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1 Introduction

The four-point tree-level amplitude in string theory is a famously miraculous object [1–3].
Consider for instance the color-ordered four-tachyon amplitude of open bosonic strings,
where (with α′ = 1)

Aopen,bos(s, t) = Γ(−s−1)Γ(−t−1)
Γ(2+u) . (1.1)

The above expression satisfies all the stringent consistency constraints on amplitudes in one
shot. It is consistent with causality, by being appropriately bounded by a power of s for
large centre-of-mass energy s, working in the Regge limit at fixed momentum transfer t.
It is famously UV complete, being exponentially soft for physical Lorentzian kinematics
(stu > 0 with s+t+u = −4), at large energy and fixed angle.

But by far the most miraculous property of the amplitudes is the way they are
consistent with unitarity. Consider the residue of Aopen,bos(s, t) as we approach a pole at
s→ n. We have Aopen,bos(s, t)→ 1

s−n ×R
open,bos
n (t) with Ropen,bos

n (t) = (2+t)(3+t)···(n+2+t)
(n+1)! .

– 1 –
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As usual, we can express this result in terms of the scattering angle x = cos θ with
t = (s+4)(x−1)/2 = (n+4)(x−1)/2, so that the “residue polynomial” Ropen,bos

n (x) is

Ropen,bos
n (x) = 1

(n+1)!

(
n+4

2

)n+1 n+1∏
i=1

(
x−n−2i+2

n+4

)
. (1.2)

Unitarity demands that Ropen,bos
n (x) can be expanded in Gegenbauer polynomials G(D)

j (x)
with all positive or zero coefficients: Ropen,bos

n (x) =
∑
j B

D
n,j G

(D)
j (x) with BD

n,j > 0 and
spacetime dimension D. The positivity of the BD

n,j ’s follows from the fact that they are
the mod-square of three-particle amplitude couplings to the internal states of spin-j, or
equivalently, represent the cross-section for the resonant production of the intermediate
spin-j states. Here the first interesting level is n = 1, where we find

8
25R

open,bos
n=1 (x) =

(
x−1

5

)(
x+1

5

)
=
(
x2− 1

D−1

)
+
( 1
D−1−

1
25

)
. (1.3)

The spin-2 Gegenbauer polynomial in D dimensions is proportional to (x2− 1
D−1), so this

shows that we are exchanging a spin-2 state with a positive norm. But the remaining
constant term indicates the presence of a spin-0 state with the norm 1

D−1−
1
25 . This gives a

negative-norm state for D > 26 spacetime dimensions. In this way, the four-point tree-level
amplitude — whose form is completely independent of spacetime dimensionality — knows
about the critical dimension, through unitarity.

The story is much more interesting for the scattering of spinning states. For the
four-gluon amplitude in type-I superstrings,

AI(s, t) = F4AI(s, t) = F4 Γ(−s)Γ(−t)
Γ(1+u) . (1.4)

Here, F4 is a famous permutation-invariant polynomial in the field strengths that appears
in the tree-level Yang-Mills amplitude: AYM = F4

st . Unitarity at the first massive level is
already non-trivial: as the residue is simply F4 itself, the permutation-invariant polynomial
must be written as a positive sum of s-channel exchanges. With x = p1−p2 and y = p3−p4,
we express

F4(εi, x, y) = 〈x, ε1, ε2|O|y, ε3, ε4〉 , (1.5)

where |x, ε1, ε2〉 represents the “Hilbert space” of states with x, ε1, ε2. From these states we
can build irreps of SO(D−1), on which O can be expanded. We find that in this form, F4

is uniquely given as a combination of spin-0, -2 and a 3 form:

O =
( 9
D−1−1

) ∣∣ · 〉〈 · ∣∣+ ∣∣ 〉〈 ∣∣+ ∣∣ 〉〈 ∣∣ . (1.6)

Positivity of the expansion now requires D 6 10. Note that this massive spectrum is
exactly the bosonic content of 11-dimensional supergravity, as it must from the viewpoint
of supersymmetry, i.e., massive irreps can be obtained from massless ones in one dimension
higher. Thus, in a precise sense, the tree-level amplitude of Yang-Mills knows about the
critical dimension of type-I superstring as well as supersymmetry!

– 2 –
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Let us also mention that the exchanged three fields correspond exactly to the field
content expected from the worldsheet description of type-I strings. These fields correspond
to the first massive level. Letting ∂Xµ and ψµ be the free bosons and fermions respectively,
the unique two bosonic physical states in string theory at this mass-level read∣∣ 〉

≡ εµν∂Xµψνeip·X ,
∣∣ 〉
≡ εµνλψµψνψλ eip·X , (1.7)

where εµν and εµνλ are the transverse traceless symmetric and antisymmetric polarization
vectors respectively, i.e., pµεµν = 0 and pµεµνλ = 0. The scalar state is absent in ten-
dimensional string theory, as predicted from the coefficient in (1.6). In the presence of
an internal compactification manifold, one can generically write down one more scalar by
choosing (the coefficients are chosen in order to ensure a traceless transverse polarization)

εµν = ηab + papb −
D − 1
D − 10gij , (1.8)

where a, b = 0, 1, . . . , D denote the flat directions and i, j are the indices of the internal
manifold with metric gij . We can identify this additional scalar with the scalar appearing
in the expansion (1.6) for D < 10.

Going beyond the first level we have AI(s, t) → 1
s−nF

4 × RI
n(t), where RI

n(t) =
(1+t)(2+t)···(n−1+t)

n! . Once again, in terms of the scattering angle it is given as:

RI
n(x) = 1

n!

(
n

2

)n−1 n−1∏
i=1

(
x−n−2i

n

)
. (1.9)

Expanding on the Gegenbauer polynomials, RI
n(x) =

∑
j B

D
n,j G

(D)
j (x), this can now be

combined with the expansion in eq. (1.6) to yield a “diagonalized” representation of the
residue:

F4RI
n = 〈x, ε1, ε2|On|y, ε3, ε4〉 , (1.10)

where

On =
∑
j

BD
n,j

{( 9
D−1−1

) ∣∣ · ⊗j〉〈 · ⊗j∣∣+ ∣∣ ⊗ j
〉〈

⊗ j
∣∣+ ∣∣ ⊗ j〉〈 ⊗ j∣∣} . (1.11)

The diagonalized is in quotes, since the states are constructed from tensor products of either
the spin-0, 2 or 3-form, with a symmetric spin-j irrep, i.e., the states are not necessary
orthogonal, see section 2 for details. Nevertheless, if the coefficients BD

n,j are positive, the
operator On is manifestly positive, establishing unitarity. We already know that unitarity
for the first massive level requires D 6 10. Unitarity can be established if we can show that
BD
n,j > 0 for D 6 10. This is already non-trivial for level n = 3,

8
3R

I
n=3(x) =

(
x−1

3

)(
x+1

3

)
=
(
x2− 1

D−1

)
+
( 1
D−1−

1
9

)
. (1.12)

Once again, we see that for BD
3,0 > 0 requires D 6 10.

– 3 –
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j = 0 j = 1 j = 2 j = 3 j = 4

n = 1 1
n = 2 0 1

2(D−3)

n = 3 10−D
24(D−1) 0 3

4(D−1)(D−3)

n = 4 0 11−D
12(D+1)(D−3) 0 2

(D2−1)(D−3)

n = 5 9D2−250D+1616
1920(D2−1) 0 25(12−D)

96(D−1)(D2−9) 0 125
16(D2−1)(D2−9)

Table 1. Values of BD
n,j for the type-I amplitude with low n and j. Note that all of them are

non-negative for D 6 10 and, e.g., BD
3,0 indicates violation of unitarity for D > 10.

The remarkable claim is that this pattern holds for all higher levels n: the residue
polynomial can be expanded as

RI
n(x) =

∑
j

BD
n,jG

(D)
j (x), where BD

n,j > 0 for D 6 10 . (1.13)

The coefficients BD
n,j for the first few levels are given in table 1, and can be manually verified

to be positive for D 6 10. Note also the clear pattern of zeroes. These zeroes follow from
the fact that Rn(x) is even in x for odd n and odd in x for even n. Thus only even spins
are exchanged for odd n and vice-versa, so that BD

n,j vanishes when n+j is even.
Note also that these fundamental positivity statements for open strings directly prove

that the residue polynomials for closed strings also have a positive expansion. For example
consider type-II superstring, heterotic Yang-Mills [4]1 and closed tachyon amplitude are
given by:

AII(s, t) = R4AII(s, t) = R4 Γ(−s)Γ(−t)Γ(−u)
Γ(1+s)Γ(1+t)Γ(1+u) ,

AHet(s, t) = F4AHet(s, t) = F4 Γ(−s−1)Γ(−t−1)Γ(−u+3)
Γ(1+s)Γ(1+t)Γ(1+u) , (1.14)

Aclosed,bos(s, t) = −Γ(−1−s)Γ(−1−t)Γ(−1−u)
Γ(2+s)Γ(2+t)Γ(2+u) ,

where R4 = (F4)2 . The reason is simple: the residue for the type-II closed string is
R4RII

n (x) = (F4RI
n(x))2, and for the closed bosonic string is the square of the open bosonic

string Rclosed,bos
n (x) = (Ropen,bos

n (x))2, while the residue for the heterotic string, F4Rhet
n (x),

1Recall that the heterotic string contains the bosonic string in R1,9 × Γ16 as the left-moving part and
the superstring in R1,9 as the right moving part. The momenta on the bosonic side is now split into 10
continuous, and 16 discrete momenta associated with the torus Γ16. Here we consider four gluons whose
color indices are root vectors, and arranging the discrete momenta Ki, with K2

i = 1, satisfying

S = −(K1+K2)2 = 0, T = −(K1+K4)2 = 0, U = −(K1+K3)2 = −4 ,

such that in the low-energy limit one directly lands on the Yang-Mills amplitude with 1234 ordering.

– 4 –
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can be written as:

Rhet
n (x) =



1
8(x+3)(x+5) n = 1,
1
12x(x+1)(x+2)(x+3) n = 2,

(1+x)(n2x(x+2)+n2−4)(n(1+x)+4)
16(n−2)(n−1)(n+1) RI

n(x)Ropen,bos
n−4 (x) n > 2.

(1.15)

For n > 2, it is given by a product of type-I and open bosonic string residue with a completely
positive function (a polynomial in x with positive coefficients which is guaranteed to have
a positive Gegenbauer expansion in any dimension). But it is obvious that if A(x) and
B(x) have a positive expansion on the Gegenbauers, so does the product A(x)B(x). Indeed,
this simply follows from Gj1(x)Gj2(x) having a positive expansion, since spin-j1× spin-j2
representations of O(D − 1) obviously decompose as a positive sum of irreps of various
spins. Thus, given that Rn(x) has a positive expansion for the open strings, the products
associated with the closed strings also have positive expansions. We should also notice
that unitarity in higher dimensions immediately implies unitarity in lower dimensions for
essentially the same reason. G(D)

j (x) decomposes into a positive sum of G(D′)
j′ (x) for D′ < D

according to the branching rules of O(D− 1) into O(D′− 1). This is also physically obvious
since we may always compactify a unitary theory in D spacetime dimensions to obtain a
unitary theory in D′ < D dimensions.

The Gegenbauer positivity of Rn(x) is a strikingly elementary statement. There is an
indirect proof of this positivity, via the famous no-ghost theorem [5]; a general discussion
of unitarity in closed string perturbation theory is given in [6]. On-shell perspective on
unitarity was previously explored in the context of high-energy expansion of partial waves [7]
and Hankel-matrix constraints on the Wilson coefficients [8]. There is also an interesting
sort of converse to this statement, where the assumption of positivity for the Gegenbauer
expansion of four-particle amplitudes, for any theory with an infinite tower of massive
states, implies that the amplitude asymptotes to the string amplitudes in the (unphysical)
high-energy regime where s, t are both large and negative [9].

But the basic statement of positivity is so simple, and of such fundamental importance
to the consistency of string theory, that it cries out for a more elementary and direct
understanding on the level of the amplitudes. Indeed, some extreme cases are easy to
understand. Most trivially, RI

n(x) = 1
n!(

n
2 )n−1xn−1 + . . . ; this tells us the highest spin at

level n is jmax = n−1, and since the coefficient of xn−1 is positive, also establishes the
coefficient of the spin-(n−1) Gegenbauer is positive.

For general spin, the coefficient BD
n,j can be extracted using the orthogonality of

Gegenbauer polynomials as

BD
n,j ∝

∫ 1

−1
dx (1−x2)

D−4
2 G

(D)
j (x)RI

n(x) , (1.16)

where we suppressed the (positive) normalization factor coming from the normalization of
the Gegenbauer polynomials. It is easy to see that for large n, RI

n(x) is peaked around
x = ±1, and is crushed away from the ends of the interval, as in figure 1. This means

– 5 –
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Figure 1. The residue coefficient RI
n=21(x) as a function of the scattering angle x = cos θ.

that for fixed j and large n, the integral for BD
n,j is dominated by the regions near x = ±1,

where the contribution to BD
n,j is manifestly positive, so it is clear that for fixed j and large

enough n, BD
n,j is positive.

But for general n and j, it is devilishly difficult to establish the positivity of BD
n,j by

brute force. Almost all the “obvious” ways of extracting BD
n,j are given as a sum of terms

with alternating signs, with no evident reason for positivity. This is ironic, because it can
be seen experimentally that the actual values of BD

n,j rise from a small positive value at
j = 0, to a maximum near j ∼ 2

√
n, followed by a faster-than exponential decrease at larger

j: it is hardest to prove BD
n,j is positive exactly where it has the largest positive magnitude!

This is illustrated in figure 2. The maximum at j ∼ 2
√
n is reminiscent of a similar peak in

the distribution of spins contributing at a given mass level [10, 11].
In this note, we will revisit this basic question, by finding a remarkably simple new

expression for the residues BD
n,j as a double-contour integral. Recall that BD

n,j = 0 when
n+j is even; instead for n+j odd we have, up to a positive constant2

BD
n,j ∝

∮
u=0

du
2πi

∮
v=0

dv
2πi

(v − u)j e−a(u+v)

(uv)j+
D−2

2 (ev − eu)n+2a
. (1.17)

Here a = 0 and 1 labels the type-I and bosonic open string amplitude respectively. We prove
this formula in section 3. Using this expression, the positivity of BD

n,j in the type I case for
all spacetime dimensions D 6 6 follows easily, as shown in section 4.1. For 6 < D 6 10, the
positivity is not as obviously manifest, though for any fixed spin j can also be established
for all n, with a finite amount of work. This is exemplified in section 4.2. Similar statements
apply for the open bosonic string, where we can prove unitarity in the range D 6 10, while
unitarity in the range 10 < D 6 26 can only be established for each fixed spin separately.
The above expression also allows us to quantitatively analyze the asymptotic limits of BD

n,j ,

2This formula as written only works for even D, but most of its consequences that we derive in this paper
also work for odd D.

– 6 –
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Figure 2. Coefficients BD=10
n,j for the type I superstring for five different values of n plotted in blue

against j on a logarithmic scale. Only coefficients with n+j odd are plotted and they have been
rescaled by ( 4

e )n to make the plot more readable. In each case, a peak is reached near j ∼ 2
√
n,

indicated with black dots, in qualitative agreement with the asymptotic formula for density of
states derived in [12]. The asymptotic formulas that are derived in section 4.3 for small-j and
small-∆ = n−j are both plotted in red.

for fixed j at large n, and also for fixed Regge trajectories, taking n large while keeping
∆ = n−j fixed, see section 4.3. These asymptotics are also indicated in figure 2.

Quite apart from its use in proving positivity and understanding the asymptotics, we
find this double-contour integral representation of BD

n,j to be quite intriguing. While the
string amplitudes themselves are clearly beautifully canonical objects, there was no a priori
reason to expect any nice structure in the partial wave expansion of their residues! But such
a structure does exist, and begs for a more direct understanding than the straightforward
but not especially transparent derivation we will provide. Indeed as we will see, the most
striking feature of this expression — its evident symmetry between the u, v variables — will
not be apparent in our derivation at all, only popping out as a mysterious surprise at the
end of the computation. There are analogous double-contour integral formulas for the open
bosonic string, and triple-contour integrals for closed string residues. But we will leave the
exploration of deeper origins for these formulae to future work; in this note we will content
ourselves with deriving these unusual and interesting expressions, and highlighting their
utility in understanding the fascinating positivity of the residues much more directly than
previously possible.

– 7 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
7

2 Unitarity of the superstring

Let us begin with the gluon amplitude for the type-I superstring, given in eq. (1.4). The
prefactor F4 is a permutation invariant polynomial of polarization vectors and momenta,
which also appears as the numerator of the color-ordered 1234 tree-level Yang-Mills amplitude
as AYM = F4

st , where
F4 = (FµνFµν)2 − 4(FµνF ναFαβF βµ). (2.1)

Here it is understood that we expand Fµν = F1,µν+ · · ·+F4,µν , with Fi,µν = pi,µεi,ν−pi,νεi,µ,
and we extract only terms linear in each of the polarization vectors εi,µ.

We will find it most convenient to consider the scattering process in the center of mass
frame, defined as

(2.2)

where x, y are unit (D−1)-dimensional vectors, and the polarization vectors are chosen
to be space-like εi = (0, Ei), satisfying E1 · x = E2 · x = E3 · y = E4 · y = 0. A short
computation then gives us F4 in terms of these center-of-mass frame variables:

F4(Ei,x,y) = (E1 ·E2)(E3 ·E4)
[
(x·y)2−1

]
(2.3)

+(E2 ·E3)(E1 ·E4)2 [1+(x·y)]+(E1 ·E3)(E2 ·E4)2 [1−(x·y)]
+2[(E1 ·E2)(E3 ·x)(E4 ·x)+(E3 ·E4)(E1 ·y)(E2 ·y)−(E2 ·E3)(E1 ·y)(E4 ·x)
+(E1 ·E3)(E2 ·y)(E4 ·x)+(E2 ·E4)(E1 ·y)(E3 ·x)−(E1 ·E4)(E2 ·y)(E3 ·x)] .

The n-th level residue can then be written as

F4(Ei, x, y) ·RI
n(x · y) ≡ Ea1Eb2Ec3Ed4(F4)a,b,c,d(x, y) ·RI

n(x · y) . (2.4)

We will now introduce a Hilbert space |w, a b〉, where w is a unit vector representing the
direction of the in/out scattering states in the center-of-mass frame, and a, b denote the spin
degrees of freedom. These states are orthonormal 〈w′, a′, b′|w, a, b〉 = δSD−2(w,w′)δa′aδb′b.
This continuum of states transform as highly reducible representations of SO(D−1), and we
will build linear combinations of them by integrating over the sphere with various weights,
that transform more conveniently, as familiar from the introduction of spherical harmonics.

Now the residue defines an operator Rn, by giving its matrix elements as:

〈y, c d|Rn|x, a b〉 = (F4)a,b,c,d(x, y) ·RI
n(x · y) . (2.5)

We would like to demonstrate that Rn is a positive operator, i.e., that for all the states in
the Hilbert space |ψ〉, 〈ψ|Rn|ψ〉 > 0. We will do this by showing that the operator can be

– 8 –
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written in the form are
∑
i ci|i〉〈i| with ci > 0 and where |i〉’s are distinct but not necessarily

orthogonal states.
Let us start with n = 1, where RI

1(x ·y) = 1. The goal is then to find a positive operator
R such that 〈y, c d|R|x, a b〉 = (F4)a,b,c,d. To this end, we will build SO(D−1) irreps out of
|w, a b〉. For example, for spin-0, 2 and totally anti-symmetric 3-form we can construct,∣∣ · 〉 =

∫
w
|w, k k〉,∣∣i, j〉(1) =

∫
w

1
2 (|w, i j〉+|w, j i〉)−

δij
D−1 |w, k k〉,

∣∣i, j〉(2) =
∫
w

(
wiwj−

δij
D−1

)
|w, k k〉,∣∣ ij

k

〉
=
∫
w
w[i|w, j k]〉 , (2.6)

where
∫
w stands for the projective integral over a (D−2)-sphere, i.e.,

∫
w ≡

∫
〈w dD−2w〉.

Note that we have two possible spin-2 structures.3 As it turns out, this will be sufficient.
The inner product with |x, a b〉 is given as〈

x, a b
∣∣ · 〉 = δab,〈

x, a b
∣∣i, j〉(1) = (δaiδbj+δajδbi)

2 −δijδab
D−1 ,

〈
x, a b

∣∣i, j〉(2) =
(
xixj−

δij
D−1

)
δab ,〈

x, a b
∣∣ ij
k

〉
= x[iδajδbk] . (2.7)

Using these irreps, we can construct the following rotationally-invariant operator,

O = c0
∣∣ · 〉〈 · ∣∣+ 2∑

α,β=1
cαβ

∣∣i, j〉(α)〈
i, j
∣∣(β) + c3

∣∣ ij
k

〉〈 i
j

k

∣∣ . (2.8)

Sandwiched between |x,E1, E2〉 = |x, a b〉Ea1Eb2 and 〈y,E3, E4| we find

〈y,E3, E4|O|x,E1, E2〉 = (E1·E2)(E3·E4)
[
c0−

c11+c12+c21+c22
D − 1 +(x·y)2c22

]
+ (E1·E3)(E2·E4)

[
c11
2 −(x·y)c3

]
+(E2·E3)(E1·E4)

[
c11
2 +(x·y)c3

]
+ (E3·E4)(E1·y)(E2·y)c12+(E1·E2)(E3·x)(E4·x)c21

+
[
(E2·E4)(E1·y)(E3·x)−(E2·E3)(E1·y)(E4·x)

+ (E1·E3)(E2·y)(E4·x)−(E1·E4)(E2·y)(E3·x)
]
c3 . (2.9)

The coefficients can now be fixed by matching to F4 in eq. (2.3), leading to:

c0 =
( 9
D−1−1

)
, c11 = 4, c12 = c21 = 2, c22 = 1, c3 = 2 . (2.10)

3Other spin-2 structures will vanish when contracting with the polarization vectors. For example consider∣∣i, j〉(3) =
∫
w
w{iwk|w, j} k〉. Then

Ea1E
b
2
〈
x, a b

∣∣i, j〉(3) = (E2 · x)E1{ixj}

which vanishes since E2 · x = 0.
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Since the states are irreps, they are orthogonal, and unitarity demands c0 > 0 which
implies that D 6 10. Thus tree-level Yang-Mills amplitude “knows” about critical dimension
of type-I string! Note that the matrix of couplings for the spin-2 state has rank one:(

c11 c12
c21 c22

)
=
(

4 2
2 1

)
= vvT with v =

(
2
1

)
, (2.11)

which tells us that we have exactly one linear combination of the two spin-2 states ap-
pearing here, which we can identify as

∣∣ 〉
= 2|i, j〉(1)+|i, j〉(2). Thus we conclude that

(F4)a,b,c,d(x, y) = 〈y, c d|O|x, a b〉 with

O =
( 9
D−1−1

) ∣∣ · 〉〈 · ∣∣+ ∣∣ 〉〈 ∣∣+ ∣∣ 〉〈 ∣∣ . (2.12)

Importantly, once it is established that (F4)a,b,c,d(x, y) is a positive operator, this
can be extended to (F4)a,b,c,d(x, y) ·RI

n(x · y) if RI
n(x · y) has a positive expansion on the

Gegenbauer polynomial. To see this for each state in the Hilbert space |ψ〉, a state |ψ; z, j〉
defined through

〈x, ab|ψ; z, j〉 = 〈x, ab|ψ〉 G
(D)
j (x · z) . (2.13)

In other words, |ψ; z, j〉 is the result of tensoring |ψ〉 with symmetric spin-j irrep. Note
that even if the |ψ〉’s are irreps, |ψ; z, j〉 in general will not be and thus are not orthogonal.
Thus once we have

RI
n(x · y) =

∑
j

BD
n,j G

(D)
j (x · y), BD

n,j > 0, (2.14)

we can construct (F4)a,b,c,d(x, y) ·RI
n(x · y) as a positive operator:

Rn =
∑
j

BD
n,j

[ ∫
z

( 9
D−1−1

) ∣∣·; z, j〉〈·; z, j∣∣ (2.15)

+
∣∣ ; z, j

〉〈
; z, j

∣∣+ ∣∣ ; z, j
〉〈

; z, j
∣∣] .

We have already shown at n = 1 we must have D 6 10. Numerically, one observes that BD
n,j

is indeed positive for D 6 10. In the next section we will prove its positivity for D 6 6.
We note in passing that we can describe the usual Gegenbauer expansion for external

scalars, in exactly this same positive-operator-in-Hilbert-space language. Here the states
of the Hilbert space are simpler, just labeled by the unit vector on the sphere |w〉, and
the residue Rn(x · y) defines an operator Rn via 〈x|Rn|y〉 = Rn(x · y). The only irreps of
SO(D−1) we can build from these are symmetric spin j tensors, as |·〉 =

∫
w |w〉, |i1〉 =∫

w wi1 |w〉, |i1i2〉 =
∫
w(wi1wi2 − 1

D−1δi1i2)|w〉 etc. Since the states are completely symmetric
it is natural to define |z; j〉 = zi1 · · · zij |i1 · · · ij〉. These states define the Gegenbauer
polynomials as 〈w|z; j〉 = G

(D)
j (w · z). Any rotationally-invariant operator O can be written

as
∑
j cj |i1 · · · ij〉〈i1 · · · ij | =

∑
j cj

∫
z |z; j〉〈z; j|. In particular we can expand the operator

Rn =
∑
BD
n,j

∫
z |z; j〉〈z; j|. Since these states are irreps and orthogonal, for positivity we

– 10 –
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must have that BD
n,j > 0, and so the function Rn(x · y) must have an expansion as a sum

over Gegenbauer polynomials with all positive coefficients.
Let us finally turn to the closed superstring amplitudes. Having seem that the open

string residues are identified with positive operators, it is easy to see that via the usual
“closed = open2” connection [13], the closed string residues since R4 = (F4)2 and RII

n = (RI
n)2

are positive as well. Let us begin with

(R4)a1b1a2b2a3b3a4b4 = (F4)a1a2a3a4(F4)b1b2b3b4 , (2.16)

and introduce the Hilbert space |x, a1b1a2b2〉. Now given any two |ψ〉, |χ〉 in the YM Hilbert
space, we can once again define |ψ, χ〉 in the gravity Hilbert space, through

〈x, a1b1a2b2 |ψ, χ〉 = 〈x, a1b1 |ψ〉〈x, a2b2 |χ〉 . (2.17)

Similarly, for any two operators OYM, O′YM on the YM Hilbert space,

OYM =
∑
ψ

cψ|ψ〉〈ψ|, O′YM =
∑
χ

cχ|χ〉〈χ| , (2.18)

we define an operator on the gravity Hilbert space Ogr
OYMO′YM

=
∑
χ,ψ cψcχ|ψ, χ〉〈ψ, χ| with

〈y, a3b3a4b4 |O
gr
OYMO′YM

|x, a1b1a2b2〉 =
∑
ψ,χ

cψcχ〈y, a3a4 |ψ〉〈ψ|x, a1a2〉〈y, b3b4 |χ〉〈χ|x, b1b2〉

= 〈y, a3a4 |OYM|x, a1a2〉〈y, b3b4 |O′YM|x, b1b2〉 . (2.19)

Thus we have

(R4)a1b1a2b2a3b3a4b4 = 〈y, a3b3a4b4 |

∑
ψ,ψ′

cψcψ′ |ψ,ψ′〉〈ψ,ψ′|

 |x, a1b1a2b2〉 , (2.20)

where
∣∣ψ〉 = (

∣∣ · 〉, ∣∣ 〉
,
∣∣ 〉

), c· =
(

9
D−1−1

)
and all the remaining cψ are 1. Thus we see

that for D 6 10, since all cψ are non-negative, once again we have a positive operator. Note
that for D > 10, the coefficients for (

∣∣·, 〉
,
∣∣ ·, 〉

) are negative. This however, does not
imply negativity since the states are not orthogonal, and may have overlap. This is indeed
the case, as seen from the fact that the 3-form

∣∣ ·, 〉
can also be generated from

∣∣ ,
〉
).

Thus generically the “critical dimension” for closed string amplitudes — at least as directly
inferred from our unitarity check for four-point scattering — are higher than their open
string counterparts.

3 Double-contour representation

We now turn to deriving our central result, the new double-contour integral representa-
tion (1.17) for the coefficients of the partial wave expansion of the residue polynomials
defined above. In appendix B, we give an alternative derivation of the same formula.
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To begin with, let us consider the type-I amplitude, for which

AI(s, t) = Γ(−s)Γ(−t)
Γ(1−s−t) = −1

s

∫ 1

0
dz z−s(1−z)−1−t . (3.1)

We would like to extract the residues on the massive poles of this expression at s = n,
AI(s, t) → 1

s−n × R
I
n(t) for n = 1, 2, . . .. Of course we can trivially find from the explicit

form of the Gamma functions that RI
n(t) = 1

n!(1 + t)(2 + t) · · · (n− 1 + t), but we would like
to represent this slightly more naturally directly from the integral representation. To whit,
note that the singularities in s all come from the region of integration near z → 0. This
motivates Taylor expanding the integrand around z = 0, which as is familiar gives us the
expansion of the amplitude as a sum over poles in s. Putting (1−z)−1−t =

∑
m am(t)zm, we

have AI(s, t) =
∑
m

am(t)
s−m+1 , so that the residue RI

n(t) = an−1(t). We can in turn represent
an−1(t) as n−1 derivatives around z = 0 of the function (1− z)−1−t, or what is the same,
as a contour integral around z = 0, as RI

n(t) = 1
n

∮
z=0

dz
2πi zn (1−z)−1−t. For the purpose of

the partial wave expansion, we would like to write this expression in terms of the x = cos θ,
which is related to t as usual t = s(x− 1)/2 = n(x− 1)/2 where we have used that on the
resonance s = n. Finally, since the dependence on x is exponential via (1− z)−nx/2, it is
useful to introduce (1− z) = e−u to manifest this dependence. The contour integral around
z = 0 translates into one around u = 0, and we have for the residue polynomial RI

n(x):

RI
n(x) = 1

n

∮
u=0

du
2πi

e
n
2 ue

n
2 ux

(eu − 1)n . (3.2)

Note that this expression transforms simply under u→ −u, x→ −x, and we discover that
RI
n(−x) = (−1)n+1RI

n(x), as we have already observed for the residue polynomial.
We would now like to expand RI

n(x) in the basis of Gegenbauer polynomials G(D)
j (x),

which are orthogonal with respect to the usual measure dθ (sin θ)(D−3) = dx (1− x2)
D−4

2

(compared to the classic conventions [14], we have G(D)
j (x) = C

(α)
j (x) with α = D−3

2 ). For
convenience given its ubiquitous appearance in our expressions, we will define δ = D−4

2 . We
will also use the Rodrigues formula for G(D)

j (x):

G
(D)
j (x) = (−1)jαj,D(1− x2)−δ ∂jx(1− x2)δ+j , (3.3)

where αj,D = (2δ+1)j/(2j j! (δ+1)j). Now by orthogonality, any function F (x) can be
expanded in Gegenbauers as F (x) =

∑∞
j=0 FjG

(D)
j (x), where

Fj = nj,D

∫ 1

−1
dx (1− x2)δ G(D)

j (x)F (x) , nj,D = j!
22δ(j+δ+1

2)[Γ(δ+1
2)]2

πΓ(j+2δ+1) . (3.4)

We will suppress these positive factors for now for simplicity, with the understanding that
an additional factor of αj,Dnj,D is to be restored to the final answer.

Using the Rodrigues formula, and assuming that F (x) is regular at x = ±1, we can
integrate by parts j times to arrive at Fj =

∫ 1
−1 dx (1− x2)δ+j∂jxF (x). We can apply this

form to extract the coefficients in the Gegenbauer expansion of the residue polynomial
RI
n(x). We have

RI
n(x) =

∑
j

BD
n,jG

(D)
j (x), (3.5)
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where

BD
n,j =

∫ 1

−1
(1− x2)δ+j ∂jx

∮
u=0

du
2πi

e
n
2 ue

n
2 ux

(eu − 1)n

= 1
n

(
n

2

)j ∮
u=0

du
2πi

e
n
2 uuj

(eu − 1)n
∫ 1

−1
dx (1− x2)δ+je

n
2 ux . (3.6)

Now we can easily perform the
∫ 1
−1 dx integral above, using

∫ 1

−1
dx (1− x2)Jeax = (1− ∂2

a)J
∫ 1

−1
dx eax = (1− ∂2

a)J
(
ea − e−a

a

)
= HJ(a) +HJ(−a), (3.7)

where we used the notation J = j + δ and

HJ(a) ≡ (1− ∂2
a)J

(
ea

a

)
. (3.8)

Note that here we need to specialize to even D so that J is an integer. Thus we find

BD
n,j = 1

n

(
n
2
)j ∮

u=0

du
2πi

e
n
2 uuj

(eu − 1)n
[
Hδ+j

(
n
2u
)

+Hδ+j
(
−n

2u
)]
. (3.9)

Now, the same parity symmetry u→ −u we used above in establishing the parity of the
residue polynomial RI

n(x), tells us here that the integral with the first term Hδ+j(n2u) is
(−1)n+j+1 times that of the second term Hδ+j(−n

2u). We thus learn that BD
n,j vanishes

when n+j is even, while n+j is odd we have

BD
n,j =

(
n
2
)j−1

∮
u=0

du
2πi

e
n
2 uuj

(eu − 1)nHδ+j
(
n
2u
)
. (3.10)

Up to this point, all of the steps in our derivation have been completely straightforward,
obvious and natural. But now something more slightly magical happens. The object
HJ(a) = (1−∂2

a)J(ea/a) we have introduced does not appear especially simple, so that
we still do not have a good way of integrating against this factor. But, in fact, HJ(a) is
essentially a J-th total derivative of a simple object, that will allow us to proceed with the
integration in a simple way. In fact we have a remarkable identity,

(1−∂2
a)J

(
ea

a

)
= J ! e−a ∂Ja

(
e2a

aJ+1

)
. (3.11)

With this identity, we immediately arrive at our double contour-integral representation.
Using this representation for HJ(n2u) and integrating by parts J times we have

BD
n,j =

(
n
2
)−2δ−2−j (−1)j+δ(j+δ)!

∮
u=0

du
2πi

enu

uj+δ+1∂
j+δ
u

(
uj

(eu−1)n

)
(3.12)
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and we can finally write the (j+δ)-th derivative above as a contour integral, using ∂JuF (u) =
(−1)JJ !

∮
v=0

dv
2πi vJ+1F (u−v), to obtain our double-contour integral

BD
n,j =

(
n
2
)−2δ−2−j [(j+δ)!]2

∮
u=0

du
2πi

enu

uj+δ+1

∮
v=0

dv
2πi

(u−v)j

vj+δ+1(e(u−v)−1)n

=
(
n
2
)−2δ−2−j [(j+δ)!]2

∮
u=0

du
2πi

∮
v=0

dv
2πi

(v − u)j

(uv)j+δ+1(ev−eu)n . (3.13)

Finally, restoring the extra positive factor of αj,Dnj,D, we have

BD
n,j = cDn,jβ

D
n,j , cDn,j =

2D−2Γ(D−3
2 )(j + D−3

2 )(j + D−4
2 )!

√
π nj+D−2 , (3.14)

where βDn,j is the double-contour integral displayed on the right-hand side of (1.17) with
a = 0.

All that remains is to naturally motivate and derive the fundamental identity in
eq. (3.11). The motivation is simple: in order to act with the operator (1 − ∂2

a)J , it is
natural to work with Fourier/Laplace representations that diagonalize ∂a. The Laplace
transform is obviously suggested, since 1

a =
∫∞

0 dq e−qa. Differentiating J times we also
have that J !/aJ+1 =

∫∞
0 dq qJe−qa. Putting q = r−p for any real p, we find the Laplace

representation
J ! e−pa

aJ+1 =
∫ ∞
p

dr (r−p)Je−ra. (3.15)

Now, let us begin with this representation for e−a/a =
∫∞

1 dt e−ta. In this form we can
trivially apply (1− ∂2

a)J to get

(1− ∂2
a)J

(
e−a

a

)
=
∫ ∞

1
dt (1− t2)Je−ta. (3.16)

It is now obvious that we should recognize this object at a J-th total derivative. The reason
is that (1− t2)J = (1− t)J(1 + t)J factorizes, so it is natural to put 1+t = r, and discover
our identity:

(1− ∂2
a)J

(
e−a

a

)
= ea

∫ ∞
2

dr (−r)J(r − 2)Je−ra

= ea ∂Ja

∫ ∞
2

dr(r − 2)Je−ra

= J ! ea ∂Ja

(
e−2a

aJ+1

)
. (3.17)

Changing a→ −a yields eq. (3.11).
We can also find a double-contour representation of the residues for scattering the

m2 = −1 tachyon states in the bosonic string, beginning with the Veneziano amplitude
Aopen,bos(s, t) = Γ(−1−s)Γ(−1−t)/Γ(−2−s−t). Following the same steps as in the above
derivation, we find

Bopen,bos
n,j = c′

D
n,j

∮
u=0

du
2πi

∮
v=0

dv
2πi

(v−u)je−(u+v)

(uv)j+δ+1(ev−eu)n+2 , (3.18)
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where c′Dn,j = 2D−2Γ(D−3
2 )(j+ D−3

2 )(j+ D−4
2 )!/(

√
π(n+ 4)j+D−3). We will refer to the part

stripped off from this constant as βopen,bos
n,j , just as in (1.17) with a = 1. See appendix C

for a step-by-step derivation.
Similar formula for partial-wave expansion coefficients can be obtained for closed strings.

We parametrize their amplitudes with

Aclosed
a,b (s, t) := 1

πs
a+b−2

∫
C

d2z
|z|−2s|1− z|−2t

z2a(1− z)1+az̄2b(1− z̄)1+b , (3.19)

for a, b ∈ Z and d2z = 1
2idz ∧ dz̄. Explicitly, we have

Aclosed
a,b (s, t) =



Γ(−s)Γ(−t)Γ(−u)
Γ(1+s)Γ(1+t)Γ(1+u) for a = b = 0 (type-II),

Γ(−s−1)Γ(−t−1)Γ(−u+3)
Γ(1+s)Γ(1+t)Γ(1+u) for a = 0, b = 1 (heterotic),

−Γ(−1−s)Γ(−1−t)Γ(−1−u)
Γ(2+s)Γ(2+t)Γ(2+u) for a = b = 1 (bosonic),

(3.20)

where u = −s − t + 4m2. We have m2 = −min(a, b), i.e., scattering of gravitons in the
superstring, gluons in the heterotic, and tachyons in the bosonic one.4 In this notation, the
spins range in j 6 2(n−1+a+b). Note that using Kawai-Lewellen-Tye relations [13] we can
express it in terms of the open-string amplitudes

Aa,b(s, t) = 1
π

sin(πs) sin(πt)
sin(π(s+t)) Aa(s, t)Ab(s, t), (3.21)

which implies that

Ress=nAa,b(s, t) = (Ress=nAa(s, t)) (Ress=nAb(s, t)) . (3.22)

(An alternative, more direct derivation is given in eq. (C.20).) Therefore positivity of
the Gegenbauer expansion of closed-string amplitudes follows from that of the open case.
Nevertheless, it is still interesting to find a closed-string counterpart, which we denote as
βDn,j , of the double-residue formula. We specialize to D ∈ 2Z.

Following a similar set of manipulations to those in the previous subsection, one finds in
the cases a = b that Bclosed,II/bos

n,j = 0 for odd j (for any n and D), while for even j we have

B
closed,II/bos
n,j = 2n2(a−1) [(j+D−4

2 )!]2
∮
u=0

du
2πi

∮
ũ=0

dũ
2πi

∮
v=0

dv
2πi

× evn+(4v−u−ũ)a(u+ ũ)j

[(1− eu)(1− eũ)]n+2a[v(v−u−ũ)]j+
D−2

2
, (3.23)

where the residue is taken around the origin in all the variables. In the heterotic string
case, a = 0, b = 1, there is no distinction between even/odd j and we have

Bclosed,het
n,j = 1

n [(j+D−4
2 )!]2

×
∮
u=0

du
2πi

∮
ũ=0

dũ
2πi

∮
v=0

dv
2πi

((−1)j − e4ũ) e−ũ+vn(u+ ũ)j

(1−eu)n(1−eũ)n+2[v(v−u−ũ)]j+
D−2

2
. (3.24)

4Once again there will be an additional overall δ2×8(Q) for the full type-II amplitude, and δ8(Q) for the
heterotic amplitude.
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Proofs of these formulae are given in appendix C, where one can also find alternative
derivations and expressions in terms of quadruple-contour integrals.

4 Applications

In this section, we show that our double contour formula (1.17) is well-suited to study
questions of unitarity. From now on, we use βDn,j to denote the double-contour representation
stripped off from the manifestly-positive constant according to (3.14), and similarly for the
bosonic case.

4.1 Manifest unitarity in D 6 6 dimensions

The double contour formula makes unitarity manifest in D 6 6 spacetime dimensions for
the case of the superstring. To see this, we simply have to change variables to

u = log(1− x) , v = log(1− y) , (4.1)

in terms of which the integral becomes

βDn,j =
∮
x=0

dx
2πi

∮
y=0

dy
2πi

1
(1− x)(1− y)(log(1− x) log(1− y))

D−2
2

1
(x− y)n−j

×

 1
log(1−x) −

1
log(1−y)

x− y

j . (4.2)

Each of the three factors that enter the integrand is a function with only positive Taylor
coefficients when expanded first around y = 0 and then around x = 0. We call such a
function (or rather power series) a positive function. Consequently, the residue integral that
just picks out one of the coefficients will be positive.

Indeed, the factors,
1

(1− x)(− log(1− x))
D−2

2
(4.3)

are of the same form as the function hα for α = 2−D
2 discussed in the appendix A. They

are positive for α > −2, i.e., D 6 6. The expansion of the function

(x− y)−k =
∞∑
m=0

(
k +m− 1

m

)
ymx−k−m (4.4)

is obviously also positive (since k = n − j > 0). Finally, the positivity of the last factor
follows from the positivity of

f(z) = 1
log(1− x) + 1

x
=
∞∑
m=0

cmx
m (4.5)
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with cm > 0. We demonstrate that also in appendix A that this function is positive. Writing

1
log(1−x) −

1
log(1−y)

x− y
=
f(x)− 1

x − f(y) + 1
y

x− y

= 1
xy

+
∞∑
m=0

cm
xm − ym

x− y

= 1
xy

+
∞∑
m=0

cm

m−1∑
k=0

xm−1−kyk (4.6)

shows that all coefficients are positive in the expansion. Thus in (4.2) the integrand is a
positive function and so in particular also the residue is positive. Thus our formula makes
unitarity manifest for D 6 6 spacetime dimensions.

The same arguments also apply for the bosonic string. The double contour formula
in its logarithmic form has an extra 1

(1−x)(1−y) compared to (4.2) (as well as n → n + 2
replaced). Our formula makes then unitarity manifest for D 6 10 spacetime dimensions,
because the function

1
(1− x)2(− log(1− x))

D−2
2

(4.7)

is the square of the positive function hα discussed in appendix A with α = 2−D
4 . This

function is positive for α > −2, i.e., D 6 10.

4.2 Unitarity in D = 10 for low spin

While our formula does not make unitarity manifest in ten spacetime dimensions, one can
still use it to demonstrate unitarity for low values of spin. We will give the argument here
for j = 0. Higher values of j and the corresponding analogue for the bosonic string can also
be checked on a case-by-case basis, but the computation gets more and more involved.

For j = 0, starting with eq. (4.2) one can simply compute the y-residue and get

β10
n,0 =

∮
x=0

dx
2πi

n
(
(n+2)(n+1)−3(n+1)x+x2)
6(1− x)xn+3 log(1− x)4 . (4.8)

One can again reduce the statement β10
n,0 > 0 to the positivity of a particular generating

function as follows. We can trade the n-dependence for derivatives and integrate by parts

β10
n,0

n(n+1) =
∮
x=0

dx
2πi

1
(n+1)∂x

( 1
18 log(1− x)3

)(
∂2
x + 3∂x + 1

) (
x−n−1

)
=
∮
x=0

dx
2πi

1
(n+1)

(
−∂2

x + 3∂x − 1
)( 1

18 log(1− x)3

)
∂x
(
x−n−1

)
=
∮
x=0

dx
2πi xn+2

(
∂2
x − 3∂x + 1

)( 1
18 log(1− x)3

)
=
∮
x=0

dx
2πi xn+2

(
(1− x)2 log(1− x)2 + (9x− 6) log(1− x) + 12

18(1− x)2 log(1− x)5

)
. (4.9)
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Thus, it suffices to show that all Taylor coefficients starting from O(z) are positive for the
following function

f(z) = (1− z)2 log(1− z)2 + (9z − 6) log(1− z) + 12
18(1− z)2 log(1− z)5 (4.10)

= − 2
3z5 + 7

18z3 −
1

36z + 1
2160 + z

9072 + z2

20160 + z3

362880 + 3077z5

79833600

+ 3125z6

28740096 + 13180873z7

65383718400 +O(z8) (4.11)

Since unitarity is no longer manifest in our formula in D = 10 dimensions, the singular
coefficients in the expansion never enter the computation of β10

n,0 and can be negative. We
also remark that the z4 term is absent, which indicates that D = 10 is the critical dimension.
We prove the positivity of the non-singular terms of this function in appendix A.

4.3 Asymptotics

Finally, our double-contour formula is very useful to study asymptotics.

4.3.1 Fixed spin

We again start from the form (4.2). In the large n limit for fixed j, we can explicitly
compute the residue in y. When computing the residue, we get terms with different powers
of n. The greatest contribution is achieved by picking the highest possible power from the
term (x− y)−n+j , because these coefficients grow very rapidly with n. This means that we
pick up the leading coefficients of the other factors. We hence get

βDn,j ∼
nj+

D−4
2

(j + D−4
2 )!

∮
x=0

dx
2πi

x−n−j−
D−4

2

(1− x)(− log(1− x))
D−2

2
, (4.12)

where we further approximated the binomial coefficient appearing in the expansion of
(x− y)−n+j with its asymptotic value. We hence see in particular that the j-dependence of
the asymptotic behaviour of the coefficients is very simple.

It remains to determine the asymptotic value of the remaining integral. This can be
done in a very classical way as follows, see e.g. [15, section VI]. We first deform the contour
that runs around 0 to the Hankel contour that runs from below once around the branch
cut as depicted in figure 3. Since the integrand decays sufficiently fast at infinity, the arcs
at infinity are not contributing to the integral. We next perform the change of variables
x = 1 + t

n . The t variables runs then from below the positive real axis, encircles the origin
and then runs back above the real axis. We get

βDn,j ∼ −
nj+

D−4
2

(j + D−4
2 )!

∮
H

dt
2πi

(
1 + t

n

)−n−j−D−4
2

t
(
− log

(
− t
n

))
)
D−2

2
(4.13)

= − nj+
D−4

2

(j + D−4
2 )! log(n)

D−2
2

∮
H

dt
2πi

(
1 + t

n

)−n−j−D−4
2

t
(
1− log(−t)

log(n)

)D−2
2

. (4.14)
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x

H

Figure 3. Contour deformation to the Hankel contour H.

The remaining integrand converges uniformly for any bounded domain of the t-plane and
hence we can replace it with its value at large n, which gives

βDn,j ∼ −
nj+

D−4
2

(j + D−4
2 )! log(n)

D−2
2

∮
H

dt
2πi

e−t

t
. (4.15)

The contour integral finally simply picks up minus the residue, since we run clockwise
around the pole. Thus, we get the simple, but interesting asymptotics

fixed j, large n: βDn,j ∼
nj+

D−4
2

(j + D−4
2 )! log(n)

D−2
2

. (4.16)

For the actual residue Bn
j , this means

BD
n,j ∼

2D−2(j + D−3
2 )Γ

(
D−3

2

)
√
π n

D
2 log(n)

D−2
2

. (4.17)

In particular, the asymptotic values are positive. This estimate can be extended to a
whole asymptotic series in log(n)−1 by expanding the integrand in log(n)−1, which gives

βDn,j ∼ −
nj+

D−4
2

(j + D−4
2 )!

∞∑
m=0

(
D−4

2 +m

m

)
1

log(n)m+D−2
2

∮
H

dt
2πi

e−t

t
log(−t)m (4.18)

∼ nj+
D−4

2

(j + D−4
2 )!

∞∑
m=0

(
D−4

2 +m

m

)
(−1)m

log(n)m+D−2
2

dm

dαm

∣∣∣∣
α=1

∮
H

dt
2πi(−t)

−αe−t (4.19)

∼ nj+
D−4

2

(j + D−4
2 )!

∞∑
m=0

(
D−4

2 +m

m

)
(−1)m

log(n)m+D−2
2

dm

dαm

∣∣∣∣
α=1

1
Γ(α) , (4.20)

where in the last step we made use of Hankel’s formula for the Gamma function.
By comparing the m = 0 and the m = 1 term, we can estimate that our asymptotic

value becomes good in the regime n � e
γ(D−2)

2 , where γ ≈ 0.57 is the Euler-Mascheroni
constant. Hence we expect the couplings Bn

j to be positive for n & e
γ(D−2)

2 for all dimensions.
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This only leads finitely many coefficients that can potentially be negative and can be checked
by hand. However, we were unable to turn this approximate inequality into a rigorous
bound, which prevents us from mathematically proving positivity of BD

n,j also in D = 10
spacetime dimensions.

Finally, we note that the corresponding formula for the bosonic string is

fixed j, large n: βopen,bos
n,j ∼ nj+

D−2
2

(j + D−4
2 )! log(n)

D−2
2

, (4.21)

Bopen,bos
n,j ∼

2D−2(j + D−3
2 )Γ

(
D−3

2

)
√
πn

D−4
2 log(n)

D−2
2

. (4.22)

4.3.2 Regge trajectories

The second asymptotics we can look at is to keep ∆ = n − j fixed and consider large n.
This limit corresponds to moving in one fixed Regge trajectory. In this case, it is convenient
to start from the form

βDn,n−∆ = −1
2

∮
u=0

du
2πi

∮
v=u

dv
2πi

1
(uv)

D−2
2

(
u−1 − v−1

ev − eu

)n (
u−1 − v−1

)−∆
, (4.23)

of the double contour formula. Notice that the inner integral runs around v = u and not
v = 0 as before. To obtain this equivalent form, one the usual relation of contours with a
singularity at u = v ∮

v=0

∮
u=0
−
∮
u=0

∮
v=0

=
∮
u=0

∮
v=u

. (4.24)

The second contour on the left-hand side is the original contour, but both terms give an
equal contribution due to the symmetry of the integrand (for n+ j odd). Hence the contour∮
u=0

∮
v=u leads to −2 times the original formula. This is also explained in appendix C,

where it is also explained that in this form the formula is actually also valid for odd D.
Since we want to get the dominating piece in the large n limit, we should pick up as

many powers of n from the second factor as possible when doing the integral over v. This
means that we can expand this term in v around u. It turns out that one has to go to the
second order and hence gets

u−1−v−1

ev−eu = e−u

u2

(
1− (u+2)(v−u)

2u +
(
u2+6u+12

)
(v−u)2

12u2

)
+O

(
(v−u)3

)
. (4.25)

In order for the second term in the expansion to make an appreciable contribution to the
integral in the large n limit, the term of order O(v − u) has to become small. This means
that the u-integral generically has a large degree of cancellation built in. Note however
that we can choose the radius of the u-integral to be 2, so that we are integrating through
the critical point u = −2, which becomes a saddle point in the large n limit. This in turn
implies that we can replace u with −2 in most places that are not singular when u → v,
u→ −2 or u→ 0. We can also replace v by u in the first factor of (4.23). Hence we get
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the large-n approximation

βDn,n−∆ ∼ −
1
2

∮
u=0

du
2πi

∮
v=u

dv
2πi

e−un

u2n−2∆+D−2(v−u)∆

(
1 + (u+2)(v−u)

4 + (v−u)2

12

)n
.

(4.26)
Let us now change variables to

t = (v − u)
√
n . (4.27)

The integral then becomes

βDn,n−∆ ∼ −
1
2

∮
u=0

du
2πi

∮
t=0

dt
2πi

e−unn
∆−1

2

u2n−2∆+D−2t∆

(
1 + (u+ 2)t

4
√
n

+ t2

12n

)n
(4.28)

∼ −1
2

∮
u=0

du
2πi

∮
t=0

dt
2πi

e−unn
∆−1

2

u2n−2∆+D−2t∆
exp

(
(u+ 2)

√
nt

4 + t2

12

)
, (4.29)

where we used that (1 + a
n)n ∼ ean in the second line. As a next step, we interchange the

order of the two integrals and perform the u integral. This leads to

βDn,n−∆ ∼
n2n− 3

2 ∆+D− 7
2

2(2n− 2∆+D−3)!

×
∮
t=0

dt
2πi t∆

(
1− 1

4
√
n
t

)2n−2∆+D−3
exp

(
1
2
√
nt+ t2

12

)
. (4.30)

We can now use the Stirling approximation of the factorial to simplify the prefactor. Since
n is large, we can also remove the constant terms in the exponent of the first factor of the
remaining integral as follows

βDn,n−∆ ∼
21−D−2n+2∆e2nn

∆−2
2

√
π

∮
t=0

dt
2πi t∆

(
1− 1

4
√
n
t

)2n
exp

(
1
2
√
nt+ t2

12

)
. (4.31)

Next, we use that

(
1− 1

4
√
n
t

)2n
exp

(1
2
√
nt

)
= exp

(
− t

2

16

)
+O

(
n−

1
2
)
. (4.32)

The remaining t integral is then

∮
t=0

dt
2πi t∆ exp

(
t2

48

)
= 1(

∆−1
2

)
!

( 1
48

)∆−1
2

. (4.33)

Recall that ∆ = n − j is odd, so that this is non-vanishing. Putting the pieces together
leads then to the following asymptotics:

fixed ∆ = n− j, large n: βDn,n−∆ ∼
23−D−2ne2n

√
πn
(

∆−1
2

)
!

(
n

3

)∆−1
2

. (4.34)
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For the actual residue BD
n,n−∆, this means

BD
n,n−∆ ∼

3
1−∆

2 2
3
2−2nenΓ

(
D−3

2

)
n

∆−D+1
2

√
πΓ
(

∆+1
2

) , (4.35)

which decays exponentially with rate e
4 . In particular, the asymptotic values are again

positive. We should also remark that the error of this approximation is actually of order
O(n−1). From our derivation it seems that it is of order O(n−

1
2 ). However, this cannot be

right, since for any fixed ∆, one can just compute the exact formula by taking the residue
in v in eq. (4.23). For example, we can compute explicitly for ∆ = 3 that

βDn,n−3 = nD+2n−8 (n−D+7) (2n+D−8)
48 (2n+D−7)! (4.36)

and similarly for any other fixed ∆, see appendix D for more explicit formulas. This makes
it clear that the square roots are just an artifact of our derivation.

The corresponding formula for the bosonic string can be derived analogously and gives

fixed ∆ = n− j, large n: βopen,bos
n,n−∆ ∼ 2−1−D−2ne2(n+4)

√
πn
(

∆−1
2

)
!

(
n

3

)∆−1
2

, (4.37)

Bopen,bos
n,n−∆ ∼

2−2n− 5
2 en+4Γ

(
D−3

2

)
√
πn

1
2 (D−4)

(
∆−1

2

)
!

(
n

3

)∆−1
2

. (4.38)

In the special case of D = 4 and ∆ = 1, this coincides with [16].
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A Some positive functions

In this appendix, we show that certain functions (power series) have only positive Laurent
coefficients when expanded around z = 0. We call such functions positive functions.

A.1 Simple functions

We start with

f(z) = 1
log(1− z) + 1

z
(A.1)

= 1
2 + z

12 + z2

24 + 19z3

720 + 3z4

160 + 863z5

60480 + 275z6

24192 +O(z7) . (A.2)
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As one can see the first few Taylor coefficients are all non-negative. To prove that in fact
all Taylor coefficients are positive, we remark that we can write

zf(z) =
∫ 1

0
ds (1− (1− z)s) . (A.3)

Multiplying the function by z does not change positivity and hence it suffices to show that
all coefficients of zf(z) are positive. In this representation one can easily compute the m-th
derivative at z = 0:

∂mz (zf(z))
∣∣∣
z=0

=
∫ 1

0
ds s

m−1∏
k=1

(k − s) . (A.4)

The integrand on the r.h.s. is manifestly positive in the region 0 < s < 1, which proves
positivity of f(z).

A related positive function is

g(z) = 1
(z − 1) log(1− z) −

1
z

(A.5)

= 1
2 + 5z

12 + 3z2

8 + 251z3

720 + 95z4

288 + 19087z5

60480 +O(z6) . (A.6)

Positivity becomes manifest by writing

zg(z) =
∫ 1

0
ds

(
(1− z)s−1 − 1

)
, (A.7)

so that
∂mz (zg(z))

∣∣∣
z=0

=
∫ 1

0
ds

m∏
k=1

(k − s) > 0 . (A.8)

From the positivity of this function, we can also easily deduce that

hα(z) = 1
1− z

(
− log(1− z)

z

)α
(A.9)

is a positive function for any α > −2. To see this, we first note that it is true for α = −2,
because

hα=−2(z) = z2f ′(z) + 1 , (A.10)

which is positive. Integrating g(z) implies that the function∫ z

dy g(y) = log
(
− log(1− z)

z

)
(A.11)

has only positive coefficients. This then in turns gives positivity of

exp
(
β log

(
− log(1− z)

z

))
=
(
− log(1− z)

z

)β
(A.12)

for any β > 0. Since

hα(z) = hα=−2(z)
(
− log(1− z)

z

)2+α
(A.13)

is now the product of two positive functions for α > −2, it is also positive.
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A.2 Generating function of the D = 10, j = 0 coefficients

Let us show using the same ideas that the regular coefficients of

f(z) = (1− z)2 log(1− z)2 + (9z − 6) log(1− z) + 12
18(1− z)2 log(1− z)5 (A.14)

are positive. This is the function that appears in the unitarity for the superstring in D = 10
for j =, see section 4.2. The argument for this is very similar to the argument above, but is
less aesthetic. We write

36z5f(z) =
∫ 1

0
du (1− z)u−2

(
− u4z4 + u3

(
3z5 + 2z4 − 4z3

)
+ u2

(
−z6 − 7z5 + 8z4 + 12z3 − 12z2

)
+ u

(
2z6 + 3z5 − 23z4 + 6z3 + 36z2 − 24z

)
− z6 + 2z5 + 13z4 − 28z3 − 10z2 + 48z − 24

)
. (A.15)

In this form, we can again compute derivatives of our function at zero, which gives for n > 0

∂n+6
z

(
36z5f(z)

)
= (n2+8n+15)

∫ 1

0
du u

n+1∏
j=1

(j−u)

×
(
n4u2−n3

(
2u3−8u2+3u+1

)
+n2

(
u4−14u3+24u2−7u−1

)
+n

(
6u4−28u3+26u2−2

)
+4u

(
2u3−4u2+u+1

))
. (A.16)

The integrand is no longer manifestly positive and we have to work a bit harder to show
positivity from here. As a first step, we notice that at large n, the term n4u2 will dominate
over the other ones in the parenthesis. Hence we get an estimate from below by minimizing
the coefficients of n3, n2, n and n0 over u ∈ [0, 1]. We further round them down to get nicer
expressions. Thus, we have to show positivity of the integral

∫ 1

0
du u

n+1∏
j=1

(j − u)
(
n4u2 − 2

(3
4n

3 + n2 + n

))
. (A.17)

Since 3
4n

3 + n2 + n 6 n3 for n > 5, it finally suffices to show positivity of the integral

∫ 1

0
du u

n+1∏
j=1

(j − u)
(
nu2 − 2

)
(A.18)

for sufficiently large n. The first few orders can then be checked directly on the computer.
Clearly, the integral is positive in the region u > 2√

n
. Thus, we need to show that

∫ 1√
2
n

du u
n+1∏
j=1

(j − u)
(
nu2 − 2

)
>
∫ √ 2

n

0
du u

n+1∏
j=1

(j − u)
(
2− nu2

)
(A.19)
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for sufficiently large n. Let us bound the left-hand side from below as follows:

∫ 1√
2
n

du u
n+1∏
j=1

(j − u)
(
nu2 − 2

)
>
∫ 1√

2
n

du u(1− u)
n+1∏
j=2

(j − 1)(nu2 − 2) (A.20)

= n!
(
n

20 −
1
3 + 1

n
− 8
√

2
15n

3
2

)
(A.21)

>
(n+ 1)!

30 (A.22)

where the last inequality holds for n > 30. For the right-hand side, we have instead

∫ √ 2
n

0
du u

n+1∏
j=1

(j − u)
(
2− nu2

)
6
∫ √ 2

n

0
du u

n+1∏
j=1

j
(
2− nu2

)
(A.23)

= (n+ 1)!
n

. (A.24)

Thus for n > 30, the left-hand side becomes greater than the right-hand side and all Taylor
coefficients with n > 30 have to be positive. It is then a simple matter to check on the
computer that also the first 30 coefficients are positive.

B Single-variable generating function

We can also write βDn,j in terms of a single, more complicated contour integral. To keep
formulas simpler, we will focus on the supersymmetric case with a = 0, but similar
manipulations can be done for the bosonic formula. Starting from (1.17), we first integrate
by parts as follows

βDn,j = − 1
n

∮
u=0

du
2πi

∮
v=0

dv
2πi

(v − u)j

(uv)j+
D−2

2
(∂u + ∂v)

1
(ev − eu)n+2a (B.1)

= 1
n

∮
u=0

du
2πi

∮
v=0

dv
2πi

e−a(u+v)

(ev − eu)n (∂u + ∂v)
(v − u)j

(uv)j+
D−2

2
(B.2)

= −
j + D−2

2
n

∮
u=0

du
2πi

∮
v=0

dv
2πi

(v − u)j(u+ v)
(uv)j+

D
2 (ev − eu)n

. (B.3)

We next change variables to

x = uv

u− v
, t = v − u

2 . (B.4)

This transforms the integral to

βDn,j = 2
2−D

2 (−1)
D
2 (2j−2+D)
n

∮
t=0

dt
2πi t

D−2
2 (1− e2t)n

∮
x=0

dx
2πi xj+

D
2

e
nt

(
1−
√

1− 2x
t

)
.

(B.5)
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We recognize the exponential as the generating function of the modified Bessel function of
the second kind Km− 1

2
(nt) and we have [17]

∮
x=0

dx
2πi xm+1 ent(1−

√
1− 2x

t
) = nm

m! ent
√

2nt
π
Km− 1

2
(nt) . (B.6)

Hence we can write βDn,j as

βDn,j = (−1)n+D
2 2

5
2−

D
2 −nnj+

D−3
2

√
π
(
j + D−4

2

)
!

∮
t=0

dtKj+D−3
2

(nt)

2πi t
D−3

2 sinh(t)n
. (B.7)

Finally, one can also rewrite this in terms of the modified Bessel functions of the first kind
I±(j+D−3

2 )(nt). We have in general the relation

Kj+D−3
2

(nt) = −π2
Ij+D−3

2
(nt)− I−j−D−3

2
(nt)

sin
(
π
(
j + D−3

2

)) (B.8)

However, the two terms have opposite parity and using the constraint n+j odd, the second
term leads to an integrand of even parity which does not contribute to the residue. This
then leads to

βDn,j =
√
π2

3
2−

D
2 −nnj+

D−3
2(

j + D−4
2

)
!

∮
t=0

dt Ij+D−3
2

(nt)

2πi t
D−3

2 sinh(t)n
. (B.9)

With some further knowledge about special functions, it is from here actually rather simple
to land again on the initial expression for the coefficients βDn,j in terms of decomposing the
Pochhammer symbol into Gegenbauer polynomials. Using the integral representation (see,
e.g. [14, chapter VI, section 6.15])

Iα(z) = 2−αzα
√
πΓ(α+ 1

2)

∫ 1

−1
dx (1− x2)α−

1
2 exz , (B.10)

and inserting back the normalization constant cDn,j , we get

BD
n,j =

(2j +D − 3)nj−1Γ
(
D−3

2

)
2j+n
√
π
(
j + D−4

2

)
!

∫ 1

−1
dx (1− x2)j+

D−4
2

∮
t=0

dt tjexnt

2πi sinh(t)n (B.11)

=
(2j +D − 3)Γ

(
D−3

2

)
2j+nn

√
π
(
j + D−4

2

)
!

∫ 1

−1
dx (1− x2)j+

D−4
2 ∂jx

∮
t=0

dt exnt

2πi sinh(t)n . (B.12)

We finally have upon substituting z = 1− e−2t

∮
t=0

dt exnt

2πi sinh(t)n = 2n
∮
t=0

dt e(x−1)nt(1− e−2t)−n (B.13)

= 2n−1
∮
z=0

dz z−n(1− z)
1−x

2 t−1 (B.14)

= 2n−1nRI
n(x) , (B.15)
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where the residue polynomial was defined in (1.9). Thus, we recover

BD
n,j =

(2j +D − 3)Γ
(
D−3

2

)
2j+1√π

(
j + D−4

2

)
!

∫ 1

−1
dx (1− x2)j+

D−4
2 ∂jxR

I
n(x) , (B.16)

which after integration by parts is the integral of the residue polynomial against the
Gegenbauer polynomial G(D)

j (x) with the appropriate normalization. Hence following these
steps backwards gives an alternative derivation of the double contour formula.

C Derivation of the triple-contour representation

In this appendix we derive residue formulae for the Gegenbauer coefficients in the case of
closed strings. For the sake of variety, we will follow a different route to that of section 3.

For completeness and in order to exhibit parallels to the open-string case, let us first
revisit it. Setting α′ = 1, open-string tree-level amplitudes can be parametrized by the
following worldsheet integral with a ∈ Z,

Aopen
a (s, t) := −sa−1

∫ 1

0
dz z−s−2a(1− z)−t−1−a, (C.1)

where z is the cross-ratio of the positions of vertex operators. We have analytically extended
the integrand as a holomorphic function of z ∈ C since contour deformations will be needed
in the following steps.

The case a = 0 corresponds to gluon scattering in type-I superstring (the polarization-
dependent prefactors are positive and hence can be stripped-off without affecting the
conclusions), while a = 1 gives tachyon scattering in the bosonic string case. This means
m2 = −a. While the explicit form of the amplitudes will not be needed for our purposes,
let us spell them out for completeness:

Aopen
a (s, t) =


Γ(−s)Γ(−t)
Γ(1−s−t) for a = 0 (type-I),

−Γ(−1−s)Γ(−1−t)
Γ(−2−s−t) for a = 1 (bosonic).

(C.2)

This easily gives Ress=nAopen
a = 1

(n+a)!
∏n−1+3a
k=1+a (t+ k). Note that for a = 0, the massless

exchange with n = 0 is special because of the normalization in (C.1). Below we focus on
n > 0 since positivity of the massless pole can be easily checked by inspection.

We first convert the cut in the kinematic s-variable into a worldsheet residue. This can
be achieved by compactifying the integration contour near z = 0, in a way similar to the
Hankel contour (see, e.g., [18, appendix A.2.1]):∫ 1

0
= 1
e−2πis − 1

∮
|z|=ε

+
∫ 1

ε
, (C.3)

where e−2πis is the monodromy around z = 0 of the integrand at hand. The starting points of
the two integrals on the right-hand side have to coincide and be on the same sheet. The result
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has the effect of manifesting all the s-channel poles, as well as making the integral converge
for any value of s, which was not the case for (C.1). Performing the cut leaves us with∮

s=n
dsAopen

a (s, t) = na−1
∮
z=0

dz z−n−2a(1− z)−t−1−a. (C.4)

Note that the integrand on the right-hand side is now single-valued around z since n+2a ∈ Z.
We can now plug in this result to the formula for the Gegenbauer coefficients Bopen,a

n,j ,
which expressed in terms of integrals over the Mandelstam invariants read

Bopen,a
n,j := (−1)jcmn,j

∫ 0

−n+4m2
dt
∮
s=n

ds
2πi A

open
a (s, t) ∂jt

(
−t(t+n−4m2)

)j+D−4
2 . (C.5)

The t-integral between −n+ 4m2 and 0 corresponds to integrating over all scattering angles
in the s-channel (recall that cos θ = 1 + 2t/(s− 4m2)), while the s-residue is the unitarity
cut. The overall mass-dependent constant cmn,j is a manifestly positive and given by

cmn,j = 2D−3

(n− 4m2)D+j−3
(j+D−3

2 ) Γ(D−3
2 )

√
π Γ(j+D−2

2 )
> 0. (C.6)

The coefficients still depend on D, but we suppress it from the notation for clarity. Substi-
tuting (C.4) commuting the z and t integrals gives

Bopen,a
n,j = (−1)jcmn,j na−1

∮
z=0

dz
2πi

z−n−2a

(1− z)1+a

∫ 0

−n−4a

dt
(1− z)t ∂

j
t

(
−t(t+n+4a)

)j+D−4
2 .

(C.7)
Integrating by parts j times in t yields

Bopen,a
n,j = cmn,j n

a−1
∮
z=0

dz
2πi

z−n−2a

(1− z)1+a (− log(1−z))j (C.8)

×
∫ 0

−n−4a

dt
(1− z)t

(
−t(t+n+4a)

)j+D−4
2︸ ︷︷ ︸

Ha
n,j(0)−Ha

n,j(−n−4a)

,

since all the boundary terms vanish. As a sanity check we see that using − log(1− z) =∑∞
k=1 z

k/k all the terms with too high spin, j > n+2a, vanish identically.
At this stage, let us consider the t-integral in the indefinite form on its own,

Ha
n,j(t′) =

∫ t′ dt
(1− z)t

(
−t(t+n+4a)

)j+D−4
2 . (C.9)

We are interested in the combination Ha
n,j(0) − Ha

n,j(−n−4a) and hence can ignore the
integration constant. From now on we assume that D is even. Notice that introducing
u = log(1− z) we can rewrite the above integral as

Ha
n,j(t′) = e(n+4a)u ∂

j+D−4
2

u

∫ t′

dt e−(t+n+4a)u tj+
D−4

2 . (C.10)
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At this stage we recognize that the integrand is a total derivative,

Ha
n,j(t′) = −(j + D−4

2 )! e(n+4a)u ∂
j+D−4

2
u

∫ t′

dt ∂t

e−(t+n+4a)u

uj+
D−2

2

j+D−4
2∑

k=0

(tu)k

k!

 . (C.11)

Evaluated at t′ = 0, this is simply

Ha
n,j(0) = −(j + D−4

2 )! e(n+4a)u ∂
j+D−4

2
u

(
e−(n+4a)u

uj+
D−2

2

)
. (C.12)

In order to simplify the contribution from Ha
n,j(−n−4a), we consider the change of variables

z → z/(z − 1) together with t→ −t−n−4a, giving∮
z=0

dz
2πi

z−n−2a

(1− z)1+a (− log(1−z))jHa
n,j(−n−4a)

= (−1)n+j
∮
z=0

dz
2πi

z−n−2a

(1− z)1+a (− log(1−z))jHa
n,j(0), (C.13)

which for even n+j cancels the Ha
n,j(0) term and for odd n+j it doubles it. We therefore

have
Bopen,a
n,j = 0 for n+ j ∈ 2Z, (C.14)

and from now on we focus on the case n+j ∈ 2Z + 1. Using (C.12) we have

Bopen,a
n,j = 2(−1)jcmn,j na−1(j + D−4

2 )!
∮
u=0

du
2πi

uj eu(n+3a)

(1− eu)n+2a ∂
j+D−4

2
u

(
e−u(n+4a)

uj+
D−2

2

)
. (C.15)

Recall that this expression is a result of localizing in the forward limit (t = 0) and on the
cut (s = n), which in turn localized on the worldsheet OPE (z = 0 or equivalently u = 0).

In the final step we use integration by parts j + D−4
2 times in u, followed by rewriting

the derivative as a residue integral using the identity

∂Juf(u) = (−1)J
∮
v=0

dv
2πi

J !
vJ+1 f(u− v) (C.16)

with J = j + D−4
2 . This results in

Bopen,a
n,j = 2cmn,j na−1[Γ(j+D−2

2 )]2
∮
u=0

du
2πi

∮
v=0

dv
2πi

(v − u)je−(u+v)a

(uv)j+
D−2

2 (ev − eu)n+2a
, (C.17)

where the constant cmn,j was given in (C.6). This yields (3.14) and (3.18) for a = 0 and
1 respectively. Note the order of taking residues: exchanging u ↔ v picks up a factor of
(−1)j+n = −1, so the two residues do not commute, which can be seen alternatively from
the fact that the integrand has a pole at u = v.

Notice that the double-contour formula is not well-defined for odd D, since the integrand
is not single-valued around v = 0. Nevertheless, let us observe that for even D one can use
the commutator of residues familiar from two-dimensional CFT (see, e.g., [19, section 6.1.2]):∮

v=0

∮
u=0
−
∮
u=0

∮
v=0

=
∮
u=0

∮
v=u

(C.18)

– 29 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
7

together with the aforementioned anti-symmetry under u ↔ v to find an alternative
expression for the partial-wave expansion coefficients

Bopen,a
n,j = −cmn,j na−1[Γ(j + D−2

2 )]2
∮
u=0

du
2πi

∮
v=u

dv
2πi

(v − u)je−(u+v)a

(uv)j+
D−2

2 (ev − eu)n+2a
(C.19)

for odd n+j. At this stage notice that after performing the v residue, non-analyticity in u
can only come through a factor of the form (u2)−D/2 for odd D. We found that in such
cases the correct choice of branch is −u−D. In the following sections we only consider the
cases with D ∈ 2Z.

It is time to move on to the closed-string case (3.19) with the explicit expressions
spelled out in (3.20). Our starting point is compactifying the worldsheet integration contour
close to z = 0. For the integrand at hand, locally we have

Aclosed
a,b (s, t) =− 1

2πi
sa+b−2

e−2πis−1
×
∮
z=0

dz z−s−2a(1−z)−t−1−a
∮
z̃=0

dz̃ z̃−s−2b(1−z̃)−t−1−b+. . . , (C.20)

where the ellipsis denotes non-singular terms around s ∈ Z. The additional minus sign
arose because we traded an anti-holomorphic residue for a holomorphic one by replacing
z̄ → z̃. Therefore, the cut at s = n gives directly the formula (3.22). We take n > 0 from
now on, since n = 0 can be checked by hand.

In computing the coefficient Bclosed,a,b
n,j , the z and z̃ variables get mixed together by the

t-integration:

Bclosed,a,b
n,j = (−1)jcmn,j na+b−2

∮
z=0

dz
2πi

z−n−2a

(1− z)1+a

∮
z̃=0

dz̃
2πi

z̃−n−2b

(1− z̃)1+b

×
∫ 0

−n+4m2

dt
[(1− z)(1− z̃)]t ∂

j
t

(
−t(t+n−4m2)

)j+D−4
2
.

(C.21)

Recall that m2 = −min(a, b). Performing integration by parts j times in t gives

Bclosed,a,b
n,j = cmn,j n

a+b−2
∮
z=0

dz
2πi

z−n−2a

(1−z)1+a

∮
z̃=0

dz̃
2πi

z̃−n−2b

(1−z̃)1+b

(
− log(1−z)− log(1−z̃)

)j
×
∫ 0

−n+4m2

dt
[(1− z)(1− z̃)]t

(
−t(t+n−4m2)

)j+D−4
2

︸ ︷︷ ︸
Qa,bn,j(0)−Qa,bn,j(−n+4m2)

, (C.22)

since boundary terms vanish. At this stage we are interested in evaluating Qa,bn,j(0) −
Qa,bn,j(−n+4m2), where

Qa,bn,j(t
′) =

∫ t′ dt
[(1− z)(1− z̃)]t

(
−t(t+n−4m2)

)j+D−4
2
. (C.23)
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Repeating steps identical to those above, for D ∈ 2Z we obtain

Qa,bn,j(0) = −(j + D−4
2 )! e(n−4m2)(u+ũ) ∂

j+D−4
2

u+ũ

(
e−(n−4m2)(u+ũ)

(u+ ũ)j+
D−2

2

)
, (C.24)

where we introduced u = log(1−z) and ũ = log(1−z̃). On the other hand, the contribution
from Qa,bn,j(−n+4m2) can be evaluated by sending z → z/(z − 1), z̃ → z̃/(z̃ − 1), and
t→ −t−n+4m2:∮

z=0

dz
2πi

z−n−2a

(1− z)1+a

∮
z̃=0

dz̃
2πi

z̃−n−2b

(1− z̃)1+b

(
− log(1−z)− log(1−z̃)

)j
Qa,bn,j(−n+4m2)

= (−1)j+1
∮
z=0

dz
2πi

z−n−2a

(1− z)1+a

∮
z̃=0

dz̃
2πi

z̃−n−2b

(1− z̃)1+b

(
− log(1−z)− log(1−z̃)

)j
× (1− z)4(a+m2)(1− z̃)4(b+m2)Qa,bn,j(0). (C.25)

In the final line, the exponents of (1− z) and (1− z̃) vanish for type-II and bosonic string
theories (where a = b = −m2), but not in the heterotic case. Therefore, in the former cases
Bclosed,a,b
n,j is zero for odd j, while no simplification happens for the heterotic string. In order

keep the notation brief, let us introduce

ga,b := 1 + (−1)je4[u(a+m2)+ũ(b+m2)] =
{

2δj∈2Z for a = b (type-II, bosonic),
1 + (−1)je4ũ for a 6= b (heterotic),

(C.26)
labelled according to (3.20). To summarize, in terms of u and ũ, we have

Bclosed,a,b
n,j = (−1)j+1cmn,j n

a+b−2 (j+D−4
2 )!

∮
u=0

du
2πi

eu(n−a)

(1− eu)n+2a

∮
ũ=0

dũ
2πi

eũ(n−b)

(1− eũ)n+2b

× ga,b (u+ ũ)j e−4(u+ũ)m2
∂
j+D−4

2
u+ũ

(
e−(n−4m2)(u+ũ)

(u+ ũ)j+
D−2

2

)
. (C.27)

At stage we can use the identity (C.16) to rewrite the (u+ũ)-derivative as a residue, giving

Bclosed,a,b
n,j = (−1)jcmn,j na+b−2 [Γ(j+D−2

2 )]2
∮
u=0

du
2πi

∮
ũ=0

dũ
2πi

∮
v=0

dv
2πi

× ga,b e
−ua−ũb+v(n−4m2)(u+ ũ)j

(1− eu)n+2a(1− eũ)n+2b[v(v − u− ũ)]j+
D−2

2
, (C.28)

which gives (3.23) and (3.24) in special cases. One might in principle massage this formula
further, e.g., by a change of variables (u, ũ, v)→ (u−v

2 , ũ−
v
2 ,−v), however the expressions

do not become significantly simpler.
Alternatively, we could have arrived at a quadruple-contour representation for Bclosed,a,b

n,j

as follows. After eq. (C.27) we can split the derivatives in terms of ∂u and ∂ũ:

∂
j+D−4

2
u+ũ =

(
1
2∂u + 1

2∂ũ
)j+D−4

2 = 2−j−
D−4

2

j+D−4
2∑

k=0

(
j+D−4

2
k

)
∂ku ∂

j+D−4
2 −k

ũ . (C.29)
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Integrating by parts in u and ũ for each term in the above k sum and writing the resulting
derivatives as residues we find:

Bclosed,a,b
n,j = −2−j−

D−4
2 cmn,j n

a+b−2[(j+D−4
2 )!]2

∮
u=0

du
2πi

∮
ũ=0

dũ
2πi

∮
v=0

dv
2πi

∮
ṽ=0

dṽ
2πi

× ĝa,b e
a(3v−u)+b(3ṽ−ũ)+4(v+ṽ)m2(v + ṽ − u− ũ)j

(ev − eu)n+2a(eṽ − eũ)n+2b(u+ ũ)j+
D−2

2

j+D−4
2∑

k=0

1
vk+1ṽj+

D−2
2 −k

,

(C.30)

where ĝa,b = ga,b|ũ→ũ−ṽ. Finally, we use the simplification

j+D−4
2∑

k=0

1
vk+1ṽj+

D−2
2 −k

= −v
−j−D−2

2 − ṽ−j−
D−2

2

v − ṽ
. (C.31)

In summary, for the type-II (a = b = 0) and bosonic (a = b = 1) cases we have Bclosed,a,a
n,j = 0

for j odd and for j even:

Bclosed,a,a
n,j = 2−j−

D−6
2 cmn,j n

2(a−1)[(j+D−4
2 )!]2

∮
u=0

du
2πi

∮
ũ=0

dũ
2πi

∮
v=0

dv
2πi

∮
ṽ=0

dṽ
2πi

× e−a(u+ũ+v+ṽ)(v+ṽ−u−ũ)j

(v−ṽ)(u+ũ)j+
D−2

2 [(ev−eu)(eṽ−eũ)]n+2a

( 1
vj+

D−2
2
− 1
ṽj+

D−2
2

)
. (C.32)

Similarly, for heterotic string (a = 0, b = 1) we get

Bclosed,0,1
n,j = 2−j−

D−4
2
cmn,j
n

[(j+D−4
2 )!]2

∮
u=0

du
2πi

∮
ũ=0

dũ
2πi

∮
v=0

dv
2πi

∮
ṽ=0

dṽ
2πi

× (e3ṽ−ũ+(−1)je3ũ−ṽ)(v+ṽ−u−ũ)j

(v−ṽ)(u+ũ)j+
D−2

2 (ev−eu)n(eṽ−eũ)n+2

( 1
vj+

D−2
2
− 1
ṽj+

D−2
2

)
. (C.33)

D Some coefficients on the Regge trajectories

In this appendix, we give explicit formulas for the βDn,n−∆ for the superstring (in the notation
of section 4.3.2) and for low values of ∆ = n− j.

∆ = 1 : βDn,n−1 = n2n+D−5

2(2n+D − 5)! , (D.1a)

∆ = 3 : βDn,n−3 = n2n+D−8(n−D + 7)(2n+D − 8)
48(2n+D − 7)! , (D.1b)

∆ = 5 : βDn,n−5 = n2n+D−12(2n+D − 10)(2n+D − 10)
11520(2n+D − 9)!

(
5D2n+ 2D2 (D.1c)

− 10Dn2 − 92Dn− 40D + 5n3 + 78n2 + 415n+ 198
)
,

∆ = 7 : βDn,n−7 = n2n+D−16(2n+D − 12)(2n+D − 14)(2n+D − 16)
5806080(2n+D − 11)! (D.1d)

×
(
− 35D3n2 − 42D3n− 16D3 + 105D2n3 + 1239D2n2 + 1542D2n

+ 624D2 − 105Dn4 − 2100Dn3 − 14269Dn2 − 18630Dn− 8048D

+ 35n5 + 903n4 + 10211n3 + 53337n2 + 73994n+ 34320
)
.
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Higher orders can be easily computed, but the expressions become quickly unwieldy. The
expressions can be easily translated to the actual coefficients BD

n,n−∆ by multiplying with
the constant cDn,n−∆.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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