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Abstract

Capturing the interplay between electronic correlations and many-particle entanglement requires a uni-
fied framework for Hamiltonian and eigenbasis renormalization. In this work, we apply the unitary renor-
malization group (URG) scheme developed in a companion work [1] to the study of two archetypal models 
of strongly correlated lattice electrons, one with translation invariance and one without. We obtain detailed 
insight into the emergence of various gapless and gapped phases of quantum electronic matter by computing 
effective Hamiltonians from numerical evaluation of the various RG equations, as well as their entangle-
ment signatures through their respective tensor network descriptions. For the translationally invariant model 
of a single-band of interacting electrons, this includes results on gapless metallic phases such as the Fermi 
liquid and Marginal Fermi liquid, as well as gapped phases such as the reduced Bardeen-Cooper-Schrieffer, 
pair density-wave and Mott liquid phases. Additionally, a study of a generalised Sachdev-Ye model with 
disordered four-fermion interactions offers detailed results on many-body localised phases, as well as ther-
malised phase. We emphasise the distinctions between the various phases based on a combined analysis 
of their dynamical (obtained from the effective Hamiltonian) and entanglement properties. Importantly, the 
RG flow of the Hamiltonian vertex tensor network is shown to lead to emergent gauge theories for the 
gapped phases. Taken together with results on the holographic spacetime generated from the RG of the 
many-particle eigenstate (seen through, for instance, the holographic upper bound of the one-particle en-
tanglement entropy), our analysis offer an ab-initio perspective of the gauge-gravity duality for quantum 
liquids that are emergent in systems of correlated electrons.
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1. Introduction

Strongly correlated electron systems on a lattice in two spatial dimensions or higher are 
known to host several exotic emergent quantum phenomena that are yet to be understood 
clearly, e.g., high-Tc superconductivity, non-Fermi liquids, topological order, many body local-
ization [2–8]. Considerable effort has been made to the development of renormalisation group 
(RG) approaches to the understanding of these phenomena. Indeed, tremendous advancements 
of Wilson’s original (RG) scheme have been made in the last few decades in the form of the 
functional RG (FRG) [9,10]. FRG deals with the RG flow of the Grassmanian many-body ac-
tion [9,11–13], incorporating all orders of quantum fluctuations by accounting for the entire 
hierarchy of 2n-point vertex RG flow equations [14,15]. This has provided deeper insights into 
various emergent phases of quantum matter via effective descriptions derived from parent models 
of strongly correlated electrons. The latest developments in FRG involve the inclusion of self-
energy [16,17] and frequency dependence of vertices [18–20], allowing the RG flows to reach 
theories closer to stable fixed points. Another important development has been the resummation 
of multiloop diagrams in FRG equations, yielding the parquet approximation [21]. Such careful 
computations have led to a better quantification of the effective theories in terms of measurables 
like susceptibility, spectral function etc [9,15,22]. However, one crucial difficulty in the FRG 
program is its inability to attain stable fixed points, such that effective Hamiltonians can be ob-
tained in the IR. One of the reasons for a lack of a controlled description of scale dependent 
effective Hamiltonians is the interplay between many-particle entanglement and four-fermionic 
interactions [23–26]. Upon the availability of such effective Hamiltonians, we aim to be able to 
track the phases emergent from fermionic criticality, as well as study their entanglement content.
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In this work, we apply a novel unitary RG (URG) method developed in Refs. [27–29], and 
extended substantially in a companion work [1], to two paradigmatic models of strongly corre-
lated electrons. One of these is a model of a single band of translationally invariant electrons 
with a very general form of four-fermionic interactions. The other is one in which we consider 
the interplay of inter-particle interactions and disorder: the generalized Sachdev-Ye model [30], 
comprised of hopping, on-site and four-fermionic interactions, all of whose amplitudes are drawn 
randomly from separate Gaussian distributions. The goal is to obtain effective low-energy de-
scriptions of the varied phases of electronic quantum matter that are emergent within these 
models. Towards this, we will demonstrate the primary advantage of the URG method: the RG 
flows of this method help obtain effective Hamiltonians, as well as insights into the many-particle 
entanglement content of its eigenstates, at stable IR fixed points. We briefly present the essential 
features of URG here.

The URG method is carried out via a sequence of unitary disentanglement operations on 
a graph, each of whose nodes corresponds to one electronic state. Each unitary operation on 
the graph disentangles an electronic state from the rest (the coupled subspace), leading simul-
taneously to block diagonalisation of the Hamiltonian in the occupation number (Fock) basis. 
The unitary operations are themselves determined from the form of the Hamiltonian, and their 
successive application thus generates a flow of the Hamiltonian into an iteratively block diago-
nalized form. The method yields a hierarchy of 2n-point vertex flow equations, where each RG 
equation contains the summation of loop contributions into a closed form expression. Further-
more, the RG procedure reveals a family of energy scales for quantum fluctuations (ω), arising 
from the non-commutativity between various parts of the Hamiltonian. These features lead to 
non-perturbative contributions from frequency and correlation/self-energy, as observed in the 
structure of the denominator of the RG equations. Importantly, this structure allows the RG flows 
to attain stable fixed points in the IR where the effective Hamiltonian (and sometimes even the 
low-energy eigenstates) can be obtained. In a recent work on the 2D Hubbard model at 1/2-
filling [27] as well as with hole-doping [28], we used the effective Hamiltonian and ground state 
wavefunction obtained for the Mott insulating state at low energies to benchmark the ground state 
energy and double occupancy obtained from the URG against the numbers available from several 
other state-of-art numerical methods [31]. Furthermore, we have also provided in Refs. [27,28]
a comparative study of the flow equations obtained from URG and the weak coupling FRG flow 
equations obtained for the same model.

We now offer some justification for our choice of the two models we study in the present 
work. Most importantly, both the translationally invariant four-fermi interacting model and the 
Sachdev-Ye model are very general in their scope, i.e., they have a wide parameter space, such 
that several well known phenomenological models (e.g., Fermi liquids and non-Fermi liquids, 
the reduced BCS Hamiltonian, Anderson’s model for disordered non-interacting electrons etc.) 
can well lie within the sub-parameter regimes of these two models. Indeed, we will demon-
strate that this is the case, and that the URG approach is an efficient method for the discovery 
of these phases. It is important to recall that problems of interacting electrons with translational 
invariance and an extended Fermi surface is known to be challenging, and have been studied 
using FRG methods over the last three decades [9,32–41]. FRG approaches have reported signa-
tures of several novel states of electronic matter, including the Mott insulator, non-Fermi liquid, 
pseudogap, d-wave superconductivity etc. phases within the realms of the four-fermi interacting 
model [19,42–45]. We have earlier studied the effects of an extended and nested Fermi surface in 
the case of the 2D Hubbard model on the square lattice at 1/2-filling in Refs. [27,28], as well as 
the case of a (Dirac) point-like spinon Fermi surface of a XXZ Kagome antiferromagnet in a fi-



4 A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163
nite magnetic field in Ref. [46]. Here, we will present a detailed study of the effects of electronic 
correlations for extended Fermi surfaces that are both nested as well as non-nested in spatial 
dimensions D ≥ 2. Further, as mentioned above, the electronic Sachdev Ye (SY4) [30] model de-
scribed above, upon being embedded on a lattice, allows an investigation of the interplay between 
disorder and strong correlation. Studies on this model show the fascinating phenomena of many-
body localization and thermalization, with a novel transition between these two phases [8,47]. 
However, an ab-initio derivation of the effective Hamiltonians of these phases is a challenge that 
we aim to meet in this work.

Specifically, by using the URG method, we obtain the 2-point, 4-point and 6-point vertex 
RG flow equations for both the models. By numerically solving these RG equations for the 
translationally invariant model, we explore the phases that arise from the destabilization of the 
extended Fermi surface, whether nested or non-nested. We exlore the stable fixed point theories 
obtained both at high energies (of the order of the bandwidth) and low quantum fluctuation en-
ergyscale (ω). At low ω, the effective Hamiltonians obtained describe the Fermi liquid and the 
reduced BCS theory. At higher ω, we find a non-Fermi liquid phase with linear-in-temperature 
resistivity. In this particular case, the role of 6-point scattering vertices is found to be important, 
identifying the 2-electron 1-hole composite entity which replaces the Landau quasiparticle as 
the low-energy excitation proximate to the Fermi surface. For the nested Fermi surfaces at 1/2-
filling, we find that the spin-exchange backscattering and the Umklapp scattering processes lead 
to emergent Mott liquid phases, described by the condensation of pseudospin degrees of freedom 
comprised of oppositely spin-paired electron-electron or electron-hole composites. We rewrite 
the effective Hamiltonian of such gapped phases in terms of non-local Wilson loop degrees of 
freedom. This allows the formulation of a Hamiltonian gauge theory for such topologically or-
dered gapped states of quantum matter. In such phases, we argue that the corresponding gauge 
theory supports Wilson loops with non-trivial anticommutation relations and describes fraction-
ally charged excitations that interpolate between topologically degenerate ground states on the 
torus [48,49]. In this way, the present work shows that the vertex tensor network for gapped 
phases generated in the RG direction encodes an emergent gauge theory.

For the electronic Sachdev-Ye (SY4) model, we perform a URG study by disentangling elec-
tronic states that are ordered in terms of their on-site energy (from higher to lower). By placing 
the model on a D spatial-dimensional volume describing a specified geometry, we obtain a vari-
ety of phases from numerical evaluations of the RG equations obtained from the URG procedure. 
Some of these are described by effective Hamiltonians that possess translational invariant, while 
some other that do not. The former category includes the phases observed for the single band 
four-fermi interacting model discussed above. Among the phases that lack translation invari-
ance, our analysis reveals glassy variants of the Fermi liquid as well as non-Fermi liquid phases, 
and display features of the phenomenon of many body localization (MBL). On the other hand, 
we also find regimes describing thermalized phases, where the effective stable fixed point theory 
is related to the parent SY4 model via marginal deformations, as well as a phase corresponding 
to the Anderson model of disordered noninteracting electrons.

Importantly, in keeping with our presentation in Ref. [1] for the tensor network of wavefunc-
tion coefficients that is generated holographically under RG flow by the vertex tensor network, 
we offer some results here for the case of gapless (e.g., the Fermi liquid and Marginal Fermi 
liquid phases) as well as gapped (e.g., the reduced BCS and Mott liquid phases) quantum liq-
uids. We derive scaling relations for the single-electron entanglement entropy of these phases, 
and use them to obtain relations for the (holographic) upper bound of the entanglement entropy. 
This is also in agreement with our recent finding that the URG flow respects the holographic 
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principle [29]. The rest of the work is organized as follows. We first recapitulate the important 
results of Ref. [1] in Section 2, as well as present some new ones for the scaling relation of 
the single-electron entanglement entropy and its holographic upper bound. In Section 3, we per-
form a URG treatment of the single band four-fermi interacting model, revealing the various IR 
fixed points as well as obtaining the tensor network representation of the various gapped/gapless 
phases. Section 4 describes the gauge theoretic description for the gapped theories reached un-
der RG. In Section 5, we perform the URG analysis of a generalized SY4 model for electrons, 
revealing various translation invariant and non-invariant fixed points. We conclude in Section 6. 
Finally, the details of certain calculations are presented in appendices.

2. Preliminaries

In a companion manuscript [1], we have presented the URG method in detail for a system of 
strongly coupled electrons, leading to a hierarchy of 2n-point vertex RG flow equations. We can 
interpret the 2n-point vertices as 2n-legged tensors, thus allowing a realization of the URG as a 
vertex-tensor network RG. We have also shown in Ref. [1] that, when applied to the eigenbasis of 
the Hamiltonian, the URG leads to the renormalization of the coefficient tensors, i.e., superposi-
tion weights of the separable states comprising the many-particle eigenstate. From the renormali-
sation of the entanglement tensors, a entanglement holographic mapping (EHM) [50,51] network 
is generated along the RG direction. In Ref. [29], the EHM networks for the normal metallic state 
and the insulating ground state of the 2D Hubbard model at half-filling has also been explicitly 
constructed by us. Prior to applying the URG method to some archetypal models of correlated 
electrons, we first lay out some of the important results from the above works.

Hamiltonian RG flow via iterative block diagonalization

We represent a general fermionic Hamiltonian H as a 2 × 2 block matrix in the number-
occupation basis of an electronic state. By performing a Gauss-Jordan elimination of one of the 
blocks via a rotation of the many-particle eigenbasis, we obtain a block-diagonal representation 
of the matrix. Such a procedure can be realized as a unitary transformation U of the Hamiltonian, 
H ′ = UHU†. The unitary transformation U(j) is identified as a disentangler that separate an 
electronic state j from the rest in the renormalization group step j . Below, we present the form 
of the U -operation

U(j) = 1√
2
[1 + η(j) − η

†
(j)] , (1)

where η†
(j) and η(j) are electron-hole transition operators fulfilling the algebra {η†

(j), η(j)} = 1

and [η†
(j), η(j)] = 2n̂j − 1. Importantly, note that U(j) can also be represented as the exponential 

of a phase operator

U(j) = exp(iθ(j)) , θ(j) = −i
π

4
(η(j) − η

†
(j)) , (2)

corresponding to a rotation of π/2 in the many-particle state space gathered via the generator 
i(η(j) − η

†
(j)

). The operator η(j) is written in terms of 2n-point off- diagonal scattering vertices 
(with respect to a given electronic state j ) in the numerator and diagonal 2n-point vertices in the 
denominator

η(j) = T rj (c
†
jH(j))cj

1

ω̂(j) − T rj (H
D n̂j )

. (3)

(j)
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Here, ω̂(j) represents the quantum fluctuation operator, and accounts for the non-commutativity 
between different off-diagonal 2n-point vertices. It is mathematically defined as

ω̂(j) = HD
(j−1) + H

X,j̄

(j−1) − H
X,j̄

(j) , (4)

where the number diagonal part of the Hamiltonian (HD
(j)

) is associated with n-particle self/corre-

lation energies, and the term HX,j̄

(j)
represents coupling only among the other degrees of freedom 

{1, . . . , j − 1}. ω̂(j) can be given a spectral decomposition as follows

ω̂(j) =
∑

i

ωi
(j)Ô(j)(ω

i) , Ô(j)(ω
i) = |�i

(j)〉〈�i
(j)| , (5)

where |�i
(j)

〉 are eigenstates of ω̂(j), and ωi
(j)

are the quantum fluctuation eigenvalues. At each 
RG step, the ω(j) attains a block-diagonal form. We note that if in a number-occupation subspace 
P , the off-diagonal vertices attain an RG fixed point, then the fluctuation operator attains a num-
ber diagonal form in that subspace: P ω̂(j∗)P = HD

(j∗). Thus, stable fixed points are identified by 

the fact that |�i
(j)〉 become simultaneous eigenstates of HD

(j∗) and ω(j∗).
The RG flow equation for the Hamiltonian is given by

H(j−1) = U(j)H(j)U
†
(j) , (6)

and with the above form for the unitary map eq. (1), we obtain the iterative equation for the 
rotated Hamiltonian

Ĥ(j−1) = 1

2
T rj (Ĥ(j)) + T rj (Ĥ(j)τj ) + τj {c†

j T rj (H(j)cj ), η(j)} . (7)

The first and second terms represent HD
(j−1) and HX,j̄

(j−1) mentioned above, while the third rep-

resents the off-diagonal processes (HX,j

(j) ) that are responsible for quantum fluctuations in the 
occupation number of state j . Note that the above Hamiltonian H(j−1) commutes with N − j

Pauli-Z gates τi = n̂i − 1/2 (i = j, . . . , N ).

Vertex tensor network representation of the Hamiltonian

The Hamiltonian H can be interpreted as a tensor network formed from the 2n-point vertex 
tensors

H(j) = HD
(j) + HX

(j) , (8)

HD
(j) =

2j−1∑
i=1

N∑
n=1

∑
α,α′

{c̃†
α

�2n
αα′(ωi)

2n
c̃α′Ô(ωi)}(j) ,

HX
(j) =

2j−1∑
i=1

aj∑
n=1

∑
α,β

{c̃†
α�2n

αβ(ωi)c̃βÔ(ωi)}(j) . (9)

We now explain the various terms and notations in the above equation. Eq. (8) shows the decom-
position of the Hamiltonian into number-diagonal HD

(j) and off-diagonal HX
(j) parts. The index i

ranges from 1 to 2j−1, and labels the eigenbasis element |�i
(j)〉 of ω̂(j) in the entangled subspace 

of j electronic states. The index α := {(l, μ)} is a set of paired labels: l labels the electronic states 
participating in the entangled subspace and μ = (0, 1) represents an electron occupied/unoccu-
pied state. Therefore, c̃† represents a string of electron creation and annihilation operators. The 
α



A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163 7
index α′ := {(l, μ̄)} is similar to α: l represents the same collection of indices, but where μ̄ is the 
complement of μ, i.e., μ̄ = 1, 0 refers to unoccupied (1) and occupied (0). The symbol �2n,(j)

αβ

represents the collection of 2n-point off-diagonal vertex tensors, with β being an index defined 
similarly to α. Finally, aj represents the maximum order of the off-diagonal vertex tensor.

The iterative unitary mapping of the Hamiltonian generates an RG flow for the vertex tensor 
network


�
2n,(j)
αβ (ωi) =

2aj∑
p1,p3

∑
γ

{�p1
αγ G

2p2
γ γ ′�

p3
γ ′β}(j)(ωi) , (10)

where 2n = p1 + p3 − 2p2.

Eigenbasis RG flow via iterative block diagonalization

The RG flow equation for the eigenstate of the Hamiltonian is given by

|�i
(j−1)〉 = U(j)|�i

(j)〉 , (11)

where H(j)|�i
(j)〉 = Ei |�i

(j)〉. There are N − j good quantum numbers at RG step j , such that 

the state |�i
(j)〉 satisfies the following eigenvalue relation

n̂l |�i
(j)〉 = |�i

(j)〉 , l = {N, . . . ,N − j + 1} . (12)

As a result, the many-body state |�i
(j−1)

〉 can be represented as a coefficient tensor network

|�i
(j)〉 =

∑
α

Ci,(j)
α |α〉|Qj 〉 . (13)

The coefficient Ci,(j)
α is a tensor with m legs representing the superposition weight of the config-

urations with m occupied electronic states. α represents a set of electronic labels for the occupied 
electronic states. |Qj 〉 represents the occupation-number configuration of the disentangled states. 
In another recent work [29], we have presented the quantum circuit/tensor network representa-
tion of a specific many-body state. Altogether, we show that URG (see eq. (11)) generates a 
fermionic tensor network renormalization


C
i,(j)
β = (

√
N(j) − 1)C

i,(j)
β +

√
N(j)

aj∑
k̄=1

∑
α,α′,β ′

sgn(α,α′, β ′){
�2n
β ′αG

2p

αα′Ci
α′ }(j) , (14)

where N(j) is the normalization. Here, α′ := {(l, μ)} is a ordered set of m pairs of indices with 
μ = 1 throughout and 1 ≤ l < j . α := {(a, μ)} is an ordered set of p pairs of indices (p < m) and 
μ = 0 throughout. Note that the electronic state labels that comprise α is a subset of those within 
α′. Finally, β ′ := {(b, μ)} is an ordered set of 2n − p pairs of indices with μ = 1 throughout. 
The set β is an ordered set of m − 2p + 2n pairs of indices that emerges from the convolution of 
the sets above, β := (β ′ ∪ γ ′) − γ . The sign sgn(α, α′, β) is the net phase gathered via counting 
the number of electrons exchanged in the scattering process 
�2n

β ′α involving a string of 2n − p

electron creation and p annihilation operators

sgn(α,α′, β ′) =
2n−p∏

Qk

p∏
Pk . (15)
k=1 k=1
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Here 
∏p

k=1 Pk and 
∏2n−p

k=1 Qk are the net phases that arises from the number of electron ex-
changed via the string of electron annihilation and creation operators respectively. Below, we 
quantify the phases Pk and Qk

Pk = exp

⎛
⎝iπ

ak∑
i∈α′−ρ

ni

⎞
⎠ , Qk = exp(i(k − 1)π) exp

⎛
⎜⎜⎝iπ

bk∑
i=1,

i /∈γ∪α

ni

⎞
⎟⎟⎠ , (16)

where ρ = {a1, . . . , ak−1} and γ = {b1, . . . , bk} are ordered sets of electronic state labels where 
electrons are annihilated and created respectively. Note that ρ is a subset of the electronic state 
labels contained in the set α′. In the definition of Pk , the electron number count ni = 1 for i ∈ α′
and 0 otherwise. Upon acting the annihilation operators of the scattering vertex 
�

2n,(j)

β ′α on |α′〉, 
the state reached in eq. (14) is given by


�
2n,(j)

β ′α c
†
b2n−p

. . . c
†
b1

cap . . . ca1 |α′〉 =
p∏

k=1

Pk
�
2n,(j)

β ′α c
†
b2n−p

. . . c
†
b1

|α′′〉 . (17)

Finally, in the definition of Qk , the number count ni = 1 if i ∈ α′′ and 0 otherwise.
Importantly, we note that in cases when pairs of electronic states condense into bounds states, 

the fermion exchange sign trivializes to sgn(α, α′, β) = 1 in the RG equation (14). This results 
in an emergent Hamiltonian theory and associated eigenbasis at the IR fixed point that is free 
from fermion signs. In what follows, we apply the tensor renormalization group theory to certain 
strongly coupled electronic systems. The analysis reveals a class of stable IR fixed points corre-
sponding to gapped as well as critical theories. We also show that for a certain class of IR fixed 
point theories, the fermion sign issues are altogether mitigated.

Relation between thermal (kBT ) and quantum (ω) fluctuation energy scales

In the URG formalism, the renormalized Hamiltonian is partitioned in various eigen-
subspaces (|�i

(j)〉 in eq. (5)) of the quantum fluctuation operator ω̂. Naturally, the Hamiltonians 

in the subspaces are associated with the eigenvalues ω(j)
i of the renormalized fluctuation operator 

ω̂(j) eq. (4). The nature of RG flow equations for various 2n-point vertices are dictated by the 
quantum fluctuation scales ωi

(j)
, deciding ultimately whether the low-energy spectrum H ∗(ω) at 

the IR fixed point is either gapped or gapless. In Ref. [27], ω(j) was shown to be equivalent to a 
thermal scale upto which dominant quantum fluctuations leading to H ∗(ω) persist

T = 1

kBπ2

h̄

τ
,

h̄

τ
= �Im(ω) = P

∞∫
−∞

dω′ �∗(ω)

ω − ω′ . (18)

The above relation shows that the finite lifetime (τ ) of the single-particle states with self-energy 
� can be viewed as an effective temperature scale arising out of the unitary disentanglement: it is 
the highest temperature upto which the one-particle excitations can survive, and are replaced by 
2e-1h composite excitation beyond. We will see in later sections that the RG transformations lead 
generically to either a gapped or a gapless phase. For the first case, the above equation quantifies 
the thermal upper bound for the validity of the emergent condensate. On the other hand, for the 
second scenario, it indicates the lifetime of the gapless excitations in the neighbourhood of the 
Fermi surface.
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URG scaling of the Ryu-Takayanagi entanglement entropy bound

As any nonlocal unitary rotation can be decomposed as a tensor product of 2-local and local 
qubit rotations, the unitary operators of the URG framework form a entanglement holographic 
mapping network [50,51]. As a consequence, the renormalized states in the bulk of the EHM 
network respect the Ryu-Takayanagi entanglement entropy bound formula [52]: the entangle-
ment entropy of a region R is bounded from above by the number of linkages between it and 
its complement. We have given an explicit demonstration of this entropy bound for the parent 
metallic state and the insulating ground state of the 2D Hubbard model at half-fillingin Ref. [29]. 
This shows that the entanglement renormalization obtained via URG generates a holographic 
dual space-time along the RG direction. We aim here to reveal the URG scaling features of the 
Ryu-Takayanagi entanglement entropy bound for various metallic and insulating states obtained 
in the IR starting from generic strongly correlated models. In this section, we will obtain the 
expression for one-electron entanglement entropy in terms of the coefficient tensors. This is im-
portant as the maximum one-electron entanglement entropy among the electrons in a region R, 
when multiplied by the number of entangled links at a given RG step j , leads to the scaling of 
the holographic entropy bound.

The many-body eigenstate |�(j)〉 at an RG step j can be written in a Schmidt-decomposed 
form with respect to 1-electron state k and the rest of the system

|�(j)〉 = a0|φ0,l〉|�0,(j)〉 + a1|φ1,l〉|�1,(j)〉 . (19)

Here 〈φ1,l |φ0,l〉 = 0 = 〈�1,(j)|�0,(j)〉. Note that for l < j , the electronic state is a part of the 
entangled subspace, ensuring that the Schmidt coefficients a1 and a0 take values between 0 and 
1. The states |�0,(j)〉 and |�1,(j)〉 can be written in terms of the coefficient tensors as follows

|�1,(j)〉 = 1√∑
β1

|C1,(j)
β1

|2
∑
β1

C
1,(j)
β1

|β ′
1〉 , |�0〉 = 1√∑

α1
|C0,(j)

α1 |2
∑
α1

C0,(j)
α1

|α′
1〉 . (20)

Here the labels α′
1 and β ′

1 represent the collection of electronic states that are occupied. Given 
the orthogonality condition 〈�0,(j)|�1,(j)〉 = 0, the Schmidt coefficients have the following ex-
pression

a1,(j) =
√∑

β1

|C1
β1

|2, a0,(j) =
√∑

α1

|C0
α1

|2 , (21)

with the constraint a2
1,(j)

+ a2
0,(j)

= 1. The one-electron entanglement entropy is obtained in 
terms of Schmidt coefficients

S(j)(k) = log 2 − 1

2
(1 + x) log(1 + x) − 1

2
(1 − x) log(1 − x) , (22)

where x =
√

1 − 4a2
1,(j)a

2
0,(j).

We now obtain the leading terms in S(j) for two extreme cases: (i) when the URG flow leads 
to IR fixed points where the ground state is completely separable, and (ii) when the URG flow 
generates a highly entangled subspace in the IR. For case (i), and with x = 1 − ε (ε → 0), we 
have

S1
(j)(k) = −(1 − ε

2
) log

(
1 − ε

2

)
− ε

2
log

ε

2
≈ ε/2 =

∑
|C1,(j)

β1
C0,(j)

α1
|2 . (23)
β1,α1
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For case (ii0, with x → 0, we find

S2
(j)(k) ≈ log 2 − x2

2
= log 2 − 1

2
+ 2

∑
β1,α1

|C1,(j)
β1

C0,(j)
α1

|2 . (24)

Next, we will obtain the renormalization of entanglement entropy S1
(j) for case (i) in the lowest 

order of 
C
(j)
ρ


S1
(j)(k) =

∑
β1,α1

|(C1,(j)
β1

+ 
C
1,(j)
β1

)(C0,(j)
α1

+ 
C0,(j)
α1

)|2 −
∑
β1,α1

|C1,(j)
β1

C0,(j)
α1

|2

≈
∑
β1

2Re(C
1,(j)
β1


C
1,(j)
β1

)a2
0,(j) +

∑
α1

2Re(C0,(j)
α1


C0,(j)
α1

)a2
1,(j) . (25)

Note that for a separable state, either a1,(j) → 1 or a0,(j) → 1, resulting in


S1
(j)(k) =

∑
β1

2Re(C
1,(j)
β1


C
1,(j)
β1

) . (26)

Similarly, for highly entangled states in case (ii), 
S2
(j)(k) =∑

β1
4Re(C

1,(j)
β1


C
1,(j)
β1

). Finally, 
note that, following the Ryu-Takyanagi formula [52], the entanglement entropy of a region R is 
bounded as follows


S(j)(R) ≤ N(j)(R)
max
k∈R

Si
(j)(k) , (27)

where N(j)(R) is the number of electrons in the region R that belong to the entangled subspace 
at RG step j . In a later section, we will obtain the entropy bound scaling relation for various 
gapless and gapped IR fixed points obtained from a generic strongly correlated model.

3. Tensor RG theory for the single band four-Fermi interacting model

The URG formalism, introduced in a companion work [1], leads to the iteratie block diago-
nalization of the Hamiltonian in Fock space. In Sec. 2, we have laid out the major results from 
the URG formalism. In the companion work [1], we have also investigated the leading effects of 
such unitary transformations on a generic model of interacting fermions on a lattice. These inves-
tigations pointed towards the emergence of six-point (or three-particle) vertices that can either 
lead to the modification of the Fermi liquid self-energy or its complete destabilization, outcomes 
of logarithmic divergences in the 1-particle self-energy and 2-particle correlation energies re-
spectively. To further investigate these log-divergences, we implement the Hamiltonian Tensor 
RG scheme.

We begin the analysis by representing the single-band translational invariant four- fermion 
interacting model (SFIM) as follows

ĤSFIM =
∑

k

(εk − μ)n̂kσ +
∑
kk′p

Vαβc
†
kσ c

†
p−kσ ′cp−k′σ ′ck′σ , (28)

where p is the net pair-momentum and k − k′ is the momentum transfer. The four-fermion inter-
action vertex can be compactly represented as Vαβ = V σσ ′

kk′p, where α := {(k, σ, 1); (p −k, σ ′, 1)}, 
β := {(p − k′, σ ′, 0); (k′, σ, 0)}, and the indices 1 and 0 represent the c† and c operators respec-
tively. The zero momentum transfer vertices are denoted as Vαα′ (where α′ = {(k, σ, 0); (p −
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Fig. 1. Figure represents iso-geometric curves that are displaced parallely from the Fermi surface (red curve), and cover 
the Brillouin zone in the limit of (Lx, Ly) → ∞ limit for (a) the square lattice at chemical potential μ = 0, (b) the 
triangular lattice at μ = −7.0t and (c) the continuum circular dispersion at μ = 0. (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

k, σ ′, 0)}). For an overall understanding of the various zero temperature phases, we develop be-
low the Hamiltonian renormalization group scheme eq. (6) for HSFIM . We will, thereby, display 
the tensor network representation of the Hamiltonian RG flows towards various fixed point the-
ories.

The scheme adopted for the RG involves decoupling initially states whose energy is highest 
with respect to Fermi energy EF = μ, followed by ones closer to the Fermi surface. This is 
ensured by defining parallel curves isogeometric to the Fermi surface (see Fig. 1). The wave-
vectors k�ŝ = kF (ŝ) + �ŝ are relabelled by the distance � from the Fermi surface and the unit 
normal vector to it, ŝ = ∇εk/|∇εk||εk=EF

. The renormalization group flow of the Hamiltonian, 
H(j−1) = U(j)H(j)U

†
(j), takes place via disentangling an entire isogeometric curve by a unitary 

operation U(j) = ∏
l U(j,l), where the collective coordinates l = (ŝ, σ), (j, l) ≡ k�j ŝσ repre-

sent the state labelled by the quantum numbers k�j ŝσ . U(j,l) represents an individual unitary 
operation that decouples a single electronic state (j, l) ≡ k�j ŝσ and has the form

U(j,l) = 1√
2
[1 + η

†
(j,l) − η(j,l)] , (29)

where the form of the e-h transition operators η(j,l) are shown in eq. (3). Following the RG flow 
equations eq. (10) obtained from the Hamiltonian renormalization, we will investigate various 
parameter regimes for the microscopic HSFIM theory, culminating in the RG phase diagram for 
the model. In keeping with our discussion of the influence of 3-particle vertices on the 1-particle 
self-energy and 2-particle correlation energy, we truncate the RG flow equation hierarchy in 
eq. (10) to six-point vertices.

3.1. Derivation of the RG equation for 1 particle self energy �kσ (ω)

Translational invariance of HSFIM ensures that the two-point vertices are purely number di-
agonal in momentum space: �2,(j)

αα′ (ω(j)) = ε�,ŝ + �
(j)

�,ŝ
(ω(j)). Further, from eq. (10), the RG 

flow of �2
αα′ can be attributed to the contribution from 4- and 6-point vertices to the RG flow of 

the single-particle self-energy


�
(j)

�,ŝ,σ
(ω(j)) =

∑
γ

�4,(j)
αγ (ω(j))G

6,(j)

γ γ ′ (ω(j))�
4,(j)

γ ′α′ (ω(j))

+
∑

�6,(j)
α1γ1

(ω(j))G
10,(j)

γ1γ
′
1

(ω(j))�
6,(j)

γ ′
1α

′
1
(ω(j)). (30)
γ1
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Here, G6,(j)

γ γ ′ (ω(j)) and G10,(j)

γ γ ′ (ω(j)) are Green’s function operators that contain the kinetic and 
interaction energies of three particles and five particles respectively, with explicit forms given by

G
6,(j)

γ γ ′ (ω(j)) =
8τk�j ŝ1

σ ′σp−k�j ŝ1
σ ′σp−k�ŝσ

ω(j) − h1
(j) − h2

(j) − h3
(j)

,

h1
(j) = (εk�j ŝ1

+ �
(j)
k�j ŝ1

(ω(j)))τk�j ŝ1
σ ′ − (εp−k�j ŝ1

+ �
(j)
p−k�j ŝ1

(ω(j)))σp−k�j ŝ1
σ ′

− (εp−k�ŝ
+ �

(j)
p−k�ŝ

(ω(j)))σp−k�ŝσ

h2
(j) = �

4,(j)

(k�ŝ ,σ
′),(p−k�ŝ ,σ )

σp−k�j ŝ1
,σ ′σp−k�ŝ ,σ

+ �
4,(j)

(k�j ŝ1
,σ ′),(p−k�ŝ ,σ )

τk�j ŝ1
,σ ′σp−k�ŝ ,σ

+ �
4,(j)

(k�j ŝ1
,σ ′),(p−k�j ŝ1

,σ )
τk�j ŝ1

,σ ′σp−k�j ŝ ,σ

h3
(j) = �

6,(j)

(k�j ŝ1
σ ′),(p−k�ŝ ,σ ),(p−k�j ŝ1

,σ ′)σp−k�j ŝ1
,σ ′σp−k�ŝ ,σ τk�j ŝ1

,σ ′ . (31)

and

G
10,(j)

γ γ ′ (ω(j)) =
32
∏4

i=1
kiσi∈γ

σki ,σi
τk�j ŝ1

,σ ′

ω − h(j)

,

h(j) =
∑

(ki ,σ )∈ρ⊂γ

�
2,(j)

ρρ′ σki ,σ +
∑

((ki ,σ ),
(kj ,σ ′))∈ρ⊂γ

�
4,(j)

ρρ′ σki ,σ σkj ,σ ′

+
∑

((ki ,σ ),
(kj ,σ ′),

(kl ,σ
′′))∈ρ⊂γ

�
6,(j)

ρρ′ σki ,σ σkj ,σ ′τk�j ŝ1
,σ ′ , (32)

respectively. The labels α, γ and α′ are defined similar to that discussed below eq. (9), as the 
collection of pairwise labels {(k, σ, μ)}, such that l represents the electronic state labels and μ =
0/1 represent the electron annihilation/creation operator. The labels α = {((k�ŝ, σ), μ1), ((p −
k�ŝ, σ ′), μ2)}, γ = {((k�j ŝ , σ), μ1), ((p −k�j ŝ , σ ′), μ2)}. α′ and γ ′ involve the same electronic 
states with μ1, μ2 replaced by the complement μ̄1,2 = 1 − μ1,2. Similar definitions exist for α1, 
γ1 and α′

1, γ ′
1. In the above equation, the operators τkσ = nkσ − 1

2 represents decoupled degrees 
of freedom that commute with the Hamiltonian, while the operators σkσ = nkσ − 1

2 belong to 
the coupled space and do not commute with the Hamiltonian. We now derive the four-point and 
six-point vertex RG flow equations.

3.2. Derivation of RG flow equations for �4
αβ and �6

αβ

Using the RG flow equation hierarchy of eq. (10), the RG flow equation for the four-point 
vertex at the l-th step and along a given isogeometric curve j is given by


�
4,(j,l)
αβ (ω(j,l)) = �

4,(j,l)
αβ (ω(j,l)) − �

4,(j,l−1)
αβ (ω(j,l−1))

=
∑
γ

�4,(j,l)
αγ G

4,(j,l)

γ γ ′ (ω(j,l))�
4,(j,l)

γ ′β +
∑
γ

�6,(j,l)
αγ G

8,(j,l)

γ γ ′ (ω(j,l))�
6,(j,l)

γ ′β .

(33)
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Here, G4,(j,l)

γ γ ′ (ω(j,l)), G
6,(j,l)

γ γ ′ (ω(j,l)), G
8,(j,l)

γ γ ′ (ω(j,l)) are four-, six- and eight-point Green’s func-
tions respectively. We also note that the four-point off-diagonal vertex scattering between nor-
mals ŝ and ŝ′ takes places either directly (ŝ → ŝ′) or via correlated (i.e., higher order) tangential 
scattering processes (e.g., ŝ → ŝ1 → ŝ′, ŝ → ŝ1 → ŝ2 → ŝ′). Taken together, the first term in 
eq. (33)) involves the contribution to the four-point vertex RG flow 
�4,(j) in eq. (33) due to 
other four-point vertices (including the effects of correlated scattering between states residing on 
the same isogeometric curve (j ))


�
4,(j)
αβ (ω(j)) →

∑
γ

�4,(j)
αγ G

4,(j)

γ γ ′ �
4,(j)

γ ′β +
∑
γ1

�4,(j)
αγ G

4,(j)

γ γ ′ �
4,(j)

γ ′γ1
G

4,(j)

γ1γ
′
1
�

4,(j)

γ ′
1β

+ ...

=
∑
γi

n−1∏
i=1

�4,(j)
αγi

G
4,(j)

γiγ
′
i

�
4,(j)

γ ′
i γ

′
i+1

G
4,(j)

γnγ ′
n
�

4,(j)

γ ′
nβ

. (34)

In the above expression, the renormalization contribution from the k-correlated 4-point off-
diagonal scattering vertex (i.e., �4G4�4 . . .k−times . . . �4G4�4) for a D-dimensional system 
scales with volume as L(k−1)(D−1)L−kD = L−D−k+1. Thus, in the thermodynamic limit (TL, 
L → ∞), the leading contribution comes from the k = 2 scattering (in comparison to all k > 2
processes). The same holds true for the �6G8�6 and �6G6�4 renormalization contributions to 
�4,(j) in eq. (33), with volume dependence L−(k+1)D−k+1 and L−3kD respectively.

Accounting for the leading contributions in the thermodynamic limit, a compact form of the 
flow equations for 4-point vertices and 6 point off-diagonal vertices is given by


�
4,(j)
αβ (ω(j)) =

∑
γ

�4,(j)
αγ G

4,(j)

γ γ ′ (ω(j))�
4,(j)

γ ′β +
∑
γ

�6,(j)
αγ G

8,(j)

γ γ ′ (ω(j))�
6,(j)

γ ′β , (35)


�
6,(j)
αβ (ω(j)) =

∑
γ

�4,(j)
αγ G

2,(j)

γ γ ′ (ω(j))�
4,(j)

γ ′β +
∑
γ

�6,(j)
αγ G

6,(j)

γ γ ′ (ω(j))�
6,(j)

γ ′β

+
∑
γ

�6,(j)
αγ G

4,(j)

γ γ ′ (ω(j))�
4,(j)

γ ′β . (36)

Finally, the RG flow equations for the 6-point diagonal vertices are given by


�
6,(j)

αα′ (ω(j)) =
∑
γ

�4,(j)
αγ G

2,(j)

γ γ ′ (ω(j))�
4,(j)

γ ′β +
∑
γ

�6,(j)
αγ G

6,(j)

γ γ ′ (ω(j))�
6,(j)

γ ′β . (37)

In the above flow equations, the Green’s functions G2,(j)

γ γ ′ (ω(j)), G
4,(j)

γ γ ′ (ω(j)), G
6,(j)

γ γ ′ (ω(j)) and 

G
8,(j)

γ γ ′ (ω(j)) contain the energy contributions from one-particle self energies, as well as two- and 

three-particle correlation energies. The form of the two- particle Green’s function G4,(j)

γ γ ′ (ω(j)) is 
given by

G
4,(j)

γ γ ′ (ω(j)) =
4τk�j ŝ1

,σ ′σp−k�j ŝ1
,σ

ω(j) − h1
(j) − h2

(j)

h1
(j) = εk�j ŝ1

τk�j ŝ1
,σ ′ + εp−k�j ŝ1

σp−k�j ŝ1
,σ , h2

(j)

= �
4,(j)

(k�j ŝ1
,σ ′),(p−k�j ŝ1

,σ )
τk�j ŝ1

,σ ′τp−k�j ŝ1
,σ . (38)

The four-particle Green’s function G8,(j)

γ γ ′ (ω(j)) can be obtained similarly, while the three-particle 

Green’s function G6,(j)
′ (ω(j)) has already been given earlier.
γ γ
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An important point can now be made. When relevant under RG flow, the contribution of six-
point scattering vertices �6,(j)

αβ is responsible for the dynamical mixing of opposite spin electron-
electron and electron-hole configurations. This feature results from the non-commutativity be-
tween the composite electron creation operator (1 − n̂kσ )c

†
k′σ ′ and the ee/eh pseudospin pair 

operators [53], c†
kσ c

†
k′σ ′ and c†

kσ ck′σ ′ . In order to incorporate this effect within the four-point ver-

tex RG equations, we follow Refs. [1,27] and perform an ω-dependent rotation, tan−1(

√
1−p
p

), 
in the space of the electron/hole configurations of the pair of electronic states: |1k�ŝ

1p−k�ŝ
〉 and 

|1k�ŝ
0p−k�ŝ

〉. This is manifested in the RG equations of �4,(j), obtained in a rotated basis of 
occupied and unoccupied electronic states


�
4,(j)
αβ (ω(j)) =

∑
γ

[
p�

4,(j)
αγ �

4,(j)
γβ

ω(j) − ε
(j)

p,k�j ŝ′ ,p − 2p−1
4 �

4,(j)

γ γ ′
− (1 − p)�

4,(j)
α1γ1 �

4,(j)
γ1β1

ω(j) − ε
(j)

p,k�j ŝ′ ,p′ − 2p−1
4 �

4,(j)

γ1γ
′
1

]
,

+
∑
γ

�6,(j)
αγ G

8,(j)

γ γ ′ (ω(j))�
6,(j)

γ ′β , (39)

where the ee/eh hybridized pair-dispersion is given by

ε
(j)
p,k�j ŝ′ ,p = p

2
(ε

(j)
k�j ŝ′ + ε

(j)
p−k�j ŝ′ ) + 1 − p

2
(ε

(j)
k�j ŝ′ − ε

(j)
p−k�j ŝ′ ) . (40)

In the above RG equation, the indices α, β, γ , α′, β ′, γ1 are related as follows: for α =
{(k, σ, 1), (p − k, σ ′, 1)}, β = {(k′, σ, 0), (p − k′, σ ′, 0)} and γ = {(k�j ŝ1, σ, 0), (p − k�j ŝ1,

σ ′, 0)}, the indices α1 = {(k, σ, 1), (p − k, σ ′, 0)}, β1 = {(k′, σ, 0), (p − k, σ ′, 1)} and γ1 =
{(k�j ŝ , σ, 0), (p + k�j ŝ − k′ − k, σ ′, 1)}. In order to manifest the dominant effect of the six-
point off-diagonal vertices, the hybridisation parameter p(ω) is chosen so as to maximize the 
spin-charge hybridized Green’s function Gp,j (ω(j)) = (ω(j) − ε

(j)
p,k�j ŝ′ ,p)−1,

p := p′ s.t. Gp,j (ω(j)) = max
0<p′<1

Gp′,j (ω(j)) . (41)

With these RG equations in place, we have laid the platform for investigating the low energy 
fixed point Hamiltonians of various quantum fluctuation energy scales and parameter regimes.

3.3. RG flows towards Fermi liquid and BCS fixed points

We begin with an illustration in Fig. 2 of various 2-, 4- and 6-point vertices obtained from 
a tree-like decomposition of the hierarchical Hamiltonian RG flow. This will be seen to assist 
us in describing the RG flows towards various stable phases of fermionic quantum matter ob-
tained across several parameter regimes. The first level of branching involves the separation into 
the 2-point (self-energy �), 4-point (�4) and 6-point (�6) vertices. A second level of branch-
ing involves that of the 4- and 6-point vertices (�4,(j), �6,(j)) into diagonal (�4,(j)

αα′ , �6,(j)

αα′ ) and 

off-diagonal (�4,(j)
αβ , �6,(j)

αβ ) elements. In order to make the tensorial dependence on momenta 

and spin indices explicit, the diagonal and off-diagonal 4-point vertex elements (�4,(j)

αα′ , �4,(j)
αβ )

are further decomposed into different pair-momenta p and spin-pair channels σ, σ ′ = σ, σ and 
σ, σ ′ = σ, −σ as �4,(j)

αα′ ≡ V
σσ ′,(j)
kp , �4,(j)

αβ ≡ V
σσ ′,(j)

kk′p respectively. The notation αβ and αα′ em-
ployed for the 4-point vertices are 4-element sets chosen as follows:
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H(j)

�(j) �4,(j)

�
4,(j)

αα′

V
σσ ′,(j)
k,p . . .

V
σσ,(j)
k,p V

σ−σ,(j)
k,p . . .

. . . V
σσ ′,(j)

k,p′

V
σσ,(j)

k,p′ V
σ−σ,(j)

k,p′

�
4,(j)
αβ

V
σσ ′,(j)

k,k′,p . . .

V
σσ,(j)

k,k′,p V
σ−σ,(j)

k,k′,p . . .

. . . V
σσ ′,(j)

k,k′,p′

V
σσ,(j)

k,k′,p′ V
σ−σ,(j)

k,k′,p′

�6,(j)

�
6,(j)

αα′ �
6,(j)
αβ

Fig. 2. Tree tensor network representation of the 2-point, 4-point and 6-point vertices, where the 4-point and 6-point 
vertex tensor are comprised of diagonal and off-diagonal parts. The 4-point vertex tensor is further decomposed in 
various total pair-momentum p and spin-pair σσ ′ channels. Note that α := {(l, μ)} and α′ := {(l, μ̄)} and β := {(l′, μ̄)}, 
where the index l represents a collection of labels marking states in the coupled space and μ = 1/0 refers to a particular 
state being either occupied or unoccupied (converse for μ̄).

αβ = {(k, σ,1), (p − k, σ ′,1), (p − k′, σ ′,0), (k′, σ ′,0)} ,

αα′ = {(k, σ,μ1), (p − k, σ ′,μ2), (p − k, σ ′, μ̄2), (k, σ, μ̄1)} , (42)

where the first two indices label the state and μ = 1, 0 represents creation or annihilation opera-
tion on that state and μ̄ is its compliment.

Similarly, the 6-point vertices are decomposed into diagonal �6,(j)

αα′ ≡ R
σσ ′σ,(j)

kk′k′′ and off-

diagonal vertices �6,(j)
αβ ≡ R

σσ ′σ,(j)
kk1k2k3k4

. Again, the notation αβ and αα′ for the six point vertices 
are 6-element sets chosen as follows:

αβ =
{
(k, σ,1), (p − k, σ ′,1), (p′ − k′, σ ′,1), (p − k′, σ ′,0), (k′′, σ ′,0), (p′ − k′′, σ,0)

}

αα′ =
{
(k, σ,μ1), (p − k, σ ′,μ2), (p − k′, σ ′,μ3), (p − k′, σ ′, μ̄3), (k, σ, μ̄1),

(p − k, σ ′, μ̄2)

}
. (43)

Given the complex tensorial structure of the vertices, a simplified representation is needed by 
which families of RG flow equations can be characterized into different phases. Thus, we define 
the quantities

r
σσ ′,(j)
p =

sgn(V
σσ ′,(j)

kk′p )

√∑
kk′

|V σσ ′,(j)

kk′p |2
√ ∑

′
|V σσ ′,(j)

kk′p |2 +∑ |V σσ ′,(j)

kp |2
,

k�=k k
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H(j)

�(j) �4,(j)

�
4,(j)

αα′

V
σσ ′,(j)
k,p . . .

V
σσ,(j)
k,p V

σ−σ,(j)
k,p . . .

. . . V
σσ ′,(j)

k,p′

V
σσ,(j)

k,p′ V
σ−σ,(j)

k,p′

�
4,(j)
αβ

V
σσ ′,(j)

k,k′,p . . .

V
σσ,(j)

k,k′,p V
σ−σ,(j)

k,k′,p . . .

. . . V
σσ ′,(j)

k,k′,p′

V
σσ,(j)

k,k′,p′ V
σ−σ,(j)

k,k′,p′

�6,(j)

�
6,(j)

αα′ �
6,(j)
αβ

Fig. 3. Tree tensor diagram representing the Fermi liquid (regime-I in Table 1). The off-diagonal 4-point vertices are 
RG irrelevant (i.e., flow towards zero) and are represented in red. Further, diagonal and off-diagonal 6-point vertices 
are irrelevant and are represented in red colour. The 1-particle self-energy and the 2-particle Hartree contribution is RG 
relevant, approaches fixed point values, and are reprented in blue.

sσσ ′σ,(j) =

√ ∑
kk′k′′

|Rσσ ′σ,(j)

k,k′k′′ |2
√√√√ ∑

kk′k′′
|Rσσ ′σ,(j)

kk′k′′ |2 + ∑
kk1k2
k3k4

|Rσσ ′σ,(j)
kk1k2k3k4

|2
. (44)

Importantly, we add that our analysis is confined to models with off-diagonal 4-point vertices 
that are either V σσ ′

kk′p < 0 or V σσ ′
kk′p > 0 for all k, k′, p. It is clear from this assumption that −1 <

r
σσ ′,(j)
p < 1, 0 < sσσ ′σ,(j) < 1. As shown in Tables 1 and 2, we can now tabulate the stable fixed 

point theories corresponding to various low-energy regimes by using the relevance, irrelevance 
and dominance criteria of various �2,(j), �4,(j) and �6,(j) vertex RG flows. Further, the RG flows 
for regimes (I-III) in Table 1 and regimes (IV and V) in Table 2 are represented via tree diagrams 
in Figs. 3–8. Below, we discuss various low energy fixed point theories arising from these RG 
flow equations.

I. The Fermi Liquid

Fermi liquid theory [54] arises in the low-energy regime I in Table 1 due to vanishing of all 
the non-zero momentum k − k′ scattering vertices V σσ ′

k,k′,p. We discuss the details of this RG 
flow here. The condition 1 in regime I provides the ranges for fluctuation scale ω(j) and number 

diagonal vertex V σσ ′,(j)
k,p for which the Green’s function G4,(j)

γ γ ′ appearing in eq. (36) picks up a 
negative signature

G
4,(j)

γ γ ′ =
⎛
⎝ω(j) − 1

2
(ε

(j)
k�j ŝ

+ ε
(j)
p−k�j ŝ

) − V
σσ ′,(j)
k,p

4

⎞
⎠

−1

< 0 , (45)
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Table 1
Table representing various parameter space regimes (Column II) and the associated flow of quantities describing nature of 
fixed point theory (Column III). Regimes I, II, III leads to fixed point Hamiltonians H∗

FL
, H∗,XY

RBCS
, H∗,XXZ

RBCS
respectively 

in the main text.

Cases r
σσ ′,(j)
p , sσσ ′σ,(j)

I
1.

V
σσ ′,(j)
k�j ŝ ,p

4 > ω(j) − 1
2 (ε

(j)
k�j ŝ

+ ε
(j)
p−k�j ŝ

) > 0

2. V
σσ ′,(j)
k�j ŝ ,p

> V
σσ ′,(j)
k�j ŝ ,k,p

1. r
σσ ′,(j)
p → 0+ for all p

2. sσσ ′σ,(j) → 0+

II

1. ω(j) − 1
2 (ε

(j)
k�j ŝ

+ ε
(j)
−k�j ŝ

) < 0

2. ε
(j)
k�j ŝ

> EF

3. V
σ,σ ′,(j)
k,p > 0

4. V
σ,−σ,(j)
k�j ŝ ,k,p < 0

5. V
σ,σ,(j)
k�j ŝ ,k,p > 0

6. |V σ,−σ,(j)
k�j ŝ ,p

| < |V σ,−σ,(j)
k�j ŝ ,k,p|

1. r
σ,−σ,(j)
p=0 → −1

2.
V

σ,−σ

kk′p′
V

σ,−σ

kk′p=0

∣∣∣∣
L→∞

→ 0+ for εp′−k > EF

3. r
σ,−σ,(j)

p′ → 0+ for εp′−k < EF

4. r
σ,σ,(j)
p → 0 for all p

5. sσσ ′σ,(j)

r
σ,−σ,(j)
p=0

∣∣∣∣
L→∞

→ 0+

III

1. ω(j) − 1
2 (ε

(j)
k�j ŝ

+ ε
(j)
−k�j ŝ

) < 0

2. ε
(j)
k�j ŝ

> EF

3. V
σ,σ ′,(j)
k,p > 0

4. V
σ,−σ,(j)
k�j ŝ ,k,p < 0

5. V
σ,σ,(j)
k�j ŝ ,k,p > 0

6. |V σ,−σ,(j)
k�j ŝ ,p

| > |V σ,−σ,(j)
k�j ŝ ,k,p|

1. r
σ,−σ,(j)
p=0 → −r , r < 1

2.
V

σ,−σ

kk′p′
V

σ,−σ

kk′p=0

∣∣∣∣
L→∞

→ 0+ for εp′−k > EF

3. r
σ,−σ,(j)

p′ → 0+ for εp′−k < EF

4. r
σ,σ,(j)
p → 0 for all p

5. sσσ ′σ,(j)

r
σ,−σ,(j)
p=0

∣∣∣∣
L→∞

→ 0+

leading to the RG irrelevance for both the off-diagonal and diagonal vertices, i.e., (
V
σσ ′,(j)

k,k′,p ,


V
σσ ′,(j)

k,p ) → 0. Further, condition 2 in regime I ensures that in the limit of large system sizes 

(L → ∞), the off-diagonal vertices vanishes V σσ ′,(j)

k,k′,p → 0, whereas the diagonal vertices reach 
a intermediate value given by the fixed point condition (corresponding to a vanishing of the 
denominator in eq. (36))

ω(j∗) − 1

2

(
ε
(j∗)
k�j∗ ŝ

+ ε
(j∗)
p−k�j∗ ŝ

)
= 1

4
V

σσ ′,(j∗)
k�j∗ ŝp . (46)

The tree diagram Fig. 3 represents the vertex tensor RG flow, where the blue branches and nodes 
represent vertices whose magnitudes flow towards a finite value at the stable fixed point. On the 
other hand, the magnitudes of the red branches flow towards zero. As V σσ ′

′ is RG irrelevant, 
k,k ,p
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Table 2
Table representing various parameter space regimes (Column II) and the associated flow of quantities describing nature 
of fixed point theory (Column III). Regimes IV, V, VI leads to fixed point Hamiltonians H∗,XY

SPDW
, H∗,XXZ

SPDW
, H∗

MFL
respectively in main text.

Cases r
σσ ′,(j)
p , sσσ ′σ,(j)

IV

1. ω(j) − 1
2 (ε

(j)
k�j ŝ

+ ε
(j)
p−k�j ŝ

) < 0

2. ε
(j)
k�j ŝ

> EF

3. V
σ,σ ′,(j)
k,p > 0

4. V
σ,−σ,(j)
k�j ŝ ,k,p < 0

5. V
σ,σ,(j)
k�j ŝ ,k,p > 0

6. |V σ,−σ,(j)
k�j ŝ ,p

| < |V σ,−σ,(j)
k�j ŝ ,k,p|

1. r
σ,−σ,(j)
p → −1

2.
V

σ,−σ

kk′p′
V

σ,−σ

kk′p

∣∣∣∣
L→∞

→ 0 + for εp′−k > EF

3. r
σ,−σ,(j)

p′ → 0+ for εp′−k < EF

4. r
σ,σ,(j)
p → 0 for all p

5. sσσ ′σ,(j)

r
σ,−σ,(j)
p

∣∣∣∣
L→∞

→ 0+

V

1. ω(j) − 1
2 (ε

(j)
k�j ŝ

+ ε
(j)
p−k�j ŝ

) < 0

2. ε
(j)
k�j ŝ

> EF

3. V
σ,σ ′,(j)
k,p > 0

4. V
σ,−σ,(j)
k�j ŝ ,k,p < 0

5. V
σ,σ,(j)
k�j ŝ ,k,p > 0

6. |V σ,−σ,(j)
k�j ŝ ,p

| > |V σ,−σ,(j)
k�j ŝ ,k,p|

1. r
σ,−σ,(j)
p → −r , r < 1

2.
V

σ,−σ

kk′p′
V

σ,−σ

kk′p

∣∣∣∣
L→∞

→ 0+ for εp′−k > EF

3. r
σ,−σ,(j)

p′ → 0+ for εp′−k < EF

4. r
σ,σ,(j)
p → 0 for all p

5. sσσ ′σ,(j)

r
σ,−σ,(j)
p

∣∣∣∣
L→∞

→ 0+

VI

1. 1
2 ε

(j)
k�j ŝ

< ω(j) < 1
2 (ε

(j)
k�j ŝ

+ ε
(j)
−k�j ŝ

)

2. ε
(j)
k�j ŝ

> EF

3. V
σ,σ ′,(j)
k�j ŝ ,k,p > 0

1. sσ,−σ,σ,(j) → 1

2. sσ,σ,σ,(j) = 0

3. r
σσ ′,(j)
p → 0

the 6-point vertices Rσσ ′σ ′′
also do not contribute in the limit of L → ∞. This results in the 

quantities rσσ ′,(j)
p → 0 and sσσ ′σ,(j) → 0. Thus, the theory at the Fermi liquid fixed point is free 

of all 2-particle as well as higher order off-diagonal vertices, leading to Landau’s Fermi liquid 
Hamiltonian [54]

H ∗
FL(ω) =

∑
�<�j∗ ,ŝ

εk�ŝ
n̂k�ŝσ +

∑
�<�j∗ ,ŝ,p

V
σσ ′,(j∗)
k�ŝp (ω(j∗))n̂k�ŝσ n̂p−k�ŝσ

′ . (47)

For a quantitative demonstration of the Fermi liquid fixed point theory from our URG anal-
ysis, we numerically analyse below the URG equations for various 2- and 3-particle vertices, 
the 1-particle self-energy (�) and the quasiparticle residue (Z). For this, we consider a screened 
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Fig. 4. Log-log plot for renormalization of two-particle vertices V (q) with momentum transfer |q| = 0, 3π/10, 3π/7
and 3π/5. The x-axis is the RG scale �/�0 and the y-axis is the magnitude of the scattering vertex V (q). For the 
numerical evaluation, we have solved RG eq. (35) by taking a system volume of 1024 × 1024 lattice sites, ω = ε�0 + 0.1

(�0 = π/20) and V (q) = η2V (0)/(q2 + η2) with η = 0.2, V (0) = 20.5.

Fig. 5. Left Panel: RG flow (eq. (30)) of the single-particle self-energy for four different wave-vectors k close to kF . 
Right Panel: Variation of renormalized single-particle self-energy at the IR fixed point upon approaching the Fermi 
surface with lowering |k − kF |.

interaction potential V (|q|) = η2V (0)/(q2 + η2), with V (0) = 20.5, η = 0.2, a two-dimensional 
circular Fermi surface with |kF | = π/20 and ω = ε�0 + 0.1 (Regime-I of Table 1) and a sys-
tem volume represented by a k-space grid of 1024 lattice sites ×1024 lattice sites. In Fig. 4, the 
2-particle scattering vertices V (|q|) with non-zero (q �= 0) momentum transfer (red, green and 
orange curves) are found to be irrelevant under RG flow. On the other hand, the |q| = 0 vertices 
V (0) (red curve, corresponding to the couplings associated with terms like n̂kσ n̂k′σ ′ ) attain a 
finite value at the IR fixed point. In this way, we numerically confirm the RG flow towards the 
effective Fermi liquid Hamiltonian H ∗

FL(ω) given in eq. (47). In Fig. 5 (left panel), we see that 

the 1-particle self-energy �(j)
k renormalizes to a finite value �∗

k at the RG fixed point, and that 
the |k〉 states closer to the Fermi surface (kF ) have a lower �∗

k (Fig. 5 (right panel)). Fig. 6 (left 
panel) shows that the quasiparticle residue Z(k, 
) → 1 upon approaching the Fermi energy 

 → 0, demonstrating the existence of well-defined Landau quasiparticles in the neighbourhood 
of the Fermi surface. Fig. 6 (right panel) shows the RG irrelevance of 2-electron 1-hole scatter-



20 A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163
Fig. 6. Left Panel: Variation of the quasiparticle residue for eletronic states k with lowering excitation energy scale 

about EF . Right Panel: RG flow (eq. (37)) of the number diagonal three-particle vertex with wave-vectors kF , kF + π

50 , 
kF − π

50 .

ing vertices (which constitute the primary decay channel for the Landau quasiparticles). Taken 
together, these results verify numerically the phenomenology of the Landau Fermi liquid theory 
(eq. (47)) as derived from the URG analysis of the HSFIM model (eq. (28)).

In a companion manuscript [1], we derive the form of the renormalized Friedel’s scatter-
ing phase shift starting from the exponential representation of the unitary operator 
N =
T r(log(U(j))) = i π

4 T r(η(j) − η
†
(j)). Further, we note that this is similar to Langer and Am-

begaokar’s definition of scattering phase shift [55]. As all off-diagonal terms are RG irrelevant 
in the Fermi liquid, η† and η both vanish at the RG fixed point. As a consequence, the Friedel’s 
phase shift for the Fermi liquid is given by 
N = 0, i.e., upon placing a test charge near the 
Fermi surface, no electrons are permanently displaced from within it and the Luttinger volume 
is preserved [56,57]. The incompressibility displays the topological protection for the Fermi sur-
face (FS) associated with the Volovik invariant [58], as shown in Ref. [1]. Further, we obtain a 
vanishing thermal scale in eq. (18), T = 0K , corresponding to ω(j∗) = 0 and �(j∗) = 0 for the 
Fermi liquid.

II. Reduced BCS theory-XY interaction

The reduced BCS theory [59] constitutes attractive interactions between opposite-spin pairs of 
electrons with zero net-momentum p = 0. This theory is an outcome of (i) RG irrelevance for the 
2-particle number-diagonal vertices, (ii) dominant RG flow for zero-momentum p = 0 electronic 
pairs and (iii) the sub-dominance (or RG irrelevance) of the p �= 0 pair-scattering vertices. The 
above features of the RG flows is an outcome of the conditions listed as 1-6 in regime II of 
Table 1. Conditions 1-3 imply that the Green’s function

G
4,(j)

γ γ ′ ≡ G
4,(j)
k�j ŝ ,p

=
(

ω(j) − 1

2
(εk�j ŝ

+ εp−k�j ŝ
)

)−1

, (48)

has a negative signature: G4,(j)
k�j ŝ ,p

= −|G4,(j)
k�j ŝ ,p

|. As G4,(j)
k�j ŝ ,p

appears in the RG flow eq. (39) (for 

p = 0), scattering between opposite-spin pairs due to attractive couplings (V σ,−σ,(j)

k,k′,p ) become RG 

relevant, while repulsive Hartree interactions (V σ,σ ′,(j)
k,p ) are RG irrelevant. Further, condition 4 

ensures that all scattering vertices with identical spin (V σ,σ,(j)

k,k′,p ) are RG irrelevant. Given the 

range of the fluctuation scale ω(j) in condition 1, and for ε(j)
′ > EF , the 2-particle Green’s 
p −k
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j)
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,p . . .
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, and the SPDW state composed of finite-momentum (p) 
 tensors represent the relevant scattering vertices, while 
t RG irrelevant scattering vertices.
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Fig. 7. Tree tensor diagram representing the zero-momentum (p = 0) pairing reduced BCS model (regime-II in Table 1)
pseudospin-pairs interacting via XY interaction (regime-IV in Table 1). The blue branches and the nodes of the vertex
orange branches and nodes represent the dominant RG relevant scattering vertices. The red branches and nodes represen
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Fig. 8. Tree tensor diagram representing the zero-momentum (p = 0) pairing reduced BCS model (regime-III in Ta
pseudospin-pairs interacting via XXZ interaction (regime-V in Table 1). The blue branches and the nodes of the vert
orange branches and nodes represent the dominant RG relevant scattering vertices. The red branches and nodes repres
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Fig. 9. Left/right panel represents the RG flow of two-particle number off-diagonal/diagonal (eqs. (35)) scattering vertices 
for p = 0 (V (j)

X,p=0) and p �= 0 finite-momentum pairs ((V (j)

X,p′ )). Numerical evaluations are for system size = 1024 ×
1024 and bare VD,p = −0.1, VX,p = −0.25 (in units of t ), ω = ε�0 − 0.5. Left panel inset: Finite size scaling plot of 
the ratio V ∗

X,p=0.004/V ∗
X,p=0 with 1/

√
V ol.

Fig. 10. Left panel shows the variation of electronic pair-scattering vertex magnitude attained at RG fixed point V ∗
X

(p)

as a function of pair-momentum p. Right panel shows the RG flow (eq. (51)) of the single-particle self-energy for four 
different |k〉 states close to Fermi momentum kF .

function for p > 0 momentum pairs G4,(j)

γ γ ′ = G
4,(j)
k�j ŝ ,p

is smaller in magnitude compared to the 

zero-momentum pair (p = 0)

|G4,(j)
k�j ŝ ,p

| < |G4,(j)
k�j ŝ ,p=0| . (49)

This Green’s function appears in the RG flow equation eq. (39) for the vertices V σ,−σ,(j)

k,k′,p , ren-

dering it sub-dominant compared to the vertex V σ,−σ,(j)

k,k′,p=0 . As a result, rσ,−σ,(j)
p /r

σ,−σ,(j)
p=0 →

0, as shown in regime-II Table 1. Condition 6 ensures that the number-diagonal interaction 
V

σ,−σ,(j)

k,p → 0. Finally, as the RG flow leads to dominance of only a given pair-momentum 

vertices compared to all others, the renormalization of the 6- point vertices �6,(j) that arise out 
of the interplay between different pair-momentum vertices in eq. (36) is sub-dominant compared 
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to the p = 0 vertices. Thus, they are represented by the ratio sσσ ′σ,(j)/r
σ,−σ,(j)

p=0 |L→∞ → 0+ in 
regime II. All of these features finally lead to the fixed point condition

ω(j∗) = 1

2
(ε

(j∗)
k�j∗ ŝ

+ ε
(j∗)
−k�j∗ ŝ

) = ε
(j∗)
k�j∗ ŝ

, (50)

where we have used the band symmetry εk = ε−k.
Further, at this RG fixed point, the 1-particle self-energy �(j)

k = ε
(j)
k − εk diverges. This can 

be seen as follows. The RG flow equation for �(j)
k (eq. (30)) now has a dominant contribution 

from the zero pair-momentum scattering vertices


�
(j)
k =

(
V

σ,−σ,(j)
k�j ŝ ,k,p=0

)2

(ω(j) − ε
(j)
k�j ŝ

+ 1

2
εk + 1

2
�

(j)
k )−1 . (51)

From this relation, we see that the self-energy is RG relevant. For the electronic states labelled k
(i.e., residing within the emergent window), the self-energy RG flow equation has a fixed point 
at �(j∗)

k → ∞ as ω(j∗) = 1
2ε

(j∗)
k�j∗ ŝ

, indicating the breakdown of the Landau quasiparticles of the 

Fermi liquid. As discussed in an earlier section, the diverging self-energy corresponds to zeros 
in the single-particle Green’s function

G(k,ω) = 1

ω − εk − �k
→ 0. (52)

This indicates the breakdown of the Luttinger volume sum-rule, i.e., Ne �=∑kσ G(k, ω). Instead, 
we find that the total number of Cooper pairs NCP within the low-energy window equals the net 
Friedel’s phase shift, 
N = T r(log(U(j))) = NCP ∈ 2Z, i.e., two electronic states are lost for 
each bound pair. This provides a way for taking accounts for the Luttinger surface of zeros [60]: 
the Friedel phase shift compensates precisely the mismatch observed via the accumulation of 
topological phases arising from the non-commutativity of the twist and translation operators [49,
61] (as shown in a companion work [1]).

The effective Hamiltonian, H ∗,XY
RBCS(ω), at the stable fixed point of the flow has the form

H
∗,XY
RBCS(ω) =

∑
k

ε
(j∗)
k�ŝ

Az
k�ŝ

−
∑
k�ŝ

V
σ,−σ,(j∗)
k�ŝ ,k�′ ŝ′ ,0A

+
k�ŝ

A−
k�′ ŝ′ , (53)

where the set α′ = {(k�′ ŝ′ , σ); (−k�′ ŝ′ , −σ)}. This is the generalized reduced BCS Hamilto-
nian/pairing-force model [59,62], where the pseudospin Ak�ŝ

components are defined as [53]

Az
k�ŝ

= 1

2
(n̂k�ŝσ + n̂−k�ŝ−σ − 1),A+

k�ŝ
= c

†
kσ c

†
−k−σ ,A−

k�ŝ
= c−k−σ ckσ . (54)

In order to verify quantitatively the effective theory given in eq. (53), we numerically simulated 
the RG equations for the bare couplings VX,p = −0.25, VD,p = 0.1 and the fluctuation energy 
scale ω = ε�0 − 0.5 (Regime-II in Table 1) and an identical k-space grid as mentioned earlier. 
Fig. 9 (left panel) represents the RG flow for the two-particle off-diagonal scattering vertices 
involving electronic pairs with net-momentum p = 0.0, 0.004, 0.009 and 0.012 respectively. 
The inset in the left panel of Fig. 9 shows that the ratio V ∗

X,p′/V ∗
X,p=0 diminishes with increas-

ing system volume (which we have taken to range from 1024 × 1024 lattice to a 5000 × 5000
lattice), indicating the dominance of p = 0 momentum scattering vertices at low-energies and 
describing the condensation of Cooper pair degrees of freedom. Fig. 9 (right panel) shows that 
all the number-diagonal scattering vertices are RG irrelevant, and vanish along the RG flow. As 
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seen in Fig. 10 (left panel), we find that the p = 0 momentum electronic pair scattering vertices 
have the highest magnitude |V ∗

X,p=0| > |V ∗
X,p′ | (V ∗

X,0 = V
σ,−σ
k,k′,0 , V ∗

X,p′ = V
σ,−σ
k,k′,p′ ) at low-energies, 

and the magnitude of V ∗
X,p′ monotonically decreases with increasing pair-momentum (p). The 

relevance of off-diagonal p = 0 momentum scattering vertices, together with the RG irrelevance 
of number-diagonal scattering vertices, describes the effective Hamiltonian H ∗,XY

RBCS (eq. (53)) at 
the RG fixed point. Finally, Fig. 10 (right panel) shows a divergent renormalized self-energy �k

(eq. (51)) for the |k〉 states, where |k − kF | < �∗ and �∗ is width of the momentum-space shell 
around the erstwhile Fermi surface.

The condensation of the pseudospins (i.e., Cooper pairs [63] with the electronic spins locked 
into singlets) in this subspace is described by the fixation of the pseudospin angular momentum 
value to 3

4

A2
k�ŝ

= 3

4
(n̂k�ŝσ + n̂−k�ŝ−σ − 1)2 = 3

4
, � < �j∗ . (55)

Thus, the emergence of the constraint n̂k�ŝσ = n̂−k�ŝ−σ describes the phenomenon of conden-
sation of Cooper pairs within the low-energy window of the BCS fixed point theory. For the 
case of a spherical Fermi surface, i.e., ε�ŝ = ε�, the phase described by the BCS reduced model 
(eq. (53)) will persist upto the thermal scale (from eq. (18))

T ∗ = 1

πkB

[
2ε0

�j∗ + (ε0
�j∗ − ω) log |

ω − ε0
�j∗

ω + ε0
�j∗

|
]

. (56)

The above equation is obtained from the self-energy of the electronic state at the momentum-
space boundary of the emergent phase in eq. (18): �(j∗)

�j∗ = ω − ε0
�j∗ , where ε0

�j∗ is the bare 
dispersion magnitude. The temperature scale T ∗ is greater than the critical temperature Tc ob-
tained from the BCS mean-field solution [59], and indicates the presence of pairing in the ground 
state of the reduced BCS Hamiltonian but without the off-diagonal long-ranged order (ODLRO) 
that characterises the phase-stiff BCS ground state. We will present further insights on the ground 
state properties of this quantum liquid in Sec. 112. Finally, the tree decomposition of the vertices 
representing this phase is shown in Fig. 7.

III. Reduced BCS theory-XXZ interaction

For the case when V σσ ′
k,p > V σσ ′

k,k′,p (regime-IV in Table 2), the diagonal vertices do not vanish 
under RG. Here, the fixed point condition becomes

1

2

(
ε
(j∗)
k�∗ ŝ

+ ε
(j∗)
−k�∗ ŝ

)
− ω = 1

4
V

σ,−σ,(j∗)
k�∗ ŝ ,0

. (57)

As an outcome, the fixed point is described by a modified XXZ pseudospin Hamiltonian

H
∗,XXZ
RBCS (ω) =

∑
k

ε
(j∗)
k�ŝ

Az
k�ŝ

−
∑

�,�′<�∗
V

σ,−σ,(j∗)
k�ŝ ,k�′ ŝ′ ,0A

+
k�ŝ

A−
k�′ ŝ′

+
∑

k�ŝ ,p

V
σ,−σ,(j∗)
k�ŝ ,p

Az
k�ŝ

Az
p−k�ŝ

, (58)

where V σ,−σ,(j∗)
k�ŝ ,p

is the value of the Ising coupling at the fixed point. The RG flow features for 
this phase is represented via the tree diagram Fig. 8. In this phase, finite magnitudes for both 
the number-diagonal as well as off-diagonal interactions lead to the quantities rσ,−σ,(j∗) = −r
p=0
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Fig. 11. Left/right panel represents the RG flow (eqs. (35)) of two-particle number off-diagonal/diagonal scattering 
vertices for p = 0 (V (j)

X,p=0) and p �= 0 finite-momentum pairs ((V (j)

X,p′ )). Numerical evaluations are for system volume 
1024 × 1024 and with bare VD,p = 0.5, VX,p = −0.05 (in units of t ), ω = ε�0 − 0.5.

(where r < 1). The left and right panels of Fig. 11 represent the RG flows for the 2 particle 
off-diagonal and diagonal scattering vertices respectively, involving electronic pairs with net-
momentum p = 0.0, 0.003, 0.004 and 0.006. The bare couplings VX,p = −0.05, VD,p = 0.5
(|VX,p| < |VD,p|) and fluctuation scale ω = ε�0 − 0.5 (Regime-III in Table 1), and a system 
volume as mentioned earlier. As the low-energy fixed point in this regime is dominated by p = 0
momentum electronic pair scattering vertices: |V ∗

X,p=0| > |V ∗
X,p′ |, |V ∗

D,p=0| > |V ∗
D,p′ |, the result-

ing theory is described by the presence of both Ising and XY interactions between pseudospins 
(eq. (58)).

IV. Reduced BCS theory for finite momentum pairs-XY regime

In regime IV of Table 2, for the fluctuation energy scale lying in the range

1

2
(ε

(j)
k�j ŝ

+ ε
(j)
p−k�j ŝ

) > ω >
1

2
(ε

(j)
k�j ŝ

+ ε
(j)
−k�j ŝ

) , (59)

finite p pair-momentum pseudospins attain a reduced BCS theory like fixed-point Hamiltonian. 
The fixed point is given by the condition

1

2

(
ε
(j∗)
k�∗ ŝ

+ ε
(j∗)
p−k�∗ ŝ

)
− ω = 0 , (60)

and with an effective fixed point Hamiltonian described by

H
∗,XY
SPDW (ω) =

∑
k

ε
(j∗)
k�ŝ ,p

Az
k�ŝ ,p

−
∑

k�ŝ ,�<�∗
V

σ,−σ
k�ŝ ,k�′ ŝ′ ,pA+

k�ŝ ,p
A−

k�′ ŝ′ ,p, (61)

where the set ν = {(k�ŝ, σ); (p − k�ŝ, −σ)} corresponds to a pair of electronic states with net 
momentum p. The ground state of H ∗,XY is composed of symmetry-unbroken pair-density 
SPDW
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Fig. 12. Left/right panel represents the RG flow (eqs. (35)) of two-particle number off-diagonal/diagonal scattering 
vertices respectively for p = 0 (V (j)

X,p=0) and p �= 0 finite-momentum pairs ((V (j)

X,p′ )). Numerical evaluations are for 
system volume 1024 ×1024 and with bare VD,p = 0.007, VX,p = −0.05 (in units of t ), ω = 1

2 (εk�0
+ε0.01−k�0

) −0.5.

waves (SPDWs) [64,65]. The pseudospin vector components for such finite-momentum pair of 
electrons are defined as

A+
k�ŝ ,p

= c
†
k�ŝσ

c
†
p−k�ŝ−σ ,A−

k�ŝ ,p
= A

+†
k�ŝ ,p

,Az
k�ŝ ,p

= 1

2
[A+

k�ŝ ,p
,A−

k�ŝ ,p
] . (62)

Given that Ising terms are absent from the effective Hamiltonian, we obtain the quantity 
r
σ,−σ,(j∗)
p = −1 for the fixed point theory. The RG flow features for this phase is represented 

via the tree diagram in Fig. 7. A numerical evaluation of the RG flow is shown in Fig. 12 left and 
right panels for 2-particle off-diagonal and number-diagonal scattering vertices respectively, and 
involving electronic pairs with net momentum p = 0.0, 0.004, 0.006, 0.01. The bare couplings 
VX,p = −0.05, VD,p = 0.5 (|VX,p| < |VD,p|) and fluctuation scale ω = 1

2 (εk�0
+ εp−k�0

) − 0.5
(Regime-IV in Table 2), and system volume as mentioned earlier. In this regime, we find that the 
off-diagonal scattering vertices V ∗

X,p = V
σ,−σ
k,k′,p with the largest non-zero pair-momentum (here, 

the curve for p = 0.01 in Fig. 12 (left panel)) dominate the low energy physics. However, we 
find the Ising interactions to be RG irrelevant for all pair momenta (Fig. 12 (right panel)), and 
the phase is described in terms of p = 0.01 momentum pseudospin pairs interacting via XY 
interactions (eq. (58)).

V. Reduced BCS theory for finite momentum pairs-XXZ regime

Similarly, in regime V in Table 2, we obtain a phase composed of finite-momentum pseu-
dospins interacting via XXZ interaction. The effective Hamiltonian describing this phase is

H
∗,XXZ
SPDW (ω) =

∑
k

ε
(j∗)
k�ŝ

Az
k�ŝ

−
∑

�,�′<�∗
V

σ,−σ,(j∗)
k�ŝ ,k�′ ŝ′ ,0A

+
k�ŝ ,p

A−
k�′ ŝ′ ,p

+
∑

V
σ,−σ,(j∗)
k�ŝ ,p′ Az

k�ŝ ,p
Az

p′−k�ŝ ,p
. (63)
k�ŝ ,p
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Fig. 13. Left/right panel represents the RG flow of two-particle number off-diagonal/diagonal scattering vertices 
(eqs. (35)) respectively for p = 0 (V (j)

X,p=0) and p �= 0 finite-momentum pairs ((V (j)

X,p′ )). Numerical evaluations are for 
system volume 1024 × 1024 and with bare VD,p = 0.64, VX,p = −0.04 (in units of t ), ω = 1

2 (εk�0
+ ε0.01−k�0

) − 0.5.

Finite magnitudes for both the number-diagonal and off-diagonal interactions leads to the quan-
tity rσ,−σ,(j∗)

p=0 = −r , where r < 1. The tree diagram Fig. 8 represents the corresponding vertex 
tensor RG flow. As shown in Fig. 13 (left and right panels), a numerical evaluation of the RG flow 
for bare coupling VX,p = −0.04, VD,p = 0.64 and ω = 1

2 (ε�0 + ε0.01−k�0
) − 0.5 (Regime-V in 

Table 2) reveals that at the IR fixed point, both off-diagonal and number-diagonal renormalized 
couplings attain a finite magnitude. The low-energy fixed point theory is, therefore, dominated 
by finite-momentum pseudospin pairs interacting by a XXZ interaction (eq. (63)).

VI. Tensor network representation of the reduced BCS model and Fermi liquid theory

The above fixed point Hamiltonians for regimes I-V Table 1 and 2 can be broadly classified 
into gapless and gapped phases. The Fermi liquid corresponds to the gapless phase containing 
purely number-diagonal interactions, such that H ∗

FL eq. (47) is purely number-diagonal in Fock 
space and various terms in it commute. Therefore, all the number operators n̂kσ corresponding 
to states |kσ 〉 (lying within the window whose boundaries are given by the states k�∗ŝ , eq. (46)) 
commute with HFL, such that their eigenvalues correspond to integrals of motion. Following our 
demonstration of a tensor network representation for the unitary RG flow in [1], the RG flow 
towards Fermi liquid fixed point is displayed as a tensor network in Fig. 14; the features of the 
emergent Fermi liquid theory discussed above are clearly visible at the final layer of the network.

The reduced BCS theory HRBCS
(j∗),XY (eq. (53)) and its variants HRBCS

(j∗),XXZ , HSPDW
(j∗),XY , HSPDW

(j∗),XY

all correspond to gapped condensates. In contrast to that shown for the Fermi liquid, the tensor 
network representation of the RG flow towards such gapped ground states displays an emergent 
pairing of the legs in the final layer. The pairing of legs kσ and −k − σ can be seen in the grey 
boxes in Fig. 15, while the emergent condensate as a whole is encircled in the black dashed line. 
The dashed oval in Fig. 15 represents the XY and Ising interaction between this pseudospins. 
Having achieved the Fermi liquid and BCS regimes, we will turn below towards looking for 
more exotic states of matter, such as the marginal Fermi liquid and gapped condensate ground 
states that involve hybridised spin- and charge-pseudospin pairing.
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Fig. 14. Vertex tensor network representation of the RG flow towards the Fermi liquid. The blue legs labelled 0, . . . , �n

represent the holographic boundary composed of electronic states, the yellow blocks represent nonlocal unitary disen-
tanglers that map the boundary states to the bulk with lowering energies (UV to IR, varying from light to deeper shade of 
red). The variation in the colour of the input legs into the subsequent unitary operators (yellow blocks) depicts the change 
of the entanglement content within the remnant coupled electronic states as the RG flows from UV to IR. The final uni-
tary transformation layer leads to a theory comprised of decoupled legs labelled 0, . . . , �j∗ . These are represented in 
brown, and each leg has an integral of motion associated with it.

Fig. 15. Entanglement holographic mapping network representation of the RG flow towards the reduced BCS theory. 
Pairs of brown legs (in grey boxes) represents pairs of electronic states with zero net-momentum and zero net-spin. The 
dashed oval represents the interaction between the pseudospins.

3.4. The marginal Fermi liquid

In this subsection, we explore the possibility of a metallic phase different from the Fermi 
liquid being found within the parameter space of the HSFIM model. For this, one possible dis-
tinguishing feature could be the nature of long-lived excitations in the proximity of the Fermi 
surface that replace the Landau quasiparticles of the Fermi liquid. Thus, we investigate the 
physics of the lowest-order decay channel of 1-particle (Landau quasiparticle) excitations, i.e., 2-
electron 1-hole composites with a net charge e and net spin 1/2. Although 6-point (or 3-particle) 
scattering vertices are absent in the bare Hamiltonian HSFIM (eq. (3)), they are generated under 
RG [1]. Such 6-point diagonal/off-diagonal scattering terms describe the interaction between the 
2-electron 1-hole composites. These interactions bring about a log-divergence in the 1-particle 
self-energy [1], and require therefore a controlled RG treatment to study the nature of the result-
ing metallic phase.

We will now see that the conditions 1-3 listed under regime VI in Table 2 correspond to the 
formation of the non-Fermi liquid gapless phase best described as a marginal Fermi liquid. We 
begin by exploring the implications of these conditions using 4- and 6-point vertex flow equations 
in eq. (36). To proceed, we first note the form of the six point diagonal and off diagonal vertices
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Fig. 16. Left panel: RG flows for finite-momentum transfer q �= 0 off-diagonal two-particle forward scattering vertices 
(V (q), orange and green curves) and number-diagonal (q = 0, blue curve) scattering vertices (eqs. (35)), both represented 
in log-scale on the y-axis. Right panel: RG flows for the number off-diagonal �6(q1, q2) (eqs. (65)) three-particle scat-
tering vertex (black curve), and two-particle one-hole number-diagonal (�6(0)) scattering vertex(eqs. (66)) (red curve).

H 6
(j) =

∑
k,k′k′′,

p,p′

Rσσ ′σ
kk′k′′pp′

(
c

†
k,σ c

†
p−k,σ ′c

†
p′−k′,σ ′cp−k′,σ ′ck′′,σ ′cp′−k′′,σ

)

+
∑

k,k′,p
Rσσ ′σ

kk′p τkσ τp−kσ ′τp−k′σ ′ . (64)

Then, the RG flow equations for the 6-point diagonal (eq. (37)) and off-diagonal vertices 
(eq. (44)) are given by


�
6,(j)
αβ = �4,(j)

αγ G
2,(j)

γ γ ′ �
4,(j)
γβ − �6,(j)

αγ G
6,(j)

γ γ ′ �
6,(j)
γβ + �6,(j)

αγ G
4,(j)

γ γ ′ �4,(j)
αγ , (65)


�
6,(j)

αα′ = �4,(j)
αγ G

2,(j)

γ γ ′ �
4,(j)

γ ′α′ − �6,(j)
αγ G

6,(j)

γ γ ′ �
6,(j)

γ ′α′ . (66)

In the above expressions, G6,(j)

γ γ ′ is obtained from eq. (31) in the 2-electron 1-hole eigenconfigu-

ration of the three-fermion string τk�j ŝ1
σ ′σp−k�j ŝ1

σ ′σp−k�ŝσ = − 1
8 , leading to a negative sign in 

the RG equations given above in eqs. (65) and (66). Now, for the fluctuation energy in the range 
(regime VI condition 1)

1

2
εk�ŝ

< ω <
1

2
(εk�ŝ

+ εp−k�ŝ
), for ε

(j)
p−k�ŝ

> 0 , (67)

we have G4,(j)

γ γ ′ < 0 (eq. (38)). Following eq. (39), this results in the 4-point vertex RG flow being 

irrelevant: 
�
4,(j)
αβ < 0.

Importantly, note that G4,(j)

γ γ ′ < 0 leads to an additional negative contribution in the RG equa-

tion (eq. (65)) for the off-diagonal 6-point vertices �6,(j)
αβ , while such a term is absent in the RG 

equation for the diagonal 6-point vertices �6,(j)

αα′ (eq. (66)). This extra negative contribution leads 

to 
�
6,(j)

′ < 
�
6,(j). We now argue that the above inequality implies �6,(j)

′ < �
6,(j). For this, 
αα αβ αα αβ
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we first note that the 6-point vertices are generated only at the first RG step from the 4-point 
vertices (eq. (44)) as follows

�
6,(N−1)
αβ = 
�

6,(N)
αβ = �4,(N)

αγ G
4,(N)

γ γ ′ �
4,(N)

γ ′β ,

�
6,(N−1)

αα′ = 
�
6,(N)

αα′ = �4,(N)
αγ G

4,(N)

γ γ ′ �
4,(N)

γ ′α′ . (68)

As the 2-point Green’s function G2,σ,(j)

γ γ ′ = (ω(j) − 1
2ε(j)) > 0 carries positive signature in the 

energy range of eq. (67), the 3-particle interactions are repulsive in nature. It is then simple to 
observe from the above expression that the diagonal and the off-diagonal 6-point vertices have 
similar magnitude �6,(N−1)

αβ ∼ �
6,(N−1)

αα′ . Then, from the discussion above, we conclude that under 
RG, the renormalised 6-point vertices satisfy

�
6,(j)
αβ < �

6,(j)

αα′ . (69)

In order to numerically evaluate the renormalized six-point vertices generated under RG and 
their precise ordering (eq. (69)), we assume a simplified bare form of the vertices. �6,(j)(0, 0)

represents the strength of the number diagonal vertices (i.e., the second term in eq. (64)), and 
�6(q1, q2) = �

6,(j)
αβ (q1 = k − p′ + k′′, q2 = p − p′) the strength of the six-point off-diagonal 

vertex (i.e., the first term in eq. (64)). As shown in the right panel of Fig. 16, both �6(0, 0)

and �6(q1, q2) grow under RG and saturate at fixed points �6,∗(0, 0) < �6,∗(q1, q2) with �∗ =
0.98�0. Given that in the vicinity of the fixed point, both number-diagonal and off-diagonal four-
point vertices vanish under RG (Fig. 16 (left panel)), �4,(j)

αβ → 0, we find that the RG equations 
for the six-point diagonal and off-diagonal vertices attain a simplified form


�
6,(j)
αβ = −�6,(j)

αγ G
6,(j)

γ γ ′ �
6,(j)
γβ ,


�
6,(j)

αα′ = −�6,(j)
αγ G

6,(j)

γ γ ′ �
6,(j)

γ α′ , (70)

where, by using eq. (31), G6,σσ ′σ,(j)

k�j ŝ ,p,p′ (ω(j) = ω) is given by

G
6,(j)

γ γ ′ =
(

ω − ε
(j)
k�j ŝ

τk�j ŝσ − ε
(j)

p′−k�j ŝ
τp′−k�j ŝ ,σ

′ − ε
(j)
p−k�j ŝ

τp′−k�j ŝ ,σ

− �
6,(j)

γ γ ′ τk�j ŝσ τp−k�j ŝ ,σ
′τp′−k�j ŝ ,σ

)−1

. (71)

In order to obtain the stable fixed point theory, we choose an intermediate configuration 
(n̂k�j ŝσ = 1, n̂p−k�j ŝσ = 1, n̂p′−k�j ŝσ

= 0) for the 6-point Green’s function. The net configu-

rational energy for such a composite 3-particle is given by a combination of their individual 
1-particle energies and the net 3-particle energy

E(j) = E
(j)

1 − 1

8
R

σσ ′σ,(j)

k′′,p,p′ , E
(j)

1 = 1

2
(ε

(j)
k�j ŝ

+ ε
(j)
p−k�j ŝ

− ε
(j)

p′−k�j ŝ
) . (72)

Thus, the 6-point Green’s function eq. (31) is given by

G
6,(j)

γ γ ′ (ω) = (ω − E(j))−1 . (73)
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Fig. 17. RG flow of the six-point off-diagonal (�6(q1, q2), black curve) / diagonal (�6(0, 0), red curve) scattering vertices 
(eqs. (70)) for � < 0.98�0. The inset plot shows the same curves in log-scale for both x- and y-axes.

The set γ = {(k�ŝ, σ, 1), (k′, σ ′, 1), (k′′, −σ ′, 0)}, while the set γ ′ involves the same momen-
tum and spin labels, but with the 1 s and 0 s interchanged. In this basis, the RG flows for the 
off-diagonal 3-particle vertex and the diagonal 2-electron 1-hole dispersion are given by


�
6,(j)
αβ = − �

6,(j)
αγ �

6,(j)
γβ

ω − E
(j)
1 + 1

8�
6,(j)

γ γ ′
, 
�
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αα′ = − �
6,(j)
ργ �

6,(j)

γρ′

ω − E
(j)
1 + 1

8�
6,(j)

γ γ ′
. (74)

Finally, from the RG flow of the couplings eq. (74), the parameter range eq. (69) for the 6-
point off-diagonal/diagonal vertices and for fluctuation energies ω < E

(j)
1 , we obtain the fixed 

point condition for a gapless phase with the 3-particle composite excitations proximate to the 
Fermi surface

1

8
�

6,(j∗)

γ γ ′ = E
(j∗)
1 − ω ,�

6,(j∗)
αβ = 0. (75)

Additionally, we note that given 1
2 (ε

(j)
k + ε

(j)
p−k) > ω(j) > 1

2ε
(j)
k (for ε(j)

p−k > EF ), the energy 

E
(j)

1 > 1
2ε

(j)

k�j ŝ
and the inequality ω < E

(j)

1 is immediately satisfied for the energy of the electron-

occupied states lying above EF and the energy of the hole configuration lying below EF .
At the fixed point theory, the dynamics of the states within the window 0 < � < �j∗ is 

governed by the effective Hamiltonian

H ∗
MFL(ω) =

∑
�<�j∗ ,ŝ

ε∗
k�ŝ

n̂k�ŝσ +
∑

ρ,�<�l∗ ,p

�
6,(j∗)

ρρ′ n̂k′′,−σ n̂p−k�ŝ ,σ (1 − n̂k�ŝ ,σ ). (76)

For � < 0.98�0, the RG flows of six-point vertices have no contribution from two-particle ver-
tices (as already observed in Fig. 16), and is generated purely by the six-point vertices (eq. (74)). 
The nature of the RG flow for the six-point vertices �6(q1, q2) and �6(0) below the RG scale 
� < 0.98�0 is thus obtained in Fig. 17 from a numerical computation of eqs. (74). The plots 
indicate vanishing of the six-point off-diagonal vertices �6(π/14, π/10) under RG, while the 
two-particle one-hole vertices �6(0, 0) reach an RG fixed point with a finite (and large) value. 



A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163 33
The inset in Fig. 17 shows that �6(π/14, π/10) reduces in magnitude from O(1) to O(10−4)

(black curve), while �6(0, 0) saturates at O(1). In this way, we demonstrate numerically the 
MFL effective Hamiltonian (eq. (76)). We note that the MFL fixed point Hamiltonian is purely 
number-diagonal (similar to the Fermi liquid), translational invariant and has a gapless contin-
uum spectrum that is a function of the wave-vector. All of this indicates the metallic nature of 
the ground state obtained at this new fixed point.

Next, we proceed to find the effect of such three-particle vertices on the 1-electron excitations 
in the neighbourhood of the fixed point theory. For that, we note that the primary decay channel 
for the one-electron degrees of freedom due to three-particle off-diagonal scattering terms are 
three-electron two-hole excitations. Therefore, the electronic self-energy renormalizes via six-
point vertices (eq. (30))


�
(j)
k�ŝ

(ω) =
∑

k′k′′p

(�
6,(j)
αβ )2

ω − E
(j)

5,1 − E
(j)

5,3

, (77)

where

E
(j)

5,1 = E
(j)
1 + 1

2
(ε

(j)
k�1 ŝ

+ ε
(j)
p−k�1 ŝ

) , (78)

is the collective energy due to 4-p 1-h intermediate configuration of electronic states. Here, E(j)

5,3

contains the 2-electron 1-hole correlation energy term − 1
8�

6,(j)

γ γ ′ , and E(j)
1 is the net energy due to 

3-electron 2-hole composite given by eq. (72). Now, using the 1-p self-energy RG flow equation 
eq. (77), and following Appendix A, we arrive at the form for the renormalized self-energy at 
fixed point (j∗)

�
(j∗)
k�l∗ ŝ

(ω) = N(0)

(�
6,(l∗)
X,k�l∗ ŝ

(ω))2

�
6,(l∗)
D,k�l∗ ŝ

(ω)
ln

∣∣∣∣ωc

ω

∣∣∣∣, (79)

where ωc = εk�(l∗)
is the characteristic energy scale that is emergent from the RG fixed point 

eq. (75) and N(0) is a dimensionless number equal to the total electronic state count at the FS. 
The ratio of the final fixed point 6-point off-diagonal/diagonal vertex strength for the states at �l∗
distance from FS (eq. (79)) can be computed by investigating their RG equations in its neigh-
bourhood. Near the fixed point (and near the FS), the 6-point vertex flow equations (eq. (75)) are 
simplified by using eq. (A.1) and given by


�
6,(j)
X,k�j ŝ


 logb
�j

�0

=

�

6,(j)
D,k�j ŝ


 logb
�j

�0

=
(�

6,(j)
X,k�j ŝ

)2

ω − 1
2ε

(j)
k�jŝ

− 1
8�

6,(j)
D,k�l ŝ

(ω)
, (80)

where 
 logb
�j

�0
= 1 for �j = �0b

j . Here, �6,(j)

X,k�j ŝ
/�6,(j)

D,k�j ŝ
represent the uniform pieces of the 

off-diagonal/diagonal parts of the three-particle vertex. From eq. (80), we obtain the RG invariant 
relation: �6,(j)

X,k�ŝ
= �

6,(j)
D,k�ŝ

+ C, where C is the RG invariant. At the fixed point eq. (75), C = 0

and ε(j)

�ŝ
→ 0 as � → 0 (FS), leading to �6,(l∗)

D,k�ŝ
= −ω (� = �l∗ ).

Thus, the self energy for states near the FS has the universal k-independent form

�(l∗)(ω) = N(0)ω ln

∣∣∣∣ ω
∣∣∣∣ . (81)
ωc
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Fig. 18. Left panel: RG flow of the inverse quasiparticle residue 1/Z1(kF , 
) obtained from self energy RG flow eqn. (77)
. Right panel: RG flow of the 2-electron 1-hole residue Z3(kF , 
) obtained from eq. (80). 
 represents the probe 
energyscale about EF .

The real part of the self-energy in eq. (81) has the same structure as the well known form of the 
self-energy for the marginal Fermi liquid metal [66]. Further, this result is a generic outcome for 
any single band dispersion, and emergent purely from repulsive 4-point and 6-point vertex RG 
flows. Using eq. (81), we obtain the imaginary part of the complex self energy, i.e., the scattering 
rate (τ ) as a function of the fluctuation scale ω; using Kramers-Kronig relations eq. (18), we can 
connect τ to the temperature T

kBT = 1

N(0)
�im,(l∗)(ω) = h̄|ω| = h̄2πτ−1. (82)

The finite T resistivity per unit length ρ(T )/L for layered 2d systems can be obtained from 
eq. (82) by replacing N(0) = (2mEF )−1h̄2(
k)2Ne(EF ), particle density n = Ne(EF )/L3 (L3

is the volume in 3D) and the Fermi energy EF in terms of the Fermi Temperature (TF ) EF =
kBTF

ρ

L
= m

ne2Lτ
= h

2e2

T

TF

. (83)

Here, 
k = 2πL−1 is the momentum space lattice spacing, L is the system length, Ne(EF )

number of electrons around FS that comprise the transport. This obtains a universal Planckian 
T -linear resistivity form starting from a very general microscopic single band model HSFIM , 
and supports various experimental observations and theoretical proposals [67–69].

Following eq. (81) and eq. (82), the quasiparticle residue has the following form at finite 
temperatures

Z1(T ) = 1

1 − N(0)(1 + ln| kBT
h̄ωc

|) . (84)

The left and right panels of Fig. 18 represent the renormalization of the quasi-particle residue 
Z1(kF , 
) and 2-particle 1-hole residue Z3(kF , 
). We find that, for 
 = 0.6, 0.1, 0.001, 
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Fig. 19. Variation of the quasiparticle residue Z1(kF ,
) with energy scale 
 about the Fermi energy (EF ).

Fig. 20. EHM tensor network representation of the Marginal Fermi liquid. Each dotted circle (comprising three electronic 
legs) represents a long-lived composite 2 electron-1 hole excitation of the MFL proximate to the Fermi surface.

Z1(kF , 
) reduces under RG (left panel of Fig. 18), indicating the breakdown of the Landau 
quasiparticle picture. On the other hand, Z3(kF , 
) (right panel of Fig. 18) is seen to increase to-
wards 1, indicating well-formed 2-electron 1-hole composites in the neighbourhood of the Fermi 
surface. Finally, Fig. 19 is a numerical verification of the logarithmic dependence of Z1(kF , 
)

on the energy scale 
(= kBT ) given in eq. (84).
As the quasi-particle residue 0 < Z < 1, the relation eq. (84) holds for ω < ωc/e, correspond-

ing to a temperature T < h̄ωc/(ekB). The vanishing of the quasiparticle residue, Z → 0, leads to 
a integer Friedel’s phase shift 
N ∈ Z: a test electron binds together with a electron-hole pair, 
forming a three-particle composite. As the Hamiltonian eq. (76) is diagonal, the residue of this 
2-electron 1-hole composite approaches 1 at the FS. We note that this was also shown for the 
parent MFL of the Mott insulating state in the 2D Hubbard model on the square lattice at 1/2-
filling in Ref. [27]. We also present the tensor network representation of the RG flow towards the 
marginal Fermi liquid fixed point in Fig. 20.

In this subsection, we found the parameter and fluctuation regime where three-particle off-
diagonal vertices are RG irrelevant, while the 2-electron 1-hole dispersion achieves a finite value 
at the fixed point. This observation provides a perfect setting for the question: what are the 
primary instabilities of the marginal Fermi liquid metal? We present the answer to this question 
next.
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3.5. RG flow into the spin/charge hybridized pseudospin-pairing force models

We have seen earlier that the off-diagonal three particle vertices causes dynamical mixing 
between electron-electron and electron-hole pairs (eq. (41)) [1]. The spin/charge backscatter-
ing processes in the mixed configuration leads to a two-particle self-energy containing log-
divergences as leading corrections [1]. In order to observe the condensation of various spin-
charge mixed configurations, we now apply the Hamiltonian RG formalism on the HSFIM .

If the Fermi surface is nested, there are Umklapp scattering vertices generically present 
in the Hamiltonian HSFIM . They are denoted by �4,(N)

c,αβ where α and β represent electronic 
pairs with pair momentum differing by Q. Further, the index α = {k�j ŝσ, p − k�j ŝ − σ } and 
β = {k�j ŝσ, Q + p − k�j ŝ − σ }. The spin backscattering vertices in HSFIM involve pairs of 
electronic states that exchange their spin orientations while scattering. These vertices are de-
noted by �4,(N)

s,αβ where α = {k�j ŝσ, p −k�j ŝ −σ }, β = {k�j ŝ −σ, p −k�j ŝσ }. For the Umklapp 
and spin backscattering processes, the RG flow hierarchy yields


H
(j)
c =

∑
k,k′,p

�
4,(j)
c,αγ �

4,(j)
c,γβ n̂k�j ŝσ n̂p−k�j ŝ−σ

ω − ε
(j)
p,k�j ŝ′ ,p − �

4,(j)
γ γ τk�j ŝσ τp−k�j ŝσ

′

× c
†
kσ c

†
p−k−σ cQ+p−k′−σ ck′σ ,


H
(j)
s = −

∑
k,k′,p

�
4,(j)
s,αγ �

4,(j)
s,γβ n̂k�j ŝσ (1 − n̂p−k�j ŝ−σ )

ω − ε
(j)

p,k�j ŝ′ ,p − �
4,(j)
γ γ τk�j ŝσ τp−k�j ŝσ

′

× c
†
k1σ

ck1−p+2k�j ŝ−σ c
†
k2−σ ck2−p+2k�j ŝσ . (85)

The spin-type configuration 1e-1h/1h-1e for the set α is constrained by the relation

nk�j ŝσ + np−k�j ŝ−σ = 1 for εk�j ŝ
> EF , (86)

and has an associated kinetic energy lying within the range εk�j ŝ
> εp−k�j ŝ

, ω > 1
2 (εk�j ŝ

−
εp−k�j ŝ

). The intermediate configuration of eq. (86) leads to a spin-type pseudospin configura-

tion S−
k,p = c

†
kσ cp−k−σ , S+

k,p = (S−
k,p)† and Sz = 1

2 [S+, S−], in which the 4-point vertexes are 
RG irrelevant. On the other hand, certain 6-point vertices are RG relevant in this regime, and can 
be represented in terms of charge- and spin-type pseudospins as follows

c
†
p−p′′σ c

†
p′′−k�′ ŝ′−σ

c
†
k�′ ŝ′σ ck�ŝσ cp′−k�ŝ−σ cp−p′−σ

= A+
k�′ ŝ′ ,p′′A

−
k�ŝ ,p′S

−
p−p′′,2p−p′−p′′ . (87)

The operators A+/−
k,p corresponds to finite momentum pseudospin raising and lowering operators 

given in eq. (62). This spin-charge mixed representation of 6-point vertices is manifested in the 
dynamical mixing between the pseudospin state configuration (see discussion below eq. (39), 
and leads to a hybridized pair-kinetic energy eq. (40) entering the 4-point Green’s function. In 
turn, this 4-point Green’s function enters the 4-point vertex flow equations given in eq. (39).

For the p-momentum opposite-spin pairs, the 2-particle backscattering processes (with 
p =
0 (spin exchange) and 
p = 2π (Umklapp)) given by

k�ŝ,p − k�ŝ ↔ −k� ŝ,Q1 + p + k� ŝ, Q1 = 0,Q (88)

j j
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Fig. 21. Left/right panels show the RG flow for the off-diagonal/diagonal �X/�D scattering vertices (eqs. (39)) respec-
tively for various finite-momenta (p) pairs. �0

X
= 0.1 is the bare magnitude of the umklapp scattering vertex, �0

D
= 0.5. 

The k-space grid (system volume) used is 1024 × 1024.

produce a log-divergence in the composite self-energy (shown in a companion manuscript [1]), 
requiring a RG treatment once more. Using eq. (39), the charge backscattering vertex flow equa-
tion is given by


�
4,(j)
c,αβ (ω) = p�

2,(j)
c,αγ �

2,(j)
c,γβ

ω − pε
ee,(j)
k�j ŝ ,p

− p′εeh,(j)
k�j ŝ ,p

− p
4 �

2,(j)
c,γ γ + p′

4 �
2,(j)
s,γ γ

, (89)

where p′ = 1 − p, ε
ee,(j)
k�j ŝ ,p

= ε
ee,(j)
k�j ŝ ,p−k�j ŝ

and ε
eh,(j)
k�j ŝ ,p

= ε
eh,(j)
k�j ŝ ,p−k�j ŝ

. Similarly, the spin 

backscattering RG flow equation is given by 
�
4,(j)
s,αβ = (

p−1
p

)�
4,(j)
c,αβ .

The stable fixed point is obtained from the condition

ω − pε
ee,(j∗)
k�j ŝ ,p

− p′εeh,(j∗)
k�j∗ ŝ ,p

= p

4
�

2,(j)

c,γ γ ′ + p′

4
�

2,(j)

s,γ γ ′ , (90)

leading to the effective pseudospin XXZ Hamiltonian given by

H
∗,XXZ
ML (ω) =

∑
k

ε
ee,(j∗)
k�ŝ ,p

Az
k�ŝ ,p

+ ε
eh,(j∗)
k�ŝ ,p

Sz
k�ŝ ,p

+
∑

k�ŝ ,k

�
4,(j∗)
s,αβ [S+

α S−
β + h.c.] + �

4,(j∗),||
s,αβ Sz

αSz
β

+
∑

k�ŝ ,k

�
4,(j∗)
c,αβ [A+

α A−
β + h.c.] + �

4,(j∗),||
αβ Az

αAz
β , (91)

where �4,(j∗)
k�ŝ ,p,k,Q and �4,(j∗),||

k�ŝ ,p,k,Q are the XY and Ising pseudospin couplings respectively.
Fig. 21 shows the RG flow of the Umklapp scattering vertices connecting opposite sides 

of a nested Fermi surface for a tight-binding square lattice model at half-filling in two spa-
tial dimensions for electronic pairs with net momentum p = Q/2, 0.45Q, 0.4Q and 0.35Q
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Fig. 22. RG flow of the self-energy �(k) for k (eqs. (30))wave-vectors close to Fermi surface.

(where (Q = π, π)). The left and right panels show the renormalization of the off-diagonal 
(�c,X = �c,αγ ) and diagonal (�c,D = �c,γ γ ) vertices respectively. The bare couplings are taken 
to be �0

c,X = 0.1, �0
c,D = 0.5, and we consider a momentum-space grid of size 1024 × 1024. As 

observed in Fig. 21, both off-diagonal and diagonal couplings renormalize to higher magnitudes 
at the low-energy RG fixed point, such that the resulting theory is described by eq. (91). The as-
sociated hybridized pseudospin state space also involves fermion states pairing up in the mixed 
configuration regime (discussion above in eq. (40)), such that the fermionic states transmute into 
the mixed pseudospin states. The condensation of pseudopsins due to the nesting instability leads 
to a zero of the Greens function, G(k, 
) = (
 − εk − �k)

−1 (note the similarity with the zero 
of G(k, 
) for the BCS instability in eq. (52)), as can be seen from the divergent self-energy in 
Fig. 22 as the Fermi surface is approached. The net Friedel phase-shift accounts for the num-
ber of mixed pseudospins, as well as the number of bound states formed via the RG. This can be 
computed through the Luttinger surface of zeros (see discussion below eq. (52)). This pseudospin 
Hilbert space will persist upto a temparature scale T ∗ (eq. (18)) computed using the renormalized 
1-particle self-energy at the fixed point. Finally, we note that the tensor network representation 
of the RG flows towards the Mott liquid fixed point is similar to that presented in Fig. 15 for the 
BCS reduced Hamiltonian displaying pair formation.

3.6. RG phase diagram for HSFIM

Having numerically verified the RG flows to various IR fixed point theories, we can now 
gather all our results into the form of a RG phase diagram. In order to characterize efficiently 
various phases obtained from the RG flows for HSFIM , we define the following two quantities 
r2 and r3

r2 = sgn(V σσ ′
k,k′,p)

√√√√ ∑
α �=β �

4,(N)
αβ �

4,(N)
αβ∑

�
4,(N)

�
4,(N) +∑ �

4,(N)
αα �

4,(N)
αα

,

α �=β αβ αβ α
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r3 =

√√√√√
∑

γ γ ′ �
6,(N−1)

γ γ ′ �
6,(N−1)

γ γ ′∑
γ �

6,(N−1)

γ γ ′ �
6,(N−1)

γ γ ′ +∑αβ �
6,(N−1)
αβ �

6,(N−1)
αβ

. (92)

The quantity −1 < r2 < 1 represent the ratio of (i) the root mean square magnitude (RMS) for 
bare 4-point off-diagonal (OD) vertices, and (ii) the sum of the mean squares of 4-point diagonal 
(D) and OD vertices. Thus, r2 carries the (+/−) sign for OD terms representing attractive/re-
pulsive interactions respectively. Similarly, the quantity 0 ≤ r3 ≤ 1 is the ratio of (i) the RMS 
for 6-point D vertices, and (ii) the square root sum of the mean squares of 6-point D and OD 
vertices. Recall that the index α represents a set of two (momentum, spin) indices for 2-particle 
vertices (�2) and a set of three (momentum, spin) indices for 3-particle vertices (�3). We show 
below that the parameters r2 and r3 allow for an efficient encoding of the numerically evaluated 
RG flows shown earlier at various points.

Fig. 23 presents the RG phase diagram for HSFIM using ω (quantum fluctuations, y-axis) 
and (r2, r3) (x-axis). For attractive couplings (r2 < 0) and for (ω < W

2 )/(ω > W
2 ), the unfilled 

circles and squares represent crossover RG flows involving a XXZ symmetry-unbroken reduced 
BCS (eq. (58)) theory for p = 0 (Fig. 11) and p �= 0 pairs (Fig. 13) respectively. The RG flows 
stop at stable fixed points (red stars/orange hexagons) given by symmetry unbroken XY BCS 
(eq. (53), Figs. 9 and 10) and PDW (eq. (61), Fig. 12) theories respectively. The red squares 
(r2 = r3 = 0) are unstable fixed points representing a tight-binding metal. In the repulsive regime 
r2 → 0, r3 > 0 and ω < W

2 , the unfilled diamond are crossover RG flows to three-particle theories 
with diagonal and off-diagonal terms. The blue circles are stable points representing the marginal 
Fermi liquid metal (eq. (76), Figs. 16–19).

On the other hand, the Mott metal-insulator transition shown in the repulsive regime r2 + r3 >

0 and ω > W
2 is more complicated, due to the appearance of unstable fixed points (red circles) 

lying at intermediate coupling. These unstable fixed points separate RG flows (unfilled pen-
tagons) to Fermi liquid theories (green triangles, eq. (47), Figs. 4–6) with r2 → 0, r3 → 0 from 
those (yellow pentagons) towards XXZ pseudospin Mott liquids theories with finite values of r2
and r3 (magenta pentagons, eq. (91), Figs. 21 and 22). As described in the previous subsection, 
the physics of nesting is responsible for the stabilisation of such Mott liquids. We recall that a 
recent RG analysis the half-filled 2D Hubbard model on the square lattice (whose underlying 
tight-binding Fermi surface is strongly nested) in Ref. [27] identified the marginal Fermi liquid 
as being the parent metallic phase of the Mott liquid found therein. This leads us to conjecture 
that the unstable fixed point (red circles) gapless quantum critical theories lying at intermediate 
coupling correspond to a marginal Fermi liquid theory described by eq. (76).

3.7. Scaling features of holographic entanglement entropy bound for gapless and gapped 
quantum liquids

In this section, we analyze the RG scaling relations for the holographic entanglement en-
tropy bound for the various phases of the HSFIM model obtained by isolating a given region R. 
Among the IR fixed points, the gapless theories reached via URG comprise the number-diagonal 
Hamiltonians for the Fermi liquid (eq. (47)) and Marginal Fermi liquid phases (eq. (76)). For 
these cases, the ground state wavefunction obtained from the above low-energy Hamiltonians 
are separable in momentum-space. On the other hand, the gapped IR fixed point theories in-
volve effective Hamiltonians that are number off-diagonal in momentum-space, e.g., the reduced 
BCS theory (eq. (53)) and the Mott liquid (eq. (91)). Clearly, the ground states obtained from 
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Fig. 23. RG phase diagram for the single-band model of interacting electrons with translational invariance, HSFIM . The 
y-axis represents the magnitude for quantum fluctuations (ω), W represents the bandwidth. The x-axis represents interac-
tion due to two-particle (r2) and three-particle (r3) number diagonal/off-diagonal scattering processes. −1 < r2 < 1 with 
(+/-)sign representing nature of interaction, while 0 < r3 < 1 (see text for detailed definitions). The magnitudes of r2
and r3 represent the relative magnitude of off-diagonal scattering in 2-particle and 3-particle scattering processes respec-
tively. The red squares on line r2 = r3 = 0 correspond to tight-binding metals. The unfilled squares and circles represent 
crossover RG flows involving symmetry unbroken p �= 0 (SPDW)/p = 0 (RBCS) gapped XXZ pseudospin theories re-
spectively. These flows end at orange hexagon/red stars labelling corresponding stable fixed points with XY pseudospin 
interaction. Unstable fixed points (red circles) lie between Ising- (unfilled pentagons) and XY- (yellow pentagons) dom-
inated XXZ pseudospin Mott liquid theories arising out of charge and spin backscattering. The unfilled pentagons are 
crossover RG flows to the stable fixed point Fermi liquid (green triangles), while the yellow pentagons are crossovers to 
XXZ pseudospin gapped stable theories (magenta pentagons). Blue circles represent the marginal Fermi liquid theories 
residing at the end point of crossover RG flows involving dominant three-particle scattering (unfilled diamonds).

the latter low-energy effective Hamiltonians are highly entangled. As the scattering vertex and 
wavefunction RG flows are distinct for various phases, we expect that the same will hold true for 
their holographic entanglement entropy scaling relations (eq. (27)). Investigating this point is the 
content of this subsection.

The entanglement entropy scaling in the regime (eq. (45)) leading to the Fermi liquid (eq. (47)) 
has the form (using eq. (26))


S1
(j) = 2

∑
α1,μ,ν,ν′

sgn(μ, ν, ν′)
�4,(j)
μν G

4,(j)

νν′ C
(j)

ν′ C0,(j)
α1

. (93)

Note that in arriving at this RG equation, we have restricted ourselves to the contributions from 
only 4-point (
�

4,(j)
μν ) vertex RG flows (eq. (36)). Further, we assume a uniform magnitude for 

the diagonal and off-diagonal couplings: �4,(j)
μν G0,(j) = V , �4,(j)

μν + c = �
4,(j)
μμ (c is a constant) 

and G−1
0,(j)

= ω − ε(j). This leads to the continuum RG equation for the scattering vertex

dV

d log �
�0

= V (ωG0,� − 1) + V 2

1 − cG0,� − V
, (94)

where G−1
0,� = ω− h̄vF �, we have assumed a spherical Fermi surface ε�j ŝ = h̄vF �, and we have 

replaced the finite difference 
(log �
�0

) by the differential quantity d log �
�0

. For cG0,� > 1, the 
off-diagonal vertices are RG irrelevant (dV < 0) as � → 0
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dV

d log�/�0
= − ωV 2

c − ω
⇒ V (�) = V0

1 + ω
c−ω

V0 log �0
�

≈ c − ω

ω

1

log �0
�

. (95)

In reaching eq. (95) from eq. (94), we have dropped the first term of eq. (94), as (ωG0,� −1) → 0
as � → 0. We have also dropped V in the denominator of the second term of eq. (94), as V → 0
and G0,� → 1

ω
. The RG relation for the entanglement entropy bound of the FL then has the form

dS1(�)

d log �
�0

= 2

(
c − ω

ω

)2 ∑
α1,μ,ν,ν′

sgn(μ, ν, ν′)(
log �0

�

)2 C
(j)

ν′ C0,(j)
α1

. (96)

As we approach the Fermi surface, the coefficient tensor C0,(j)
α1 (corresponding to the ground 

state configuration |α〉) scale towards 1, while all other coefficients scale towards 0. As a result, 
the fermion signatures for the RG scaling towards the ground state vanish. Taking these points 
into account, we find that the entropy scaling relation is given by

S1(�) =
(

c − ω

ω

)2 1

log �0
�

. (97)

Finally, we obtain the holographic entanglement entropy bound obtained by isolating the Fermi 
surface (in two dimensions) from the rest of the system is given by

SH (�) = 2πkF

(
c − ω

ω

)2 1

log �0
�

. (98)

For the MFL and reduced BCS theories, the entanglement entropy RG equations are given re-
spectively by


SMFL = 2
∑

α1,μ,ν,ν′
sgn(μ, ν, ν′)
�6,(j)

μν G
6,(j)

νν′ C
(j)

ν′ C0,(j)
α1

, (99)


SRBCS = 2
∑

α1,μ,ν,ν′

�4,(j)

μν G
4,(j)

νν′ C
(j)

ν′ C0,(j)
α1

. (100)

In the MFL, the renormalization is carried out primarily by six-point vertices as the quasiparticle 
degrees of freedom are ill-defined (eq. (81)). On the other hand, for the reduced BCS theory, the 
dominant two particle vertex RG flow is present in the zero pair-momentum subspace (eq. (55)). 
This leads to condensation of the pairs, and the fermion exchange phases are mitigated in the 
coefficient RG equations [1]. As a result, the fermion exchange phases are also absent in the en-
tanglement scaling relation of the RBCS phase (eq. (100)). These deviations in the entanglement 
RG equations for the MFL (eq. (99)) and the RBCS (eq. (100)) phases from that obtained for the 
FL (eq. (98)) will likely to lead to a deviation of entropy bound scaling relations of these phases 
as well. Finally, the Mott liquid phase is described by pseudospins (eq. (91)) analogous to the 
RBCS phase, implying similar conclusions for the Mott liquid. We leave a detailed study of this 
aspect to a future work.

4. Gauge theories and topological order for emergent gapped quantum liquids

In Ref. [70], Hansson et al. show that a U(1) symmetry broken superconductor possesses 
signatures of topological order upon coupling to a dynamical electromagnetic field, i.e., it sup-
ports ground state degeneracy on the torus, edge states, charge fractionalization, together with a 
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Fig. 24. (Left) Emergent momentum-space window where pairs of electronic states with opposite-spin and net-
momentum p = 0 form bound pairs (dashed double-headed arrows). Thick double-headed arrows indicate the imposition 
of periodic boundary conditions, and the red curve represents the Fermi surface. (Right) Anderson pseudospins Ak�ŝ
living on a torus. A composition of local green lines (a Wilson line) represents the inter- pseudospin interaction. Blue 
dashed/solid line represents the reference pair of orthonormal Wilson lines located on Fermi surface (and along ŝ⊥ )/nor-
mal to the Fermi surface (and along ŝ = x̂). The brown line represents the rotated normal direction ŝ1.

many-body gap that protects these properties. Importantly, the quantum fluctuations of the com-
bined system restores the broken U(1) phase rotation symmetry of the Cooper pair condensate. 
In this section, we adopt a different route in unveiling the universal features of topological or-
der for a wide variety of gapped symmetry-preserved quantum liquid ground states arising from 
electronic correlations. For this, we start with the effective Hamiltonians obtained from RG fixed 
points which are written in terms of pseudospins. Indeed, we recall that such effective Hamilto-
nians describe pseudospin dynamics constitute a network of four point vertex tensors �4,∗

αβ , i.e., 
a Hamiltonian tensor network. The idea is to rewrite such a network of pseudospins in terms of 
dual nonlocal objects, i.e. Wilson lines, leading to the formulation of a gauge theory. We will 
show that, for a simple case, such a gauge theory shows well-known signatures of topological 
order.

The condensates we are concerned with arise from parent metallic systems with a connected 
Fermi surface (FS). The destabilization of the FS and its neighbourhood due to pseudospin-flip 
scattering processes (eq. (55)) leading to a many-body gap in the 1-particle spectrum, signalling
the condensation phenomenon within a momentum-space shell �∗

ŝ
around the erstwhile FS. The 

pseudospin condensate is now part of an emergent SU(2)⊗N Hilbert space that originated from 
the electronic Fock space FN . Below, we consider the XXZ reduced BCS Hamiltonian H ∗,XXZ

RBCS

(eq. (58)) as an example in order to demonstrate the origin and signatures of topological order.
As shown in Fig. 24, we notie that the geometry of the 2D momentum-space shell in the 

pseudospin basis for the zero-pair momentum (p = 0) states with periodic boundary condition 
(PBC) is topologically equivalent to a torus. Now, the inter-pseudospin interaction terms in the 
reduced BCS Hamiltonian H ∗,XXZ

RBCS (eq. (58)) can be represented as a Wilson line (dark black 
line in Fig. (24)) as follows

4Ao
�,ŝ

Ao
�′,ŝ′ = exp(iπ(Ao

�,ŝ
− Ao

�′,ŝ′)), (101)

where we have rewritten the pseudospin operator Ao
k�,ŝ

as Ao
�,ŝ

for o = (x, y, z), �′ = � +n′δ�, 

δ� = 2πL−1 and ŝ′ = Rm′
ŝ. This Wilson line can in turn be represented as a composition of local 

Wilson lines (green lines with arrows in Fig. 24) along the ŝ⊥ axes (i.e., ŝ⊥ is perpendicular to ŝ, 
and along the direction of the hatched blue line in Fig. 24) and the ŝ axes (along the direction of 
the solid blue line in Fig. 24)
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4Ao
�,ŝ

Ao
�′,ŝ′ = Wo

�,ŝ→Rŝ
Wo

�,Rŝ→R2 ŝ
. . .Wo

�,Rm′−1 ŝ→ŝ′
× Wo

�→�+δ�,ŝ′ . . .Wo
�+(n′−1)δ�→�′ ŝ′ , (102)

where Wo
�,ŝ→ŝ1

= exp(iπ(Ao
�,ŝ

− Ao
�,ŝ1

)) (ŝ1 is the rotated normal Fig. 24)is the local Wil-
son line along ŝ⊥, and Wo

�→�+δ�,ŝ
= exp(iπ(Ao

�+δ�,ŝ
− Ao

�,ŝ
)) represents the Wilson line for 

translation by δ� along ŝ. Here, Rx̂ = − sin θx̂ + cos θŷ is the smallest δ rotation of the x̂ vec-
tor normal to the FS. We adopt the gauge choice of first multiplying all Wilson lines along one 
direction, and then multiply the result obtained with the Wilson lines along the perpendicular 
direction. All other paths with the end points fixed are equivalent gauge choices, such that the 
net Wilson line is path independent.

We will now define two sets of generalized translation and twist operators for the ŝ and ŝ⊥
directions [61,71] in the centre of mass position and momentum spaces in representing the above 
Wilson lines

Tŝ⊥ : Ao
�,ŝ

→ Ao
�,Rŝ

, (103)

Tŝ : Ao
�,ŝ

→ Ao
�+δ�,ŝ

, (104)

Ôo
� = exp

[
π

2
i

N−1∑
n=0

nAo
�,Rnŝ

]
, (105)

Ôo
ŝ′ = exp

[
π

2
i

N−1∑
n=0

nAo
nδ�,ŝ′

]
. (106)

The local Wilson lines along a reference pair of directions ŝ, ̂s⊥ = x̂, −ŷ (blue hatched/solid line 
in Fig. 24) can then be translated to any orthogonal pairs of Wilson lines as follows

Wilson line along ŝ⊥ :
T m

ŝ⊥T
n

x̂
(Ao

kF,x̂
− Ao

kF,Rx̂
)T †n

x̂
T †m

ŝ⊥ = Ao
�,ŝ

− Ao
�,Rŝ

,

T m
ŝ⊥T

n
x̂

Wo
F,x̂→Rx̂

T †n

x̂
T †m

ŝ⊥ = Wo
�,ŝ→Rŝ

, (107)

Wilson line along ŝ :
T m

ŝ⊥T
n

x̂
(Ao

kF,x̂
− Ao

kF+δkF ,x̂
)T †n

x̂
T †m

ŝ⊥ = Ao
�,ŝ

− Ao
�+δ�,ŝ

,

T m
ŝ⊥,ŝ

T n
x̂,�

Wo
0→δ�,x̂

T †n

x̂,�
T †m

ŝ⊥,ŝ
= Wo

�→�+δ�,ŝ
, (108)

where the number of pseudospins is taken to be N = 2(2k + 1). The Wilson lines (Wo
F,x̂→Rx̂

, 
Wo

0→δ�,x̂
) in eq. (107), eq. (108) are the momentum-space projections of the Wilson loop defined 

in the centre of mass position-momentum space for the major axis (along ŝ⊥) and minor axis 
(along ŝ) of the torus

T 2
ŝ⊥Ôo

�=0T
2†

ŝ⊥ Ô
o†
�=0 = 24k+2Wo

F,x̂→Rx̂
WF , (109)

T 2
ŝ

Ôo
ŝ
T 2†

ŝ
Ô

o†
ŝ

= 24k+2Wo
0→δ�,x̂

Wx̂ , (110)

and where WF =∏N−1
m=0 Ao

kFRmx̂
and Wx̂ =∏N−1

n=0 Ao
nδ�,x̂

are Wilson loops for the minor and 
major axis of the torus along the reference directions (solid blue/hatched lines). The interaction 
terms Ao

�,ŝ
Ao

�′,ŝ′ can now be represented as the momentum-space projections of the product of 
translated Wilson loops as follows
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4Ao
�,ŝ

Ao
�′,ŝ′ =

m′,n′∏
j1=m,j2=n

(Tx̂ )
j1(Tŝ⊥)j2Wo

F,x̂→Rx̂
Wo

0→δ�,x̂

× [(Tx̂ )
j1(Tŝ⊥)j2 ]† . (111)

The reduced BCS Hamiltonian can in turn be written as a U(1) gauge theory in terms of non-local 
Wilson loops

H
∗,XXZ
RBCS (ω) =∑

k

ε
(j∗)
k�ŝ

ln(WTŝ⊥,ŝTx̂,�Tŝ⊥Ôz
ŝ⊥,0T

†
ŝ⊥Ô

z†
ŝ⊥,0[Tŝ⊥,ŝTx̂,�]†)

− 1

4

∑
k�ŝ

�
4,(j∗)
αβ [

∑
o=x,y

m′,n′∏
j1=m,j2=n

(Tx̂ )
j1(Tŝ⊥)j2Wo

F,x̂→Rx̂
Wo

0→δ�,x̂
[(Tx̂ )

j1(Tŝ⊥)j2 ]†]

+ 1

4
�

4,(j∗),||
αα′ [

m′,n′∏
j1=m,j2=n

(Tx̂ )
j1(Tŝ⊥)j2Wz

F,x̂→Rx̂
Wz

0→δ�,x̂
[(Tx̂ )

j1(Tŝ⊥)j2]†] . (112)

The above Hamiltonian commutes with the global Wilson loop given by

W =
N−1∏
n=0

Wz
nδ� , [HRBCS

(j∗),XXZ(ω),W ] = 0 , (113)

where Wnδ� = T n
x̂

WFT †n

x̂
is a Wilson loop obtained by translating WF by n units. Remarkably, 

the Wilson loop W (eq. (113)) is an emergent topological invariant for the Luttinger zero patch
at the RG fixed point, seen from the Friedel’s phase shift that takes accounts of the total number 
of bound states in the emergent window


N = − i

π
lnW . (114)

We will now present a simpler version of the above gauge theory for the case of the effective 
Hamiltonian H ∗,XXZ

RBCS with the couplings �4,(j∗)
αβ = J⊥ and �4,(j∗),||

αα′ = J||. Our goal is to write 
once more the effective Hamiltonian in terms of nonlocal Wilson loop operators. For this, we 
first we write H ∗,XXZ

RBCS in terms of collective pseudospin operators

H
∗,XXZ
RBCS = −J⊥(A2

x + A2
y) + J||A2

z , (115)

where Ao =∑n,m Ao
mδ�,Rnŝ

represent the various components of the collective pseudospin vec-
tor. We now define nonlocal versions of the twist operators in the space of pseudospins

Ôo
ŝ

=
N−1∏
n=0

(Ôo
Rnŝ

)
4
N = exp

⎡
⎢⎢⎣2π

N
i

N−1∑
n=0,
m=0

mAo
mδ�,Rnŝ

⎤
⎥⎥⎦ . (116)

The collective pseudospin vectors can be written in terms of nonlocal twist (Ôo
ŝ

) and transla-
tion (Tŝ ) operators. To show this, we obtain the following identity for the nonlocal Wilson loop 
composed of twist and translation operators
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Tŝ Ô
o
ŝ
T †

ŝ
Ô

o†
ŝ

= exp

⎡
⎢⎢⎣2πi

N

N−1∑
n=0,
m=0

Ao
m�,Rnŝ

⎤
⎥⎥⎦ exp

[
2πi

N−1∑
n=0

Ao
�=0,Rnŝ

]
. (117)

For every normal vector ŝ, there exists a opposite normal vector −ŝ, such that the total number 
of pseudospins (N ) is even. Therefore, the overall phase collected from the strip along one of the 
minor circles of the torus is trivial:

exp

[
2πi

N−1∑
n=0

Ao
�=0,Rnŝ

]
= 1 . (118)

Thus, the collective pseudospin components Ao can be represented by a nonlocal Wilson loop

Ao = N

2πi
log
[
Tŝ Ô

o
ŝ
T †

ŝ
Ô

o†
ŝ

]
. (119)

This enables us to write the Hamiltonian eq. (115) as

H
∗,XXZ
RBCS = J⊥

N2

4π2

(
log
[
Tŝ Ô

x
ŝ
T †

ŝ
Ô

x†
ŝ

])2 + J⊥
N2

4π2

(
log
[
Tŝ Ô

y

ŝ
T †

ŝ
Ô

y†
ŝ

])2

− J||
N2

4π2

(
log
[
Tŝ Ô

z
ŝ
T †

ŝ
Ô

z†
ŝ

])2
. (120)

We will now display certain features of topological order for this emergent gauge theory, 
e.g., ground state degeneracy and charge fractionalisation. Note that the transformations car-
ried out by Tŝ eq. (104) impart equal and opposite momentum to opposite spin electrons, 
k�,ŝ , ↑→ k�+δ�,ŝ , ↑ and k�,−ŝ , ↓→ k�+δ�,−ŝ , ↓, such that there is no net pair momentum 
p = 0. This observation supports the following representation of Tŝ in the position basis

Tŝ = exp

[
2πi

2N

∑
r

r · ŝ(n̂r↑ − n̂r↓)

]
, (121)

where the spacing in the momentum along ŝ is δ� = 2π
N

. A degeneracy of the ground state man-
ifold can show up in its nontrivial topology. Below we probe this using spectral flow arguments 
that originated with the work of Lieb, Schultz and Mattis [72], and more recently extended to 
higher dimensions [46,48,49,61,71,73–75]. Initially, we compute the action of the twist operator 
Tŝ on an eigenstate of H ∗,XXZ

RBCS (|�〉)

〈�|T †
x̂
TŝTx̂ |�〉 = exp

[
2πi

N

∑
r

Sz
r

]
exp

⎡
⎣2πi

∑
r·ŝ⊥

Sz
r·ŝ⊥,r·x̂

⎤
⎦

× 〈�|Tŝ |�〉 . (122)

The Hamiltonian H ∗,XXZ
RBCS commutes with Sz =∑r Sz

r , and its low-energy manifold is comprised 
of states |S = 2k+1, Sz = 0〉 with net Sz = 0. Using the fact that the total number of pseudospins 
N = 2(2k + 1) = LxLy (i.e., Lx , Ly corresponds to the number of pseudospins along the x and 
y directions of the torus), the second exponential term in the above expression is simple:

e

[
2πi

∑
r·ŝ⊥ Sz

r·ŝ⊥,r·x̂
]
= e2π(2k+1) 1

2 = eiπ . (123)
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In this way, we obtain an equivalent of the LSM relation [72] for higher dimensions [49]. For this 
case, 〈�|T †

x̂
TŝTx̂ |�〉 = −〈�|Tŝ |�〉, implying that the two states |�〉 and Tx̂ |�〉 are orthogonal. 

Finally the important relation

[H ∗,XXZ
RBCS ,Tŝ] = 0 (124)

implies that the eigenstates of the twist operator Tŝ (corresponding to eigenstates of the centre
of mass momentum Pcm = 0, πŝ) are simultaneously eigenstates of the Hamiltonian. Therefore, 
the two groundstates |Pcm = 0, S = 2k + 1, Sz = 0〉 and |Pcm = πŝ, S = 2k + 1, Sz = 0〉, both 
possessing ground state energy Eg = −J⊥(2k + 1)(2k + 2), are degenerate and protected from 
excitations via a many-body gap 2J⊥(2k + 1). The adiabatic passage between these degenerate 
ground states, achieved via the application of the twist operator Tŝ , involves the creation of a 
charge-1/2 excitation [76–78]. Additionally, we note that given the microscopic Hamiltonian 
[HSFIM, Tŝ] �= 0, the commutation relation eq. (124) for the low energy effective Hamiltonian 
H

∗,XXZ
RBCS is emergent under RG flow.
Similar gauge theoretic constructions can be attained for the other gapped phases of HSFIM

in terms of the appropriate non-local Wilson loop operators (defined in terms of the respective 
pseudospin Hilbert spaces). On the other hand, for the gapless Fermi liquid (eq. (47)) of HSFIM , 
only the first and last terms in eq. (112) appear. In this case, the equivalent of eq. (114) yields the 
Luttinger zeroes [56].

5. RG analysis of the generalized Sachdev-Ye4 model

In order to understand the interplay between disorder and interactions in a model of cor-
related electrons [4], we consider a generalized electronic Sachdev-Ye(SY4) [30] model with 
random spin-independent hopping (tij ), random on-site potential (εi ) and a random four-Fermi 
interaction (V σσ ′

ijkl )

HSY4 =
∑

i �=j,σσ ′
tij c

†
iσ cjσ ′ +

∑
iσ

εi n̂iσ +
∑

ijkl,σσ ′
V σσ ′

ijkl c
†
iσ c

†
jσ ′ckσ ′clσ , (125)

and place it on a D spatial-dimensional volume containing 2N points and with a specified ge-
ometry. Here, the indices ranging i ∈ [1, 2N ] (2N being number of points) correspond to the 
real-space position vectors ri . The terms V σσ ′

ijkl = V σσ ′∗
klij , tj i = tij and εiσ are random tensors 

drawn from separate Gaussian distributions, each with a well-defined mean and standard devia-
tion. The single particle energies εiσ can be sorted as follows

ε1 ≤ . . . ≤ εN , (126)

and employed for implementing the iterative steps of the unitary RG, (here disorder bandwidth
is defined as W = εN − ε1).

The Hamiltonian RG flow equation is given by eq. (6), where the unitary transformation 
U

†
(j) = U

†
(j↑)U

†
(j↓). From here, we can extract the hierarchy of 2-, 4- and 6-particle vertex flow 

equations given in eq. (10) and shown in Fig. 25. From the flow equations, we obtain the various 
parameter regimes belonging to the generalised SY4 that lead, under RG, to models with emer-
gent translational invariance (TI, e.g., HSFIM eq. (3)) as well as non-translationally invariant 
(NTI) models associated with the physics of localization. Having already presented a quantita-
tive verification of the RG flows for various TI phases in the previous section, we will present 
only those for the NTI phases here.
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Fig. 25. Schematic representation of RG flow equations for 2-point, 4-point and 6-point vertices. See text for discussion.

For this, we first write the microscopic parameters as a sum of translational invariant (TI) and 
non-invariant (NTI) parts

tik = t (ri − rk) + t ′ik , εi = ε + ε′
i , (127)

V σσ ′
ijkl = V σσ ′

(ri − rj , rj − rk, rk − rl ) + V ′σσ ′
ijkl , (128)

V σσ ′
ik = V σσ ′

(ri − rk) + V
′ ,σσ ′
ik . (129)

We note that a similar decomposition for the 2-point Green’s function was carried out by Ishikawa 
and Matsuyama [79] for showing the preservation of the momentum-space Ward-Takahashi iden-
tity in the integer quantum Hall problem. By analyzing a class of fixed points of the RG flow 
equations presented in eq. (B.5) – eq. (B.12) (in Appendix B) for the parameter regimes I-VI 
shown in Tables 3 and 4, we obtain fixed point Hamiltonians displayed in Table 5. We now 
discuss the physics of each of the 6 regimes in turn.

Regime I (green oval in Fig. 37, Table 3) leads to a general TI Hamiltonian HI (see Table 5) 
which, in the single band limit, is equivalent to the Hamiltonian HSFIM (eq. (3)) considered 
in the previous section. To see this, we replace the real-space creation/annihilation operators 

in the fixed point theory by their Fourier transforms c†
kσ =

√
Vol−1∑

r eik·rc†
rσ . This generic 

TI model of interacting electrons is obtained in the regime of low randomness, i.e., the mag-
nitude of the NTI parameters (with opposite signs for the hopping, and 4-fermi interactions) 
compared to their TI counterparts. Following our detailed RG analysis of HSFIM in the pre-
vious section, we know that a non-Fermi liquid phase (blue circle in Fig. 37) is obtained via 
a second level of the RG on HSFIM , i.e., HSY4 −−→

RG
HSFIM −−→

RG
(eq. (76)). This non-Fermi 

liquid is characterized by a logarithmically dependent self-energy (eq. (81)), a T -linear resistiv-
ity (eq. (83)), a vanishing quasiparticle residue Z, a finite temperature geometric entanglement 
content (eq. (84)) etc. We recall that non-Fermi liquid phases were also obtained from large N
analyses of the spin-S Heisenberg Sachdev-Ye model [30], and as well as in electronic Sachdev-
Ye-Kitaev (SYK) model [80]. We also recall that the HSFIM possesses an emergent gapless FL 
phases, as well as several gapped phases that emerge from instabilities of the non-Fermi and 
Fermi liquids – reduced BCS, symmetry unbroken PDW’s, Mott liquid etc.(shown within the 
green oval in Fig. 37). Similar pairing instabilities of the non-Fermi liquid phase in the SYK 
model have also been reported recently [81]. Regime II in Table 3 is one where attractive ex-
tended interactions are RG irrelevant, whereas on-site repulsion is RG relevant. This leads under 
RG flow to the Hubbard model with long-range hopping (shown as a red circle within green oval 
in Fig. 37, see Table 5).
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Fig. 26. (Left Panel) Figure represents RG flows for number diagonal/off-diagonal interaction couplings V (i, j)

(eq. (B.10))/V (i, j, k, l) (eq. (B.12)) that are sampled from a Gaussian with mean (V (i, j, k, l) = 0.1) and standard 
deviation (σVd

= 0.05), ω = 0.5ε′
N

, system size N = 5000, disorder bandwidth (W = 2), ε′
N

= −2W . Inset plot in left 
panel tracks the renormalization of standard deviation σVd

. (Right Panel) Figure represents RG flows for self energy �i

(eq. (B.8)) of the onsite disordered energies ε′
i

sampled from a gaussian distribution with ε′
i
= −W and σε′

i
= 0.25. Inset 

plot in right panel tracks the RG flow for σε′ of the renormalized onsite energies ε′ .

Fig. 27. Left panel: RG flows for translationally invariant hopping strengths t (rij ) (eq. (B.5)) for various distances rij . 
Right panel: RG flows of the disordered hopping strengths t ′

ab
(eq. (B.6)) sampled from a Gaussian with mean (t ′

ab
= 0.2) 

and standard deviation (σtd = 0.05). Inset plot in right panel displays the RG flow for the standard deviation (σtd ) of 
disordered hopping strengths.

In regime-III of Table 3 , we obtain a model displaying the phenomenon of Anderson local-
isation (AL): disordered noninteracting electrons with long range hopping (HIII in Table 5). 
This is obtained from a relevant RG flow for random on-site potential, together with an irrelevant 
RG flow for all random hopping processes as well as all four-fermionic interactions. The left 
panel of Fig. 26 represents the numerical evaluation of the RG flow of the disordered interac-
tion strengths V (i, j)n̂i n̂j (V (i, j) = Vi,j,j,i ) and V (i, j, k, l)c†

i c
†
j ckcl (V (i, j, k, l) = Vi,j,k,l). 

We find that both V (i, j) and V (i, j, k, l) are RG irrelevant. The inset plot in the right panel of 



A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163 49
Fig. 26 shows the vanishing of the standard deviation σ (j)
Vd

of the disordered V (i, j, k, l) coupling 
under RG flow

σ
(j)
Vd

=

√√√√√√
∑

(a,b,c,d)<j

(V (a, b, c, d)(j))2

N4 −
⎛
⎜⎝

∑
(a,b,c,d)<j

V (a, b, c, d)

N4

⎞
⎟⎠

2

. (130)

On the other hand, the RG flows for the single-particle self-energy �(j)
i ε

′ (j)
i = εi + �

(j)
i ) are 

observed to grow in Fig. 26 (right panel), finally saturating at an IR fixed point. The inset plot in 
the right panel of Fig. 26 shows the growth and saturation of the standard deviation σ (j)

ε of the 
renormalised onsite energies ε′ (j)

i under the RG flow

σ (j)
ε =

√
1

N

∑
i

(ε
′ (j)
i )2 − (

1

N

∑
i

ε
′ (j)
i )2 . (131)

Finally, the left panel of Fig. 27 shows the saturation under RG flow of translationally invariant 
variable-range hopping strengths t (rij ) at the IR fixed point. On the other hand, in the right panel 
of Fig. 27, we find that the disordered hopping t ′ik are found to be RG irrelevant and vanish at an 
IR fixed point. Similarly, the inset plot in the right panel tracks the reduction under RG flow of 
the standard deviation σtd in the random hopping

σtd =
√√√√ 1

N2

∑
a,b

t
(j),2
a,b − (

∑
i,j ti,j

N2 )2 . (132)

Taken together, Figs. 26 and 27 establish that in Regime III, the IR fixed point effective Hamil-
tonian is that for disordered noninteracting electrons with long range hopping (HIII in Table 5).

Regime IV of Table 4, with an effective IR fixed point Hamiltonian HIV (see Table 5), corre-
sponds to a phase that is a glassy variant of the Fermi liquid (known as the interacting Fermi in-
sulator), and involves the phenomenon of many-body localization (MBL) in Fock space [82–84]. 
Fig. 28 (left panel) represents the growth under RG flow and saturation of the number-diagonal 
interactions at the low-energy fixed point. The inset shows that the standard deviation σV (a,b) of 
the renormalized couplings Vij reduces in magnitude under RG and saturates to a finite value 
at the fixed point. On the other hand, in right panel of Fig. 28, the off-diagonal interaction cou-
plings Vi,j,kl are found to be RG irrelevant. In the inset, we observe that the standard deviation 
of the off-diagonal scattering vertices σVi,j,k,l

diminishes under RG flow, eventually vanishing at 
the low-energy fixed point. Fig. 29 (left panel) represents the RG irrelevant flows for the hopping 
strength tij . The inset in the left panel shows the reduction in σtd under RG flow, eventually van-
ishing at the IR fixed point. On the other hand, the right panel of Fig. 29 represents the relevant 
RG flow for the onsite self-energies �i , displaying a growth and saturation at the low-energy 
fixed point. The inset plot in right panel of Fig. 29 shows that the standard deviation of the renor-
malized energies σε′

i
also grows under RG and saturates at low energies. Together, Fig. 28 and 

29 indicate the onset of many-body localization with a Hamiltonian HIV Table 5 describing the 
effective low energy theory.

Similarly, regime V in Table 3 corresponds to a many-body localised (MBL) phase that is 
the glassy variant of a non-Fermi liquid Hamiltonian (HV in Table 5) [82,84] and we call it 
the marginal Fermi insulator. The left and right panels of Fig. 30 represent the RG flows for 
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Fig. 28. Left panel: RG flow for the number-diagonal interactions V (i, j) (eq. (B.10)) for ω = εN + 0.1. The V (i, j)

are initially sampled from a gaussian distribution with mean V (a, b) = 0.5 and σV (a,b) = 0.1. Inset in left panel tracks 
the RG flow for σV (a,b) . Right panel: RG flow for the number off-diagonal interactions V (i, j, k, l) (eq. (B.12)), whose 
bare values are sampled from a gaussian distribution with mean V (i, j, k, l) = −0.1 and σV (i,j,k,l) = 0.01. Inset in right 
panel tracks the RG flow for σV (i,j,k,l).

Fig. 29. (Left Panel) Figure represents RG flow for the hopping strengths t ′
i,j

(eq. (B.6)). Bare values are sampled from 
a gaussian distribution with mean t ′

i,j
= −0.2 and σtd = 0.05. Inset in left panel tracks the RG flow for σtd . (Right 

Panel) Figure represents RG flow for the disordered onsite potentials εi ’s (eq. (B.8)), the initial values are sampled from 
a gaussian distribution with mean ε′

i
= 1.0 and σε′

i
= 0.56. Inset in right panel tracks the RG flow for σε′

i
.

the number diagonal and off-diagonal interactions respectively. Both are found to be RG ir-
relevant in this regime. The inset plot in the left and right panels show that both σVi,j,k,l

and 
σVi,j

vanish at low-energies. Nevertheless, even as the two-particle interactions are found to be 
RG irrelevant, they lead to the generation of RG relevant three-particle off-diagonal scattering 
terms R(i, j, k, l, m, n)c

†
c

†
c

†
clcmcn (right panel of Fig. 31) and two-electron one-hole number-
i j k
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Fig. 30. Left panel: RG flow for the number-diagonal interactions V (i, j) (eq. (B.10)) for ω = 0.5εN + 0.1. The bare 
V (i, j) are sampled from a gaussian distribution with mean V (i, j) = 0.15 and σV (i,j) = 0.03. Inset in left panel displays 
the RG flow for σV (i,j). Right panel: RG flow for the number off-diagonal interactions V (i, j, k, l) (eq. (B.12)), whose 
bare values are sampled from a gaussian distribution with mean V (i, j, k, l) = −0.1 and σV (i,j,k,l) = 0.01. Inset in right 
panel shows the RG flow for σV (i,j,k,l).

diagonal interactions R(i, j, k)n̂i n̂j (1 − n̂k) (left panel of Fig. 31) that are observed to reach finite 
values at low-energies. The inset plots in both left/right panels of Fig. 31 show that the standard 
deviation of both the three-particle off-diagonal interaction (σRi,j,k,l,m,n

) and two-electron one-
hole number-diagonal interaction (σRi,j,k

) grow under RG, and finally saturate to a finite value at 
the RG fixed point.

Importantly, the hopping strengths ti,j ’s (left panel in Fig. 32 are also found to be RG irrele-
vant, such that they reduce in magnitude and vanish at the IR fixed point. On the other hand, the 
onsite self-energies �i are RG relevant (right panel in Fig. 32), as they grow and saturate at a IR 
fixed point. The inset of the right panel of Fig. 32 shows the growth of the renormalized onsite 
disordered potential σε′

d
under RG flow, and its saturation at an IR fixed point. In order to study 

the effect of three-particle number off-diagonal terms Ri,j,k,l,m,n at low-energies, we perform a 
second level of the URG analysis. The left and right panels of Fig. 33 represent the RG flows 
of the two-electron 1-hole R(i, j, k) and three particle off-diagonal couplings R(i, j, k, l, m, n)

respectively. The number off-diagonal couplings in the right panel are found to be RG irrelevant. 
The inset in right panel of Fig. 33 shows that the σRi,j,k,l,m,n

is also RG irrelevant, and diminishes 
at low-energies. The number diagonal interactions in the left panel of Fig. 33 are RG relevant, 
and saturate to a finite value. The inset of left panel in Fig. 33 also shows a similar saturation 
to a finite value at low-energies. Altogether, the plots Fig. 30–33 provide a numerical verifica-
tion of the effective Hamiltonian HV in Table 5. As is expected for many-body localised phases 
of matter, the effective fixed point Hamiltonians obtained for phases IV and V are obtained at 
higher values of the quantum fluctuation energyscale ω > 0 than those for all other phases (where 
ω < 0, see Tables 3 and 4). The RG flows to these phases also confirm that an extensive number 
of single-particle occupation numbers (ni) are transformed into integrals of motion under the RG 
flow [83]. We note that effective Hamiltonians describing many-body localization similar to HIV

and HV have been proposed recently in Refs. [83,85,86].



52 A. Mukherjee, S. Lal / Nuclear Physics B 960 (2020) 115163
Fig. 31. Left panel: RG flow for the emergent three-particle number diagonal interactions R(i, j, k) (evaluated using 
eq. (37) sampled from a gaussian distribution with mean and standard deviation both zero initially). Inset in left panel 
diplays the RG flow for σR(i,j,k) . Right panel: RG flow for the number off-diagonal interactions R(i, j, k, l, m, n) (eval-
uated using eq. (36) sampled from a gaussian distribution with mean and standard deviation both zero initially). Inset in 
right panel shows the RG flow for σR(i,j,k,l,m,n).

Fig. 32. Left panel: RG flow for the hopping parameters t ′
ij

eq. (B.5), whose bare values are sampled from a gaussian 
distribution with mean t ′

i,j
= −0.2 and σt ′

ij
= −0.1. Inset in right panel displays the RG flow for σtij . Right panel: RG 

flow for the onsite energies εi eq. (B.8), whose bare values are sampled from a gaussian distribution with mean εi = 1
and σεd = 0.15. Inset in left panel shows the RG flow for σεi .

Last but not least, in regime VI, a numerical evaluation of the RG equations for all the cou-
plings ti,j , ε′

i , V
′
i,j , V ′

i,j,k,l is shown in Fig. 34 and Fig. 35. Importantly, we find that all the 
couplings are found to be RG relevant, with a growth and eventual saturation at an IR fixed 
point. Further, the standard deviation of all of these couplings is also found to grow under RG 
and saturate at the IR fixed point. Thus, in this phase, it is safe to say that none of the disor-
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Fig. 33. Left panel: RG flow for the three-particle off-diagonal interactions R(i, j, k, l, m, n) (evaluated using eq. (65)
sampled from a gaussian distribution with mean = 0.2 and standard deviation = 0.016 initially). Inset in left panel 
displays the RG flow for the standard deviation of these couplings (σR(i,j,k,l,m,n)). Right panel: RG flow for the two 
electron-one hole number diagonal interactions R(i, j, k) (evaluated using eq. (66) sampled from a gaussian distribution 
with mean = 0.01 and standard deviation = 0.001). Inset in right panel shows the RG flow for σR(i,j,k) .

Fig. 34. Left panel: RG flow eq. (B.5) for the hopping strengths (ti,j ), whose initial values are sampled from a gaussian 
distribution with mean ti,j = −0.2 and σti,j = 0.07 and ω = −0.15. Inset in left panel displays the RG flow for σtd . 
Right panel: RG flow eq. (B.8) for the onsite self-energies, whose bare values are sampled from a gaussian distribution 
with mean εi = 1 and σεd = 0.1. Inset in right panel shows the RG flow for σεd .

dered couplings vanish under RG, thereby preserving the form of the bare Hamiltonian given in 
(eq. (125)) but with renormalized couplings. The IR fixed point effective Hamiltonian is shown 
as HV I (Table 5) in Table 4, and corresponds to the generalized Sachdev-Ye model itself as the 
stable fixed point theory. Indeed, HV I possesses the greatest parameter space, and corresponds 
to a thermalized regime: the many-particle entanglement content of the eigenstates of this phase 
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Fig. 35. Left panel: RG flow eq. (B.10) for the number diagonal interactions V (i, j), whose initial values are sampled 
from a gaussian distribution with mean V (a, b) = 0.15 and σV (a,b) = 0.01. Inset in left panel displays the RG flow for 
σV (a,b). Right panel: RG flow eq. (B.12) for the number off-diagonal interactions V (i, j, k, l), whose bare values are 
sampled from a gaussian distribution with mean V (i, j, k, l) = −0.1 and σV (i,j,k,l) = 0.01. Inset in right panel shows 
the RG flow for σV (i,j,k,l).

Fig. 36. EHM tensor network representation of RG flow towards the thermalised phase (regime VI of Tables 4 and 
5) of the generalized SY4 model. The colour of the blue legs do not change, indicating a similarity in the nature of the 
intermediate theories leading upto a fixed point SY4 model. The rounded square boxes indicate the interaction comprising 
all the degrees of freedom in the initial and final points of the RG flow.

possess the greatest complexity. This is reflected in the marginality of all off-diagonal scattering 
vertices in HSY4 , as well as in the fact that very few (i.e., of O(10) out of 5000 in the numeri-
cal simulations) occupation numbers (ni) are transformed into integrals of motion under the RG 
flow in Regime VI (as can be seen in Figs. 34 and 35). Finally, Regimes IV and V possess tensor 
network representations similar to the Fermi liquid (Fig. 14) and marginal Fermi liquid (Fig. 20) 
respectively. The tensor network representation of regime VI is shown in Fig. 36.

6. Conclusions

In this work, we have applied the URG formalism [1,27,28] to certain prototypical mod-
els of strongly correlated electrons. The model of a single band of tight binding electrons with 
momentum-dependent interactions (HSFIM ) leads to a diverse family of IR fixed point Hamilto-
nians including gapless phases in the Fermi and non-Fermi liquids, as well as various insulating 
liquid phases arising from large momentum transfer/back-scattering across the Fermi surface. In 
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Fig. 37. Schematic description of various parameter-space regimes of the SY4 model leading to various translationally 
invariant (TI) and non-translationally invariant (NTI) fixed point Hamiltonians under RG flow. The light green circle 
comprises various TI phases (arising from an emergent effective Hamiltonian HI = HSFIM of Table 5): (i) Gapped 
phases: reds star, orange hexagon, magenta pentagon within the dashed boundary represent the reduced BCS model 
(RBCS), symmetry unbroken PDW (SPDW) and the Mott liquid Hamiltonians (ML) respectively; (ii) Gapless phases: 
blue circle and green triangle within the dotted boundary represent the Fermi liquid (FL) and Non Fermi liquid (NFL) 
respectively; (iii) the red circle represents the Hubbard models with long ranged hopping (HII of Table 5). The light 
yellow oval represents many-body localized (MBL) phases, with effective Hamiltonians HIV and HV are 2-electron and 
3-electron interacting number-diagonal NTI models respectively (see Table 5). The pink oval is the Anderson disorder 
localization regime, with the NTI model HIII of Table 5. The large white region with black border represents the 
thermalised phase, and corresponds to a generalized SY4 model reproduced under RG (HV I of Table 5).

Table 3
Parameter space regimes for RG flows of HSY4 . Regime-I corresponds to a general 4-fermion translational invariant 
fixed point theory on a D-dimensional lattice. Regime-II corresponds to the Hubbard model with long-ranged hopping 
under RG flow. Regime-III leads to the Anderson disorder model with long-ranged hoppings.

Parameters Regime-I Regime-II Regime-III

ω ω < 1
2 (ε′

l
− ε′

j
), ε′

l
< ε′

j
same as I same as I

t (rj l ) t (rj l ) < 0 same as I same as I

V σσ ′(rj l ) V σσ ′(rj l ) > 0 < 1
2 (ε′

l
− ε′

j
) − ω V σ−σ (rj l ) < 0

V ′σσ ′
j l

V ′σσ ′
j l

< 0 same as I same as I

t ′
il

0 < t ′
il

< |t (rj l )| same as I same as I

ε ε > 2|ω| same as I same as I

ε′
j

0 < ε′
j

< ε same as I ε′
j

< 0

V ′σσ ′
ijkl

V ′σσ ′
ijkl

> 0 same as I same as I

V σσ ′(rij , rik, ril ) V σσ ′
(rij , rik, ril ) > |V σσ ′

ijkl
| |V σσ ′

ijkl
| < V σσ ′

(rij , rik, ril ) < −2ω same as I

a companion work [1], we have shown how the 2n-point vertex RG flow equations can be inter-
preted as a tensor network. The nodes of this vertex tensor network is composed of the 2n-point 
vertices, while the edges represent the electronic states. At each RG step, the vertex tensor net-
work transforms via disentanglement of electronic states, and the simultaneous renormalization 
of the vertex tensors.

Here, we have restricted our attention to the study of the RG flows of two-, four- and six-
point vertex tensors. We represent the diagonal and off-diagonal vertex tensors in a tree diagram 
(see Fig. 2). Each node of the tree represents a subclass of scattering processes. The parameter 
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Table 4
Parameter space regimes for RG flows of HSY4 . Regimes-IV and V corresponds to many-body localized phases. Param-
eter regime VI leads to the thermalised phase, corresponding to a generalized SY4 model.

Parameters Regime-IV Regime-V Regime-VI

ω ω > 1
2 (εl + εj ), εl > 0 1

2 (εj + εl) > ω > 1
2 εj ω < 0

t (rj l ) same as I same as I no condition

V σσ ′
(rj l ) V σσ ′

(rj l ) < 0 V σσ ′
(rj l ) > ω − 1

2 (εj + εl ) V σσ ′
(rj l ) > 0

V ′σσ ′
j l

V ′σσ ′
j l

> |V ′σσ ′
ijkl

| same as IV V ′σσ ′
j l

> 0

t ′
il

t ′
il

< 0 same as IV sgn(t (rj l ))

ε same as I same as I ε > 0

ε′
j

no condition same as I ε′
j

> 0

V ′σσ ′
ijkl

V ′σσ ′
ijkl

< 0 same as IV no condition

V σσ ′
(rij , rik, ril ) 0 < V σσ ′

(rij , rik, ril ) < V σσ ′
(rj l ) V σσ ′

(rij , rik, ril ) > 0 sgn(V ′σσ ′
ijkl

)

Table 5
Fixed point Hamiltonians obtained via RG from HSY4 in regimes I-VI.

Regime Fixed point Hamiltonian

I HI =
∑
ij

t∗(rij )c
†
iσ

cjσ + ε∗∑
i

n̂iσ

+
∑
ij

V σσ ′,∗(rij )n̂iσ njσ ′

+
∑
ijkl

V σσ ′,∗(rij , rik, ril )c
†
iσ

c
†
jσ ′ckσ ′clσ

II HII =∑ij t∗(rij )c
†
iσ

cjσ +∑i V ∗n̂iσ ni−σ

III HIII =∑ij t∗(rij )c
†
iσ

cjσ +∑i ε∗
i
n̂iσ

IV HIV =∑i ε∗
i
n̂iσ +∑i V σσ ′∗

ij
n̂iσ n̂jσ ′

V HV =∑i ε∗
i
n̂iσ +∑ijk V σσ ′∗

ijk
n̂iσ n̂jσ ′ (1 − n̂kσ )

VI HV I = H∗
SY4

subspaces are classified in terms of the relative magnitude of the off-diagonal and diagonal vertex 
tensors. This assists in identifying different IR fixed points reached under RG flow. A numerical 
evaluation of various RG equations shows that certain vertex scattering processes vanish at these 
stable fixed points, while certain others become dominant. As a result, the different emergent 
phases are classified in terms of their distinct tree representations and vertex tensor network 
diagrams. For the Fermi and non-Fermi liquid phases, the four-point and six-point off-diagonal 
vertices vanish. This results in their vertex tensor networks being completely disentangled. The 
fixed point theories differ nevertheless: in the Fermi liquid, each output leg describes a electronic 
degree of freedom, while in the non-Fermi liquid, each composite degree of freedom is described 
as a composition of three output legs (two in electron-like and one in hole-like configuration). 
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On the other hand, the vertex tensor networks for gapped phases such as the reduced BCS and 
Mott liquid Hamiltonians display greater complexity: pairs of electronic legs (indicating bound 
states that have condensed in the IR) are coupled to each other via four-point scattering vertices. 
Further, the IR fixed point theories describing such gapped phases can be rewritten in terms of 
nonlocal Wilson loops, leading to a Hamiltonian gauge theory construction. The zero mode of the 
Hamiltonian gauge theory reveals interesting topological features, e.g., ground state degeneracy, 
charge fractionalization etc.

In the generalised Sachdev-Ye (SY4) model, the non-translationally invariant (NTI) phases can 
be separated into two subclasses: one with remnant electronic interactions and the other without. 
The first NTI subclass contains many-body localised (MBL) and thermalized phases. Our study 
reveals the MBL phases to be glassy variants of the Fermi and non-Fermi liquid phases. On 
the other hand, we find that the thermalized phase is described by a theory that involves only a 
marginal deformation of the parent Hamiltonian (HSY4 ), and involves a strong interplay between 
fermion exchange signatures and electronic correlation. The second NTI subclass contains a 
phase corresponding to the Anderson model of disordered electrons. Further, there is also a finite 
parameter-space window obtained from the SY4 for translationally invariant (TI) models such as 
HSFIM , which upon further renormalization lead to the various metallic and insulating phases 
described earlier for HSFIM .

We have also shown that the entanglement renormalization flows towards gapless and gapped 
IR phases are distinct: while gapless phases are characterised by the presence of fermion ex-
change phases along the RG flow, the passage to gapped phases displays the mitigation of the 
effects arising from fermion signs. This is due to the fact that dominant RG flow in the latter 
case occurs in a reduced pseudospin subspace where the elementary degrees of freedoms are 
pairwise electronic states. Furthermore, we obtained the RG scaling form for the holographic 
entropy bound of the Fermi liquid phase, and argued with regards to its distinction from that for 
the marginal Fermi liquid and reduced BCS phases. We also showed separately that the effective 
IR theories for gapped models support a gauge-theoretic description. In this way, the URG offers 
an ab-initio formulation of the gauge-gravity duality: the passage from UV to IR involves the 
holographic generation of spacetime via entanglement renormalization [1,29] as well as an ef-
fective gauge theory from vertex renormalization. Among several exciting future directions, this 
paves the way for further investigations on the nature the many-particle entanglement of strongly 
interacting quantum liquids.
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Appendix A. 1-particle self-energy RG for three-particle MFL Hamiltonian

The net correlation energy for the five electronic states Ej

5,1 close to the Fermi surface in 
eqs. (72) and (78) attains a simplified expression via the following approximation

ε
(j)
k�j ŝ

= ε
(j)
p−k�j ŝ

= ε
(j)

p′−k�j ŝ
⇒ E

(j)
1 = 1

2
ε
(j)
k�j ŝ

and ε
(j)
k�j ŝ

= ε
(j)
k�1 ŝ

, (A.1)

such that

E
(j)

5,1 = E
(j)

1 + ε
(j)

k�j ŝ
= 3

2
εk�j ŝ

. (A.2)

Similarly, we also approximate the net 3-particle correlation energy coming from six-particle 
terms: E(j)

5,3 = − 3
4�

3,(j)

(kσ,μ). Putting these two correlation energies into the 1-particle self-energy 
RG (eq. (77)) near the fixed point eq. (75), we find that close to the Fermi surface


�
(l∗)
k�l∗ ŝ

(ω) =
∑

ε
(l∗)
k�j ŝ
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(l∗)
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,ŝ′
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ω − 1
2ε
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k�jŝ

+ 3
4�

6,(l∗)
γ γ ′ (ω)

,

= N(0)
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γ γ ′ (ω)
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�j →0,F
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6,(l∗)
αγ (ω))2

ω − 1
2ε

(j)
k�ŝ

+ 3
4�

6,(l∗)
γ γ ′ (ω)

. (A.3)

In the above expression, the set α

α =
{
(k�j ŝσ,1) , (k′σ ′,1) , (k�1 ŝσ

′′,1) , (p − k�1 ŝσ
′′′,1) , (k′′σ ′,0)

}
(A.4)

comprises the 4-electron 1-hole intermediate configuration whose energy appears in the 
5-particle Green’s function. The index ν = (k�j∗ ŝσ, 1) labels the electronic state whose self-
energy is being renormalized. Integrating the RG equation results in the expression


�
(l∗)
k�l∗ ŝ

(ω) = N(0)

(�
6,(l∗)
X,k�l∗ ŝ

(ω))2

�
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(ω)
ln

∣∣∣∣ω − 3
2ε

(l∗)
k�l∗ ŝ

+ 1
8�

6,(l∗)
D,k�l∗ ŝ

ω

∣∣∣∣ ,
(A.5)

where N(0) is the density of states on the Fermi surface and

�
6,(l∗)
k σ,αν(ω) = �

6,(l∗)
X,k (ω) , �

6,(l∗)
γ γ ′ (ω) = �

6,(l∗)
D,k (ω) . (A.6)
�l∗ ŝ �l∗ ŝ �l∗ ŝ
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Using the fixed point relation eq. (75), the self-energy flow relation (eq. (A.5)) can be further 
simplified to


�
(l∗)
k�l∗ ŝ

(ω) = N(0)

(�
6,(l∗)
X,k�l∗ ŝ

(ω))2

�
6,(l∗)
D,k�l∗ ŝ

(ω)
ln

∣∣∣∣εk�∗ ŝ

ω

∣∣∣∣ . (A.7)

As the Fermi energy is reached by taking the limits of ω → 0 and �j → 0, the change in self-

energy 
�
(j)
k�ŝ

(ω) has a branch-cut log singularity. Thus, the self-energy attains the familiar 
logarithmic form that was proposed on phenomenological grounds for the Marginal Fermi liq-
uid [87]

�
(l∗)
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�
(j)
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Appendix B. RG equations for SY4 model

Using the diagrammatic contributions of the RG flow hierarchy eq. (10) (see also Fig. 25), the 
RG equations for random hopping amplitudes tik , on-site potentials εi and random four-fermion 
interaction amplitudes V σσ ′

ijkl for the generalized Sachdev-Ye model (eq. (125)) is given by


t
(j)
ik = t

(j)
ij G

2,(j)
j t

(j)
jk +

∑
m<j

t
(j)
lj G

4,σσ,(j)
j l V σσ

ij lk +
∑

i,l,m<j

V
σσ ′,(j)
ij lm G

6,(j)
j lm V

σσ ′,(j)
j lmk , (B.1)


ε
(j)
i = t

(j)
ij G

2,(j)
j t

(j)
j i +

∑
l,k<j

V
σσ ′,(j)
ij lk G

6,(j)
j lk V

σσ ′,(j)
klj i , (B.2)


V
σσ ′,(j)
ik = −

∑
l

V
σσ ′,(j)
ijkl G

4,σσ ′,(j)
j l V

σσ ′,(j)
lkj i , (B.3)


V
(j)
iklm =

∑
s

V
σσ ′,(j)
ijsm G

4,(j)
js V

σσ ′,(j)
ksj l + t

(j)
jmG

2,(j)
j V

σσ ′,(j)
iklj . (B.4)

By decomposing the 2-point vertex parameters into translational invariant (ε(j), t (j)(r)) and non-
translation invariant (ε(j)

i , t ′ (j)
ij ) parts (eq. (127)), and denoting rik = r, rij = r′, ril = r′′, Nj =∑

r′<max
i<j

(|rij |) 1, we can use eqs. (B.2) and (B.3) to write their separate RG flow equations in the 

e-h configuration n̂jσ = 0, n̂iσ ′ = 1 as follows:

1. Translational invariant hopping term —


t(j)(r) = 1

Nj

∑
rij <max

i<j
(|rij |)

t (j)(rjk)t
(j)(rij )

ω + 1
2ε(j) + 1

2ε
′ (j)
j

+
∑

rij ,ril

1
Nj

t(j)(rj l)V
σσ,(j)(r, rij , ril)

ω + 1
2ε

′ (j)
j − 1

2ε
′ (j)
l + 1

4V σσ,(j)(rj l) + 1
4V

′σσ,(j)
j l

, (B.5)

2. Translational non-invariant hopping term —
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t
′ (j)
ik = t (j)(rij )t

′ (j)
jk + t (j)(rjk)t

′ (j)
ij + t

′ (j)
ij t

′ (j)
jk

ω + 1
2ε

′ (j)
j + 1

2ε(j)

+
∑
r′′

t (j)(r′′)V ′σσ,(j)
ijkl + t

′ (j)
j l V σσ,(j)(r, r′, r′′)

ω + 1
2ε

′ (j)
j − 1

2ε
′ (j)
l + 1

4V σσ,(j)(rj l) + 1
4V

′σσ,(j)
j l

, (B.6)

3. Translational invariant chemical potential term —


ε(j) = 1

Nj

∑
r<max

i<j
(|rij |)

(t (j)(r))2

ω + 1
2ε

′ (j)
j + 1

2ε(j)

+ 1

Nj

∑
l,k<j,r′

(V σσ,(j)(r, rij , ril))
2G

6,σσ ′,(j)
j lk , (B.7)

4. Translational non-invariant on-site potential term —


ε
′ (j)
i = 1

Nj

∑
r<max

i<j
(|rij |)

t (j)(r′)t ′ (j)
j i + t

′ (j)
ij t

′ (j)
j i

ω + 1
2ε

′ (j)
j + 1

2ε(j)

+ 1

Nj

∑
l,k<j,r′

(V σσ,(j)(r, r′, r′′))2G
6,σσ ′,(j)
j lk . (B.8)

Similarly, by decomposing the 4-point vertexes V σσ ′
ijkl diagonal and off-diagonal parts into trans-

lational invariant (eq. (128)) and non-invariant parts (eq. (129)), their RG equations are obtained 
from eqs. (B.3) and (B.4) as follows:

5. Translational invariant density-density interaction term —


V σσ ′,(j)(r) = −
∑

rij ,ril

1
Nj

(V σσ ′,(j)(r, rij , ril))
2

ω + 1
2ε

′ (j)
j − 1

2ε
′ (j)
l + 1

4V σσ ′(j)(rj l) + 1
4V

′σσ ′(j)
j l

, (B.9)

6. Translational non-invariant density-density interaction term —


V
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∑
rij ,ril

1
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, (B.10)

7. Translational invariant current-current interaction term —


V σσ ′,(j)(ris , r, rim) =
∑

rij ,ril

1
Nj

V σσ ′,(j)(rji , rjs, rj l)V
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, (B.11)

8. Translational non-invariant current-current interaction term —


V
′σσ ′,(j)
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∑
r ,r

1
Nj

V σσ ′,(j)(rji , rjs , rj l)V
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