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Abstract The violation of Leggett–Garg inequalities tested
the quantumness of neutrino oscillations (NOs) across
macroscopic distances. The quantumness can be quantified
by using the tools of the quantum resource theories. Recently,
a new genuine tripartite entanglement measure (Xie et al. in
Phys Rev Lett 127:040403, 2021), concurrence fill, is defined
as the square root of the area of the concurrence triangle satis-
fying all genuine multipartite entanglement conditions. It has
several advantages compared to other existing tripartite mea-
sures. Here, we focus on using concurrence fill to quantify the
tripartite entanglement in three-flavor NOs. Concurrence fill
can reach its maximum 0.89 for the experimentally-observed
electron antineutrino oscillations, but it cannot for the muon
antineutrino oscillations. In both cases, we compare its per-
formance with other three tripartite entanglement measures,
including the generalized geometric measure (GGM), the
three-π entanglement, and the genuinely multipartite con-
currence (GMC), in the neutrino propagation, and accord-
ingly show that concurrence fill contains the most quan-
tum resource. Furthermore, concurrence fill and the three-
π entanglement are always smooth, while GGM and GMC
measures have several sharp peaks. The genuine tripartite
quantification of the quantumness of three-flavor NOs rep-
resents the first step towards the further potential application
of neutrinos on quantum information processing.

1 Introduction

Neutrino is a Standard Model neutral weakly interacting
fermion [1]. It is the second most abundant particle in the
Universe after photons of light. Neutrino oscillation (NO)
implies that the neutrino has a non-zero mass. In the frame-
work of the simplest standard model of three-neutrino mix-
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ing, three different flavors of neutrino are electron e, muon
μ, and tau τ leptons, in which the three flavor states are uni-
tary linear combinations of three mass eigenstates [2,3]. NO
shows that a given flavor may change into another flavor in the
neutrino propagation. The probability of measuring a partic-
ular flavor for a neutrino varies periodically as it propagates
through space, and can be measured at the arbitrary time. The
values of the oscillations parameters have been measured and
analyzed in both theory and experiment in recent years [4–
8]. Remarkably, oscillation probabilities of neutrino can be
used to study the different properties from classical to quan-
tum mechanical prediction of such an interesting system.

As an analog of Bell’s inequality in temporal interpreta-
tion, LGI study the correlations of a single system measured
at different times, based on two assumptions of macroscopic
realism and non-invasive measurability [9–11]. It is shown
that experimentally-observed neutrino oscillations can vio-
late the classical limits imposed by the LGI [12–15], provide
an evidence that quantum coherence can apply broadly to
microscopic systems over a macroscopic distance. However,
the violation of LGI can be taken as an effective indicator for
quantifying the amount of quantumness in the framework of
quantum resource theories (QRTs). Recently, the quantifica-
tion of quantumness in terms of flavor oscillation probabili-
ties of NOs was investigated by quantities in QRTs, includ-
ing entanglement [16–18], Svetlichny inequalities [19,20],
entropic uncertainty relation [21,22], quantum coherence
[23–25], and quantum correlations [26–29].

Among them, entanglement is the most fundamental
concept that can be rigorously quantified and character-
ized by the tools of QRTs. It has many potential applica-
tions in quantum information processing, including quantum
cryptography [30,31], quantum teleportation [32], entan-
glement swapping [33], and so on. In particular, multipar-
tite entanglement turns out to be a versatile tool in quan-
tum error correction [34]. There are many measures to
quantify the entanglement in multiqubit quantum systems,
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such as the generalized geometric measure (GGM) [35,36],
three-π entanglement measure [37], the genuinely multi-
partite concurrence (GMC) [38], and concurrence fill [39].
GGM is identified as an optimized distance of the given
state from the set of all states that are closest bisepara-
ble states. The three-π entanglement measure consider all
the bipartite residual entangle quantify three-qubit entan-
glement, based on the negativity. GMC is an intuitive mea-
sure of multipartite entanglement, based on the concurrence.
Its lower bound can be obtained by the powerful detec-
tion criteria. Concurrence fill is introduced as a genuine tri-
partite entanglement measure in terms of the area of the
concurrence triangle. It represents a global entanglement,
which fulfills the following properties: non-negativity, mono-
tonicity, discriminance, normalization, smoothness, and con-
vexity [40]. For the GHZ state, the concurrence fill can
reach its maximum of 1, since the lengths of the three
edges of concurrence triangle are all equal to 1. For the
W state, its maximum is F123 = 8/9 ≈ 0.89. In partic-
ular, Fmax

123 = 0.89 for three-flavor electron NOs consid-
ered in this work. Investigations of genuine multipartite
entanglement of neutrino oscillation might pave the way for
the further quantum computation using oscillating neutrinos.

Here, we quantify the quantumness in three-flavor NOs
by several tripartite entanglement measures, including GGM,
three-π , GMC, and concurrence fill in QRTs, and compare
their performances with respect to the ratio between the dis-
tance and neutrino energy L/E . The definitions of concur-
rence fill and three-π take all bipartite entanglements into
account, and thus their change are always smooth. For the
three-flavor electron and muon neutrino oscillations, con-
currence fill is always larger than three-π , suggesting that
concurrence fill contains more quantum resource. The defi-
nitions of GGM and GMC are given by the minimal entan-
glement measures of bipartite entanglement, which lead to
several nonanalytical sharp peaks. Moreover, we use the con-
currence triangles for three-qubit systems to visualize the dif-
ference between GMC and concurrence fill. It is shown that
concurrence fill is always larger than or equal to the GMC in
both sources of NOs. The results show that concurrence fill
is a genuine tripartite measure of tripartite entanglement in
three-flavor NOs.

The paper is arranged as follows. In Sect. 2, we introduce
three-flavor neutrino model. In Sect. 3, we briefly review
several tripartite entanglement measures, including GGM,
three-π , GMC, and concurrence fill. In Sects. 4 and 5, we
compare the performances of the four tripartite entanglement
measures in the three-flavor electron and muon antineutrino
oscillations, respectively. Finally, a summary is concluded in
Sect. 6.

2 The three-flavor neutrino model

In the standard three-flavor neutrino oscillation model, a lin-
ear superpositions of the mass eigenstates |ν1〉, |ν2〉, |ν3〉,
constitutes the three flavor states |νe〉, |νμ〉, and |ντ 〉:

|να〉 =
∑

k

U∗
αk |νk〉, (1)

where k = 1, 2, 3 and α = e, μ, τ , which represents the
neutrino flavor state. The relatedUαk is a 3×3 unitary matrix,
is called as the Pontecorvo–Maki–Nakagawa–Sakata matrix
[41]. It can be characterized by three mixing angles and a
charge conjugation and parity (CP) violating phase,

U=
⎛

⎝
c12c13 s12c13 s13e−iδCP

−s12c23−c12s13s23eiδCP c12c23−s12s13s23eiδCP c13s23

s12s23−c12s13c23eiδCP −c12s23−s12s13c23eiδCP c13c23

⎞

⎠ , (2)

where ci j ≡ cos θi j and si j ≡ sin θi j (i, j = 1, 2, 3). The CP
violating phase has not yet been observed, so we neglect it
for simplicity. The state |νk(t)〉 is the mass eigenstate of the
free Dirac Hamiltonian H with an positive energy Ek , and
its time evolution of the mass eigenstates |νk〉 is expressed as

|νk(t)〉 = e−i Ek t/h̄ |νk(0)〉. (3)

Substituting the Eqs. (1) and (2) into Eq. (3), we can get the
time evolution of flavor neutrino states |να(t)〉 as

|να(t)〉 = aαe(t)|νe〉 + aαμ(t)|νμ〉 + aατ (t)|ντ 〉, (4)

where aαβ(t) = ∑
k U

∗
αke

−i Ek t/h̄Uβk . Finally, the transition
probability for detecting β neutrino in the original α neutrino
state is given by [42],

Pαβ = δαβ − 4
∑

k>l

Re(U∗
αkUβkUαlU

∗
βl) sin2

(
Δm2

kl
Lc3

4h̄E

)

+2
∑

k>l

Im(U∗
αkUβkUαlU

∗
βl) sin

(
Δm2

kl
Lc3

2h̄E

)
, (5)
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where Δm2
kl = m2

k − m2
l , E is the energy of the neutrino

in neutrino experiments, and L ≈ ct (c is the speed of light
in free space) is the distance between the source and the
detector.

For convenience, we can write the oscillatory quantity

sin2
(
Δm2

kl
Lc3

4h̄E

)
that appears in Eq. (5) as [1],

sin2
(

Δm2
kl
Lc3

4h̄E

)
= sin2

(
1.27Δm2

kl [eV 2] L[km]
E[GeV ]

)
.

(6)

Meantime, the oscillation parameters in normal ordering of
the neutrino mass spectrum (m1 < m2 < m3) are chosen as

Δm2
21 = 7.50 × 10−5eV 2,

Δm2
31 = 2.457 × 10−3eV 2,

Δm2
32 = 2.382 × 10−3eV 2,

θ12 = 33.48◦, θ23 = 42.3◦, θ13 = 8.50◦. (7)

The occupation number in the neutrinos used here can be
established in the following correspondence [16]

|νe〉 ≡ |1〉e ⊗ |0〉μ ⊗ |0〉τ ≡ |100〉 , (8)
∣∣νμ

〉 ≡ |0〉e ⊗ |1〉μ ⊗ |0〉τ ≡ |010〉 , (9)

|ντ 〉 ≡ |0〉e ⊗ |0〉μ ⊗ |1〉τ ≡ |001〉 . (10)

Thus, the flavor oscillations of neutrino can be seen as the
time evolution of a tripartite quantum state. Then, from Eq.
(4), we have

|ψα(t)〉 = aαe(t) |100〉 + aαμ(t) |010〉 + aατ (t) |001〉 .

(11)

As a result, we can use the framework of quantum resource
theory to study the flavor oscillations of neutrino. In the fol-
lowing, we focus on the performances of the tripartite entan-
glement measures, including GGM, three-π , GMC, and con-
currence fill, and give a detailed comparison among them in
this three-flavor neutrino systems.

3 Measure of tripartite entanglement

3.1 Generalized geometric measure

The GGM [35,36] of an N -partite pure state |ψN 〉, can mea-
sure the entanglement of pure quantum states of an arbitrary
number of parties. It is defined as an optimized distance of
the given state from the set of all states that are not genuinely
multiparty entangled, given by

ε(|ψN 〉) = 1 − Λ2
max (|ψN 〉), (12)

whereΛmax(| ψN 〉) = max |〈χ | ψN 〉| = max|χ〉 F(|ψN 〉 , |χ〉).
The maximization is performed over all |χ〉 that are not mul-
tiparty entangled. F(|ψN 〉 , |χ〉) denotes the fidelity between
two pure states |ψN 〉 and |χ〉. Based on the Hilbert-Schmidt
distances, we can obtain an equivalent mathematical expres-
sion of Eq. (12)

G(|ψn〉) = 1 − max{λ2
I :L |I ∪ L = {A1, . . . , AN },

I ∩ L = ∅}, (13)

where λI :L is the maximal Schmidt coefficient in the bipartite
split I : L of |ψN 〉.

3.2 The three-π entanglement

For a three-partite pure state |ψ〉ABC , the Coffman–Kundu–
Wootters-inequality-like [43] monogamy inequality by the
negativity quantified the entanglement is given by

N 2
AB + N 2

AC ≤ N 2
A(BC), (14)

where NAB and NAC are the sum of the negative eigenvalues
of the partial transpose of the states ρAB = TrC (ρABC ) and
ρAC = TrB(ρABC ), respectively. Following the idea of Ref
[37], we have

NA(BC) = CA(BC) =
√

2[1 − Tr(ρ2
A)], (15)

where ρA = TrBC (ρABC ). TheCA(BC) is defined as a one-to-
other bipartite entanglement, i.e., the entanglement between
qubit A and the remaining two (B and C) taken together as
an “other” single party, where a subscript i (i = A, B,C)

refers to the system’s i th qubit. The residual entanglement is
defined as the difference between the two sides of Eq. (14)

πA = N 2
A(BC) − N 2

AB − N 2
AC . (16)

Similarly, if one takes the different focus B and C , the other
two residual entanglement are created

πB = N 2
B(AC) − N 2

BA − N 2
BC , (17)

πC = N 2
C(AB) − N 2

CA − N 2
CB, (18)

respectively. Note that the residual entanglement for the dif-
ferent focus changes under transformations of the qubits.
Finally, the three-π entanglement of the tripartite systems
are obtained as the average of πA, πB , πC

πABC = 1

3
(πA + πB + πC ). (19)
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3.3 Genuinely multipartite concurrence

The GMC is a computable measure quantifying the amount of
multipartite entanglement based on the well-known concur-
rence [38]. For n-partite pure states |Ψ 〉 ∈ H1⊗H2⊗···⊗Hn ,
where dim(Hi ) = di , i = 1, 2, . . . , n, the GMC is defined
as

CGMC (|Ψ 〉) = min
γi∈γ

√
2[1 − Tr(ρ2

Aγi
)] (20)

where γ = {γi } represents the set of all possible bipartitions
{Ai |Bi } of {1, 2, . . . n.}. The GMC can also be generalized
to the case of mixed states via the convex roof construction

CGMC (ρ) = inf{pi ,|ψi 〉}
∑

i

piCGMC (|ψi 〉), (21)

where the infimum is taken over all possible decompositions
ρ = ∑

i |ψi 〉 〈ψi |. For three-qubit systems, GMC is exactly
the square root of the length of the shortest edge of the con-
currence triangle. Following the idea of Ref. [39], hereinafter
we also ignore the square root and treat CGMC as the length
of the shortest edge for simplicity.

3.4 The concurrence fill

In 2021, Xie et al. introduced the method of concurrence
fill to genuinely capture triangle measure of tripartite entan-
glement, based on Heron’s formula. Compared to other tri-
partite entanglement measures, concurrences fill has the two
advantages: (i) it contains more information; (ii) it is always
smooth, while other measures contain a minimum argument,
which will leads to a nonanalytical sharp peaks. In their paper,
a concurrence triangle is presented where the three squared
one-to-other concurrences are the lengths of the three edges
of a triangle for a three-qubit system. Then concurrence fill is
defined as the square root of the area of the concurrence trian-
gle. This gives the following expression of genuine tripartite
entanglement measure [39]

FABC ≡
[

16

3
Q(Q − C2

A(BC))(Q − C2
B(AC))(Q − C2

C(AB))

]1/4

,

(22)

where

Q = 1

2
(C2

A(BC) + C2
B(AC) + C2

C(AB)), (23)

with C2
A(BC), C2

B(AC), and C2
C(AB) being 2[1 − Tr(ρ2

A)],
2[1 − Tr(ρ2

B)], and 2[1 − Tr(ρ2
C )], respectively. Q is the

half-perimeter, the prefactor 16/3 ensures the normalization
0 ≤ FABC ≤ 1, and the extra square root beyond Heron’s

formula guarantees local monotonicity under local quantum
operations assisted with classical communications.

4 Entanglement in electron antineutrino oscillations

When the electron neutrino is generated at initial time t = 0,
the evolutive states for three-flavor NOs is given by

|ψe(t)〉 = aee(t) |100〉 + aeμ(t) |010〉 + aeτ (t) |001〉 . (24)

To quantify the tripartite entanglement, we shall focus on
the the density matrix ρe

ABC (t) = |ψe(t)〉 〈ψe(t)|, that is,

ρe
ABC (t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 ρe

22 ρe
23 0 ρe

25 0 0 0
0 ρe

32 ρe
33 0 ρe

35 0 0 0
0 0 0 0 0 0 0 0
0 ρe

52 ρe
53 0 ρe

55 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where the matrix elements are written as ρe
22 = |aeτ (t)|2;

ρe
23(t) = aeτ (t)a∗

eμ(t); ρe
25(t) = aeτ (t)a∗

ee(t); ρe
32

= aeμ(t)a∗
eτ (t); ρe

33(t) = ∣∣aeμ(t)
∣∣2; ρe

35(t) = aeμ(t)a∗
ee(t);

ρe
52 = aee(t)a∗

eτ (t); ρe
53(t) = aee(t)a∗

eμ(t); ρe
55(t)

=|aee(t)|2.
And the corresponding oscillation probabilities, Pee(t) =

|aee(t)|2, Peμ(t) = |aeμ(t)|2 and Peτ (t) = |aeτ (t)|2, in elec-
tron NOs as a function of L/E are plotted in Fig. 1. When
the initial neutrino is in electron flavor neutrino, the survive
probability for maintaining in this flavor is always higher than
0.1, and the other two transition probabilities are smaller than
0.7 in a range [0, 40] of L/E with dimension km/MeV. The
differences between survive and transition probabilities are
large over a wide range with respect to L/E .

For the three-flavour neutrino state |ψe(t)〉 , using the Eq.
(13), the GGM can be calculated as

G(ρe) = 1 − max{λeA, λeB, λeC }, (26)

where λeA, λeB and λeC are the largest eigenvalues of the
reduced density matrix ρe

A, ρe
B , ρe

C , respectively. It can found
that λeA = max{Peτ +Peμ, Pee}, λeB = max{Pee+Peτ , Peμ},
λeC = max{Pee + Peμ, Peτ }, respectively.

To get the three-π entanglement of the three-qubit electron
neutrino system, we should firstly trace over the qubit C and
B of ρABC to get the reduced density matrices: ρAB and
ρAC , respectively. The partial transpose ρT

AB and ρT
AC are

obtained by focus on A. By solving the corresponding eigen
equation, we can find the negativity of NAB and NAC with
their negative eigenvalues. Using Eqs.(15) and Eqs.(16), we
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Fig. 1 Oscillation probabilities as a function of the ratio between the
traveled distance L and the energy E . The figure plots the oscillation
probability ve(0) → ve(t) (red, solid line), ve(0) → vμ(t) (purple,
dashed line), ve(0) → vτ (t) (blue, dashed-dotted line) when the initial
neutrino flavor is electron flavor

obtain the residual entangle πA. In a similar way, we have
πB and πC . Finally, the systemic three-π entanglement can
be calculated as

πABC (ρe)

= 4

3

[
− P2

ee − P2
eμ − P2

eτ + Pee
√
P2
ee + 4PeμPeτ

+ Peμ
√
P2
eμ + 4Pee Peτ + Peτ

√
P2
eτ + 4Pee Peμ

]
.

(27)

For GMC in the three-flavour electron neutrino system,
from the Eq. (20), the GMC is expressed as min

{
2[1 −

Tr(ρ2
A)], 2[1 − Tr(ρ2

B)], 2[1 − Tr(ρ2
C )]}. This gives

CGMC (ρe) = min
{
4Pee

(
Peμ + Peτ

)
, 4Peμ

(
Pee + Peτ

)
,

4Peτ
(
Pee + Peμ

)}
. (28)

Finally, by calculating the area of the concurrence triangle
with the Eq. (23), we can get concurrence fill

F123(ρ
e) = 8

{
P2
ee P

2
eμP

2
eτ [Peτ Peμ + Pee(Peμ + Peτ )]

3

}1/4

.

(29)

We can find that the amount of tripartite quantum entangle-
ment depends on the three oscillation probabilities, which
are subjected to the normalization constraint:

∑
α Pαβ =∑

β Pαβ = 1 (α, β = e, μ, τ ). The maximal value of
four tripartite entanglement measures: GGM, three-π , GMC,
and concurrence fill, in three-flavored electron NOs is 1/3,

Fig. 2 The four kinds of multipartite entanglement measure, including
GGM (black dotted line), three-π (blue, dashed-dotted line), GMC (pur-
ple, dashed line), and concurrence fill (red, solid line) for the electron
antineutrino oscillation system

4(
√

5 − 1)/9, 8/9, and 8/9, respectively, when all the oscil-
lation probabilities are equal to 1/3.

In Fig. 2, we plot the tripartite entanglement measures
for three-flavored electron NOs as a function of ratio L/E ,
including GGM, three-π , GMC, and concurrence fill. At
the point L/E = 0, all the measure of multipartite entan-
glement are 0. In particular, each edge of the concurrence
triangle has a zero length, so the area of the concurrence
triangle is also zero. Similarity, the four measures repeat a
same change trend in one period of L/E that increase firstly
and then decrease. However, they take different amount of
information in the neutrino propagation. Moreover, the three
oscillation probabilities get close to the critical condition
that they take the same value, i.e., Pαβ = 1/3, at around
L/E = 10.83 km/MeV. In this sense, the maximal value of
entanglement for these measures are approximatively 0.32,
0.55, 0.88, and 0.89, respectively. One can see that GMC
and GGM have nonanalytical sharp peaks due to the nonana-
lytic minimum argument in its expression, concurrence fill is
always smooth and contains more information. Although the
three-π presents a smooth curve, concurrence fill is always
larger than it in the whole range of L/E . These results show
that concurrence fill has advantages over other measures in
the three-flavored electron NOs.

In addition, to visualize the difference between GMC and
concurrence fill for the electron NO systems, we make the
use of the concurrence triangles to characterize the amount of
information they carried. The concurrence triangles for three
cases: Peμ = Peτ = 0.115, Pee = 0.77 at around L/E =
4.61 km/MeV, Peμ = Peτ = 0.2, Pee = 0.6 at around
L/E = 8.10 km/MeV, and Pee = Peμ = 0.41, Peτ = 0.18
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Fig. 3 The lengths of the edges and the areas for the concurrence
triangles with L/E = 4.61 km/MeV, L/E = 8.10 km/MeV, and
L/E = 10.31 km/MeV, respectively, are shown in the three-flavored
electron NOs

at around L/E = 10.31 km/MeV, respectively, are plotted
in Fig. 3. They are all isosceles triangles, in which F123 is
the square root of the area of the concurrence triangle, and
CGMC is the corresponding shortest edge. One can see that
concurrence fill is always larger than or equal to the GMC,
meaning that concurrence fill possesses more information
than GMC.

5 Entanglement in muon antineutrino oscillations

If the muon flavor state is prepared at initial time t = 0, the
evolution of states for three-flavored NOs can be expressed
as

∣∣ψμ(t)
〉 = aμe(t) |100〉 + aμμ(t) |010〉 + aμτ (t) |001〉 .

(30)

To quantify the entanglement measure, we shall focus on
the the density matrix ρ

μ
ABC (t) = ∣∣ψμ(t)

〉 〈
ψμ(t)

∣∣. This gives

ρ
μ
ABC (t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 ρ

μ
22 ρ

μ
23 0 ρ

μ
25 0 0 0

0 ρ
μ
32 ρ

μ
33 0 ρ

μ
35 0 0 0

0 0 0 0 0 0 0 0
0 ρ

μ
52 ρ

μ
53 0 ρ

μ
55 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where the matrix elements are given by
ρ

μ
22 = ∣∣aμτ (t)

∣∣2; ρ
μ
23(t) = aμτ (t)a∗

μμ(t); ρ
μ
25 = aμτ (t)

a∗
μe(t); ρ

μ
32 = aμμ(t)a∗

μτ (t); ρ
μ
33(t) = ∣∣aμμ(t)

∣∣2; ρ
μ
35(t)

=aμμ(t)a∗
μe(t); ρ

μ
52 =aμe(t)a∗

μτ (t); ρ
μ
53(t)=aμe(t)a∗

μμ(t);

ρ
μ
55(t)=

∣∣aμe(t)
∣∣2

.

The probabilities for finding the neutrino in state |νe〉, |νμ〉
and |ντ 〉 are, respectively, Pμe(t) = |aμe(t)|2, Pμμ(t) =
|aμμ(t)|2 and Pμτ (t) = |aμτ (t)|2, for the initial muon flavor
neutrino. In Fig. 4, we show the oscillation probabilities of the

Fig. 4 Oscillation probabilities as a function of the ratio between the
traveled distance L and the energy E . The figure plots the oscillation
probability vμ(0) → vμ(t) (red, solid line), vμ(0) → ve(t) (purple,
dashed line), vμ(0) → vτ (t) (blue, dashed-dotted line) when the initial
neutrino flavor is muon flavor

muon neutrino oscillation as a function of L/E with logarith-
mic scale. While the transition probability of Pμτ (t) shows
a relatively large range of variation, the transition probabil-
ity of Pμe(t) takes a trivial value with respect to L/E with
dimension km/GeV.

For the three-flavour state
∣∣ψμ(t)

〉
, the GGM is

G(ρμ) = 1 − max{λμ
A, λ

μ
B, λ

μ
C }, (32)

where λ
μ
A, λ

μ
B and λ

μ
C are the largest eigenvalues of the

reduced density matrix ρ
μ
A , ρ

μ
B , ρ

μ
C , respectively. By calcu-

lation, λ
μ
A = max{Pμτ + Pμμ, Pμe}, λ

μ
B = max{Pμe +

Pμτ , Pμμ}, λ
μ
C = max{Pμe + Pμμ, Pμτ }.

Similar to the case of electron neutrino oscillation system,
we can calculate that the corresponding three-π entangle-
ment as

πABC (ρμ)

= 4

3

[
− P2

μe − P2
μμ − P2

μτ + Pμe

√
P2

μe + 4PμμPμτ

+ Pμμ

√
P2

μμ + 4Pμe Pμτ + Pμτ

√
P2

μτ + 4Pμe Pμμ

]
.

(33)

The GMC, as the smallest of three one-to-other bipartite
entanglements of the three-flavour muon neutrino system,
is expressed as
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Fig. 5 In the muon antineutrino oscillation system, the multipartite
entanglement measured by GGM (black dotted line), three-π (blue,
dashed-dotted line), GMC (purple, dashed line), and concurrence fill
(red, solid line)

CGMC (ρμ) = min
{
4Pμe

(
Pμμ + Pμτ

)
, 4Pμμ

(
Pμe + Pμτ

)

4Pμτ

(
Pμe + Pμμ

)}
. (34)

Concurrence fill, as a new method of measure the genuine
multipartite entanglement, is obtained

F123(ρ
μ)

= 8

{
(Pμe PμμPμτ )

2[Pμτ Pμμ + Pμe(Pμμ + Pμτ )]
3

}1/4

.

(35)

In Fig. 5, we plot GGM, three-π , GMC, and concur-
rence fill in three-flavored muon neutrino oscillations as a
function of ratio L/E with dimension km/GeV. The mini-
mum of the first concave interval of four entanglement mea-
sures are approximatively given by 0.013, 0.018, 0.051, and
0.063, respectively, when at around L/E = 513.4 km/GeV
for three-flavored muon neutrino oscillations. At the point
L/E = 0, only the survive probability is 1, and the other
two transition probabilities are 0, and the four measures of
multipartite entanglement are 0. While GMC and GGM have
six nonanalytical sharp peaks, the change of concurrence fill
are smooth in the range of [10, 1600] of L/E . Also, the con-
currence fill is always larger than GGM and three-π in the
whole change range of parameter. Again, we can find that
concurrence fill is a more genuine tripartite measure of tri-
partite entanglement possessing the advantage of smoothing
change and more information simultaneously, compared to
other three tripartite entanglement measures.

Fig. 6 The lengths of the edges and the areas for the concurrence tri-
angles with L/E = 262.2 km/GeV, L/E = 479.9 km/GeV, and
L/E = 1130 km/GeV, respectively, are shown in the three-flavored
muon NOs

In Fig. 6, we plot the concurrence triangles for the
three-flavored muon neutrino systems in the case that
Pμμ = Pμτ = 0.488, Pμe = 0.024 at around L/E =
262.2 km/GeV , Pμμ = 0.022, Pμτ = 0.937, Pμe = 0.041
at around L/E = 479.9 km/GeV, and Pμμ = 0.894, Pμτ =
0.087, Pμe = 0.019 at around L/E = 1130 km/GeV,
respectively. The F123 and CGMC are the square root of
the area and shortest edge of the concurrence triangle,
respectively. For the L/E = 262.2 km/GeV, L/E =
479.9 km/GeV, and L/E = 1130 km/GeV, the square root
of the area of the concurrence triangle are 0.33, 0.09, and
0.13, respectively, and the corresponding shortest edges are
0.09, 0.09, and 0.08. The shortest edges is always not more
than the square root of the area, suggesting that concurrence
fill contains more information than GMC.

6 Summary

In summary, we show that concurrence fill is a genuine tri-
partite measure to quantify the quantumness of three-flavor
electron and muon neutrino oscillations. For initial electron-
neutrino oscillations, concurrence fill can reach the maxi-
mum 0.89, while the maximum of other three tripartite entan-
glement measures, including GGM, three-π , and GMC are
0.32, 0.55, and 0.88, respectively. It has been proven that
concurrence fill is a more natural measure compared to other
three measures. The reasons are two-manifold: (i) Concur-
rence fill shows a smoothing change with respect to L/E ,
since it considers all the bipartite entanglement measures.
GGM and GMC have nonanalytical sharp peaks due to the
nonanalytic minimum argument in its expression, which lose
sight of the global distribution of entanglement among the
parties. (ii) Concurrence fill contains more quantum resource
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in the electron and muon neutrino propagation. Concurrence
fill is always larger than or equal to the other three entan-
glement measures. All these features make concurrence fill
a genuine information-theoretic quantification of tripartite
quantum entanglement of quantum resource theories in three-
flavor NOs.
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