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Abstract

Capturing the interplay between electronic correlations and many-particle entanglement requires a uni-
fied framework for Hamiltonian and eigenbasis renormalization. In this work, we apply the unitary renor-
malization group (URG) scheme developed in a companion work [1] to the study of two archetypal models
of strongly correlated lattice electrons, one with translation invariance and one without. We obtain detailed
insight into the emergence of various gapless and gapped phases of quantum electronic matter by computing
effective Hamiltonians from numerical evaluation of the various RG equations, as well as their entangle-
ment signatures through their respective tensor network descriptions. For the translationally invariant model
of a single-band of interacting electrons, this includes results on gapless metallic phases such as the Fermi
liquid and Marginal Fermi liquid, as well as gapped phases such as the reduced Bardeen-Cooper-Schrieffer,
pair density-wave and Mott liquid phases. Additionally, a study of a generalised Sachdev-Ye model with
disordered four-fermion interactions offers detailed results on many-body localised phases, as well as ther-
malised phase. We emphasise the distinctions between the various phases based on a combined analysis
of their dynamical (obtained from the effective Hamiltonian) and entanglement properties. Importantly, the
RG flow of the Hamiltonian vertex tensor network is shown to lead to emergent gauge theories for the
gapped phases. Taken together with results on the holographic spacetime generated from the RG of the
many-particle eigenstate (seen through, for instance, the holographic upper bound of the one-particle en-
tanglement entropy), our analysis offer an ab-initio perspective of the gauge-gravity duality for quantum
liquids that are emergent in systems of correlated electrons.
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1. Introduction

Strongly correlated electron systems on a lattice in two spatial dimensions or higher are
known to host several exotic emergent quantum phenomena that are yet to be understood
clearly, e.g., high-7,. superconductivity, non-Fermi liquids, topological order, many body local-
ization [2-8]. Considerable effort has been made to the development of renormalisation group
(RG) approaches to the understanding of these phenomena. Indeed, tremendous advancements
of Wilson’s original (RG) scheme have been made in the last few decades in the form of the
functional RG (FRG) [9,10]. FRG deals with the RG flow of the Grassmanian many-body ac-
tion [9,11-13], incorporating all orders of quantum fluctuations by accounting for the entire
hierarchy of 2n-point vertex RG flow equations [14,15]. This has provided deeper insights into
various emergent phases of quantum matter via effective descriptions derived from parent models
of strongly correlated electrons. The latest developments in FRG involve the inclusion of self-
energy [16,17] and frequency dependence of vertices [18-20], allowing the RG flows to reach
theories closer to stable fixed points. Another important development has been the resummation
of multiloop diagrams in FRG equations, yielding the parquet approximation [21]. Such careful
computations have led to a better quantification of the effective theories in terms of measurables
like susceptibility, spectral function etc [9,15,22]. However, one crucial difficulty in the FRG
program is its inability to attain stable fixed points, such that effective Hamiltonians can be ob-
tained in the IR. One of the reasons for a lack of a controlled description of scale dependent
effective Hamiltonians is the interplay between many-particle entanglement and four-fermionic
interactions [23-26]. Upon the availability of such effective Hamiltonians, we aim to be able to
track the phases emergent from fermionic criticality, as well as study their entanglement content.
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In this work, we apply a novel unitary RG (URG) method developed in Refs. [27-29], and
extended substantially in a companion work [1], to two paradigmatic models of strongly corre-
lated electrons. One of these is a model of a single band of translationally invariant electrons
with a very general form of four-fermionic interactions. The other is one in which we consider
the interplay of inter-particle interactions and disorder: the generalized Sachdev-Ye model [30],
comprised of hopping, on-site and four-fermionic interactions, all of whose amplitudes are drawn
randomly from separate Gaussian distributions. The goal is to obtain effective low-energy de-
scriptions of the varied phases of electronic quantum matter that are emergent within these
models. Towards this, we will demonstrate the primary advantage of the URG method: the RG
flows of this method help obtain effective Hamiltonians, as well as insights into the many-particle
entanglement content of its eigenstates, at stable IR fixed points. We briefly present the essential
features of URG here.

The URG method is carried out via a sequence of unitary disentanglement operations on
a graph, each of whose nodes corresponds to one electronic state. Each unitary operation on
the graph disentangles an electronic state from the rest (the coupled subspace), leading simul-
taneously to block diagonalisation of the Hamiltonian in the occupation number (Fock) basis.
The unitary operations are themselves determined from the form of the Hamiltonian, and their
successive application thus generates a flow of the Hamiltonian into an iteratively block diago-
nalized form. The method yields a hierarchy of 2n-point vertex flow equations, where each RG
equation contains the summation of loop contributions into a closed form expression. Further-
more, the RG procedure reveals a family of energy scales for quantum fluctuations (w), arising
from the non-commutativity between various parts of the Hamiltonian. These features lead to
non-perturbative contributions from frequency and correlation/self-energy, as observed in the
structure of the denominator of the RG equations. Importantly, this structure allows the RG flows
to attain stable fixed points in the IR where the effective Hamiltonian (and sometimes even the
low-energy eigenstates) can be obtained. In a recent work on the 2D Hubbard model at 1/2-
filling [27] as well as with hole-doping [28], we used the effective Hamiltonian and ground state
wavefunction obtained for the Mott insulating state at low energies to benchmark the ground state
energy and double occupancy obtained from the URG against the numbers available from several
other state-of-art numerical methods [31]. Furthermore, we have also provided in Refs. [27,28]
a comparative study of the flow equations obtained from URG and the weak coupling FRG flow
equations obtained for the same model.

We now offer some justification for our choice of the two models we study in the present
work. Most importantly, both the translationally invariant four-fermi interacting model and the
Sachdev-Ye model are very general in their scope, i.e., they have a wide parameter space, such
that several well known phenomenological models (e.g., Fermi liquids and non-Fermi liquids,
the reduced BCS Hamiltonian, Anderson’s model for disordered non-interacting electrons etc.)
can well lie within the sub-parameter regimes of these two models. Indeed, we will demon-
strate that this is the case, and that the URG approach is an efficient method for the discovery
of these phases. It is important to recall that problems of interacting electrons with translational
invariance and an extended Fermi surface is known to be challenging, and have been studied
using FRG methods over the last three decades [9,32—41]. FRG approaches have reported signa-
tures of several novel states of electronic matter, including the Mott insulator, non-Fermi liquid,
pseudogap, d-wave superconductivity etc. phases within the realms of the four-fermi interacting
model [19,42-45]. We have earlier studied the effects of an extended and nested Fermi surface in
the case of the 2D Hubbard model on the square lattice at 1/2-filling in Refs. [27,28], as well as
the case of a (Dirac) point-like spinon Fermi surface of a XXZ Kagome antiferromagnet in a fi-
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nite magnetic field in Ref. [46]. Here, we will present a detailed study of the effects of electronic
correlations for extended Fermi surfaces that are both nested as well as non-nested in spatial
dimensions D > 2. Further, as mentioned above, the electronic Sachdev Ye (SY4) [30] model de-
scribed above, upon being embedded on a lattice, allows an investigation of the interplay between
disorder and strong correlation. Studies on this model show the fascinating phenomena of many-
body localization and thermalization, with a novel transition between these two phases [8,47].
However, an ab-initio derivation of the effective Hamiltonians of these phases is a challenge that
we aim to meet in this work.

Specifically, by using the URG method, we obtain the 2-point, 4-point and 6-point vertex
RG flow equations for both the models. By numerically solving these RG equations for the
translationally invariant model, we explore the phases that arise from the destabilization of the
extended Fermi surface, whether nested or non-nested. We exlore the stable fixed point theories
obtained both at high energies (of the order of the bandwidth) and low quantum fluctuation en-
ergyscale (w). At low w, the effective Hamiltonians obtained describe the Fermi liquid and the
reduced BCS theory. At higher w, we find a non-Fermi liquid phase with linear-in-temperature
resistivity. In this particular case, the role of 6-point scattering vertices is found to be important,
identifying the 2-electron 1-hole composite entity which replaces the Landau quasiparticle as
the low-energy excitation proximate to the Fermi surface. For the nested Fermi surfaces at 1/2-
filling, we find that the spin-exchange backscattering and the Umklapp scattering processes lead
to emergent Mott liquid phases, described by the condensation of pseudospin degrees of freedom
comprised of oppositely spin-paired electron-electron or electron-hole composites. We rewrite
the effective Hamiltonian of such gapped phases in terms of non-local Wilson loop degrees of
freedom. This allows the formulation of a Hamiltonian gauge theory for such topologically or-
dered gapped states of quantum matter. In such phases, we argue that the corresponding gauge
theory supports Wilson loops with non-trivial anticommutation relations and describes fraction-
ally charged excitations that interpolate between topologically degenerate ground states on the
torus [48,49]. In this way, the present work shows that the vertex tensor network for gapped
phases generated in the RG direction encodes an emergent gauge theory.

For the electronic Sachdev-Ye (SY4) model, we perform a URG study by disentangling elec-
tronic states that are ordered in terms of their on-site energy (from higher to lower). By placing
the model on a D spatial-dimensional volume describing a specified geometry, we obtain a vari-
ety of phases from numerical evaluations of the RG equations obtained from the URG procedure.
Some of these are described by effective Hamiltonians that possess translational invariant, while
some other that do not. The former category includes the phases observed for the single band
four-fermi interacting model discussed above. Among the phases that lack translation invari-
ance, our analysis reveals glassy variants of the Fermi liquid as well as non-Fermi liquid phases,
and display features of the phenomenon of many body localization (MBL). On the other hand,
we also find regimes describing thermalized phases, where the effective stable fixed point theory
is related to the parent SY4 model via marginal deformations, as well as a phase corresponding
to the Anderson model of disordered noninteracting electrons.

Importantly, in keeping with our presentation in Ref. [1] for the tensor network of wavefunc-
tion coefficients that is generated holographically under RG flow by the vertex tensor network,
we offer some results here for the case of gapless (e.g., the Fermi liquid and Marginal Fermi
liquid phases) as well as gapped (e.g., the reduced BCS and Mott liquid phases) quantum lig-
uids. We derive scaling relations for the single-electron entanglement entropy of these phases,
and use them to obtain relations for the (holographic) upper bound of the entanglement entropy.
This is also in agreement with our recent finding that the URG flow respects the holographic
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principle [29]. The rest of the work is organized as follows. We first recapitulate the important
results of Ref. [1] in Section 2, as well as present some new ones for the scaling relation of
the single-electron entanglement entropy and its holographic upper bound. In Section 3, we per-
form a URG treatment of the single band four-fermi interacting model, revealing the various IR
fixed points as well as obtaining the tensor network representation of the various gapped/gapless
phases. Section 4 describes the gauge theoretic description for the gapped theories reached un-
der RG. In Section 5, we perform the URG analysis of a generalized SY4 model for electrons,
revealing various translation invariant and non-invariant fixed points. We conclude in Section 6.
Finally, the details of certain calculations are presented in appendices.

2. Preliminaries

In a companion manuscript [1], we have presented the URG method in detail for a system of
strongly coupled electrons, leading to a hierarchy of 2n-point vertex RG flow equations. We can
interpret the 2n-point vertices as 2n-legged tensors, thus allowing a realization of the URG as a
vertex-tensor network RG. We have also shown in Ref. [1] that, when applied to the eigenbasis of
the Hamiltonian, the URG leads to the renormalization of the coefficient tensors, i.e., superposi-
tion weights of the separable states comprising the many-particle eigenstate. From the renormali-
sation of the entanglement tensors, a entanglement holographic mapping (EHM) [50,51] network
is generated along the RG direction. In Ref. [29], the EHM networks for the normal metallic state
and the insulating ground state of the 2D Hubbard model at half-filling has also been explicitly
constructed by us. Prior to applying the URG method to some archetypal models of correlated
electrons, we first lay out some of the important results from the above works.

Hamiltonian RG flow via iterative block diagonalization

We represent a general fermionic Hamiltonian H as a 2 x 2 block matrix in the number-
occupation basis of an electronic state. By performing a Gauss-Jordan elimination of one of the
blocks via a rotation of the many-particle eigenbasis, we obtain a block-diagonal representation
of the matrix. Such a procedure can be realized as a unitary transformation U of the Hamiltonian,
H' = UHU". The unitary transformation U;, is identified as a disentangler that separate an
electronic state j from the rest in the renormalization group step j. Below, we present the form
of the U -operation

L
V2

where njj) and 7y are electron-hole transition operators fulfilling the algebra {’72]')’ ngil =1

Ugy=—=l1+n¢y =1, 1)

and [”;j)’ n¢jy]l =2n; — 1. Importantly, note that U ;) can also be represented as the exponential
of a phase operator

. T +
Uiy =explibij) » Oy = =i g = i) s 2)

corresponding to a rotation of /2 in the many-particle state space gathered via the generator
iy — 772- /.)). The operator 1) is written in terms of 2n-point off- diagonal scattering vertices
(with respect to a given electronic state j) in the numerator and diagonal 2r-point vertices in the
denominator

1
n(j) =Trj(cj.H(j))Cj — 3)

5
o) — Trj(Hin)
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Here, &) represents the quantum fluctuation operator, and accounts for the non-commutativity
between different off-diagonal 2n-point vertices. It is mathematically defined as

X.j
Gy~ Hiy )

where the number diagonal part of the Hamiltonian (H(LJ?)) is associated with n-particle self/corre-

C()(])—H(/ 1 +H

lation energies, and the term H()](.;j represents coupling only among the other degrees of freedom
{1,...,j — 1}. &) can be given a spectral decomposition as follows

gy =Y ;0 @) . O (@') =), H@, 1, 5)
i

where |®! H) are eigenstates of &, and o' ;) are the quantum fluctuation eigenvalues. At each
RG step, the wyj) attains a block-diagonal form. We note that if in a number-occupation subspace
P, the off-diagonal vertices attain an RG fixed point, then the fluctuation operator attains a num-
ber diagonal form in that subspace: P& j«) P = H (?* ) Thus, stable fixed points are identified by

the fact that |d>i ) become simultaneous eigenstates of H(?*) and o).
The RG flow equation for the Hamiltonian is given by

Hij-1 = U(j)HmU(,) ; (6)

and with the above form for the unitary map eq. (1), we obtain the iterative equation for the
rotated Hamiltonian

. 1 . R _
Hij—ny = 5Trj(Hg) + Trj(HgTj) + el Tri(Heye ), ni) - )

The first and second terms represent H(Lj?fl) and H();;jl) mentioned above, while the third rep-

resents the off-diagonal processes (H(X.;] ) that are responsible for quantum fluctuations in the
occupation number of state j. Note that the above Hamiltonian H(;_;) commutes with N — j
Pauli-Z gates t; =n; — 1/2 (i =j,...,N).

Vertex tensor network representation of the Hamiltonian

The Hamiltonian H can be interpreted as a tensor network formed from the 2n-point vertex
tensors

D X
Hjy = Hj) + Hj) . ©)
2/~ N
(J) = Z ZZFT Tae ca/O(a) MO
i=1 n=1a,a
2/-1 a;
HEy =)0 ) ) laTap@)is0w)i) - 9)
i=1n=1oap

We now explain the various terms and notations in the above equation. Eq. (8) shows the decom-
position of the Hamiltonian into number-diagonal H 5) and off-diagonal H (}J(.) parts. The index i

ranges from 1 to 2/~!, and labels the eigenbasis element |<I>é o) of &} in the entangled subspace
of j electronic states. The index « := {(/, ;t)} is a set of paired labels: / labels the electronic states
participating in the entangled subspace and u = (0, 1) represents an electron occupied/unoccu-
pied state. Therefore, El represents a string of electron creation and annihilation operators. The
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index o’ := {(l, jx)} is similar to «: [ represents the same collection of indices, but where & is the
complement of u, i.e., it = 1,0 refers to unoccupied (1) and occupied (0). The symbol Fi’/;’(j )
represents the collection of 2n-point off-diagonal vertex tensors, with 8 being an index defined
similarly to «. Finally, a; represents the maximum order of the off-diagonal vertex tensor.

The iterative unitary mapping of the Hamiltonian generates an RG flow for the vertex tensor

network

2a;
ATV () = 3" SR G ') (10)
p1.p3 Y

where 2n = p1 + p3 —2p».
Eigenbasis RG flow via iterative block diagonalization

The RG flow equation for the eigenstate of the Hamiltonian is given by
W) = U W) (11

where H( ])l\IJ( ])) Ei |\IJ( ])) There are N — j good quantum numbers at RG step j, such that

the state |\Il ) ) satisfies the following eigenvalue relation
W) = 19) L= (N, N —j+1}. (12)

As a result, the many-body state |‘-IJ€ j71)> can be represented as a coefficient tensor network

W) ZC’ Dla)|Q;) (13)

The coefficient Cé; ) is a tensor with m legs representing the superposition weight of the config-
urations with m occupied electronic states. « represents a set of electronic labels for the occupied
electronic states. | Q ;) represents the occupation-number configuration of the disentangled states.
In another recent work [29], we have presented the quantum circuit/tensor network representa-
tion of a specific many-body state. Altogether, we show that URG (see eq. (11)) generates a
fermionic tensor network renormalization

aj
ACEY = (ND -GV +VND Y ST sen.of, BHATE, G, CLYD L (14)

k=10a,a,p

where N is the normalization. Here, o := {(/, )} is a ordered set of m pairs of indices with
w = 1throughoutand 1 </ < j.« :={(a, n)} is an ordered set of p pairs of indices (p < m) and
w = 0 throughout. Note that the electronic state labels that comprise « is a subset of those within
o'. Finally, 8’ := {(b, )} is an ordered set of 2n — p pairs of indices with u = 1 throughout.
The set 8 is an ordered set of m — 2p + 2n pairs of indices that emerges from the convolution of
the sets above, B := (B’ Uy’) — y. The sign sgn(a, o', B) is the net phase gathered via counting
the number of electrons exchanged in the scattering process A" B involving a string of 2n — p
electron creation and p annihilation operators

2n—p

sgn(e. o, B) =[] Qk]"[Pk (15)

k=1 k=1
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Here ]_[,’Z:1 Py and ]_[il:lp Qy are the net phases that arises from the number of electron ex-
changed via the string of electron annihilation and creation operators respectively. Below, we
quantify the phases Py and Qg

ay by
Py=exp|in Z ni |, Or=exp(i(k—Dm)exp | in Z ni |, (16)
ica’—p i=1,
i¢yUa
where p = {ay,...,ar—1} and y = {by, ..., by} are ordered sets of electronic state labels where

electrons are annihilated and created respectively. Note that p is a subset of the electronic state
labels contained in the set o’. In the definition of Py, the electron number count 7; = 1 for ied
and 0 otherwise. Upon acting the annihilation operators of the scattering vertex Al"é'f(;(" ) on |y,

the state reached in eq. (14) is given by

P

AFZ’@“%ZZH coiCh Capcaloy =[] P Ar;',’;ﬂc;zw ) la) . (17)
k=1

Finally, in the definition of Qy, the number count n; = 1 if i € «” and 0 otherwise.

Importantly, we note that in cases when pairs of electronic states condense into bounds states,
the fermion exchange sign trivializes to sgn(a, a’, 8) = 1 in the RG equation (14). This results
in an emergent Hamiltonian theory and associated eigenbasis at the IR fixed point that is free
from fermion signs. In what follows, we apply the tensor renormalization group theory to certain
strongly coupled electronic systems. The analysis reveals a class of stable IR fixed points corre-
sponding to gapped as well as critical theories. We also show that for a certain class of IR fixed
point theories, the fermion sign issues are altogether mitigated.

Relation between thermal (kpT) and quantum (w) fluctuation energy scales

In the URG formalism, the renormalized Hamiltonian is partitioned in various eigen-
subspaces (|<I>€ j)) in eq. (5)) of the quantum fluctuation operator &. Naturally, the Hamiltonians
in the subspaces are associated with the eigenvalues a)l.(] ) of the renormalized fluctuation operator
@¢jy eq. (4). The nature of RG flow equations for various 2n-point vertices are dictated by the
quantum fluctuation scales wéj), deciding ultimately whether the low-energy spectrum H™*(w) at
the IR fixed point is either gapped or gapless. In Ref. [27], w(;) was shown to be equivalent to a
thermal scale upto which dominant quantum fluctuations leading to H*(w) persist

¥ (w)

w—ao

1 & h
- = (18)
Tt

(0.¢]
:kBTL'Z :Elm(w):P/dw/
—0o0
The above relation shows that the finite lifetime () of the single-particle states with self-energy
% can be viewed as an effective temperature scale arising out of the unitary disentanglement: it is
the highest temperature upto which the one-particle excitations can survive, and are replaced by
2e-1h composite excitation beyond. We will see in later sections that the RG transformations lead
generically to either a gapped or a gapless phase. For the first case, the above equation quantifies
the thermal upper bound for the validity of the emergent condensate. On the other hand, for the
second scenario, it indicates the lifetime of the gapless excitations in the neighbourhood of the
Fermi surface.
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URG scaling of the Ryu-Takayanagi entanglement entropy bound

As any nonlocal unitary rotation can be decomposed as a tensor product of 2-local and local
qubit rotations, the unitary operators of the URG framework form a entanglement holographic
mapping network [50,51]. As a consequence, the renormalized states in the bulk of the EHM
network respect the Ryu-Takayanagi entanglement entropy bound formula [52]: the entangle-
ment entropy of a region R is bounded from above by the number of linkages between it and
its complement. We have given an explicit demonstration of this entropy bound for the parent
metallic state and the insulating ground state of the 2D Hubbard model at half-fillingin Ref. [29].
This shows that the entanglement renormalization obtained via URG generates a holographic
dual space-time along the RG direction. We aim here to reveal the URG scaling features of the
Ryu-Takayanagi entanglement entropy bound for various metallic and insulating states obtained
in the IR starting from generic strongly correlated models. In this section, we will obtain the
expression for one-electron entanglement entropy in terms of the coefficient tensors. This is im-
portant as the maximum one-electron entanglement entropy among the electrons in a region R,
when multiplied by the number of entangled links at a given RG step j, leads to the scaling of
the holographic entropy bound.

The many-body eigenstate |¥(;)) at an RG step j can be written in a Schmidt-decomposed
form with respect to 1-electron state k and the rest of the system

[Wjy) = aoldo.) [ Wo,(j)) + atldr,) Vi, - (19)

Here {(¢1,11¢0,1) = 0 = (¥1,(j)|Wo,(j)). Note that for [ < j, the electronic state is a part of the
entangled subspace, ensuring that the Schmidt coefficients a; and ag take values between 0 and
1. The states |Wo () and |\IJ1,( /) can be written in terms of the coefficient tensors as follows

L) 2 ZC’;I(”"Q‘ %o 0.0 2 ZCO(D
\/2,51|C V2w 1Cai

Here the labels o} and ] represent the collection of electronic states that are occupied. Given
the orthogonality condition (W, (j)|W¥1,(j)) = 0, the Schmidt coefficients have the following ex-
pression

aLgy = [D_ICh P a0y = [D_IC 17, 1)
Bi aj

with the constraint a% G T ag G = 1. The one-electron entanglement entropy is obtained in
terms of Schmidt coefficients

IW1.0)) = )= (20)

1 1
S¢jy (k) =log2 — 5(1 + x)log(1l +x) — 5(1 —x)log(1 —x), (22)
_ 2 2
where x = /1 — 4a1,(j)a0’(j).

We now obtain the leading terms in S ;) for two extreme cases: (i) when the URG flow leads
to IR fixed points where the ground state is completely separable, and (ii) when the URG flow
generates a highly entangled subspace in the IR. For case (i), and with x =1 — € (¢ — 0), we
have

1 _ € _ L(J) ~0.(j)2
Sty =—(1=)log (1-2) = Slog > ~e/2= 520; Ci DR 23)
1,1
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For case (ii0, with x — 0, we find
$2, (k) ~ 1o 2= ioga— Lo L0
) g 2 0g 2 + Z |Cﬁ| Cotl " 24
Bi,ay
Next, we will obtain the renormalization of entanglement entropy S(1 7 for case (i) in the lowest

order of AC ;f )

1 L) L)y ~0,(j 0,(j)y12 L(J) ~0,(j) 2
AS(j)(k) = Z |(Cﬁ1 7+ Acﬁl ! )(Cal(j) + ACﬂtl(j))| - Z |C/31 ’ Cotl(])|

B, Bi.an

~ L) A ~LG)Y 2 0.(j 0.(j)N ,2

~ ZzRe(cﬂ1 PACy ag )+ Z2Re(ca1<J>Acal<f>)aL(j) ) (25)
B o)

Note that for a separable state, either a; ;) — 1 or ag (j) — 1, resulting in
1 _ L) L)
AS(j) (k) = ZZRe(CﬂI Acgy. (26)

Bi

Similarly, for highly entangled states in case (ii), AS?, (k) = 3", 4Re(CyY )AC;’] )y, Finally,
note that, following the Ryu-Takyanagi formula [52], the entanglement entropy of a region R is

bounded as follows
AS(H(R) < Niy(R)A St (k 27
(H (R) = N(j)(R) max (k) (27)

where N(;)(R) is the number of electrons in the region R that belong to the entangled subspace
at RG step j. In a later section, we will obtain the entropy bound scaling relation for various
gapless and gapped IR fixed points obtained from a generic strongly correlated model.

3. Tensor RG theory for the single band four-Fermi interacting model

The URG formalism, introduced in a companion work [1], leads to the iteratie block diago-
nalization of the Hamiltonian in Fock space. In Sec. 2, we have laid out the major results from
the URG formalism. In the companion work [1], we have also investigated the leading effects of
such unitary transformations on a generic model of interacting fermions on a lattice. These inves-
tigations pointed towards the emergence of six-point (or three-particle) vertices that can either
lead to the modification of the Fermi liquid self-energy or its complete destabilization, outcomes
of logarithmic divergences in the 1-particle self-energy and 2-particle correlation energies re-
spectively. To further investigate these log-divergences, we implement the Hamiltonian Tensor
RG scheme.

We begin the analysis by representing the single-band translational invariant four- fermion
interacting model (SFIM) as follows

Hspiv =Y (ek — Witk + Y VapChyCh_torCp-kocwo » (28)
k kk'p
where p is the net pair-momentum and k — K’ is the momentum transfer. The four-fermion inter-
’
action vertex can be compactly represented as V5 = Vlfk‘fp, where o := {(k, 0, 1); (p—k,o’, 1)},

B:={(p—K,o',0); (K,0o,0)}, and the indices 1 and 0 represent the ¢ and ¢ operators respec-
tively. The zero momentum transfer vertices are denoted as Vo (where o' = {(k, 7, 0); (p —
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(b) 3 2 1 0 1 2 3 () 8 2 -1 0 1 2 3

Fig. 1. Figure represents iso-geometric curves that are displaced parallely from the Fermi surface (red curve), and cover
the Brillouin zone in the limit of (Lx, Ly) — oo limit for (a) the square lattice at chemical potential u = 0, (b) the
triangular lattice at u = —7.0¢ and (c) the continuum circular dispersion at © = 0. (For interpretation of the colours in
the figure(s), the reader is referred to the web version of this article.)

Kk, o’,0)}). For an overall understanding of the various zero temperature phases, we develop be-
low the Hamiltonian renormalization group scheme eq. (6) for Hgry. We will, thereby, display
the tensor network representation of the Hamiltonian RG flows towards various fixed point the-
ories.

The scheme adopted for the RG involves decoupling initially states whose energy is highest
with respect to Fermi energy Er = u, followed by ones closer to the Fermi surface. This is
ensured by defining parallel curves isogeometric to the Fermi surface (see Fig. 1). The wave-
vectors kp; = Kkp(5) + AS are relabelled by the distance A from the Fermi surface and the unit
normal vector to it, § = Veg/|Vek||q,=£. The renormalization group flow of the Hamiltonian,
Hi1y=UgH( j)U(Tj), takes place via disentangling an entire isogeometric curve by a unitary
operation U(jy =[], U1y, where the collective coordinates [ = (5, 0), (j,1) = kAj§0' repre-
sent the state labelled by the quantum numbers k A;30- Ugj,1y represents an individual unitary
operation that decouples a single electronic state (j,/) =k A;30 and has the form

1
V2
where the form of the e-h transition operators 7;,;) are shown in eq. (3). Following the RG flow
equations eq. (10) obtained from the Hamiltonian renormalization, we will investigate various
parameter regimes for the microscopic Hgryys theory, culminating in the RG phase diagram for
the model. In keeping with our discussion of the influence of 3-particle vertices on the 1-particle
self-energy and 2-particle correlation energy, we truncate the RG flow equation hierarchy in
eq. (10) to six-point vertices.

UG =—=l+n{;,, —nGnl, (29)

3.1. Derivation of the RG equation for 1 particle self energy Xy (w)

Translational invariance of Hgryp ensures that the two-point vertices are purely number di-
agonal in momentum space: Fié,] )(a)( ) =€rs+ EE\J)ﬁ(w( 7). Further, from eq. (10), the RG
flow of Fia, can be attributed to the contribution from 4- and 6-point vertices to the RG flow of
the single-particle self-energy

) 4 6.0/) 4.0j)
AT @) =Y T (@)Gy ()T @)

Y

6.) (1 NGO () O,
+y TaS @()G,, i (@) o (@) (30)
Y1
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Here, Gf/‘y ) (w(j)) and G;/(;’,(j ) (w(j)) are Green’s function operators that contain the kinetic and
interaction energies of three particles and five particles respectively, with explicit forms given by
STkAjflﬂ/aP*kA 5,0'0p—kps0
gl 2 3
@) h(;) hiy =)
1 )
hjy = (e, 5, + 5, i @ODTR, 500 = (g g+ Ep oy (@), 50

6 (])((1)(])) —

’

— (ep—k,; + 2:p—kAe (@(j)))0p—k ;0
4 )]

h(j) (kAS "), (p—kps,0)OP—Ka j5,,0'OP—Kp 5.0
4,(j)

+ F(kA Tl a’),(p— kps.0) kl\ 51 0 O'p k/\ss(7
4,(j)

T 0.0k 500 T 507 TPk 0

6.0
By = Tl 07, (p K00k 5y, TPk i0/ 00Kz .o Ty 5 (3D

and

321_[ i=1 Ukts”szA 51

10,(j) kioicy
G (i) = )
(0= ®—hj)
2, 4
= 2 Tplowet 3 Toloweon.o
(k;,0)epCy ((kj,o),
(kj,0"))epCy
6,
+ Z Fp (/)Uk ,00K; o’tkA./.g],U’ s (32)
((kj,0),
(kj,0’),
(k;,0"))epCy

respectively. The labels o, y and o’ are defined similar to that discussed below eq. (9), as the
collection of pairwise labels {(k, o, n)}, such that [ represents the electronic state labels and u =
0/1 represent the electron annihilation/creation operator. The labels o = {((Kp;, o), 1), ((p —
Kpz, 00, u0)}, vy = {((kAj§, o), 1), (p— kAjS-, o"), u2)}. o’ and y’ involve the same electronic
states with w1, uo replaced by the complement 112 =1 — 1 2. Similar definitions exist for o,
y1 and o, y;. In the above equation, the operators Tk, = 1Ky — % represents decoupled degrees
of freedom that commute with the Hamiltonian, while the operators ok, = nks — % belong to
the coupled space and do not commute with the Hamiltonian. We now derive the four-point and
six-point vertex RG flow equations.

3.2. Derivation of RG flow equations for I'* B and F

Using the RG flow equation hierarchy of eq. (10), the RG flow equation for the four-point
vertex at the /-th step and along a given isogeometric curve j is given by

4,(j,1
AF (] )(w(j )_ ] )(w(] )_F 4,0, 1— )(a)(]l—l))
ZF4 (jl)G4 NGB l)(a)] )F4 (]l)+ZF6 ,(J, I)GS (jl)((,()] )F6 U 1)

(33)
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Here, G;‘/’;{‘l) (@g,n)- Gg’;{’l)(a)(ﬂ)), Gi’;{’l) (w(j,1y) are four-, six- and eight-point Green’s func-
tions respectively. We also note that the four-point off-diagonal vertex scattering between nor-
mals § and §' takes places either directly (§ — §’) or via correlated (i.e., higher order) tangential
scattering processes (e.g., § — §] — §', § — §| — 53 — §'). Taken together, the first term in
eq. (33)) involves the contribution to the four-point vertex RG flow AT*W) jn eq. (33) due to
other four-point vertices (including the effects of correlated scattering between states residing on
the same isogeometric curve (j))

r* 4,(j) s 4,() b (G) s () 1,
(’)(w</))—>Zr4 Slent iy (”+Zr4 R W) WA

_§:I| 4,(j) 4D 4G ~4G) 4G
- FO[}/I G}/ ]/l FV, )/I_HGVnVn Fynﬂ : (34)
Vi i=1

In the above expression, the renormalization contribution from the k-correlated 4-point off-
diagonal scattering vertex (i.e., r4Ger+.. k—times - - - F4G4F4) for a D-dimensional system
scales with volume as L&—D{P-Dy—kD _ j—=D—k+1 Thyg in the thermodynamic limit (TL,
L — 00), the leading contribution comes from the k = 2 scattering (in comparison to all k > 2
processes). The same holds true for the T*G3T® and MG renormalization contributions to
') in eq. (33), with volume dependence L~ *+DDP=k+1 and [,=3kD respectively.

Accounting for the leading contributions in the thermodynamic limit, a compact form of the
flow equations for 4-point vertices and 6 point off-diagonal vertices is given by

AFGU)(a)( ))_ZF4(1)G2(1)(CU )F4(j)+ZF6(])G6(/)(w )F6(J)
+Zr6<ﬂG4‘”( DL (36)
14

Finally, the RG flow equations for the 6-point diagonal vertices are given by

AT ’(])(w(j))_zrét (/)G2 (])(w )F4 (j)+ZF6 (/)G6 (])(w )F6 () . (37)

In the above flow equations, the Green’s functions G ’({ )(a)( s G4’('f )(a)( ) G6’(‘{ )(a)( 7)) and
(j ) (w(j)) contain the energy contributions from one-particle self energies, as well as two- and

three-partlcle correlation energies. The form of the two- particle Green’s function Gy)f{ ) (w(jy) is
given by

41, . 0'Op—k, ;.0
(]) Ajsl’ P Aj*"l’
(o)) =

() = hip = htj,
h%j) = €k 5 k5007 + €p—ka ;5 Op—ka ;5.0 h%j)
é(‘k(Al)jl o). (p—kp 15, .0) Tk 500" Tk 5.0 (38)
The four-particle Green’s function G y’;{ ) (w(j)) can be obtained similarly, while the three-particle

Green’s function Gi’;{ ) (w(j)) has already been given earlier.
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An important point can now be made. When relevant under RG flow, the contribution of six-
point scattering vertices ng(j ) is responsible for the dynamical mixing of opposite spin electron-
electron and electron-hole configurations. This feature results from the non-commutativity be-
tween the composite electron creation operator (1 — ﬁkg)cl,g, and the ee/eh pseudospin pair

operators [53], c;fm clt,g, and c;fw CK/o’ - In order to incorporate this effect within the four-point ver-

tex RG equations, we follow Refs. [1,27] and perform an w-dependent rotation, tan—! (,/ 1_Tp),

in the space of the electron/hole configurations of the pair of electronic states: |1k, 1p—k,;) and
[1k,.Op—k,,). This is manifested in the RG equations of () obtained in a rotated basis of
occupied and unoccupied electronic states

4,() () 4,() 4 ()
AT (1) = Z play Ty B (I =Pl T g
@ W)= W _ 214D O _ 2140
Y W) — p ky o.p 4 yy’ w(j) ep,kAjf/,p/ 4 Y1 Vl/
4 Z[‘6 (J)G8 (J)( )Fﬁg(j) (39)
D)y e

where the ee/eh hybridized pair-dispersion is given by

() () (/) ) (/)
61’ kA v (GkA 5 P kAjf’) ( kA 5 P kAjE’) ’ (40)
In the above RG equation, the indices «, B,y, o', B/, y1 are related as follows: for o =
{(k’ 07 1)3 (p - ksa/v 1)}3 /3 = {(klva3 0)’ (p - k/sa/vo)} and V = {(kAj§1107 0)9 (p - kAjflv
o’,0)}, the indices a; = {(k, 0, 1),(p -k, 0,0}, f1 = {(K,0,0),(p —k,0o’, 1)} and y; =
{(k Aj§> O 0),p+k AjS k' — Kk, o', 1)}. In order to manifest the dominant effect of the six-

pomt off-diagonal vertlces the hybridisation parameter p(w) is chosen so as to maximize the
(] ) ) 1

spin-charge hybridized Green’s function G7-/ (w(j)) = (W) — €pky 3D
ka5

pi=p s.t. G (o) = max G (wj) . (41)
0<p’'<l1

With these RG equations in place, we have laid the platform for investigating the low energy
fixed point Hamiltonians of various quantum fluctuation energy scales and parameter regimes.

3.3. RG flows towards Fermi liquid and BCS fixed points

We begin with an illustration in Fig. 2 of various 2-, 4- and 6-point vertices obtained from
a tree-like decomposition of the hierarchical Hamiltonian RG flow. This will be seen to assist
us in describing the RG flows towards various stable phases of fermionic quantum matter ob-
tained across several parameter regimes. The first level of branching involves the separation into
the 2-point (self-energy X), 4-point (I'*) and 6-point (I"®) vertices. A second level of branch-
ing involves that of the 4- and 6-point vertices (I'™ 4.() 16U )) into diagonal (T, 4 (] ) F6 o )) and

off-diagonal (F4 ) F6 G )) elements. In order to make the tensorial dependence on momenta

and spin indices exphclt, the diagonal and off-diagonal 4-point vertex elements (Fi OE,’ ), F4 G ))

are further decomposed into different pair- momenta p and spin-pair channels ¢,0' =0, 0 and

0,0/ =0,—0 as F4 ) = V‘m W) F4 ) = V]fk‘,r ") respectively. The notation o8 and arer’ em-

ployed for the 4- pomt vertlces are 4 element sets chosen as follows:
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Hjy
¢ (j)

/ \(1) 6 (]) 6 (])

A

00,(j) G o, (J) Voo ) yo o ) 0o, (j) o—0.,(j) 00,(/) 0—0,(j)
V k,p e k,p’ k,p’ Vk,k/,p Vk,k/,p Vk,k/,p/ Vk,k’,p/

()

Fig. 2. Tree tensor network representation of the 2-point, 4-point and 6-point vertices, where the 4-point and 6-point
vertex tensor are comprised of diagonal and off-diagonal parts. The 4-point vertex tensor is further decomposed in
various total pair-momentum p and spin-pair oo’ channels. Note that & := {(/, 1)} and o’ := {(/, 1)} and B :={(’, 1)},
where the index / represents a collection of labels marking states in the coupled space and i = 1/0 refers to a particular
state being either occupied or unoccupied (converse for ).

aﬂ = {(ka o, 1)5 (p - ka 0/7 1)5 (p - k/’ 0/5 0)7 (k/’ 0/5 O)} )
ad' ={(k, 0, u1), (p—k, o', n2), (p =k, 0', fin), (k, 0, fi1)} (42)

where the first two indices label the state and © = 1, O represents creation or annihilation opera-
tion on that state and [ is its compliment.
Similarly, the 6-point vertices are decomposed into diagonal I’ (j ) = Rzlf,lg, @) and off-

diagonal vertices I’ ﬂ(] ) = R;Zlflﬁz{(j )k4 Again, the notation a8 and ao’ for the six point vertices

are 6-element sets chosen as follows:
aﬁ = {(k7 U’ 1)’ (p - kv OJ! 1)’ (p/ - kl? 0/7 1)1 (p - k/7 OJ’ O)’ (k//’ OJ? O)’ (p/ - k”’ G? 0)}

= {(k, g, M1)7 (p - kv OJs M2)7 (p - k/7 OJ? /-’L3)a (p - k/s OJ, ﬂS)s (k, a, l:Ll)v

Given the complex tensorial structure of the vertices, a simplified representation is needed by
which families of RG flow equations can be characterized into different phases. Thus, we define
the quantities

sgn( oo (j)) /Zwlfkc/fp,(J)lz
oo’ (j) _ Kk’

p = s
Y VG e+ g P
K£K/
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Hj)

2/1"4 (/)\(/)
F4’ v \(/) 1"6(/]) 1"6(/)

ao oo ap
oo, \‘7 ) / a',(j)
Vien Vew - SR
00 (J) 0 0.(j) VUU(/) Al 0(/) yoo.() el 0(/) v () Yoo ()
k.p k.p’ kk’p 'p kk’p’ k’p’

Fig. 3. Tree tensor diagram representing the Fermi liquid (regime-I in Table 1). The off-diagonal 4-point vertices are
RG irrelevant (i.e., flow towards zero) and are represented in red. Further, diagonal and off-diagonal 6-point vertices
are irrelevant and are represented in red colour. The 1-particle self-energy and the 2-particle Hartree contribution is RG
relevant, approaches fixed point values, and are reprented in blue.

oo'o,(j)
Z/:// |Rk’k,k” |2
oa'o,(j) _ kk'k . (44)

000(])2 O'O'/U,(]') 2
ka/l:(H| Kk T Z Ry ks ky |

k3 k4

Importantly, we add that our analysis is confined to models with off-diagonal 4-point vertices
that are either Vlgkf,’ <0or Vlfk‘,’ > 0 for all k, K/, p. It is clear from this assumption that —1 <

r’ Y0 21,0 < 5799 < 1. As shown in Tables 1 and 2, we can now tabulate the stable fixed

point theories corresponding to various low-energy regimes by using the relevance, irrelevance
and dominance criteria of various ['>(), I'*(/) and I'% () vertex RG flows. Further, the RG flows
for regimes (I-1II) in Table | and regimes (IV and V) in Table 2 are represented via tree diagrams
in Figs. 3—8. Below, we discuss various low energy fixed point theories arising from these RG
flow equations.

L. The Fermi Liquid

Fermi liquid theory [54] arises in the low-energy regime I in Table 1 due to vanishing of all
the non-zero momentum k — K’ scattering vertices ]f ﬁ, We discuss the details of this RG
flow here. The condition 1 in regime I provides the ranges for fluctuation scale w(;y and number

diagonal vertex V,. g ") for which the Green’s function Gy;{ ) appearing in eq. (36) picks up a
negative signature

-1

aa’,(j)
4,(7) () W k,p
Gw{ =|lwy — = (EJ €p— ka5 )_T <0, (45)
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Table 1
Table representing various parameter space regimes (Column II) and the associated flow of quantities describing nature of
fixed point theory (Column III). Regimes I, IL, III leads to fixed point Hamiltonians H; Lo H;Sgg 5 H;gg SZ respectively

in the main text.

Cases

PR , j
rgff q(])’saa 0,(j)

Vliro’,(j)
AjsP ( > D
J J J
% >“’(1)_‘(€ €p— ka5

) me’,(j) > me’,(j)

kp ;5P kp5kp

)

/o
r;,m ), 0+ for all p

srra/a,(j) - 0+

(J)
. o, ff(e +€7 ) <0 0,—0,(j) _
(]) 2 kAjs rp —0 —1
. el((J) > EF Yoo
A48 _ ;"12 — 0+ for epr_g > EF
. vlf: W5 Vid'p=0 | L—o0
’ 0,—0,(j)
I yoe—a) g Ty — 0+ forey g <Efp
Kajokp 0.0.())
. p — 0 for all p
Vavav(]) 0
kp gkp ,o
J §90 a,(j) S0t
% ,"”)|<|V" ,i’.ﬁ’l’,\ oo oo
1.0 ) .
@) (6 +€—kA‘ )<0 . r;’zoa’(]) - —r,r<l1
o)) >Ep Voo
A-/'A/ ] . (I,“ig — 0+ forey_y > Ef
Vlfij () 0 ka’p:O' L—o0
il . 3. 7% 77U S 04 forey g < Ep
4 yool) g P p
kp .5.kp < .
Jj* 0,0,(j)
. 4. rp — O forall p
0,0,(j)
5.V ke >0
Aj3 P 00'a,(j)
5. = — 0+
6 |V U(/)l | v U(J)‘ ©o=o()
" ka s Ak "p=0 L—o0

leading to the RG irrelevance for both the off-diagonal and diagonal vertices, i.e., (A lf Z: U ),

AV‘”7 2y )) — 0. Further, condition 2 in regime I ensures that in the limit of large system sizes

(L — 00), the off-diagonal vertices vanishes Vk k, ) 0, whereas the diagonal vertices reach
a intermediate value given by the fixed point condmon (corresponding to a vanishing of the
denominator in eq. (36))

L[ G (% )
@GN TS (ek/\ + GP*kAj*f - ZVkAj*EP ) (46)

The tree diagram Fig. 3 represents the vertex tensor RG flow, where the blue branches and nodes
represent vertices whose magnitudes flow towards a finite value at the stable fixed point. On the
other hand, the magnitudes of the red branches flow towards zero. As k k, is RG irrelevant,
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Table 2
Table representing various parameter space regimes (Column II) and the associated flow of quantities describing nature
of fixed point theory (Column III). Regimes IV, V, VI leads to fixed point Hamiltonians H ;PXL{W H ;},XDXV% , H;f/[ FL

respectively in main text.

Cases rga’,(j), §00'0,())
TR ) 4
L) Z(EkAjSv +€P—kAj§) <0 1. rlc,r‘fa’(j) — —1
()
2. ekA P Er Vlg;/—g
J 2. P — 0+ forey > Efp
3y Vlfl;/pa L—>00 P
© 'k,p _ .
v 6,—0,(j) 3. r;; o) 5 0+ for ep—x <EF
4 VT <0
5K, .
- 4. rg»m(}) — Oforall p
5. 27 S
kA/&Yk‘p oo'o )
6. IV T 1< Ve o) S ey
" kp P kp 5 kop » L—oca
RRPRe) ) 4
L-eg) Z(Ek/\j§+ep—k/\j§)<0 1. rg‘fa’(”—>—r,r<l
()
2. ekA < >EF Vl;;l;,—(,r
P 2. B — 0+ for ey i > Ep
3. V00 Do Viwp |L—00
P .
0,—0.(j)
\% i ) o 3. T — O+ forey g <Efp
k/\ _é,k,p .
" 4. 137D 0 for all p
5. v2e) S
k/\jg,k,p oo’o,(j)
6. Vo) 5 |y o), S oo, 70
LY ky 5k p L—oo
1 () 1,.() () _ i
1 761(1\]-: <o) < j(ekAjf +€7kAj§) 1. §9:—0.0.(J) 5 1
VI 2. el((jA)-G >Efp 2. §9.9.0.(J) =0
;i
a,0’,(j) aa’,(j)
3. VkAj.Gka >0 3. rp -0

the 6-point vertices R2?’°" also do not contribute in the limit of L — co. This results in the
quantities rg 7+4) 5 0and 579" — 0. Thus, the theory at the Fermi liquid fixed point is free
of all 2-particle as well as higher order off-diagonal vertices, leading to Landau’s Fermi liquid

Hamiltonian [54]
N LG* A ~
Hi @)= Y agiget Y. Voo U @g)ikolipkyor 47)
A<Aj>s<,§ A<Aj*,§,p

For a quantitative demonstration of the Fermi liquid fixed point theory from our URG anal-
ysis, we numerically analyse below the URG equations for various 2- and 3-particle vertices,
the 1-particle self-energy (X) and the quasiparticle residue (Z). For this, we consider a screened
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Fig. 4. Log-log plot for renormalization of two-particle vertices V (¢) with momentum transfer |q| = 0, 37/10, 37 /7
and 37/5. The x-axis is the RG scale A/Aq and the y-axis is the magnitude of the scattering vertex V (g). For the
numerical evaluation, we have solved RG eq. (35) by taking a system volume of 1024 x 1024 lattice sites, @ = €5, +0.1

(Ao =7/20) and V() = n2V(0)/(q% + n?) with .= 0.2, V (0) = 20.5.
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— k=ke +m/53 0.040
035] — k=ke+m/52

— k=ke +m/51
030{ — k=kr +m/50 0.035

0.25

= 0.030
X 0.20
W
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0.05 0.020

0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0.0595 0.0600 0.0605 0.0610 0.0615
— NNo (k — k)

Fig. 5. Left Panel: RG flow (eq. (30)) of the single-particle self-energy for four different wave-vectors k close to k.
Right Panel: Variation of renormalized single-particle self-energy at the IR fixed point upon approaching the Fermi
surface with lowering |k — Kkfg|.

interaction potential V (|q|) = n?V(0)/(g* + n?), with V(0) = 20.5, n = 0.2, a two-dimensional
circular Fermi surface with |kr| = 7/20 and w = €45, + 0.1 (Regime-I of Table 1) and a sys-
tem volume represented by a k-space grid of 1024 lattice sites x 1024 lattice sites. In Fig. 4, the
2-particle scattering vertices V (|q|) with non-zero (q # 0) momentum transfer (red, green and
orange curves) are found to be irrelevant under RG flow. On the other hand, the |q| = 0 vertices
V(0) (red curve, corresponding to the couplings associated with terms like fixsRK/) attain a
finite value at the IR fixed point. In this way, we numerically confirm the RG flow towards the
effective Fermi liquid Hamiltonian H};; (w) given in eq. (47). In Fig. 5 (left panel), we see that

the 1-particle self-energy E,(cj ) renormalizes to a finite value %} at the RG fixed point, and that
the |k) states closer to the Fermi surface (kr) have a lower X} (Fig. 5 (right panel)). Fig. 6 (left
panel) shows that the quasiparticle residue Z(k, A) — 1 upon approaching the Fermi energy
A — 0, demonstrating the existence of well-defined Landau quasiparticles in the neighbourhood
of the Fermi surface. Fig. 6 (right panel) shows the RG irrelevance of 2-electron 1-hole scatter-
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Fig. 6. Left Panel: Variation of the quasiparticle residue for eletronic states k with lowering excitation energy scale A

about E . Right Panel: RG flow (eq. (37)) of the number diagonal three-particle vertex with wave-vectors kg, kr + ;—0,
T

kr =55

ing vertices (which constitute the primary decay channel for the Landau quasiparticles). Taken
together, these results verify numerically the phenomenology of the Landau Fermi liquid theory
(eq. (47)) as derived from the URG analysis of the Hs ;) model (eq. (28)).

In a companion manuscript [1], we derive the form of the renormalized Friedel’s scatter-
ing phase shift starting from the exponential representation of the unitary operator AN =
Tr(og(Ugj)) = i%Tr(r/(j) — nzj)). Further, we note that this is similar to Langer and Am-
begaokar’s definition of scattering phase shift [55]. As all off-diagonal terms are RG irrelevant
in the Fermi liquid, " and 5 both vanish at the RG fixed point. As a consequence, the Friedel’s
phase shift for the Fermi liquid is given by AN = 0, i.e., upon placing a test charge near the
Fermi surface, no electrons are permanently displaced from within it and the Luttinger volume
is preserved [56,57]. The incompressibility displays the topological protection for the Fermi sur-
face (F'S) associated with the Volovik invariant [58], as shown in Ref. [1]. Further, we obtain a
vanishing thermal scale in eq. (18), T = 0K, corresponding to w(;+) =0 and A(;+) = 0 for the
Fermi liquid.

I1. Reduced BCS theory-XY interaction

The reduced BCS theory [59] constitutes attractive interactions between opposite-spin pairs of
electrons with zero net-momentum p = 0. This theory is an outcome of (i) RG irrelevance for the
2-particle number-diagonal vertices, (ii) dominant RG flow for zero-momentum p = 0 electronic
pairs and (iii) the sub-dominance (or RG irrelevance) of the p # 0 pair-scattering vertices. The
above features of the RG flows is an outcome of the conditions listed as 1-6 in regime II of
Table 1. Conditions 1-3 imply that the Green’s function

-1
40) _ A0 _ 1
ny/ = GkA‘/-ﬁ,P = (Cl)(j) - E(Ek/\j§ + kaAjg)) ) (48)
e o L) NP2 N 6)) 4,(j) :
has a negative signature: GkA p= |GkA it p|. As GkA .,p appears in the RG flow eq. (39) (for
i$ s s

p = 0), scattering between opposite-spin pairs due to attractive couplings (Vf Y ‘;’ U )) become RG

.
relevant, while repulsive Hartree interactions (Vlf ’lf ) ) are RG irrelevant. Further, condition 4

ensures that all scattering vertices with identical spin (V]f ’]f,’;] )) are RG irrelevant. Given the

)

range of the fluctuation scale wy;) in condition 1, and for €,

> Ep, the 2-particle Green’s
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Fig. 9. Left/right panel represents the RG flow of two-particle number off-diagonal/diagonal (egs. (35)) scattering vertices

for p = O(VUL v(”

1024 and bare Vp p = —0.1, Vx p = —0.25 (in units of t) w= €A — 0.5. Left panel inset: Finite size scaling plot of
the ratio VX p=0. 004/ X, p=0 with 1/+/Vol.

0) and p # 0 finite-momentum pairs (( ,)). Numerical evaluations are for system size = 1024 x
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Fig. 10. Left panel shows the variation of electronic pair-scattering vertex magnitude attained at RG fixed point V; (p)
as a function of pair-momentum p. Right panel shows the RG flow (eq. (51)) of the single-particle self-energy for four
different |k) states close to Fermi momentum k.

function for p > 0 momentum pairs G;‘; ;] ) = G4 (] ) is smaller in magnitude compared to the
Zero-momentum pair (p =0)

4 4
This Green’s function appears in the RG flow equation eq. (39) for the vertices k. k,g () , ren-

dering it sub-dominant compared to the vertex V', ;9 ) As a result, a7 ) /Tos” W

0, as shown in regime-II Table 1. Condition 6 ensures that the number-diagonal 1nteract10n

V]f ’p_g’ @ 0. Finally, as the RG flow leads to dominance of only a given pair-momentum

vertices compared to all others, the renormalization of the 6- point vertices I'®(/) that arise out
of the interplay between different pair-momentum vertices in eq. (36) is sub-dominant compared
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to the p = 0 vertices. Thus, they are represented by the ratio 509'0.() / r;:‘;oﬂ’ “ |L—00 = 0+ in
regime II. All of these features finally lead to the fixed point condition

W) = —(G(j*) +€(j*) )_6(1*) 7 (50)

1
where we have used the band symmetry ex = €_k.
()

Further, at this RG fixed point, the 1-particle self-energy E]((j ) = €, — ek diverges. This can

be seen as follows. The RG flow equation for Z]((j ) (eq. (30)) now has a dominant contribution
from the zero pair-momentum scattering vertices

2
. . . 1 1 .
() =0, (J) () (-1
Azk] = (VlfAf.efk,]I)Z()) (a)(j) — ekJAif + Eek —+ Ezkj ). (1))
From this relation, we see that the self-energy is RG relevant. For the electronic states labelled k
(i.e., residing within the emergent window), the self-energy RG flow equation has a fixed point

at E]((j D ooas () = %el((JA *;, indicating the breakdown of the Landau quasiparticles of the

Fermi liquid. As discussed in an earlier section, the diverging self-energy corresponds to zeros
in the single-particle Green’s function

Gk, w) = S — 0. (52)

w— €x — 2k
This indicates the breakdown of the Luttinger volume sum-rule, i.e., N, # Zkg G(k, ). Instead,
we find that the total number of Cooper pairs Nc p within the low-energy window equals the net
Friedel’s phase shift, AN = T'r(log(U(;))) = Ncp € 2Z, i.e., two electronic states are lost for
each bound pair. This provides a way for taking accounts for the Luttinger surface of zeros [60]:
the Friedel phase shift compensates precisely the mismatch observed via the accumulation of
topological phases arising from the non-commutativity of the twist and translation operators [49,
61] (as shown in a companion work [1]).
The effective Hamiltonian, H;’gcys (w), at the stable fixed point of the flow has the form

XY G* ) A a,—0,(j* ) A —
Higes(w) = ZE kam K, 7e.0 km AkA/g,/ , (53)
kAa

where the set @’ = {(kp/sr, 0); (—Kps3, —0)}. This is the generalized reduced BCS Hamilto-
nian/pairing-force model [59,62], where the pseudospin Ak, , components are defined as [53]

1, . _
Ay = 3 o + ko = DAL = gl Al = C kot - (54)

s

In order to verify quantitatively the effective theory given in eq. (53), we numerically simulated
the RG equations for the bare couplings Vx,, = —0.25, Vp , = 0.1 and the fluctuation energy
scale w = €5, — 0.5 (Regime-II in Table 1) and an identical k-space grid as mentioned earlier.
Fig. 9 (left panel) represents the RG flow for the two-particle off-diagonal scattering vertices
involving electronic pairs with net-momentum p = 0.0, 0.004, 0.009 and 0.012 respectively.
The inset in the left panel of Fig. 9 shows that the ratio V;’p, / V; =0 diminishes with increas-
ing system volume (which we have taken to range from 1024 x 1024 lattice to a 5000 x 5000
lattice), indicating the dominance of p = 0 momentum scattering vertices at low-energies and
describing the condensation of Cooper pair degrees of freedom. Fig. 9 (right panel) shows that
all the number-diagonal scattering vertices are RG irrelevant, and vanish along the RG flow. As
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seen in Fig. 10 (left panel), we find that the p = 0 momentum electronic pair scattering vertices
have the highest magnitude |Vy ,_ol > [V | (Vi o= Vkak, 0 Vi = k‘f’k,_’;,) at low-energies,
and the magnitude of V* , monotonically decreases with increasing pair-momentum (p). The
relevance of off- d1ag0nal p = 0 momentum scattering vertices, together with the RG irrelevance
of number-diagonal scattering vertices, describes the effective Hamiltonian HY RB C 5 (eq. (53)) at
the RG fixed point. Finally, Fig. 10 (right panel) shows a divergent renormalized self-energy i
(eq. (51)) for the |k) states, where |k — kr| < A* and A* is width of the momentum-space shell
around the erstwhile Fermi surface.

The condensation of the pseudospins (i.e., Cooper pairs [63] with the electronic spins locked
into singlets) in this subspace is described by the fixation of the pseudospin angular momentum
value to %

2 3

. R 3
AkA§ = Z(nkmﬂ +n—k/\.€—ff — 1)2 = Z , A< Aj* . (55)

Thus, the emergence of the constraint 7k ao = n_k A;—o describes the phenomenon of conden-
sation of Cooper pairs within the low-energy window of the BCS fixed point theory. For the
case of a spherical Fermi surface, i.e., €55 = €, the phase described by the BCS reduced model
(eq. (53)) will persist upto the thermal scale (from eq. (18))

0
T*:L[zeg + (€ —a))log|l|] (56)
kg i i CR I

The above equation is obtained from the self-energy of the electronic state at the momentum-

space boundary of the emergent phase in eq. (18): E(’ ) = — e% where eg is the bare
1

dispersion magnitude. The temperature scale T* is greater than the crltlcal temperature T, ob-
tained from the BCS mean-field solution [59], and indicates the presence of pairing in the ground
state of the reduced BCS Hamiltonian but without the off-diagonal long-ranged order (ODLRO)
that characterises the phase-stiff BCS ground state. We will present further insights on the ground
state properties of this quantum liquid in Sec. 112. Finally, the tree decomposition of the vertices
representing this phase is shown in Fig. 7.

II1. Reduced BCS theory-XXZ interaction

For the case when V] g > V]g IZ’ (regime-1V in Table 2), the diagonal vertices do not vanish
under RG. Here, the ﬁxed point condltion becomes

RGO L o—0.G%)
S (@l +eh) —o= v . 57)
As an outcome, the fixed point is described by a modified XXZ pseudospin Hamiltonian
grXXZ () 4 0,—0,(j*) 44+ 4—
Hpges (@) = Z ekm kAS - Z VkA_f,kA,f,,oAkA.g Akm,
AN <A*

0.=0.j") 4 z
+ Z V P Apfk/\g’ (58)
kA: P

where V ~9U" s the value of the Ising coupling at the fixed point. The RG flow features for
this phase is represented via the tree diagram Fig. 8. In this phase, finite magmtudes for both

the number-diagonal as well as off-diagonal interactions lead to the quantities r7 " (%)

p=0 ==
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Fig. 11. Left/right panel represents the RG flow (egs. (35)) of two-particle number off-diagonal/diagonal scattering

vertices for p =0 (V(/ X, p= 0) and p # 0 finite-momentum pairs (( V(j ) ,)). Numerical evaluations are for system volume

1024 x 1024 and with bare Vp p = 0.5, Vx p = —0.05 (in units oft) W=€pq — 0.5.

(where r < 1). The left and right panels of Fig. 11 represent the RG flows for the 2 particle
off-diagonal and diagonal scattering vertices respectively, involving electronic pairs with net-
momentum p = 0.0, 0.003, 0.004 and 0.006. The bare couplings Vx , = —0.05, Vp , = 0.5
(IVx,pl < |Vp,pl) and fluctuation scale w = €5, — 0.5 (Regime-III in Table 1), and a system
volume as mentioned earlier. As the low-energy fixed point in this regime is dominated by p =0
momentum electronic pair scattering vertices: |V§’ p=0| > |V;’p,|, |V5’ p=0| > |V;’p,|, the result-
ing theory is described by the presence of both Ising and XY interactions between pseudospins
(eq. (58)).

IV. Reduced BCS theory for finite momentum pairs-XY regime

In regime IV of Table 2, for the fluctuation energy scale lying in the range

) () () %)
E(ekix_ +e’ )>w> (61 +eh ), (59)

p_ ,s - Aj:

finite p pair—momentum pseudospins attain a reduced BCS theory like fixed-point Hamiltonian.
The fixed point is given by the condition

1/ o »
(6l +6lh,.,) —o=0. (60)

and with an effective fixed point Hamiltonian described by
H* XY (") AZ
Hsppw (@) = ZEkA pAkap
- Z VkAS kA/ Y pAkA pAl:A/é/ p’ (61)
Kps, A<A*

where the set v = {(kp;,0); (p — Kaz, —0)} corresponds to a pair of electronic states with net
momentum p. The ground state of H;‘},XDYW is composed of symmetry-unbroken pair-density
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Fig. 12. Left/right panel represents the RG flow (eqs. (35)) of two-particle number off-diagonal/diagonal scattering

vertices respectively for p =0 (V)((ji,zo) and p # 0 finite-momentum pairs ((V)((j;

system volume 1024 x 1024 and with bare Vp p = 0.007, Vx p = —0.05 (in units of 1), = %(ekAO +€0_01_kA0) —0.5.

,)). Numerical evaluations are for

waves (SPDWs) [64,65]. The pseudospin vector components for such finite-momentum pair of
electrons are defined as

+ a4 Lo -
Akmﬁp = Cknso p—kps—o” AkAsﬁP - Ak,\f,p’ AkAf,P ) [AkA.§>P’ AkAfsP] ) (62)

Given that Ising terms are absent from the effective Hamiltonian, we obtain the quantity
r3%U% — _1 for the fixed point theory. The RG flow features for this phase is represented
via the tree diagram in Fig. 7. A numerical evaluation of the RG flow is shown in Fig. 12 left and
right panels for 2-particle off-diagonal and number-diagonal scattering vertices respectively, and
involving electronic pairs with net momentum p = 0.0, 0.004, 0.006, 0.01. The bare couplings
Vx,p =—0.05, Vp,, =0.5 (IVx, pl <|Vp,pl) and fluctuation scale w = %(ekAO + ep_kAO) —-0.5
(Regime-1V in Table 2), and system volume as mentioned earlier. In this regime, we find that the
off-diagonal scattering vertices V;) = chf’k,_’g with the largest non-zero pair-momentum (here,
the curve for p = 0.01 in Fig. 12 (left panel)) dominate the low energy physics. However, we
find the Ising interactions to be RG irrelevant for all pair momenta (Fig. 12 (right panel)), and
the phase is described in terms of p = 0.01 momentum pseudospin pairs interacting via XY
interactions (eq. (58)).

V. Reduced BCS theory for finite momentum pairs-XXZ regime

Similarly, in regime V in Table 2, we obtain a phase composed of finite-momentum pseu-
dospins interacting via XXZ interaction. The effective Hamiltonian describing this phase is

*XXZ _ ™) 4z
Hyppw @) =)&) )AL,
k

_ 0,—0,(j*) 4+ -
Z VkAg,kA’.eMOAkAs,PAkA/f/sP

AN <A*
0,—0,(j*) 4z b4
+ Z VkAswP’ AkAs»pAp’—kAgyp' (63)

LN
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Fig. 13. Left/right panel represents the RG flow of two-particle number off-diagonal/diagonal scattering vertices
(egs. (35)) respectively for p =0 (V)(('/ )p:()) and p # 0 finite-momentum pairs (( V)(('/ ;}

system volume 1024 x 1024 and with bare Vp p = 0.64, Vx p = —0.04 (in units of #), » = %(ékAo + 60.01_kA0) —0.5.

,)). Numerical evaluations are for

Finite magnitudes for both the number-diagonal and off-diagonal interactions leads to the quan-
tity r;’:_oa’ U*) — _y where r < 1. The tree diagram Fig. 8 represents the corresponding vertex
tensor RG flow. As shown in Fig. 13 (left and right panels), a numerical evaluation of the RG flow
for bare coupling Vx , = —0.04, Vp , =0.64 and w = %(6/\0 + 60.01,/(,\0) — 0.5 (Regime-V in
Table 2) reveals that at the IR fixed point, both off-diagonal and number-diagonal renormalized
couplings attain a finite magnitude. The low-energy fixed point theory is, therefore, dominated

by finite-momentum pseudospin pairs interacting by a XXZ interaction (eq. (63)).
VI. Tensor network representation of the reduced BCS model and Fermi liquid theory

The above fixed point Hamiltonians for regimes [-V Table 1 and 2 can be broadly classified
into gapless and gapped phases. The Fermi liquid corresponds to the gapless phase containing
purely number-diagonal interactions, such that Hy., eq. (47) is purely number-diagonal in Fock
space and various terms in it commute. Therefore, all the number operators ng, corresponding
to states |ko) (lying within the window whose boundaries are given by the states k5 +«;, eq. (46))
commute with Hrp,, such that their eigenvalues correspond to integrals of motion. Following our
demonstration of a tensor network representation for the unitary RG flow in [1], the RG flow
towards Fermi liquid fixed point is displayed as a tensor network in Fig. 14; the features of the
emergent Fermi liquid theory discussed above are clearly visible at the final layer of the network.

The reduced BCS theory H(Ij.f;gg), (eq. (53)) and its variants H(’;f)gfxz, I.-I(S/:f)g}}‘;, H(ij)%%
all correspond to gapped condensates. In contrast to that shown for the Fermi liquid, the tensor
network representation of the RG flow towards such gapped ground states displays an emergent
pairing of the legs in the final layer. The pairing of legs ko and —k — o can be seen in the grey
boxes in Fig. 15, while the emergent condensate as a whole is encircled in the black dashed line.
The dashed oval in Fig. 15 represents the XY and Ising interaction between this pseudospins.
Having achieved the Fermi liquid and BCS regimes, we will turn below towards looking for
more exotic states of matter, such as the marginal Fermi liquid and gapped condensate ground
states that involve hybridised spin- and charge-pseudospin pairing.
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Fig. 14. Vertex tensor network representation of the RG flow towards the Fermi liquid. The blue legs labelled O, ..., A,
represent the holographic boundary composed of electronic states, the yellow blocks represent nonlocal unitary disen-
tanglers that map the boundary states to the bulk with lowering energies (UV to IR, varying from light to deeper shade of
red). The variation in the colour of the input legs into the subsequent unitary operators (yellow blocks) depicts the change
of the entanglement content within the remnant coupled electronic states as the RG flows from UV to IR. The final uni-
tary transformation layer leads to a theory comprised of decoupled legs labelled 0, ..., A j«. These are represented in
brown, and each leg has an integral of motion associated with it.
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Fig. 15. Entanglement holographic mapping network representation of the RG flow towards the reduced BCS theory.
Pairs of brown legs (in grey boxes) represents pairs of electronic states with zero net-momentum and zero net-spin. The
dashed oval represents the interaction between the pseudospins.

3.4. The marginal Fermi liquid

In this subsection, we explore the possibility of a metallic phase different from the Fermi
liquid being found within the parameter space of the Hgryp model. For this, one possible dis-
tinguishing feature could be the nature of long-lived excitations in the proximity of the Fermi
surface that replace the Landau quasiparticles of the Fermi liquid. Thus, we investigate the
physics of the lowest-order decay channel of 1-particle (Landau quasiparticle) excitations, i.e., 2-
electron 1-hole composites with a net charge e and net spin 1/2. Although 6-point (or 3-particle)
scattering vertices are absent in the bare Hamiltonian Hgrjys (eq. (3)), they are generated under
RG [1]. Such 6-point diagonal/off-diagonal scattering terms describe the interaction between the
2-electron 1-hole composites. These interactions bring about a log-divergence in the 1-particle
self-energy [1], and require therefore a controlled RG treatment to study the nature of the result-
ing metallic phase.

We will now see that the conditions 1-3 listed under regime VI in Table 2 correspond to the
formation of the non-Fermi liquid gapless phase best described as a marginal Fermi liquid. We
begin by exploring the implications of these conditions using 4- and 6-point vertex flow equations
in eq. (36). To proceed, we first note the form of the six point diagonal and off diagonal vertices



30 A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163

10° 23
. 2.0
[
o 1072 A
@ C? 15
D —
o o
: 10—4 ‘DL
T 1.0
<
— V(0
<6 ( n) 0.5
10 V()
— V(L)
10 0.0
0.980 0.985 0.990 0.995 1.000 0.980 0.985 0.990 0.995 1.000
— N\ — NN\

Fig. 16. Left panel: RG flows for finite-momentum transfer ¢ # 0 off-diagonal two-particle forward scattering vertices
(V(q), orange and green curves) and number-diagonal (¢ = 0, blue curve) scattering vertices (egs. (35)), both represented
in log-scale on the y-axis. Right panel: RG flows for the number off-diagonal ré (g1, q2) (egs. (65)) three-particle scat-
tering vertex (black curve), and two-particle one-hole number-diagonal (F6 (0)) scattering vertex(eqs. (66)) (red curve).

6 _ / P i
H(j)_ Z Rl(zlgk({’pp’<ck,ocpk‘a’cp/kaa/Cp—k’yo’ck”,o’cp’—k”,o>
k,k/k”,
p.p
+ Z Rl(:lg:fkarpfka’rp*k/c/ . (64)
kK .p
Then, the RG flow equations for the 6-point diagonal (eq. (37)) and off-diagonal vertices
(eq. (44)) are given by

6.(J) _ v4.() 2D 4 G)  16,()) ~6,() 6.()) 6,(j) ~4 () 14, (j)

Algp” =Ty G Ty Y B VR N (65)
6.(J) _ +4,.() 2D 4 G)  16,() ~6,() 16,())

AT, _Fay Gw’ Fy/a/ Fay Gw/ I‘y/a/ . (66)

In the above expressions, Gi’y ) is obtained from eg. (31) in the 2-electron 1-hole eigenconfigu-
ration of the three-fermion string 7y Ay o'Op—ky 5,06'Op—kps0 = —%, leading to a negative sign in
the RG equations given above in egs. (65) and (66). Now, for the fluctuation energy in the range
(regime VI condition 1)

1 1 ;
EekAS- <w< E(Ek“ + €p—k,,;), for 61()]—)1(1\5 >0, 67)

we have Gi’}f{) < 0 (eq. (38)). Following eq. (39), this results in the 4-point vertex RG flow being
irrelevant: Al“i’ﬁ(j ) <0.

Importantly, note that Gi’;{ ) <0 leads to an additional negative contribution in the RG equa-
tion (eq. (65)) for the off-diagonal 6-point vertices I' 213(]' ), while such a term is absent in the RG
equation for the diagonal 6-point vertices Fgé,j ) (eq. (66)). This extra negative contribution leads

to AFZ’OE/j ) < Ang(j ) We now argue that the above inequality implies Fg’é,j ) < Fg;g(j ). For this,
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we first note that the 6-point vertices are generated only at the first RG step from the 4-point
vertices (eq. (44)) as follows
6,(N—1) 6,(N) 4,(N) 4 (N) 4. (N)
Cop =Al =0y, G T 8
6,(N—-1) _ 6,(N) _ 14,(N) 4 (N) 4. (N)
Lo =AT,, =Ty, G , r Vol (68)

As the 2-point Green’s function G* = (w¢) — —e( /) > 0 carries positive signature in the
energy range of eq. (67), the 3- partlcle interactions are repulsive in nature. It is then simple to
observe from the above expression that the diagonal and the off-diagonal 6-point vertices have

similar magnitude Fg;g(N_l) ~ Fg’of/N_l) . Then, from the discussion above, we conclude that under
RG, the renormalised 6-point vertices satisfy
rog <rod. (69)

In order to numerically evaluate the renormalized six-point vertices generated under RG and
their precise ordering (eq. (69)), we assume a simplified bare form of the vertices. 60, 0)
represents the strength of the number diagonal vertices (i.e., the second term in eq. (64)), and
g1, q2) = Fg’(j ) (q =k —p +K’, qg = p — p') the strength of the six-point off-diagonal
vertex (i.e., the first term in eq. (64)). As shown in the right panel of Fig. 16, both F6(0, 0)
and T'%(g1, ¢2) grow under RG and saturate at fixed points ['%*(0, 0) < I'®*(q1, g2) with A* =
0.98A. Given that in the vicinity of the fixed point, both number-diagonal and off-diagonal four-
point vertices vanish under RG (Fig. 16 (left panel)), Fi;g(j ) 0, we find that the RG equations
for the six-point diagonal and off-diagonal vertices attain a simplified form

AF6 (]) F6 (j)G6 (])F6 (])’

6,(j) _ 6() 6(1) 6,(j)
AT = =T G T (70)
where, by using eq. (31), G6 00’0, (j) (w(j) = ) is given by
6.(j) _ (j) ) )]
ny’ = (w TkA 0 T €k jffp'*kAj& o'~ €p- kn; ;T ka5
6.j) B
- Fyy{ TkA ;0 Tp— kA ’Tp’—kAj§,0> . (71)

In order to obtain the stable fixed point theory, we choose an intermediate configuration
(nkA o =1,7p_ —kp 50 = =1, ny —ky 50 = = 0) for the 6-point Green’s function. The net configu-

rat10na1 energy for such a compos1te 3-particle is given by a combination of their individual
1-particle energies and the net 3-particle energy

1 oo'o(i N1
RO‘O‘U’,(/]) , EE])ZE(GI((]A) +e€ ) (]) ) (72)

0 — U _
EY =E, g kK'p.p p- Kajs p —kajs

Thus, the 6-point Green’s function eq. (31) is given by

Gjy({)(w) = (w— EU)~1, (73)



32 A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163

2.5 ,‘
2.0
-~ T g0
o~ ©
T 15 b
— [
T S 1072
‘DI_ g e r6(0,0)
10 Il -4 6(m_
g1 —— (7 10)
ﬁ T T T T
05 10~% 1073 1072 10°
o ._.."J[
0.0

0.968 0970 0972 0974 0976  0.978  0.980
— AN\o

Fig. 17. RG flow of the six-point off-diagonal (o (41, q2), black curve) / diagonal (I'°(0, 0), red curve) scattering vertices
(egs. (70)) for A < 0.98A. The inset plot shows the same curves in log-scale for both x- and y-axes.

The set y = {(Kp;,0, 1), (K, o', 1), (K, —o’, 0)}, while the set y’ involves the same momen-
tum and spin labels, but with the 1 s and O s interchanged. In this basis, the RG flows for the
off-diagonal 3-particle vertex and the diagonal 2-electron 1-hole dispersion are given by

6,(j) 6.() 6.(j) 1+6.(j)
AF6:B(j) _ Lay Fyﬁ AW — _ Coy Fyﬂ’ (74)
af T () | 16,0)° ao’ T (), 106,G) 7
w—E; +§FW, w—E; +§Fyy,

Finally, from the RG flow of the couplings eq. (74), the parameter range eq. (69) for the 6-
point off-diagonal/diagonal vertices and for fluctuation energies w < E f’ ), we obtain the fixed
point condition for a gapless phase with the 3-particle composite excitations proximate to the
Fermi surface

16,9 _ G 6,0j%)
ST =B — 0 T3 =0, (75)

Additionally, we note that given %(el((j ) '—i— el(,j_) K > O > %el((j ) (for €
E fj ) > %GIYA ),-5 and the inequality w < E f’ ) is immediately satisfied for the energy of the electron-

)]

pok > EF), the energy

occupied states lying above Er and the energy of the hole configuration lying below Er.
At the fixed point theory, the dynamics of the states within the window 0 < A < A is
governed by the effective Hamiltonian

* PEEN 6,(j*) A ~ A
Hypr@= Y & it 9. ToP % gipkyo(l—fkgo).  (76)
A<AJ~*,§ P, A<Ap<,p

For A < 0.98A¢, the RG flows of six-point vertices have no contribution from two-particle ver-
tices (as already observed in Fig. 16), and is generated purely by the six-point vertices (eq. (74)).
The nature of the RG flow for the six-point vertices I'°(g1, ¢2) and T'°(0) below the RG scale
A < 0.98A is thus obtained in Fig. 17 from a numerical computation of eqs. (74). The plots
indicate vanishing of the six-point off-diagonal vertices I'®(;r/14, 7/10) under RG, while the
two-particle one-hole vertices I'®(0, 0) reach an RG fixed point with a finite (and large) value.
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The inset in Fig. 17 shows that F6(71/14, 7 /10) reduces in magnitude from O (1) to 0(107%)
(black curve), while " 6(0, 0) saturates at O(1). In this way, we demonstrate numerically the
MFL effective Hamiltonian (eq. (76)). We note that the MFL fixed point Hamiltonian is purely
number-diagonal (similar to the Fermi liquid), translational invariant and has a gapless contin-
uum spectrum that is a function of the wave-vector. All of this indicates the metallic nature of
the ground state obtained at this new fixed point.

Next, we proceed to find the effect of such three-particle vertices on the 1-electron excitations
in the neighbourhood of the fixed point theory. For that, we note that the primary decay channel
for the one-electron degrees of freedom due to three-particle off-diagonal scattering terms are
three-electron two-hole excitations. Therefore, the electronic self-energy renormalizes via six-
point vertices (eq. (30))

(F6 (J))Z
)
AR (@)= S .S A— (77)
ks ) )
k/k//p w — ES,I —_ E5,3
where
) _ (J) (J) (J)
Es|=E, (E €p— kAlf) , (78)

is the collective energy due to 4-p 1-h intermediate configuration of electronic states. Here, E(] )

contains the 2-electron 1-hole correlation energy term —%Fy;{ ), and E ;J ) is the net energy due to
3-electron 2-hole composite given by eq. (72). Now, using the 1-p self-energy RG flow equation
eq. (77), and following Appendix A, we arrive at the form for the renormalized self-energy at
fixed point (j*)

%5 [OR
»U) (w)—N(O)%ln ;‘ , (79)
FkaAl*f(w)

where w, = €k Ao is the characteristic energy scale that is emergent from the RG fixed point
eq. (75) and N (0) is a dimensionless number equal to the total electronic state count at the FS.
The ratio of the final fixed point 6-point off-diagonal/diagonal vertex strength for the states at A«
distance from FS (eq. (79)) can be computed by investigating their RG equations in its neigh-
bourhood. Near the fixed point (and near the FS), the 6-point vertex flow equations (eq. (75)) are
simplified by using eq. (A.1) and given by

J
= = (80)
Aj 1.() 1 6.(j)
A logb A—(j) AlOgb A_O 2EkJA FD ]](A (Cl))

where A logb A =lforAj= = Agb/ . Here, F6 (’ ) /F%f‘l’(i  represent the uniform pieces of the

off-diagonal/diagonal parts of the three-particle Vertex. From eq. (80), we obtain the RG invariant
relation: F6 (J ) = F6 (] ) .+ C, where C is the RG invariant. At the fixed point eq. (75), C =0

and 6(]3 — O as A — 0 (FS) leading to F6 ( D= w (A = Ap).
Thus, the self energy for states near the F S has the universal k-independent form

(DY @
> (@) = NO)wln | —

c

1)
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Fig. 18. Left panel: RG flow of the inverse quasiparticle residue 1/Z (kr, A) obtained from self energy RG flow eqn. (77)
. Right panel: RG flow of the 2-electron 1-hole residue Z3(kp, A) obtained from eq. (80). A represents the probe
energyscale about Ef.

The real part of the self-energy in eq. (81) has the same structure as the well known form of the
self-energy for the marginal Fermi liquid metal [66]. Further, this result is a generic outcome for
any single band dispersion, and emergent purely from repulsive 4-point and 6-point vertex RG
flows. Using eq. (81), we obtain the imaginary part of the complex self energy, i.e., the scattering
rate (7) as a function of the fluctuation scale w; using Kramers-Kronig relations eq. (18), we can
connect 7 to the temperature T’

1 -
kpT = Wz’mﬂ M) = hlw| =27t !, (82)
The finite T resistivity per unit length p(7)/L for layered 2d systems can be obtained from
eq. (82) by replacing N (0) = 2mEr)~'h?(Ak)>N.(EF), particle density n = N,(Er)/L3 (L3
is the volume in 3D) and the Fermi energy EF in terms of the Fermi Temperature (Tr) Er =
keTF

p__m _ T (83)
L ne’Lt 22T
Here, Ak = 2w L~ is the momentum space lattice spacing, L is the system length, N,(Er)
number of electrons around FS that comprise the transport. This obtains a universal Planckian
T -linear resistivity form starting from a very general microscopic single band model Hgrjy,
and supports various experimental observations and theoretical proposals [67-69].

Following eq. (81) and eq. (82), the quasiparticle residue has the following form at finite
temperatures

1
1—N(0)(1+ln|’;;%|) '

Z\(T) = (84)

The left and right panels of Fig. 18 represent the renormalization of the quasi-particle residue
Z1(kp,A) and 2-particle 1-hole residue Z3(kp, A). We find that, for A = 0.6,0.1,0.001,
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Fig. 19. Variation of the quasiparticle residue Z (kr, A) with energy scale A about the Fermi energy (EF).
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Fig. 20. EHM tensor network representation of the Marginal Fermi liquid. Each dotted circle (comprising three electronic
legs) represents a long-lived composite 2 electron-1 hole excitation of the MFL proximate to the Fermi surface.

Z1(kr, A) reduces under RG (left panel of Fig. 18), indicating the breakdown of the Landau
quasiparticle picture. On the other hand, Z3(kr, A) (right panel of Fig. 18) is seen to increase to-
wards 1, indicating well-formed 2-electron 1-hole composites in the neighbourhood of the Fermi
surface. Finally, Fig. 19 is a numerical verification of the logarithmic dependence of Zi(kr, A)
on the energy scale A(=kpT) given in eq. (84).

As the quasi-particle residue 0 < Z < 1, the relation eq. (84) holds for @ < w,/e, correspond-
ing to a temperature 7' < hw,/(ekp). The vanishing of the quasiparticle residue, Z — 0, leads to
a integer Friedel’s phase shift AN € Z: a test electron binds together with a electron-hole pair,
forming a three-particle composite. As the Hamiltonian eq. (76) is diagonal, the residue of this
2-electron 1-hole composite approaches 1 at the F'S. We note that this was also shown for the
parent MFL of the Mott insulating state in the 2D Hubbard model on the square lattice at 1/2-
filling in Ref. [27]. We also present the tensor network representation of the RG flow towards the
marginal Fermi liquid fixed point in Fig. 20.

In this subsection, we found the parameter and fluctuation regime where three-particle off-
diagonal vertices are RG irrelevant, while the 2-electron 1-hole dispersion achieves a finite value
at the fixed point. This observation provides a perfect setting for the question: what are the
primary instabilities of the marginal Fermi liquid metal? We present the answer to this question
next.
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3.5. RG flow into the spin/charge hybridized pseudospin-pairing force models

We have seen earlier that the off-diagonal three particle vertices causes dynamical mixing
between electron-electron and electron-hole pairs (eq. (41)) [1]. The spin/charge backscatter-
ing processes in the mixed configuration leads to a two-particle self-energy containing log-
divergences as leading corrections [1]. In order to observe the condensation of various spin-
charge mixed configurations, we now apply the Hamiltonian RG formalism on the Hgr .

If the Fermi surface is nested, there are Umklapp scattering vertices generically present
in the Hamiltonian Hgpyp. They are denoted by F4( ) where o and B represent electronic
pairs with pair momentum differing by Q. Further, the index o = {k A5O P — k AfS— o} and
B =1k 7;30, Q+p—k Aj§— o}. The spin backscattering vertices in H5p1 M 1nvolve pairs of
electronic states that exchange their spin orientations while scattering. These vertices are de-
noted by Ff g;\;/) where @ = {kAjfo, P— kAjg —o},B= {kA/.§ —o,p— kAj§G}. For the Umklapp
and spin backscattering processes, the RG flow hierarchy yields

4, 4,(j) A
F‘ g‘jy)rc ](/IgnkA dep l(A K

) _
AH: = Z () F4(j)
KK,p Gp,kAjf/,p vy Tkp 30 Tp—ky 50

ToT
X CkoCp—k—o €Q+p—k'—0 K>

4, 4,(j) A ~
T3y Ty kg o (1= picy i—o)

i s.yB K,
§ Z _eW) _r40, T ,
k.k.p Py P vy tkys0tp—ky 50

i T
X Cky o Cki—p+2k ;=0 Cky— Cka—p+ 2Ky, 50 - (85)
The spin-type configuration le-1h/1h-1e for the set « is constrained by the relation
nkA o Thpo —k4 5 _,,_lforekA > FEp, (86)
and has an associated kinetic energy lying within the range ex A T Epky o @ > 2(6k AT
€p—ky ;). The intermediate configuration of eq. (86) leads to a sp1n type pseudospln conﬁgura—

tlon‘Sk’p = clLUcp_k_g, Sk’p = (Sk‘p)T. and S.Z = §[.§‘+, S$71], in which th.e 4-P01nt .Vertexes are
RG irrelevant. On the other hand, certain 6-point vertices are RG relevant in this regime, and can
be represented in terms of charge- and spin-type pseudospins as follows

t i
Cp—p"0 Cp"—K 11— Ok 170 Ckas0 D —kp ;=0 Cp—p/—0
— At - ¢
- Ak /»/,p//Ak A’p/Sp_p//’zp_p/_p// . (87)

The operators A {) corresponds to finite momentum pseudospin raising and lowering operators
given in eq. (62). This spin-charge mixed representation of 6-point vertices is manifested in the
dynamical mixing between the pseudospin state configuration (see discussion below eq. (39),
and leads to a hybridized pair-kinetic energy eq. (40) entering the 4-point Green’s function. In
turn, this 4-point Green’s function enters the 4-point vertex flow equations given in eq. (39).

For the p-momentum opposite-spin pairs, the 2-particle backscattering processes (with Ap =
0 (spin exchange) and Ap = 27 (Umklapp)) given by

Kps. P —Kas < —Kp 5, Qi +p+kys Q=0,Q (88)
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Fig. 21. Left/right panels show the RG flow for the off-diagonal/diagonal I"'x /T"p scattering vertices (eqs. (39)) respec-
tively for various finite-momenta (p) pairs. 1"())( =0.1 is the bare magnitude of the umklapp scattering vertex, l"% =0.5.
The k-space grid (system volume) used is 1024 x 1024.

produce a log-divergence in the composite self-energy (shown in a companion manuscript [1]),
requiring a RG treatment once more. Using eq. (39), the charge backscattering vertex flow equa-
tion is given by

sz (])F2 ()

4,(j) oY evB
AT (w) = (89)
c,af h, 2, 2,
w— Pelii (0] —p E::A o _ Fc )(//)2 + Fs )(//y)
where p' =1 — p, elii - Glii’-(sj,)p—kAjs and eﬁi/(sj L = elii (S] L K, . Similarly, the spin
backscattering RG flow equation is given by AF? 33) (p ! )Fié{;.
The stable fixed point is obtained from the condition
ee, (J*) 1¢eh G _ P p2.O) 20
@ pEkA TPk, P 4Fc,w/ + 4 Fs vy’ (90)
leading to the effective pseudospin XXZ Hamiltonian given by
ML @)= DA A e S
+ Z rf;g) [S585 +hc]+F?§lfg) sz 5
kAs’
+ Y TEUOIATAG + hed + Ty Az A3 1)
kAs

where I’ A(/ 3 k.Q and 1"4 0, H k.Q are the XY and Ising pseudospin couplings respectively.

Fig. 21 shows the Ré flow of the Umklapp scattering vertices connecting opposite sides
of a nested Fermi surface for a tight-binding square lattice model at half-filling in two spa-
tial dimensions for electronic pairs with net momentum p = Q/2,0.45Q, 0.4Q and 0.35Q
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Fig. 22. RG flow of the self-energy X (k) for k (egs. (30))wave-vectors close to Fermi surface.

(where (Q = m,)). The left and right panels show the renormalization of the off-diagonal
(I'c,x =T'¢ 4y) and diagonal (I'c p =T'¢ ;) vertices respectively. The bare couplings are taken
to be FO x=0.1 FO _p = 0.5, and we consider a momentum-space grid of size 1024 x 1024. As
observed in Fig. 21, both off- diagonal and diagonal couplings renormalize to higher magnitudes
at the low-energy RG fixed point, such that the resulting theory is described by eq. (91). The as-
sociated hybridized pseudospin state space also involves fermion states pairing up in the mixed
configuration regime (discussion above in eq. (40)), such that the fermionic states transmute into
the mixed pseudospin states. The condensation of pseudopsins due to the nesting instability leads
to a zero of the Greens function, G(k, A) = (A — ¢, — 1)~ (note the similarity with the zero
of G(k, A) for the BCS instability in eq. (52)), as can be seen from the divergent self-energy in
Fig. 22 as the Fermi surface is approached. The net Friedel phase-shift accounts for the num-
ber of mixed pseudospins, as well as the number of bound states formed via the RG. This can be
computed through the Luttinger surface of zeros (see discussion below eq. (52)). This pseudospin
Hilbert space will persist upto a temparature scale 7* (eq. (18)) computed using the renormalized
1-particle self-energy at the fixed point. Finally, we note that the tensor network representation
of the RG flows towards the Mott liquid fixed point is similar to that presented in Fig. 15 for the
BCS reduced Hamiltonian displaying pair formation.

3.6. RG phase diagram for Hspyym

Having numerically verified the RG flows to various IR fixed point theories, we can now
gather all our results into the form of a RG phase diagram. In order to characterize efficiently
various phases obtained from the RG flows for Hgry, we define the following two quantities
r and r3

W E®
2azplap Lo

rZ_Sg”(kk’) (N 4N AN &)
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6,(N—1)16,(N—1)
ZW’ FVV’ Fw/

6,(N—1)+6,(N—1) 6,(N—1) -6,(N—1) *
ZV FV}” Fw’ + Zaﬂ Faﬂ Faﬁ

r3 = (92)

The quantity —1 < rp < 1 represent the ratio of (i) the root mean square magnitude (RMS) for
bare 4-point off-diagonal (OD) vertices, and (ii) the sum of the mean squares of 4-point diagonal
(D) and OD vertices. Thus, r, carries the (4/—) sign for OD terms representing attractive/re-
pulsive interactions respectively. Similarly, the quantity O < r3 < 1 is the ratio of (i) the RMS
for 6-point D vertices, and (ii) the square root sum of the mean squares of 6-point D and OD
vertices. Recall that the index « represents a set of two (momentum, spin) indices for 2-particle
vertices (I'?) and a set of three (momentum, spin) indices for 3-particle vertices (T'3). We show
below that the parameters 7, and r3 allow for an efficient encoding of the numerically evaluated
RG flows shown earlier at various points.

Fig. 23 presents the RG phase diagram for Hgpjp using o (quantum fluctuations, y-axis)
and (rp, r3) (x-axis). For attractive couplings (r» < 0) and for (v < %) /(w > %), the unfilled
circles and squares represent crossover RG flows involving a XXZ symmetry-unbroken reduced
BCS (eq. (58)) theory for p =0 (Fig. 11) and p # 0 pairs (Fig. 13) respectively. The RG flows
stop at stable fixed points (red stars/orange hexagons) given by symmetry unbroken XY BCS
(eq. (53), Figs. 9 and 10) and PDW (eq. (61), Fig. 12) theories respectively. The red squares
(r, =r3 =0) are unstable fixed points representing a tight-binding metal. In the repulsive regime
rn—>0,r3>0and w < %, the unfilled diamond are crossover RG flows to three-particle theories
with diagonal and off-diagonal terms. The blue circles are stable points representing the marginal
Fermi liquid metal (eq. (76), Figs. 16-19).

On the other hand, the Mott metal-insulator transition shown in the repulsive regime r» +r3 >
0 and w > % is more complicated, due to the appearance of unstable fixed points (red circles)
lying at intermediate coupling. These unstable fixed points separate RG flows (unfilled pen-
tagons) to Fermi liquid theories (green triangles, eq. (47), Figs. 4—6) with r, — 0, r3 — 0 from
those (yellow pentagons) towards XXZ pseudospin Mott liquids theories with finite values of r»
and r3 (magenta pentagons, eq. (91), Figs. 21 and 22). As described in the previous subsection,
the physics of nesting is responsible for the stabilisation of such Mott liquids. We recall that a
recent RG analysis the half-filled 2D Hubbard model on the square lattice (whose underlying
tight-binding Fermi surface is strongly nested) in Ref. [27] identified the marginal Fermi liquid
as being the parent metallic phase of the Mott liquid found therein. This leads us to conjecture
that the unstable fixed point (red circles) gapless quantum critical theories lying at intermediate
coupling correspond to a marginal Fermi liquid theory described by eq. (76).

3.7. Scaling features of holographic entanglement entropy bound for gapless and gapped
quantum liquids

In this section, we analyze the RG scaling relations for the holographic entanglement en-
tropy bound for the various phases of the Hgrjj model obtained by isolating a given region R.
Among the IR fixed points, the gapless theories reached via URG comprise the number-diagonal
Hamiltonians for the Fermi liquid (eq. (47)) and Marginal Fermi liquid phases (eq. (76)). For
these cases, the ground state wavefunction obtained from the above low-energy Hamiltonians
are separable in momentum-space. On the other hand, the gapped IR fixed point theories in-
volve effective Hamiltonians that are number off-diagonal in momentum-space, e.g., the reduced
BCS theory (eq. (53)) and the Mott liquid (eq. (91)). Clearly, the ground states obtained from
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A

Fig. 23. RG phase diagram for the single-band model of interacting electrons with translational invariance, Hgryps. The
y-axis represents the magnitude for quantum fluctuations (w), W represents the bandwidth. The x-axis represents interac-
tion due to two-particle (1) and three-particle (r3) number diagonal/off-diagonal scattering processes. —1 < rp < 1 with
(+/-)sign representing nature of interaction, while 0 < r3 < 1 (see text for detailed definitions). The magnitudes of
and r3 represent the relative magnitude of off-diagonal scattering in 2-particle and 3-particle scattering processes respec-
tively. The red squares on line ) = r3 = 0 correspond to tight-binding metals. The unfilled squares and circles represent
crossover RG flows involving symmetry unbroken p # 0 (SPDW)/p = 0 (RBCS) gapped XXZ pseudospin theories re-
spectively. These flows end at orange hexagon/red stars labelling corresponding stable fixed points wi