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We present PandaX-II constraints on candidate WIMP-nucleon effective interactions involving the nucleon 
or WIMP spin, including, in addition to standard axial spin-dependent (SD) scattering, various couplings 
among vector and axial currents, magnetic and electric dipole moments, and tensor interactions. The 
data set corresponding to a total exposure of 54-ton-days is reanalyzed to determine constraints as a 
function of the WIMP mass and isospin coupling. We obtain WIMP-nucleon cross section bounds of 
1.6 × 10−41 cm2 and 9.0 × 10−42 cm2 (90% c.l.) for neutron-only SD and tensor coupling, respectively, 
for a mass MWIMP ∼ 40 GeV/c2. The SD limits are the best currently available for MWIMP > 40 GeV/c2. 
We show that PandaX-II has reached a sensitivity sufficient to probe a variety of other candidate spin-
dependent interactions at the weak scale.
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Astrophysical and cosmological observations indicate that a 
large amount of non-luminous dark matter (DM) exists in our uni-
verse, constituting ∼ 27% of the closure density. However, the exact 
nature of DM remains a mystery. One intriguing DM candidate, 
a weakly-interacting massive particle (WIMP), arises naturally in 
many extensions of the standard model [1,2]. Many WIMP searches 
have been performed, including direct detection of their scattering 
off target nuclei, indirect detection of their decay or annihilation, 
and their production in collider experiments. In the analysis of di-
rect detection experiments, frequently it is assumed that the scat-
tering arises from the light-quark-level (u, s, d) effective interaction

L ∼ G F√
2

∑
q

[
χ̄γμχ cV V

q q̄γ μq + χ̄γμγ5χ c A A
q q̄γ μγ5q

]
(1)

which can be reduced to a nucleon-level operator useful in an-
alyzing the nuclear response to WIMP scattering [3]. Limits on 
the vector spin-independent (SI) and axial spin-dependent (SD) 
WIMP-proton and WIMP-neutron cross sections σ SI,SD

p,n can then be 
derived. The recent stringent direct detection null results obtained 
successively by LUX [4,5], PandaX [6,7] and XENON [8–10] have 
significantly tighten the bounds on σ SI,SD

p,n [11].
The interaction of Eq. (1) was motivated by supersymmetric DM 

candidates, like the neutralino, that can naturally account for the 
DM relic density. The motivation to focus exclusively on such can-
didates has weakened due in particular to collider constraints [12]. 
An alternative approach, effective field theory (EFT) [13–15], has 
gained favor because it allows one to do an analysis [16–19] free 
of theory assumptions. One selects an EFT scale – e.g., the light-
quark or a nucleon scale – and constructs a complete basis of 
effective operators to a given order, taking into account all gen-
eral symmetries limiting that basis. The underlying UV theory of 
DM will reduce at that scale to some definite combination of the 
basis operators, regardless of its nature. Experimentalists can ex-
plore the sensitivities of their detectors to the basis operators, to 
make sure they are probing all possibilities. The EFT approach has 
shown 1) relative experimental sensitivities depend on the oper-
ator choice, and 2) direct detection is potentially more powerful 
than might appear from SI/SD analyses, as six (not two) indepen-
dent constraints on DM can be obtained, in principle [15].

The PandaX-II detector, located in the China Jinping Under-
ground Laboratory (CJPL), is a dual-phase xenon time-projection 
chamber with 580 kg of liquid xenon in the sensitive target vol-
ume. When the incoming WIMP scatters off a xenon nucleus, both 
the prompt scintillation photons (S1) in the liquid and the delayed 
proportional scintillation photons (S2) in the gas are collected 
by 55 top and 55 bottom Hamamatsu R11410-20 3-inch photo-
multiplier tubes. The experiment has an accumulated exposure of 
54-ton-days [6]. The previously reported analysis for the standard 
(isoscalar) SI interaction yielded a 90% exclusion limit on σ SI of 
8.6 × 10−47 cm2 for a WIMP mass of 40 GeV/c2. (These bounds 
were recently superseded by XENON1T results [10].) In this paper 
we present PandaX-II constraints a variety of candidate interactions 
that depend on nucleon or WIMP spin.

Spin-dependent interactions other than SD can arise from 
WIMP magnetic and electric dipole moments, vector-axial in-
terference terms, tensor interactions, etc. While the associated 
nucleon-level effective operators are conventionally expressed in 
covariant form, they can be rewritten in terms of the Galilean-
invariant EFT basis used here, convenient for nonrelativistic shell 
model (SM) treatments of the nuclear physics. This basis consists 
of fourteen operators generated at next-to-next-to-leading-order 
from the nucleon-WIMP perpendicular relative velocity operator 
�v⊥ , the momentum transfer �q, and the WIMP and nucleon spins, 
�Sχ and �SN [15].
We specialize to the scattering of a spin-1/2 WIMPs off a nat-
ural xenon target, exploring four dimension-four and three higher 
dimension effective interactions, selected from Table 1 of Ref. [15]. 
The operator dimension is defined as 4 + number of powers of mM

in the denominator, where mM is a scale that governs the strength 
of the WIMP and nucleon moments being coupled. The dimension-
four operators are the V-A interactions

L5
int ≡ χ̄γ μχ N̄γμN → O1

L7
int ≡ χ̄γ μχ N̄γμγ 5N → −2O7 + 2

mN

mχ
O9

L13
int ≡ χ̄γ μγ 5χ N̄γμN → 2O8 + 2O9

L15
int ≡ χ̄γ μγ 5χ N̄γμγ 5N → −4O4 (2)

with mN the nucleon mass and O1 = 1χ 1N , O4 = �Sχ · �SN , O7 =
�SN · �v⊥ , O8 = �Sχ · �v⊥ , and O9 = i(�Sχ × �SN ) · �q

mN
the nonrelativistic 

operators of [14,15]. While L5
int generates the standard SI inter-

action, the other interactions involve an axial coupling and thus 
depend on spin.

One can equally well start with a basis of light-quark effec-
tive operators, reducing these via chiral EFT to their nonrelativistic 
nucleon equivalents [20,21]. The spin-dependent nucleon-level op-
erators arising from the axial part of Eq. (1) (the standard SD 
interaction) and from the light-quark tensor interaction will be 
considered here.

The dimension-five operators coupling the WIMP magnetic or 
electric dipole moments with the nucleon’s vector current, and the 
dimension-six operator coupling WIMP and nucleon magnetic mo-
ments, are examples of other potential sources of spin-dependent 
scattering,

L9
int ≡ χ̄ iσμν qν

mM
χ N̄γμN

→ − �q 2

2mχmM
O1 + 2mN

mM
O5 − 2mN

mM
(

�q 2

m2
N

O4 −O6)

L17
int ≡ iχ̄ iσμν qν

mM
γ 5χ N̄γμN → 2mN

mM
O11

L10
int ≡ χ̄ iσμν qν

mM
χ N̄iσμα

qα

mM
N → 4(

�q 2

m2
M

O4 − m2
N

m2
M

O6) (3)

Here O5 = i�Sχ · (
�q

mN
× �v⊥), O6 = (�Sχ · �q

mN
)(�SN · �q

mN
), and O11 =

i�Sχ · �q
mN

. The dependence on �q implies nuclear form factors 
that peak at larger momentum transfers, influencing experimen-
tal strategies for optimally constraining such interactions. We set 
mM ≡ mN , normalizing both WIMP and nucleon moments to the 
nucleon scale.

Each operator Li
int can have independent couplings to protons 

and neutrons, or equivalently to isospin [15],

d0
i

m2
V

+ d1
i

m2
V

τ3 = dp
i

m2
V

1 + τ3

2
+ dn

i

m2
V

1 − τ3

2
(4)

where τ3 is the Pauli isospin operator. The couplings di are dimen-
sionless, defined relative to the weak scale

mV ≡ 〈v〉 = (2G F )−
1
2 = 246.2 GeV

with 〈v〉 the Higgs vacuum expectation value. We will consider 
isoscalar (d1

i = 0) and isovector (d0
i = 0) interactions, for which 

dp
i = dn

i and −dp
i = dn

i , respectively; as well as couplings only 
to protons (d1

i = d0
i ) or neutrons (d1

i = −d0
i ). For our higher-

dimension operators, the di ’s also encode information about the 
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absolute size of the WIMP electric and dipole moments, given that 
we have normalized to nucleonic values (mM ≡ mN ).

As the spin response of Xe is largely governed by the unpaired 
neutrons in 129,131Xe, one expects the 1 −τ3 projection of nucleon-
spin operators to dominate.

The differential cross section for elastic scattering is

dσ(v, E R)

dE R
= 2mT

dσ(v, �q 2)

d�q 2

= 2mT

4π v2

⎡
⎣ 1

2 Jχ + 1

1

2 J + 1

∑
spins

|M|2
⎤
⎦ (5)

where the square of the Galilean invariant amplitude M is a prod-
uct of WIMP and nuclear matrix elements and is a function of ini-
tial WIMP velocity v (dimensionless, in units of c) and the three-
momentum transfer �q [15]. Here Jχ is the WIMP spin and J the 
nuclear ground state angular momentum. In the long wavelength 
limit the nuclear response functions corresponding to matrix el-
ements of simple operators familiar from weak interactions, such 
as 1(i), �σ (i), �	(i), and �σ (i) · �	(i). The differential event rate with 
respect to nuclear recoil energy is

dR

dE R
= ρχ

mχ

∫
dσ(v, E R)

dE R
v f (�v)d3 v, (6)

where the f (�v) is the normalized velocity distribution of the 
WIMP particles. We calculate WIMP signal rates by evaluating 
Eq. (6) for a local WIMP mass density of ρχ = 0.3 GeV/c2/cm3, 
assuming a Maxwellian WIMP velocity distribution peaked at v0 =
220 km/s and truncated at the galactic escape velocity vesc =
544 km/s.

The nuclear response functions for DM elastic scattering must 
be calculated before experimental limits can be converted to 
bounds on the operator coefficients of Eq. (4). For each contribut-
ing Xe isotope and needed operator, we performed full-basis shell-
model calculations using the GCN5082 [22] interaction (so named 
because the SM valence space resides between the shell closures at 
nucleon numbers 50 and 82). The calculations were done without 
truncation, using the SM code BIGSTICK to treat bases that ranged 
to 9 billion Slater determinants [23]. Full GCN5082 Xe isotopes re-
sponse functions are used in the Mathematica script of [24], an 
update of [15]. This script and the associated library of one-body 
nuclear density matrices are available on request from the authors 
of [24]. The scripts of [24] and [15] were carefully cross-checked 
against one another, to verify their consistency.

Fig. 1 shows computed recoil energy spectra. The upper panels 
include the coherent isoscalar (N+Z) and isovector (N-Z) SI re-
sponses (operator L5

int), which we show for normalization. Though 
we used SM results, simple phenomenological forms [25] also 
work well, below the diffraction minimum, as the form factor is 
governed by its known q = 0 value and the nuclear radius.

The remaining curves corresponding to interactions with nu-
cleon spin (L7

int), WIMP spin (L13
int), or both (L15

int), at two WIMP 
masses. All curves correspond to weak-scale interactions: with 
dp

i = dn
i ≡ 1 (dp

i = −dn
i ≡ 1) for isoscalar (isovector) coupling. The 

lower panels show the corresponding results for the magnetic and 
electric dipole moment interactions, L9

int, L10
int, and L17

int.
The WIMP couplings di are constrained by PandaX-II rate limits. 

We use data from two low-background physics runs with a total 
exposure of 54-ton-days, Run 9 with 79.6 live days in 2016 and 
Run 10 with 77.1 live days in 2017. Calibration data from an AmBe 
source outside the cryogenic vessel and tritium decays from CH3T
injected into the Xe provided tests of the detector response to the 
nuclear (NR) and electron (ER) recoil events, respectively [6]. A 
Fig. 1. Recoil energy spectra for the scattering of spin- 1
2 WIMPs on xenon nuclei, 

for WIMP masses of 40 GeV/c2 and 400 GeV/c2, and unit isoscalar (d0
i = 1, d1

i = 0) 
and isovector (d0

i = 0, d1
i = 1) coupling. Top panel: dimension-four V-A interactions. 

Bottom panel: higher dimension magnetic and electric dipole interactions.

NEST-based Monte Carlo (MC) simulation (Ref. [26] for ER, Ref. [27]
for NR) of the data in the (S1, S2) distribution is optimized by 
adjusting the initial excitation-to-ionization ratio and the recom-
bination fluctuation. A reliable tuned NEST model for PandaX-II is 
obtained for S1 up to 50 photoelectrons (PEs). The S1 and S2 sig-
nal distributions for a given EFT interaction are simulated using the 
tuned NEST model and PandaX-II detector response parameters [6].

Our event selection criteria follow Ref. [6]: S1 from 3 to 45 PEs, 
S2 from 100 (raw, not corrected for electron lifetime) to 10000 PEs, 
events lying within the 99.99% NR acceptance, and the total fidu-
cial target of 329 ± 16 kg. The backgrounds in Run 9 and Run 10, 
estimated in Ref. [6], are dominated by 127Xe, tritium, other flat 
ER background (85Kr, radon and detector gamma background), ac-
cidental, and neutron contributions.

This search window can include nuclear recoil event energies 
up to 100 keVnr (NR energy) due to the smearing of S1 and S2, 
although the efficiency drops below 50% above 35 keVnr on av-
erage. For dimension-four operators, the majority of signal events 
have nuclear recoil energy below 35 keVnr. The overall signal se-
lection efficiency is between 40% and 50%, very similar to that for 
the SI analysis in Ref. [6]. For dimension-five or dimension-six op-
erators, the analysis is more complicated due to the sharper form 
factor momentum dependence. For instance, the signal efficiency 
for the isovector L9

int operator decreases from 65% to 6.5% as the 
WIMP mass increases from 40 to 400 GeV. Thus efficiencies can be 
improved by adjusting search windows according to operator type 
and WIMP mass, as LUX has described [28]. Such strategies will 
be explored in future PandaX analyses: detector calibration stud-
ies for S1 above 50 PE will be needed to implement such window 
adjustments.

We constrain the WIMP-nucleon EFT couplings di as a function 
of the WIMP mass, following the likelihood analysis of Ref. [6]. A 
standard profile likelihood test statistic was determined as a func-
tion of WIMP mass and cross section, and compared with that 
from a large number of toy MC calculations to derive the upper 
limits of the signal yields at 90% confidence level (C.L.) [29,30].
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Fig. 2. Exclusion limits on the coefficients of dimension-four (top panel) and higher 
dimension (bottom panel) operators.

The upper panel of Fig. 2 gives PandaX-II bounds on the co-
herent SI interaction L5

int as well as the spin-spin interaction L15
int , 

related to the traditional SD interaction discussed below. They are 
well below the nominal weak scale d ∼ 1 over all or almost all 
WIMP mass range illustrated. The isoscalar coupling limit |d0

5| <
5.6 · 10−5 at maximum sensitivity (∼ 40 GeV WIMP) corresponds 
to the PandaX-II cross section bound σ SI

p,n < 8.6 · 10−47 cm2. But 
limits on the axial (WIMP) – vector (nucleus) coupling d0,1

13 are 
also at the weak scale, illustrating the power of current-generation 
experiments to probe momentum- or velocity-dependent interac-
tions. The lower panel gives the corresponding bounds for inter-
action involving WIMP magnetic and electric dipole moments. The 
bounds are near and in one case (the WIMP electric dipole mo-
ment coupling to the nucleon vector current L17

int) below the nom-
inal weak scale. Bounds given in the lower panel also include an 
implicit dimensionless factor representing any needed rescaling of 
the WIMP moments to their physical values, relative to the nucleon 
scale we adopted via mM ∼ mN .

An often-used measure of experimental sensitivity to spin-
dependent WIMP scattering is provided by the SD axial nucleon-
level operator obtained from Eq. (1),

OSD ≡ g A(q2)

g A(0)
O4 − mN gP (q2)

2g A(0)
O6 (7)

with the specific combination of nucleon-level axial and induced 
pseudoscalar operators dependent on isospin through the C A A

q . 
The pseudoscalar coupling is enhanced in the isovector channel by 
pion-pole dominance. Comparisons are typically made by selecting 
Fig. 3. Recoil energy spectra for the scattering of spin- 1
2 WIMPs on xenon nuclei, 

for WIMP masses of 40 GeV/c2 and 400 GeV/c2, for SD and tensor interactions. 
The top (bottom) panel corresponds to neutron-only (proton-only) coupling.

proton-only (p) or neutron-only (n) couplings. The nuclear cross 
section σ SD A

p,n is related to the nucleon cross section σ SD
p,n by

σ SD A
p,n (q2) = 4π

3(2 J + 1)

(
μA

μp,n

)2

S A
p,n(q

2)σ SD
p,n (8)

where μA (μp,n) is the reduced mass for scattering off the nucleus 
(nucleon), and S A

p,n(q2) is the nuclear spin structure function that 
we take from [3], including exchange current corrections. Fig. 3
shows recoil spectra for the SD and tensor cross sections.

The 90% C.L. cross section limits are shown in Fig. 4. The 
optimal bounds, obtained at MWIMP ∼ 40 GeV/c2, limit σ SD

n
(neutron-only) and σ SD

p (proton-only) to 1.6 × 10−41 cm2 and 
4.4 × 10−40 cm2, respectively. The results modestly improve ex-
isting LUX bounds [4] for MWIMP > 40 GeV/c2.

Models of asymmetric dark matter favor Dirac fermion WIMPs, 
where candidate dimension-4 effective operators include the SD 
and tensor χ̄σμνχ q̄σμνq operators. Constraints from direct de-
tection are particularly competitive for the latter [38]. The tensor 
interaction generates, after a leading-order chiral reduction [21], 
the nucleon-level operator 8O4. The dashed curve in the top panel 
of Fig. 4 shows the neutron-only PandaX-II limits. Bounds on σ T

n
and σ T

p of 9.0 × 10−42 cm2 and 2.2 × 10−38 cm2, respectively, are 
found at MWIMP ∼ 40 GeV.

In conclusion, we have presented new limits on a candi-
date spin-dependent WIMP interactions, using PandaX-II Run 9 
and Run 10 data with an exposure of 54-ton-days. In addition 
to the standard SD interaction, we considered vector-axial vec-
tor interferences, interactions generated by WIMP magnetic and 
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Fig. 4. PandaX-II exclusion limits on the WIMP-nucleon cross section for the stan-
dard SD interaction assuming neutron-only (top panel) and proton-only (bottom 
panel) coupling. The 1σ sensitivity bands are shown in green. Also shown are 
recent results from LUX [5], XENON100 [9], ATLAS [31], CMS [32], PICO-2L [33], 
PICO-60 [34,35], IceCube [36] and Super-K [37]. The dashed line (top panel) gives 
PandaX-II limits on tensor WIMP-neutron couplings.

electric dipole moments, and tensor interactions. We showed 
that PandaX-II has achieved sufficient sensitivity to probe cer-
tain velocity- and momentum-dependent interactions at the weak 
scale. We obtained the most stringent upper limits to date on 
σ SD

n for MWIMP above 40 GeV/c2, with a lowest excluded value 
of 1.6 × 10−41cm2 at 40 GeV/c2, 90% c.l. The corresponding pro-
ton and tensor interaction constraints are σ SD

p < 4.4 × 10−40 cm2, 
σ T

n < 9.0 × 10−42 cm2, and σ T
p < 2.2 × 10−38 cm2.
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