, z) = E−ν ε̃(E−νz) (A.4)

analogous to (2.6). This yields

dε̃(z̃)

dz̃
= −1

2

∫ 1

0
dξ

dΓ̃

dξ

[
ε̃(z̃)− ξ1−ν ε̃(ξ−ν z̃)− (1−ξ)1−ν ε̃

(
(1−ξ)−ν z̃

)]
(A.5)

as the energy-deposition analog of (2.8). Taking moments of both sides leads to the recur-

sion relation

〈z̃n〉 =
n〈z̃ n−1〉

1
2

∫ 1
0 dξ

dΓ̃
dξ [1− ξ1+nν − (1−ξ)1+nν ]

. (A.6)

Compare to (2.10). Note that in this appendix (except for section A.2) the notation 〈zn〉
refers to moments of the energy deposition distribution ε, whereas elsewhere in this paper

it refers to moments of the charge distribution ρ.

One could now expand in α to obtain formulas for NLO corrections similar to (2.13),

(2.17), (2.25), and (2.26), but we will not go into that level of detail here.

A.1.2 1 → 2 splitting: multiple species

Now allow for multiple species, such as quarks and gluons. Showers initiated by different

species i will generally produce different distributions εi(E, z). The corresponding gener-

alization of (A.1) and (A.2) is

∂εi(E, z)

∂z
= −Γi(E) εi(E, z) +

1

2

∑
jk

∫ 1

0
dξ

dΓi→jk
dξ

(
E→ξE, (1−ξ)E

)
×
[
ξ εj(ξE, z) + (1−ξ) εk

(
(1−ξ)E, z

)]
= −1

2

∑
jk

∫ 1

0
dξ

dΓi→jk
dξ

(
E→ξE, (1−ξ)E

)
×
[
εi(E, z)− ξ εj(ξE, z)− (1−ξ) εk

(
(1−ξ)E, z

)]
. (A.7)

Here, for j=k terms of the double sum over species (e.g. g→gg in QCD), the overall factor

of 1
2 in front of the integral is again a final-state identical-particle symmetry factor. For

the j 6=k terms of the sum, the overall factor of 1
2 is canceled by the two permutations of

jk in the double sum. For example, for i an electron in QED, the sum over j and k on the

right-hand side would contain two terms which would be exactly equal: e→γe and e→eγ.

The summation in (A.7) is just a compact way of simultaneously accounting for the cases

of identical and non-identical daughters.

Scaling out the energy dependence and taking moments of the equation, one finds

−n〈z̃n−1〉i = −1

2

∑
jk

∫ 1

0
dξ

dΓ̃i→jk
dξ

[
〈z̃n〉i − ξ1+nν〈z̃n〉j − (1−ξ)1+nν〈z̃n〉k

]
≡ −

∑
m

(M(n))im〈z̃n〉m . (A.8)
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As indicated by the last line, it is convenient to write the relation in terms of a matrix

M(n) acting on species space, with matrix elements

(M(n))im =
1

2

∑
jk

∫ 1

0
dξ

dΓ̃i→jk
dξ

[
δim − ξ1+nνδjm − (1−ξ)1+nνδkm

]
. (A.9)

The recursion relation for the moments is then given in terms of the matrix inverse:

〈z̃n〉i = n
∑
j

(M−1
(n))ij〈z̃

n−1〉j . (A.10)

The n=1 case reproduces (for ν = 1
2) the energy stopping length formula derived in ref. [20]

for the case of quarks and gluons.

A.1.3 1 → 2 and 1 → 3 splitting

The point of this paper is to be able to account for next-to-leading order corrections to

shower development, which are generated when two consecutive splittings overlap. As dis-

cussed in section I.A of ref. [23], overlap corrections to double splitting should be treated as

effectively a type of 1→3 splitting in order to analyze shower development in the framework

of classical probability theory.13 In addition, there are also direct 1→3 splitting processes

at NLO due, for example, to the 4-gluon vertex in QCD [30] or interactions involving

intermediate longitudinally-polarized gauge bosons [16].

Let dΓi→jk and dΓi→jkl be the rates for 1→2 and effective 1→3 processes respectively.

The generalization of (A.7) to include the 1→3 processes is

∂εi(E, z)

∂z
=− 1

2

∑
jk

∫ 1

0
dξ1 dξ2 δ(1−ξ1−ξ2)

dΓi→jk
dξ1

(
E→ξ1E, ξ2E

)
×
[
εi(E, z)− ξ1 εj(ξ1E, z)− ξ2 εk(ξ2E, z)

]
− 1

3!

∑
jkl

∫ 1

0
dξ1 dξ2 dξ3 δ(1−ξ1−ξ2−ξ3)

dΓi→jkl
dξ1 dξ2

(
E→ξ1E, ξ2E, ξ3E

)
×
[
εi(E, z)− ξ1 εj(ξ1E, z)− ξ2 εk(ξ2E, z)− ξ3 εl(ξ3E, z)

]
,

(A.11)

where we have now used δ-functions to write the integrals over daughter momentum frac-

tions ξ in a more symmetric form. For rates that scale with energy as E−ν , the recursion

relation for the moments is again (A.10) but now with

(M(n))im = Avg1→2[δim−ξ1+nν1 δjm−ξ1+nν2 δkm]+Avg1→3[δim−ξ1+nν1 δjm−ξ1+nν2 δkm−ξ1+nν3 δlm]

(A.12)

13Depending on whether overlap effects reduce or enhance the double-splitting process, the “rate” assigned

to this effective 1→3 splitting process could be negative. But that does not cause any difficulty for the type

of analysis considered in this paper.
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with

Avg1→2[fi→jk(ξ1, ξ2)] ≡ 1

2

∑
jk

∫ 1

0
dξ1 dξ2 δ(1−ξ1−ξ2)

dΓ̃i→jk
dξ1

(
1→ξ1, ξ2) fi→jk(ξ1, ξ2),

(A.13)

Avg1→3[fi→jkl(ξ1, ξ2, ξ3)] ≡ 1

3!

∑
jkl

∫ 1

0
dξ1 dξ2 dξ3 δ(1−ξ1−ξ2−ξ3)

dΓ̃i→jkl
dξ1 dξ2

(
1→ξ1, ξ2, ξ3

)
× fi→jkl(ξ1, ξ2, ξ3). (A.14)

A.1.4 Cancellation of QCD power-law divergences

In the above formulas, we have (i) grouped overlap corrections to actual double-splitting

(e.g. figure 14) into dΓi→jkl and (ii) grouped the corresponding NLO virtual corrections

to single splitting (e.g. figure 15) together with leading-order single splitting into dΓi→jk.

However, in QCD, these LPM rates individually have severe power-law (not just logarith-

mic) infrared divergences that make the two terms in (A.12) separately infinite. Specifically,

refs. [23, 28] show for large-Nc QCD that14

dΓ̃g→ggg
dξ2 dξ3

∼ N2
c α

2
s

ξ2ξ
3/2
3

√
q̂

E
for ξ3 � ξ2 � 1. (A.15)

(See section I.D of ref. [23] for a qualitative discussion.) As noted there, this blows up fast

enough as ξ3 → 0 to have a divergent effect on energy loss if NLO virtual corrections to

single splitting are ignored. In particular, (A.15) means that the Avg1→3[· · · ] in (A.12) has

a power-law divergence from, for example, the ξ3 → 0 region of integration in (A.14). It

is firmly expected that this QCD power-law divergence will cancel in the sum in (A.12) of

Avg1→3[· · · ] and the NLO piece of Avg1→2[· · · ], leaving only the known QCD double-log

divergence. This is something to verify in the future when results are available for the

NLO virtual corrections to QCD single splitting. (The double log term itself needs to be

treated using a more sophisticated method for computing the moments 〈zn〉, as discussed

in section 2.6.)

A.2 Charge deposition without assuming large N

Using the same methods as above, we can also generalize the charge deposition discussion

of section 2.4 to handle the case where Nf is not large. Beyond leading-order, we must

then follow all of the charged daughters of each splitting because of interference effects like

figure 11a.

To adapt (A.11) to charge deposition, it’s useful to normalize each ρi(E, z) so that its

integral (i.e. 〈1〉i) gives the relevant charge of species i. Then the charge deposition analog

14Our ξ2 and ξ3 here are the x and y of refs. [23, 28].
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of (A.11) is

∂ρi(E, z)

∂z
=− 1

2

∑
jk

∫ 1

0
dξ1 dξ2 δ(1−ξ1−ξ2)

dΓi→jk
dξ1

(
E→ξ1E, ξ2E

)
×
[
ρi(E, z)− ρj(ξ1E, z)− ρk(ξ2E, z)

]
− 1

3!

∑
jkl

∫ 1

0
dξ1 dξ2 dξ3 δ(1−ξ1−ξ2−ξ3)

dΓi→jkl
dξ1 dξ2

(
E→ξ1E, ξ2E, ξ3E

)
×
[
ρi(E, z)− ρj(ξ1E, z)− ρk(ξ2E, z)− ρl(ξ3E, z)

]
. (A.16)

However, in QED (and analogously in QCD), charge conjugation invariance gives

ργ(E, z) = 0, ρē(E, z) = −ρe(E, z), (A.17)

and so one may rewrite (A.16) as an equation just for ρe(E, z):

∂ρe(E, z)

∂z
= −

∫ 1

0
dξγ dξe δ(1−ξγ−ξe)

dΓe→γe
dξe

×
[
ρe(E, z)− ρe(ξeE, z)

]
− 1

2

∫ 1

0
dξe1 dξe2 dξē δ(1−ξe1−ξe2−ξē)

dΓe→eeē
dξe1 dξe2

×
[
ρe(E, z)− ρe(ξe1E, z)− ρe(ξe2E, z) + ρe(ξēE, z)

]
. (A.18)

For rates that scale as E−ν , the corresponding recursion relation for the moments of ρe
would be

〈z̃n〉 =
n〈z̃n−1〉

Avge→γe[1− ξnνe ] + Avge→eeē[1− ξnνe1 − ξnνe2 + ξnνē ]
. (A.19)

B Numerical solution for leading-order ρ(0)(z)

In this appendix, we discuss how to numerically solve for the full leading-order charge-

stopping distribution ρ(0)(z), which is interesting but not necessary for anything else in

this paper. We will not have to restrict attention to the large-Nf limit of QED in this

appendix: large Nf was used to simplify the complexity of NLO calculations but this

appendix only deals with leading order.

B.1 Numerical procedure

In particular, we will solve the scaled equation (2.8), which is directly relevant only to

leading-order calculations (given our assumptions) but not to NLO (which contains log

dependence on energy). Note that (2.8) is linear in ρ̃, and so solving that equation does

not by itself determine the overall normalization of ρ̃. But we may numerically find a

solution with any normalization and then, as a final step, compute the normalization
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N =
∫∞

0 dz̃ ρ̃(z̃) and then rescale ρ̃(z) by a factor of 1/N to make ρ̃ into a normalized

probability distribution.

To solve numerically, discretize z and rewrite (2.8) as

ρ̃(z̃−∆z̃) = ρ̃(z̃) + ∆z̃

∫ 1

0
dξ

dΓ̃

dξ

[
ρ̃(z̃)− ξ−1/2ρ̃

(
ξ−1/2z̃

)]
(B.1)

for small steps −∆z̃ and ν = 1
2 . This version of the equation lets us take a solution for

large z̃ (say z̃ > some Z) and extrapolate it step by step to smaller z̃. All we need to start

the process is an approximate (un-normalized) solution to (2.8) in the large-z limit.

B.2 Large-z̃ solution

We expect the charge deposition distribution should decay rapidly (e.g. exponentially) for

large z, so let us make a WKB-inspired rewriting

ρ̃(0)(z̃) ≡ e−W (z̃), (B.2)

where we will treat the exponent W (z̃) as large. Plugging (B.2) into (2.8),

W ′(z̃) =

∫ 1

0
dξ

dΓ̃(0)

dξ

[
1− ξ−1/2eW (z̃)−W (ξ−1/2z̃)

]
. (B.3)

We’ve explicitly written the superscripts “(0)” at this point to remind us that we are only

solving the equation for the leading-order result. We’ve made that reminder because it will

be important here that the LPM suppression of leading-order soft bremsstrahlung rates

is very different in QED and QCD, such that the total LPM bremsstrahlung rate Γ(0) is

infrared divergent in QCD but not QED. For finite total Γ(0), we assert (and will justify a

posteriori) that the second term in the integrand of (B.3) can be ignored when z̃ is large,

leaving

W ′(z̃) '
∫ 1

0
dξ

dΓ̃(0)

dξ
= Γ̃(0) (B.4)

and so

W (z̃) ' Γ̃(0)z̃ (B.5)

and

ρ̃(0)(z̃) ' e−Γ̃(0)z̃ (for large z̃). (B.6)

Putting this solution back into (B.3), one finds that, for z̃ � 1/Γ̃(0), the second term

in the integrand is indeed ignorable compared to the first unless 1−ξ . (Γ̃(0)z̃)−1. That

leaves only a parametrically small portion of the ξ integration where the second term is

important. As long as the integrals of the first and second terms are separately convergent,

that means that the effect of the second term on the integral is negligible in the large z̃

limit.

For leading-order QCD, one needs a different analysis, which we will not present here.

We have not bothered to go to higher order in our WKB-like expansion to determine

whether there is any z̃ dependence to the pre-factor of the exponential behavior (B.6). For
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Figure 17. The leading-order result for the distribution of charge deposition in large-Nf QED.

This calculation is made in the approximation of constant q̂(0), as discussed in section 2.2. The first

moment and width of the above curve is `stop = 5.01 and σ = 3.24 [in units of α−1(E/q̂(0))1/2], in

agreement with results calculated using the recursion relation (2.10) with dΓ(0)/dξ.

large enough z̃, an algebraic pre-factor will not vary significantly over the range 1/Γ̃(0) it

takes for the exponential to drop drastically. So our numerics will not be very sensitive to

that pre-factor provided we only use (B.6) for large enough z̃. This insensitivity may be

checked by varying the cut-off Z chosen to switch between the asymptotic form for z̃ > Z

and the numerical evolution using (B.1) for z̃ < Z.

B.3 Result

Using the above procedure with the QED leading-order LPM bremsstrahlung rate (3.5)

gave the particular curve shown in figure 7.15 Since this is a precise numeric result, we

now show it in a little more detail in figure 17.

C One method for charge stopping with double logarithms, etc.

C.1 Basic equations

Instead of directly writing an equation (2.3) for the charge deposition, consider following

the original charge through time, even before it is deposited, from energy E initially to some

smaller xE at time t = z. Let P (x,E, t) be the probability distribution for x at time t. We

can find an equation for P (x,E, t) somewhat similar to how we found the equation (2.3)

for ρ(x,E), and very similar to the method used by ref. [25] for gluon distributions. The

basic equation for the evolution of P over an infinitesimal time interval ∆t is

P (x,E, t+∆t) =
[
1−Γ(xE) ∆t

]
P (x,E, t)+

∫ 1

x
dy

∫ 1

0
dξ
dΓ

dξ
(ξ, yE) ∆t P (y,E, t) δ(x−ξy).

(C.1)

15We found that we converged to reasonably precise, stable results using Z = 20 and ∆z = 0.02.
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The first term is the probability that nothing happened in the small time interval [t, t+∆t]

multiplied by the then-unchanged P (x,E, t). The second term is the probability density

P (y,E, t) that the particle had some longitudinal momentum fraction y > x at time t,

convolved with the probability that a splitting took it from y to x during the small time

interval [t, t+∆t]. Doing the y integral, and re-arranging terms and taking the limit ∆t→ 0,

gives

∂

∂t
P (x,E, t) = −Γ(xE)P (x,E, t) +

∫ 1

x

dξ

ξ

dΓ

dξ

(
ξ,
x

ξ
E

)
P

(
x

ξ
,E, t

)
. (C.2)

This can be rewritten in the infrared-safe form

∂

∂t
P (x,E, t) = −

∫ 1

0
dξ

[
dΓ

dξ
(ξ, xE)P (x,E, t)− 1

ξ

dΓ

dξ

(
ξ,
x

ξ
E

)
P

(
x

ξ
,E, t

)]
, (C.3)

where, in order to compactly combine integrals, we have adopted the physically-appropriate

convention that

P (x,E, t) ≡ 0 for x > 1. (C.4)

The initial condition on the time-evolution (C.3) is that the particle start with energy E:

P (x,E, 0) = δ(1− x). (C.5)

As noted in the similar context of ref. [25], the distribution P (x,E, t) will have a

δ-function piece corresponding to stopped particles:

P (x,E, t) = Pstopped(E, t) δ(x) + Punstopped(x,E, t), (C.6)

where Pstopped(E, t) in our case is the chance that the original charged particle has already

stopped by time t. One can use this to recover the charge deposition distribution ρ(x, z)

that will be needed to calculate, for example, σ/`stop. The total probability that the charge

is still moving at time t is

Qunstopped(E, t) =

∫ 1

0+
dx P (x,E, t), (C.7)

where 0+ represents a positive infinitesimal. The charge deposition distribution ρ(E, z)

[where t and z are interchangeable in our discussion] is then

ρ(E, t) = −
∂Qunstopped

∂t
. (C.8)

The moments 〈zn〉 of that distribution are then (integrating once by parts)

〈zn〉 =

∫ ∞
0

dt tnρ(E, t) = n

∫ ∞
0

dt tn−1Qunstopped(E, t) = n

∫ ∞
0

dt tn−1

∫ 1

0+
dx P (x,E, t).

(C.9)
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C.2 Leading-order equation

As in the main text, assume that the leading-order splitting rate scales with energy as

E−1/2 without any logs. Even though we then already know how to directly calculate the

leading-order values of the moments 〈zn〉 using the method of section 2.4, we will still, it

turns out, need to know the leading-order solution P (0)(x,E, t) to (C.3) in order to find

the NLO correction P (NLO)(x,E, t) to P , which we will need to find the NLO correction

to moments. So let’s first discuss how to find that leading-order solution. Similar to

refs. [25, 26], we can use the E−1/2 scaling of the leading-order splitting rate (and therefore

E1/2 scaling of distance and time scales) to simplify our basic equation (C.3) by writing

P (0)(x,E, t) = P̃ (0)(x,E−1/2t) ≡ P̃ (0)(x, t̃). (C.10)

Then (C.3) becomes16

∂

∂t̃
P̃ (0)(x, t̃) = −x−1/2

∫ 1

x
dξ

[
dΓ̃(0)

dξ
(ξ) P̃ (0)(x, t̃)− ξ−1/2 P̃ (0)

(
x

ξ
, t̃

)]
(C.11)

with initial condition P̃ (0)(x, 0) = δ(1− x). We have not found any closed form solutions,

but (C.11) could be solved numerically. We will assume one has such a solution in hand

and now discuss how to obtain from it the NLO correction.

C.3 Finding P (NLO) from P (0)

Expand

P (x,E, t) ' P (0)(x,E, t) + P (NLO)(x,E, t). (C.12)

Making no assumptions about the energy dependence of the NLO piece dΓ(NLO)/dξ of the

splitting rate, we now show how to determine P (NLO) from P (0).

Rather than returning to the general equation (C.3) for P (x,E, t), we find it easier

to find PNLO by a direct probability argument. First, as a matter of language, let’s call

dΓ(0)/dξ the rate for leading-order splittings and dΓ(NLO)/dξ the rate for “NLO splittings”

(e.g. the correction from overlapping double splittings, or the virtual correction to single

splittings). Then imagine a shower composed of any number of leading-order splittings

plus zero or one or more NLO splittings, and correspondingly decompose

P (x,E, t) ' P(0 NLO splits)(x,E, t) + P(1 NLO split)(x,E, t). (C.13)

This is not quite the same as (C.12) because P (0) is the probability if the only type of

splitting possible were leading-order splittings. P(0 NLO splits), in contrast, imagines a world

16Our (C.11) is similar in form to eq. (4) of ref. [25]. One difference is that their analysis accounts for all

daughters of each splitting g → gg of a gluon shower because they are interested in the number distribution

of gluons. We would also need to do this to compute what we call “energy” deposition by this method. But

here we only need to track the fate of the single red-line particle in figure 10 to compute charge deposition

ρ(z, E) (at least in large-N theories, as discussed in the main text). Additionally, there are some inessential

normalization differences associated with how we define dΓ̃ from dΓ [related to their K(z) from dPbr/dz dτ ]

and how we define our t̃ from t [related to their τ from t].
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in which NLO splittings are also possible but, by random chance, none have occurred in

the time interval [0, t]. It differs from P (0) by having to account for the probability that

no NLO splittings occurred.

Before examining the difference between P (0) and P(0 NLO splits) in more detail, it will

be helpful to first figure out P(1 NLO split), depicted in figure 18. In formulas, this picture

translates to

P(1 NLO split)(x,E, t) =

∫ t

0
dt′
∫ 1

x
dy

∫ 1

x/y
dξ P(0 NLO splits)(y,E, t

′)
dΓ(NLO)

dξ
(ξ, yE)

×
[
(ξy)−1 P(0 NLO splits)

(
x

ξy
, ξyE, t− t′

)]
. (C.14)

The first factor in the integrand gives the probability of making it to time t′ with only

leading-order splittings which take the energy of the original particle down from E to

yE. The second factor gives the probability that there is then a NLO splitting in the

interval [t′, t′+dt′] that takes the energy from yE to ξyE. The final factor (in square

brackets) is related to the probability of then making it from there to the later time t

with only leading-order splittings taking the energy from ξyE to the final value xE =

(x/ξy)× (ξyE). The reason for the normalization factor (ξy)−1 inside the square brackets

is because the left-hand side of (C.14) represent a probability distribution for x whereas the

P(0 NLO splits)(
x
ξy , ξyE, t − t

′) on the right-hand side represents a probability distribution

for x/ξy, and so one must convert.

In (C.14), the explicit factor dΓ(NLO)/dξ is already next-to-leading order in α. Since

we are ultimately only interested in the expansion (C.12) of probabilities characteriz-

ing the shower to next-to-leading-order, we may therefore approximate the other factors

P(0 NLO splits) in (C.14) by P (0). So

P(1 NLO split)(x,E, t) '
∫ t

0
dt′
∫ 1

x
dy

∫ 1

x/y
dξ P (0)(y,E, t′)

dΓ(NLO)

dξ
(ξ, yE)

×
[
(ξy)−1 P (0)

(
x

ξy
, ξyE, t− t′

)]
. (C.15)

Now let’s return to the first term of (C.13), P(0 NLO splits), and its difference from P (0)

at first order in dΓ(NLO). To evaluate this difference, consider figure 19, which is the analog

of figure 18 but with no NLO splitting occurring during the time interval [t′, t′+dt′]. The

corresponding formula analogous to (C.15) is

P(0 NLO splits)(x,E, t) ' P (0)(x,E, t)−
∫ t

0
dt′
∫ 1

x
dy

∫ 1

0
dξ P (0)(y,E, t′)

dΓ(NLO)

dξ
(ξ, yE)

×
[
y−1 P (0)

(
x

y
, yE, t− t′

)]
, (C.16)

where

dt′
∫ 1

0
dξ

dΓ(NLO)

dξ
(ξ, yE) (C.17)
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LO LO LO N
LO

LO LO LO

E yE ξyE xE

time
t′ t0

Figure 18. A picture of following the original charge through a shower for a case where exactly

one of the splittings involving that charge is a next-leading-order splitting.

LO LO LO LO LO LO

E yE yE xE

time
t′ t0

Figure 19. Like figure 18 but showing a case where (randomly) all of the splittings are leading-

order splittings. To evaluate its probability, we must combine the probabilities that in each tiny

time interval [t′, t′+dt′] there was no NLO splitting.

represents the probability of any NLO splitting that could have happened in the time

interval [t′, t′ + dt′] but didn’t.

Combining (C.15) and (C.16) to compare (C.13) with (C.12), we then have

P (NLO)(x,E, t) = −
∫ t

0
dt′
∫ 1

x
dy

∫ 1

0
dξ P (0)(y,E, t′)

dΓ(NLO)

dξ
(ξ, yE)

×
[
y−1 P (0)

(
x

y
, yE, t− t′

)
− (ξy)−1 P (0)

(
x

ξy
, ξyE, t− t′

)]
, (C.18)

where, in order to combine integrals, we have again adopted the convention (C.4).

C.4 NLO corrections to moments 〈zn〉

Similar to our notation `stop ' `
(0)
stop + ∆`stop, we’ll write the expansion of other moments

of the charge deposition distribution ρ(z, E) to NLO as

〈zn〉 ' 〈zn〉(0) + ∆〈zn〉. (C.19)
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Putting (C.18) into (C.9),

∆〈zn〉 = −n
∫ ∞

0
dt tn−1

∫ 1

0+
dx

∫ t

0
dt′
∫ 1

x
dy

∫ 1

0
dξ P (0)(y,E, t′)

dΓ(NLO)

dξ
(ξ, yE)

×
[
y−1 P (0)

(
x

y
, yE, t− t′

)
− (ξy)−1 P (0)

(
x

ξy
, ξyE, t− t′

)]
. (C.20)

Because dΓ(0) and P (0) have simple scaling with E, we will find it convenient to scale out

the same factors of E1/2 from the NLO rate as in the main text:

dΓ̃(NLO)

dξ
(ξ, E) ≡ E−1/2 dΓ̃(NLO)

dξ
(ξ, E). (C.21)

Using (C.10), eq. (C.20) above can be written

∆〈z̃n〉 = −n
∫ ∞

0
dt̃ t̃n−1

∫ 1

0+
dx

∫ t̃

0
dt̃′
∫ 1

x
dy

∫ 1

0
dξ P̃ (0)(y, t̃′) y−1/2 dΓ̃(NLO)

dξ
(ξ, yE)

×
[
y−1 P̃ (0)

(
x

y
, y−1/2(t̃− t̃′)

)
− (ξy)−1 P̃ (0)

(
x

ξy
, (ξy)−1/2(t̃− t̃′)

)]
. (C.22)

Changing integration variable from t̃ to T̃ ≡ t̃− t̃′, we may rewrite∫ ∞
0

dt̃ t̃n−1

∫ t̃

0
dt̃′ · · · =

∫ ∞
0

dT̃

∫ ∞
0

dt̃′ (t̃′ + T̃ )n−1 · · ·

=

n−1∑
k=0

(
n−1

k

)∫ ∞
0

dT̃ T̃ k
∫ ∞

0
dt̃′ (t̃′)n−1−k · · · (C.23)

in (C.22). Defining the time-moments

P̃
(0)
j (x) ≡

∫ ∞
0

dt̃ t̃j P̃ (0)(x, t̃) (C.24)

of P̃ (0)(x, t), we can then write

∆〈z̃n〉 = −n
n−1∑
k=0

(
n−1

k

)∫ 1

0+
dx

∫ 1

x
dy

∫ 1

0
dξ P̃

(0)
n−1−k(y)

dΓ̃(NLO)

dξ
(ξ, yE)

× y−1/2

[
y(k−1)/2P̃

(0)
k

(
x

y

)
− (ξy)(k−1)/2 P̃

(0)
k

(
x

ξy

)]
. (C.25)

The constraint (C.4) allows us to replace the lower limit of integration on the y integral

by zero. Continuing to use (C.4), the x integration in (C.25) can then be accomplished as

follows: ∫ 1

0+
dx P̃

(0)
k

(
x

ξy

)
= ξy

∫ 1

0+
dx̄ P

(0)
k (x̄) =

ξy

k + 1
〈z̃k+1〉(0), (C.26)
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where the last equality follows from (C.9) and (C.24). So, with a little manipulation and

switching summation variable to p ≡ k+1, (C.25) becomes

∆〈z̃n〉 = −
n∑
p=1

(
n

p

)
〈z̃p〉(0)

∫ 1

0
dy y(p−1)/2 P̃

(0)
n−p(y)

∫ 1

0
dξ

dΓ̃(NLO)

dξ
(ξ, yE) [1− ξp/2],

(C.27)

where the leading-order 〈z̃n〉(0) is given recursively by the simple result of section 2.4 applied

to the leading-order rate:

〈z̃p〉(0) =
p〈z̃p−1〉(0)∫ 1

0 dξ
dΓ̃(0)

dξ [1− ξp/2]
. (C.28)

(C.27) is our result for how to isolate the NLO correction to the moments of ρ(E, z)

from a numerical calculation of the leading-order P̃ (0)(z, t), for any energy dependence of

dΓ(NLO)/dξ. We leave the matter there.17

D Limiting behavior and numerical interpolation of dΓ/dxe dye

In this appendix, we discuss limiting cases of the contributions of diagrams (f) and (k) to

dΓ/dξ dye, and then use that knowledge to smooth out those contributions into forms that

can be more easily interpolated numerically.

D.1 2 Re[dΓ(subtracted)/dxe dye]

For simplicity of notation, define

f(xe, ye) ≡ 2 Re

[
dΓ

dxe dye

](subtracted)

xyyx̄

= (1−xe) 2 Re

[
dΓ

dxe dye

](subtracted)

xyyx̄

. (D.1)

Figure 20a show a plot of f(xe, ye). Both xe and ye run from 0 to 1, but in large-Nf QED

the result for dΓ/dξ is symmetric under interchanging the two daughters of the photon

pair production, corresponding to symmetry under ye → 1−ye. Taking advantage of this,

we will only plot, discuss, and interpolate f(xe, ye) here and in what follows for

0 < xe < 1, 0 < ye ≤
1

2
. (D.2)

The function in figure 20a diverges to +∞ for x→1 and η→0 and diverges to −∞ for

x→ 0. Section II of ref. [16] found that the x→1 divergence of the double splitting process

e→ eēe is [
dΓ

dxe dye

]
e→eēe

≈ αEM

2π
Pe→e(xe) ln

(
tform,xe

tform,ye

) [
dΓ

dye

]LO

γ→eē
, (D.3)

17We have checked that in the special case where the only energy dependence of dΓ(NLO)/dξ is an overall

factor of E−1/2 (i.e. where dΓ̃(NLO)/dξ is independent of energy), then the factorization of the integrals

in (C.27) allows one to show, after a somewhat lengthy argument, that this formula reproduces the answer

one would get by expanding the result of section 2.4 for 〈zn〉.
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(a) (b) (c)

Figure 20. (a) The original function f(xe, ye) of (D.1), which diverges in various limits; (b) the

corresponding finite function g of (D.10); (c) a smoothed version of g created by transforming xe
to x̄e as in (D.12).

at leading-log order, where (also at leading-log order) one may use parametric estimates for

the formation times in the argument of the logarithm. We find numerically that this same

formula works for the NLO single-splitting correction (D.1). Moreover, we find it works

whenever the formation time tform,ye for pair production from the photon is parametrically

small compared to the formation time tform,xe for the bremsstrahlung, which includes the

limit ye → 0 as well as xe → 1. Using numerics, we have also extracted the constant under

the logarithm for this limit, finding that f(xe, ye) approaches

F1(xe, ye) ≡
αEM

2π
Pe→e(xe)

[
ln

(
x

1/2
e

(1− xe)[ye(1−ye)]1/2

)
− 1.2607

] [
dΓ

dye

]LO

γ→eē
(D.4)

both for (i) xe→1 and for (ii) ye→0 with xe fixed. Above,[
dΓ

dye

]LO

γ→eē
=
NfαEM

π
Pγ→e(ye) Re(iΩγ→eē

0 ), (D.5)

Ωγ→eē
0 =

√
−iq̂

2ye(1−ye)Eγ
=

√
−iq̂

2ye(1−ye)xγE
, (D.6)

Pe→e(xe) =
1 + x2

e

1− xe
, Pγ→e(ye) = y2

e + (1− ye)
2. (D.7)

For the xe→0 divergence, we do not know of a physical argument like the one of ref. [16]

for the previous limit (D.3), and we have not tried to derive this limit analytically from

the general formula for f(xe, ye). However, we have found by numerical experimentation

that f(xe, ye) approaches

F0(xe, ye) ≡ −Nfα
2
EMc0 Pγ→e(ye)

√
1−xe
xe

(D.8)

for xe→0 with ye fixed, where c0 is a constant whose numerical value is approximately

c0
∼=

1

10π
. (D.9)
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Next, we combined the limits F0 and F1 to make a positive weighting function F that

correctly approximates the magnitude of f in all of the divergent limiting cases. The goal

was to create a new function

g(xe, ye) ≡
f(xe, ye)

F (xe, ye)
(D.10)

that would not be divergent. By trial and error, trying to choose a g that looked reasonable,

we settled on the choice

F (xe, ye) ≡
√

[F1(xe, ye)]2 − F1(xe, ye)F0(xe, ye) + [F0(xe, ye)]2. (D.11)

The resulting finite function g(xe, ye) is shown in figure 20b. Note that it has an unfortunate

finite directional singularity for (xe, ye)→ (0, 0), where the value of g depends on how one

approaches the limit. One can trace this back to a similar directional singularity in how f

diverged as (xe, ye)→ (0, 0) in figure 20a.

The directional singularity in figure 20b complicates good numerical interpolation of

g from a finite mesh of values. We therefore looked for a ye-dependent change of the

xe variable, xe → x̄e(ye), that would map the interval [0, 1] into itself while shifting the

location of the ridge in figure 20b to avoid running into the corner. To map [0, 1] into itself,

we considered a transformation of the form

x̄e(ye) =

(
1− x0(ye)

)
xe

x0(ye) +
(
1− 2x0(ye)

)
xe
, (D.12a)

which maps xe = x0(ye) to x̄e = 1
2 . By experimentation, we chose

x0(ye) =

(
a+

b

ye

)
y2
e

(ye + c)2
(D.12b)

with

a = 0.63775522, b = 0.1264279, c = 0.09664453. (D.12c)

Figure 20c then shows g as a function of (x̄e, ye) instead of (xe, ye). This function is smooth

enough for numerical interpolation. Our procedure was to evaluate f for a mesh of points

in (x̄e, ye) space, from which we obtain g on that mesh of points, and then interpolate to

get g in the entire (x̄e, ye) region. The original function f(xe, ye) can then be evaluated

from this interpolation by inverting all of the steps described above.

D.2 2 Re[2 dΓ(f)/dxe dye]

Figure 21 shows the same sort of transformations but here for the contribution

f(xe, ye) ≡ 2× 2 Re

[
dΓ

dxe dye

]
(f)

= 2× (1−xe) 2 Re

[
dΓ

dxe dye

]
(f)

(D.13)

to dΓ/dξ in (3.3).

One difference here is that the only divergence of f is for xe→1. However, there is
√
ye

or
√
xe behavior in other limits, which is best to also remove before interpolation. So we
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(a) (b) (c)

Figure 21. Like figure 20 but for the f(xe, ye) of (D.13).

again look at all the limiting cases. We find

F1(xe, ye) ≡ −
Nfα

2
EM

π2
(1+xe)

(
ye(1− ye)q̂

(1− xe)E

)1/2

ln 2, (D.14)

F0(xe, ye) ≡ −
Nfα

2
EM

π2

(
xeq̂

E

)1/2

c′0, (D.15)

with

c′0 =

∫ ∞
0

du
u− thu

u2(1 + thu) shu
= 0.306853 , (D.16)

and we choose

F (xe, ye) ≡

√
x2
e[F1(xe, ye)]2 + y2

e(1−xe)2[F0(xe, ye)]2

x2
e + y2

e(1−xe)2
(D.17)

to get figure 21b. Finally, here we take (D.12a) with

x0(η) = 1.2 ye(1−ye) (D.18)

to get figure 21c.

Any reader going through this appendix may be forgiven if they think it’s all a bit

convoluted. We agree and would be happy to have a more efficient procedure (in terms of

our time or the computer’s).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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