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Abstract In this paper, we study the Z boson produc-
tion via the proton–proton (p–p) collisions within the kt
and (z, kt )-factorization frameworks, using the Martin–
Ryskin–Watt (MRW) unintegrated parton distribution func-
tions (UPDFs) and the double unintegrated parton distribu-
tion functions (DUPDFs), respectively. For calculation of the
differential cross section (DCS) within the kt -factorization
(kt is the partonic transverse momentum), the KATIE par-
ton level event generator is used, while for the (z, kt )-
factorization, the DCS is directly computed. Up to the tree
level partonic next-to-leading order (NLO) are included,
beside the inclusion of branching ratios, in our calculation. It
should be noted that Martin, Ryskin and Watt are originally
calculated the same process, i.e., the Z boson production,
within the (z, kt )-factorization framework, while including
only the lowest order tree level partonic sub-process. How-
ever, the present report extends their work from two perspec-
tives. First, the additional sub-processes are included, sec-
ond, for the processes up to the next-to-leading order (NLO),
a direct calculation by considering the final state leptons is
imposed. Finally, we compare our results with the 13 T eV
data of the ATLAS, LHCb, CMS collaborations, the corre-
sponding collinear factorization predictions and the Modar-
res, et al. reports. Our p–p DCS calculations show that the
kt and (z, kt )-factorizations frameworks give relatively the
same behavior in the central rapidity regions. While at the
large rapidity regions, the (z, kt )-factorization, predicts the
p–p DCS closer to the experimental data with respect to those
of kt -factorization framework.

1 Introduction

Precise predictions of experimental data at the high energy
proton–proton collision are significantly important. Due to
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the complex nature of proton, where the partons are bound
by the strong gluonic force inside the proton, this calculation
is not an easy task. Hence, one cannot calculate the cross sec-
tion, as simple as, that of the point like particles cross section.
Fortunately, the factorization theorem allows us to calculate
the cumbersome hadronic differential cross section (DCS),
in terms of the elementary partonic cross section, convoluted
by the familiar parton distribution functions (PDFs).

In the literature, there can be found different factorization
frameworks for calculating the cross section, mostly based
on the assumptions of parton behavior inside the proton, such
as the collinear, kt , and (z, kt )-factorizations (kt is the par-
tonic transverse momentum). For example, in the collinear
factorization, it is assumed that the parton moves collinear
to the proton and enters into the hard collision. Therefore
in the collinear factorization theorem, it is supposed that the
constituent partons can only have a fraction of the proton
momentum, i.e., x , and these partons do not carry any trans-
verse momentum dependency, i.e., kt . To describe the dis-
tribution of these partons inside the proton, one should use
the parton distribution functions (PDFs), fa(x, μ2), where
μ2 is the factorization (hard) scale. The scale dependency
of the parton follows from the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) evolution equation [1–3], which
describe the evolution of the collinear parton along the evo-
lution ladder.

However, in the small x limit, the transverse momentum of
parton (kt ), becomes comparable against the collinear com-
ponent, i.e., x P (P is the proton momentum). Therefore, the
evolution equation of collinear parton, should be generalized
by the fact that, parton can also have transverse momentum.
This means that the PDFs should have kt dependency, i.e.,
fa(x, k2

t , μ
2). These kt dependent PDFs are called uninte-

grated parton distribution functions (UPDFs). Historically,
due to the large role of the gluon at small x limit, UPDFs are
defined for the gluonic content of proton. These UPDFs fol-
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low from the Balitsky–Fadin–Kuraev–Lipatov (BFKL) [4–
7], and Catani–Ciafaloni–Fiorani–Marchesini (CCFM) [8–
11] evolution equations. In fact the CCFM evolution equa-
tions by unifying the BFKL and DGLAP evolution equations
are introduced, which allow to calculate the cross section in
both small and large x regions. In order to achieve this goal
CCFM uses angular ordering constraint along the evolution
ladder. However, this model only works for gluon, and one
cannot calculate UPDFs which also applies to quarks, which
are necessary at large x limits. Therefore, other methods like
Kimber–Martin–Ryskin (KMR) [12], Martin–Ryskin–Watt
(MRW) [13], parton branching (PB) [14,15], etc are intro-
duced to fill this gap. These UPDFs models allow to gener-
ate UPDFs in both relatively small and approximately large x
regions, and hence one can apply the kt -factorization method
in those limits.

The MRW UPDFs can be obtained by utilizing the
DGLAP evolution equation. It assumes that the parton fol-
lows the DGLAP evolution equation to the last step of evolu-
tion ladder. But in the last step, parton becomes kt dependent
by implementing the angular ordering on the gluon emis-
sion term. After that, the parton moves to the hard scattering
without emitting any real emissions and becomes μ depen-
dent. The MRW model is defined at both the LO and NLO
levels. This model at the LO level is an extension of the
KMR approach, wherein the angular ordering constraint is
imposed on both the quark and gluon emission terms. In
the Refs. [16–23], a detailed discussion, and investigation
of these UPDFs are presented, and also for the applications
in hadron (electron)-hadron collisions one can consult with
the Refs. [23–26]. Beside the KMR and MRW methods for
obtaining the UPDFs, another method is also recently intro-
duced, which is called the parton branching (PB) approach, in
which the UPDFs within this model can be obtained by itera-
tively solving the DGLAP evolution equation and collecting
the transverse momenta of partons along the evolution ladder.
One can see the applications of these UPDFs, for example, in
the Refs. [23,27,28]. Among the different UPDFs discussed
above, in this work, we only use the LO-MRW UPDFs, to per-
form the Z boson production DCS phenomenological study.

In addition to the factorization frameworks, which were
discussed so far, another formalism is also introduced, that
tries to generalize the kt -factorization by utilizing the full
kinematics of the hard incoming and last step emitted par-
tons. This framework is called the (z, kt )-factorization, and
is introduced by Martin, Ryskin and Watt [29] (MRW
DUPDFs). Previously, the DCS of different processes, such
as, the electron-proton inclusive jet and diject productions
[29,30], and the electroweak (W , Z ) bosons productions, in
addition to the Higgs boson production [31], were calculated
within this framework. In the (z, kt )-factorization approach,
the last step emitted parton plays an important role in the
DCS calculation. In contrast to the kt -factorization frame-

work with the KMR and MRW UPDFs, where k2 = −k2
t ,

in this approach k2 = −k2
t /(1 − z), where z is the frac-

tional momenta of hard parton, with respect to the parent
parton. While in the kt -factorization approach, it is assumed
that we are limited to the small x and z regions, in the (z, kt )-
factorization the full kinematics is considered. Therefore, the
z dependency comes directly into the cross section calcula-
tion, and one should use the double UPDFs (DUPDFs), i.e.,
fa(x, z, k2

t , μ
2), instead of the UPDFs. These newly intro-

duced DUPDFs, as it will be discussed in this report, can
simply be obtained via the MRW UPDFs. It should be men-
tioned that, because of this additional dependency on z, the
calculation within this framework, becomes much more com-
plicated with respect to other frameworks. However, despite
these complications, it is interesting to test this framework
in our DCS Z boson production phenomenological study, to
gain more insight about this approach.

In this work, it is intended to directly calculate the Z
boson production DCS for the first time within the (z, kt )-
factorization and compare its result to the kt -factorization
approach, as well as, the collinear frameworks and the experi-
mental data. The same process was previously calculated pre-
liminary by Martin–Ryskin–Watt [31], in which they com-
pare their results to the experimental data of CDF [32] and
D0 [33]. However, their calculations suffer from two flaws.
First, they do not consider the full kinematics of final state
leptons, and calculate the cross section of Z boson produc-
tion with the help of the branching ratio. Second, their cal-
culations are only limited to the LO q + q → Z → l+l−
sub-process. So, in this report, it is tried to fix these flaws by
considering the complete final state leptons, including higher
order sub-process, i.e., q + g → Z + q → l+l− + q, into
the calculation. Additionally, in order to compare the above
calculation with those of Ref. [22], we include the higher
order sub-processes of this reference, with its corresponding
parameters, in which the branching ratio factors are con-
sidered. Therefore, by doing this calculation, it is intended
to perform a more detailed analysis of the kt and (z, kt )-
factorizations for the Z boson production compared to the
original work of the Ref. [31]. Additionally, it should be men-
tioned that a similar analysis in the kt -factorization for the
Z boson production is also performed in the Refs. [34,35],
where the authors obtain good predictions of the data with
the parton branching UPDFs approach.

The structure of this paper is as follows: in the Sect. 2,
we first give a summary of the kt -factorization framework,
which follows by the Sects. 2.1 and 2.2, to describe the MRW
UPDFs and also numerical methods for calculating the p–
p DCS Z boson production, using the KATIE parton level
event generator [36], respectively. In the Sect. 3, the (z, kt )-
factorization will be discussed, and furthermore in its three
Sects. 3.1, 3.2, and 3.3, we explain the LO MRW DUPDFs,
the partonic cross section within the (z, kt )-factorization
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approach, and also numerical methods within this frame-
work, respectively. In the Sect. 4 our results and discussion
are presented. The double counting issue will be described
in the Sect. 5. Finally, the Sect. 6 is devoted to conclusions.

2 The kt -factorization framework

In the kt -factorization, one can write the p–p cross section as
a convolution of the partonic cross section and the UPDFs.
As it is mentioned before, in contrast to the collinear factor-
ization framework, where it is assumed that the transverse
momentum of parton has a negligible role in the above pro-
cess, within the kt -factorization framework, the transverse
momentum of hard parton has an important contribution.
Therefore, one can generalize the collinear factorization for-
mula, and write the p–p cross section in the kt -factorization
as:

σ =
∑

a,b=q,g

∫
dx1

x1

dx2

x2

dk2
1t

k2
1t

dk2
2t

k2
2t

fa(x1, k
2
1t , μ

2)

× fb(x2, k
2
2t , μ

2)σ̂ ∗
ab, (1)

where in the above formula σ̂ ∗
ab, are the off-shell partonic

cross sections, and fa(b)(x, k2
t , μ

2) are the UPDFs. In this
work, the MRW method is used for obtaining the UPDFs
[13], and also in order to calculate the Eq. (1), we utilize the
KATIE parton level event generator [36]. Henceforth, in what
follows we discuss the MRW UPDFs, and also present a brief
discussion about the KATIE parton level event generator.

2.1 The MRW UPDFs

The MRW UPDFs are introduced by Martin–Ryskin–Watt
[13], which give the momentum distribution of partons inside
the proton for both quarks and gluons. As it was pointed out
in the introduction, in contrast to the BFKL and CCFM evo-
lution equations, which are limited only to the gluon distri-
butions, the MRW UPDFs do not have this restriction. This is
due to this fact that the MRW UPDFs follow from the DGLAP
evolution equations, and hence one can obtain the UPDFs for
both quarks and gluons. In this approach, it is assumed that
parton evolves up to the last evolution step collinearly along
to the proton, obeying the DGLAP evolution equation, and
only at the last step by emitting a real emission, the parton
becomes kt dependent. Finally, parton evolves to the factor-
ization scale μ without any real emission, using the Sudakov
form factor. Therefore, one can write the MRW UPDFs as
follows:

fa(x, k
2
t , μ

2) = Ta(k
2
t , μ

2)
αs(k2

t )

2π

×
∑

b=q,g

∫ 1

x
dzPab(z) fb

(
x

z
, k2

t

)
�δab(zmax − z), (2)

where in the above equation, Ta(k2
t , μ

2) are the Sudakov

form factors, fb(
x

z
, k2

t ), are the momentum weighted the

parton densities at the LO level, which can be either
x

z
qLO(

x

z
, k2

t ) or
x

z
gLO(

x

z
, k2

t ) for quark (antiquark) or

gluon, respectively, and �δab (zmax − z) is constraint on the
gluon emission, when a = b. The Sudakov form factor has
the following forms:

Ta(k
2
t ≤ μ2, μ2) = exp

(
−

∫ μ2

k2
t

dκ2
t

κ2
t

αs(κ
2
t )

2π

×
∑

b=q,g

∫ 1

0
dξξ Pba(ξ)�δab(ξmax − ξ)

⎞

⎠ ,

Ta(k
2
t > μ2, μ2) = 1. (3)

In order to obtain the cutoff on z and ξ (to constraint the gluon
emission in the Eqs. 2, 3), one can either use the strong or
angular ordering in the last evolution step. The strong order-
ing cutoff (SOC) is in fact an approximation of the angular
ordering cutoff (AOC) in the large z limit, i.e., z → 1 [37].
Therefore, if one is interested in the effect of small x limit,
it is better to use the AOC. The AOC cutoff is written as:

qi+1 > ziqi , (4)

where q = kt/(1 − z), and in the last step of the evolution
equation, the above cutoff can be written as:

μ > zmaxkt/(1 − z) → zmax = μ/(μ + kt ). (5)

If one considers the SOC, i.e., the z → 1 limit, the above
cutoff can be written as:

μ > kt/(1 − zmax ) → zmax = 1 − kt/μ. (6)

It can be seen that the SOC cutoff is tougher and limits the par-
ton’s transverse momentum to the kt < μ regions, while the
AOC is smoother and the parton transverse momentum can
be larger than the factorization scale. As it can be seen from
the Refs. [38], the Kimber–Martin–Ryskin (KMR) approach
was first introduced with the SOC. However, as it is stated in
the Refs. [39,40], the SOC cutoff is replaced by the more cor-
rect version AOC. Later, the Martin–Ryskin–Watt (MRW)
approach only used AOC [13]. Therefore, due to what was
discussed above, we also adopt AOC in this work. However,
in general, the angular ordering form of this cutoff is more
preferred in the literature on the KMR and MRW approach,
and hence in this work we adopt this cutoff for the MRW
UPDFs which is, zmax = μ

(μ+kt )
and ξmax = μ

(μ+κt )
.

It should also be mentioned that in the Ref. [13], it is stated
that the above integral version of MRW UPDFs, can also be
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expressed as the following “differential form”:

fa(x, k
2
t , μ

2) = ∂

∂ ln k2
t
[ fa(x, k2

t )Ta(k
2
t , μ

2)]. (7)

However, it is shown in the Refs. [41–43] that, the integral
and differential versions of this UPDFs, do not give the same
UPDFs. In fact, using the differential version is problem-
atic, and in some parton transverse momentum regions, it
gives us the negative and discontinuous UPDFs. Therefore,
as it is demonstrated in the Ref. [41], in order to obtain the
same UPDFs as the integral version, in the differential form,
the cutoff dependent PDFs and an additional term should be
used. Another aspect of the Ref. [43] is the question of the
KMR UPDFs validity, and it claims the wrong application
of the modified DGLAP evolution equation. In this work it
is pointed out that the virtual term of the modified DGLAP
evolution equation lacks a ‘z’ factor, i.e.:

∂a(x, μ2)

∂ ln μ2 =
∑

a′

αs

2π

[ ∫ 1−


x

×Paa′(z)a′
(
x

z
, μ2

)
dz − a(x, μ2)

∫ 1−


0
Pa′a(z)dz

]
,

(8)

and it leads to a wrong form of Sudakov form factors. How-
ever, by considering the results of Refs. [39,40], it is clear
that KMR uses correct Sudakov form factors in their work.
In other words, the modified DGLAP evolution equation is
implemented in a condensed form, but in a confusing man-
ner. Therefore, it is evident that the reasoning of Ref. [43] on
the validity of the KMR approach is not justified. Actually, as
it is stated in the Ref. [13] the difference between the KMR
and MRW approach is on the different imposition of AOC.
In fact in the KMR, the AOC is imposed on both the quark
and gluon emission terms, while in the MRW, the AOC is
only imposed on the gluon emission term. In the Ref. [43],
also one of the challenges in the non-equivalency between
the differential (DKMR/DMRW) and the integral form of
KMR/MRW (IKMR/IMRW) at kt > μ is solved. Generally,
we should note that, DKMR/DMRW can be problematic, and
it can give us the negative distribution especially at large x
and k2

t regions. However, by adding the additional term that
is obtained, both in our work [41] and also with different
approach in the Ref. [43], one can obtain acceptable UPDFs.
It should also be mentioned that in the work of Ref. [43], it is
claimed that with this new formula one can obtain the same
UPDFs from both of the DKMR/DMRW and IKMR/IMRW
UPDFs. But, in our work [41], we showed that one needs
also the cutoff dependent PDFs in DKMR/DMRW, as pro-
posed in the Ref. [42]. The important point here is this fact
that cutoff dependent PDFs only become important at large
x regions, when the cutoff becomes much important. How-
ever, it should be noted that we use the integral version of the

KMR/MRW formalism, so our work is consistent with the
findings of the Refs. [41–43].

It should be mentioned that the Eqs. 2, 7 are only appli-
cable at kt ≥ μ0, with μ0 ∼ 1 GeV, since the input PDFs,
fa(x, k2

t ), are not defined at the scales less than μ0. As a
result, to obtain the MRW UPDFs at kt < μ0, one can con-
veniently utilizes the normalization constraint, i.e.,:

fa(x, μ
2) =

∫ μ2

0

dk2
t

k2
t

fa(x, k
2
t , μ

2), (9)

and obtain the MRW UPDFs, that satisfy the normalization
condition. On the other hand, for kt < μ0, it can be shown
that the following distribution can satisfies the normalization
condition:

1

k2
t
fa(x, k

2
t < μ2

0, μ
2) = 1

μ2
0

fa(x, μ
2
0)Ta(μ

2
0, μ

2). (10)

However, it is necessary to point out that, even by using
the above distribution, which is also introduced in the Ref.
[13], the MRW UPDFs still does not satisfy the normalization
condition. Because, by looking at the derivation of the Ref.
[13], one notice that the Eq. 10 can be obtained by using the
differential version of the MRW instead of the integral one of
these UPDFs. Therefore one task, that would be of interest,
is to obtain the appropriate MRW UPDFs for kt < μ0, which
can fully satisfy the normalization condition, and we leave it
off for our future works.

Eventually, the LO MRW UPDFs for the (anti) quarks and
gluon and their corresponding Sudakov form factors can be
written as follows:

fq(x, k
2
t , μ

2) = Tq(k
2
t , μ

2)
αLO
s (k2

t )

2π

×
∫ 1

x

[
PLO
qq (z) f LOq

(
x

z
, k2

t

)
�(zmax − z)

+PLO
qg (z) f LOg

(
x

z
, k2

t

)]
dz, (11)

fg(x, k
2
t , μ

2) = Tg(k
2
t , μ

2)
αLO
s (k2

t )

2π

×
∫ 1

x

[
PLO
gg (z) f LOg (

x

z
, k2

t )�(zmax − z)

+
∑

q

PLO
gq (z) f LOq (

x

z
, k2

t )

]
dz, (12)

with the Sudakov form factors as:

Tq(k
2
t , μ

2) = exp

(
−

∫ μ2

k2
t

dκ2
t

κ2
t

×αLO
s (κ2

t )

2π

∫ 1

0
PLO
qq (ξ)�(ξmax − ξ) dξ

)
,

(13)
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Tg(k
2
t , μ

2) = exp

(
−

∫ μ2

k2
t

dκ2
t

κ2
t

αLO
s (κ2

t )

2π

×
∫ 1

0

[
ξ PLO

gg (ξ)�(ξmax − ξ)�(ξ − ξmin)

+nF P
LO
qg (ξ)

]
dξ

)
, (14)

where in the above equations q is denoted for u, u, d, d, . . .,
and also in the Eq. (14), nF is the number of active quark and
anti-quark flavors and ξmin = 1 − ξmax .

Because we compare our predictions with the results of
Ref. [22], in which their calculations are performed with
the KMR UPDFs, it should be mentioned that the KMR
and MRW UPDFs at the LO level do not have a signifi-
cant difference in their definitions. But since, in the MRW
UPDFs the angular ordering cutoff is only imposed on the
soft gluon emission terms, while in the KMR UPDFs this cut-
off is imposed on both gluon and quark (anti-quark) emission
terms, where this cutoff ordering, actually leads to the some
difference between these two approaches only in the large
pllt and x values, where this cutoff becomes important.

2.2 Numerical methods

In the present report for calculating the cross section within
the kt -factorization framework, the KATIE parton level event
generator [36] is utilized. With this parton level event gen-
erator, one can obtain the partonic cross section, as well as,
the DCS with respect to different variables at the tree level
for both the collinear and kt -factorization frameworks.

There are two different approaches for providing UPDFs
as inputs to this parton level event generator. One should
either use TMDlib [44], (which for example generates the
differential form of MRW UPDFs), or in the case where the
desired UPDFs are not available in this library, the UPDFs
grid files should directly be provided. Because the integral
version of MRW UPDFs is not available in the TMDlib
library, for present calculation, the MRW UPDFs grid files
are directly generated through our program file, which is
provided publicly at the Ref. [23]. For the input PDFs of the
MRW UPDFs in the Eq. (2), the MMHT2014lo68cl [45] set
of the LHAPDF [46] library is used.

In the KATIE parton level event generator, we can cal-
culate the Z boson production cross section by consider-
ing the five sub-processes, i.e., q + q → Z → l+l−,
q + g → Z + q → l+l− + q, g + g → Z + q + q ,
g + q → Z + g + q and q + q → Z + g + g. However, the
first 2 sub-processes have the main contribution with respect
to the higher order ones, i.e., q + q → Z → l+l− and
q + g → Z + q → l+l− + q. When calculating these
sub-processes, three points should be considered. First, in
order to avoid soft gluon divergence, we set a cutoff on the
transverse momentum of final state gluon to be larger than

the factorization scale (i.e., the final gluon to be hard). Sec-
ond, the KMR and MRW UPDFs have limited transverse
momentum in their definition, on the other hand, there is the
Sudakov form factor, that have a suppressive effect and can
make the cross section well-behaved and finite. Addition-
ally, in our previous work [23], it was shown that there is no
divergence indeed occurring in the kt -factorization formal-
ism. This was obtained by calculating the differential cross
section with respect to the rapidity of final state quark in the
q+ g → γ γ γ +q sub-process. It was demonstrated that the
differential cross section is well-behaved in the large rapidity
limits. Third, it is also claimed that there is a double counting
between 2 → 2 and 2 → 3 sub-processes. However, as it is
discussed in the Sect. 5, this topic is controversial, and even
if the double counting is considered, it does not have huge
impact in our results.

We perform these calculations for the first three quark fla-
vors, i.e., up, down, strange, and their anti-quarks. μ f =
μr =

√
pll 2
t + mll 2 as the factorization and renormaliza-

tion scales is chosen, in which pllt and mll are the trans-
verse momentum and the invariant mass of the output dilep-
ton, respectively. Also, we consider the experimental cuts of
ATLAS [47], LHCb [48], and CMS [28] experiments in our
calculation with this generator, which are expressed in detail
in the Sect. 4.

3 The (z, kt)-factorization framework

In contrast to the kt -factorization, where the full kinematics
of hard parton is not considered, in the (z, kt )-factorization
the full kinematics is taken into account. Within the (z, kt )-
factorization, there is an additional component, i.e., light
cone minus term, where it can be fixed by the constraint
of on-shellness of the last step emitted parton. As a result of
this, in the (z, kt )-factorization we have z, in addition to the kt
dependency. Therefore, considering the complete kinematics
of the parton at the last evolution step within the (z, kt )-
factorization, in contrast to the kt -factorization approach,
one can expect better results in the forward rapidity limits,
wherein the last step parton becomes important [29,30]. This
additional degree of freedom, also makes the incoming hard
parton virtuality to become k2 = −k2

t /(1 − z) within this
framework, while in the case of kt -factorization the above
virtuality is k2 = −k2

t . Another important effect of this addi-
tional degree of freedom, i.e., the light-cone minus term in the
(z, kt )-factorization, is this fact that within this formalism the
UPDFs become z dependent, and hence one needs to mod-
ify hadronic factorization formula for calculating the cross
section, compared to the kt -factorization approach. There-
fore, by generalizing the kt -factorization framework, one can
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write the general p–p cross section formula in the (z, kt )-
factorization as:

σ =
∑

a,b=q,g

∫ 1

x1

dz1

∫ 1

x2

dz2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

×
∫ ∞

0

dk2
1t

k2
1t

∫ ∞

0

dk2
2t

k2
2t

fa(x1, z1, k
2
1t , μ

2) fb(x2, z2, k
2
2t , μ

2)

×σ̂ ∗
ab(x1, x2, z1, z2, k

2
1t , k

2
2t , μ

2), (15)

where σ̂ ∗
ab are the off-shell partonic cross sections and

fa(x, z, k2
t , μ

2) are called double UPDFs (DUPDFs). As it
can be seen in the above formula, the DUPDFs and also the
partonic cross section, in addition to dependency on k2

t and
μ2, they have a dependency on z. Therefore, in order to cal-
culate the hadronic p–p cross section, one needs to devise
methods for calculating both DUPDFs and also the partonic
cross section, which is in accordance with this new kinemat-
ics.

3.1 The LO MRW DUPDFs

The DUPDFs are first introduced as a generalization of the
MRW UPDFs model by Martin, Ryskin, and Watt [29]. In
order to obtain these DUPDFs, one needs to simply ignore the
integral over z of the MRW UPDFs approach. As a result of
this, we can write the DUPDFs similar to the MRW approach,
i.e., the DMRW model, for both quark, (anti-quark) and
gluon, respectively, as follows:

f DMRW
q (x, z, k2

t , μ
2)

= T DMRW
q (k2

t , μ
2)

αs(k2
t )

2π

×
[
PLO
qq (z) f LOq

(
x

z
, k2

t

)
�(zmax − z)

+PLO
qg (z) f LOg

(
x

z
, k2

t

) ]
, (16)

T DMRW
q (k2

t , μ
2)

= exp

(
−

∫ μ2

k2
t

dκ2
t

κ2
t

αs(κ
2
t )

2π

∫ 1

0
PLO
qq (ξ)�(ξmax − ξ)dξ

)

(17)

f DMRW
g (x, z, k2

t , μ
2)

= T DMRW
g (k2

t , μ
2)

αs(k2
t )

2π

×
[
PLO
gg (z) f LOg

(
x

z
, k2

t

)
�(zmax − z)

+
∑

q

PLO
gq (z) f LOq

(
x

z
, k2

t

)]
, (18)

T DMRW
g (k2

t , μ
2)

= exp

(
−

∫ μ2

k2
t

dκ2
t

κ2
t

αs(κ
2
t )

2π

∫ 1

0

[
ξ PLO

gg (ξ)�(ξmax − ξ)

×�(ξ − ξmin) + n f P
LO
qg (ξ)

]
dξ

)
, (19)

where in the above equations q stand for u, u, d, d, . . . and
also zmax , ξmax , n f , and ξmin are defined below the Eq. (3)
and the Eq. (14), respectively. Additionally, one should note
that in order to satisfy unitarity, these DUPDFs like UPDFs
should also satisfy the normalization condition, which has
this modified form:

∫ 1

x
dz

∫ μ2

0

dk2
t

k2
t

fa(x, z, k
2
t , μ

2) = fa(x, μ
2), (20)

3.2 The partonic cross section within the DMRW model

Another ingredient of the cross section formula, i.e., the sec-
tion 15, within the DMRW framework is the partonic cross
section. In the Fig. 1, DMRW approach with its correspond-
ing kinematics and also its relation with the partonic cross
section is schematically shown. As it is shown in the Fig. 1,
the two incoming hard partons separately emit a parton with
the momentum k′

i = li − ki , where i = 1, 2, before the hard
collision. After their last step emissions, these partons with
the momentum ki collide with each other. Due to the nature
of the collision and for simplicity in performing the calcula-
tion, we use the Sudakov decomposition of momenta of two
incoming partons [31,49], i.e.:

ki = xi Pi − βi Pj + ki⊥, (21)

where i, j = 1, 2 or 2, 1. Additionally, we also neglect the
hadron masses in the center of mass frame of the colliding
hadrons. Hence, the squared center of mass energy can be
written as s = (P1 + P2)

2 
 2P1·P2. So one finds the
following relations:

P1 = (P+
1 , P−

1 , P1⊥) = √
s(1, 0, 0), P2 = (P+

2 , P−
2 , P2⊥)

= √
s(0, 1, 0), ki⊥ = (0, 0, kit ). (22)

In the above equations, the definition of a = (a+, a−, a⊥),
with a+ = (a0 + a3) and a− = (a0 − a3) for the light-cone
variables is used.

In the Fig. 1, the penultimate parton in the evolution ladder
has momentum li = (xi/zi )Pi and hence using the Eq. (21),
the momentum of the last step emitted parton along the evo-
lution ladder is obtained, i.e.,:

k
′
i = li − ki = xi

zi
(1 − zi )Pi + βi Pj − ki⊥. (23)
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Fig. 1 Illustration of the
DMRW model in the
hadron-hadron collision. In the
left panel of this figure, the
transverse momentum of each
incoming parton into the
subprocess is generated by a
single parton emission in the last
evolution step. While, in the
right panel of this figure, the last
evolution step is factorized into
the DUPDFs, i.e.,
fqi (xi , zi , k

2
i t , μ

2
i ), where

i = 1, 2

Fig. 2 The left and middle panels Feynman diagrams correspond to
the q + g −→ Z + q −→ l+ + l− + q processes and the right one
corresponds to the q + q −→ Z −→ l+ + l− process

The β parameter in the Eq. (21) is determined by the on-shell
condition for the emitted parton, i.e., k

′2
i = 0:

βi = ziri
xi (1 − zi )

, (24)

where ri ≡ k2
i t/s. Using the above kinematics in the DMRW

model, one can show that the virtuality of two incoming par-
tons is k2

i = −k2
i t/(1 − zi ). This is in contrast to the kt -

factorization, where z = 0 and β = 0, with the virtuality
k2 = −k2

t .
For calculating the cross section within the DMRW

approach, the following two sub-processes are included:

q + q −→ Z −→ l+ + l−, (25)

q + g −→ Z + q −→ l+ + l− + q. (26)

We first start with the cross section calculation of the
Sect. 15, with the sub-process of the Eq. (25), which is
also represented schematically in the right panel of the
Fig. 1. Before proceeding the following discussion, it should
be mentioned that the above sub-processes are considered
directly into our calculation, by taking into account the full
kinematics (Fig. 2). The partonic cross section in this figure,
σ̂ q1q2 , can be written as:

dσ̂ q1q2 = dq1q2 |Mq1q2 |2/Fq1q2 , (27)

where for the sub-process of the Eq. (25), q1(q2) is q(q), the
Fq1q2 = 2x1x2s is the flux factor, q1q2 denotes the phase
space integrals and Mq1q2 is the amplitude. The amplitude of
the sub-process in the Eq. (25), can also be calculated with
the help of Feynman rules and written as follows for this
sub-process:

Mqq = i
g2
w

4cos2θw

vs1(k2)γ
μ(Cq

V − Cq
Aγ 5)us2(k1)

×
(
gμν − (k1 + k2)μ(k1 + k2)ν

m2
Z

)

×ur1(k3)γ
ν(Ce

V − Ce
Aγ 5)vr2(k4)

(
1

ŝ − m2
Z − imZ�Z

)
,

(28)

where mZ and �Z are the mass and the full decay width
of Z boson, θw is the weak mixing angle, ŝ is the partonic
center of mass energy andCV andCA are the vector and axial
constants.

In order to calculate the cross section for the sub-process
of the Eq. (25), we should calculate:

σ qq =
∑

q

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dz1

∫ 1

x2

dz2

∫ ∞

0

dk2
1t

k2
1t

×
∫ ∞

0

dk2
2t

k2
2t

fq(x1, z1, k
2
1t , μ

2) fq(x2, z2, k
2
2t , μ

2)

× d3k3t

(2π)32E3

d3k4t

(2π)32E4
(2π)4δ4(k1 + k2 − k3 − k4)

×dφ1

2π

dφ2

2π

|Mqq |2
2x1x2s

, (29)

where φ1 and φ2 are the azimuthal angles of the incoming
partons. For calculating the above integrals, one needs to
simplify the above Dirac delta functions, corresponding to
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the 2 → 2 conservation of energy and momenta:

k1t + k2t = k3t + k4t , (30)

x1
√
s − β2

√
s = [

k3t e
y3 + k4t e

y4
]
, (31)

x2
√
s − β1

√
s = [

k3t e
−y3 + k4t e

−y4
]
, (32)

where in the above equations y3 and y4 are the rapidities of
the final state leptons.

So by imposing the Eq. (30) one can remove the k4t inte-
gral in the Eq. (29), and also using the Eqs. (31) and (32),
the above mentioned integrals with respect to x1 and x2 can
be simplified. Due to the complicated relations for x1 and x2,
i.e., Eqs. (31) and (32), they will be calculated with the help
of the Mathematica software. Accordingly, the following
relation for x1 can be obtained:

x∓
1 =

(
ey3+y4(sz2 (r2 (0.5 − 0.5z1) + 0.5r1z1)

+ (z1 (0.5z2 − 0.5) − 0.5z2 + 0.5) k2
3t

+ (z1 (0.5z2 − 0.5) − 0.5z2 + 0.5) k2
4t − 0.5r1sz1)

+
(

0.5e2y3 + 0.5e2y4
)

× (−z2 + z1 (z2 − 1) + 1) k3t k4t ∓ 0.5
√
A1

)

/
√
s (z1 (z2 − 1) − z2 + 1)

(
ey4k3t + ey3k4t

)
, (33)

where A1 in the above equation is return as:

A1 = (ey3+y4
(
(z1 (1 − z2) + z2 − 1) k2

4t

+s (r1z1 (1 − z2) + r2 (z1 − 1) z2))

+ey3+y4 (z1 (1 − z2) + z2 − 1) k2
3t

+
(
−e2y3 − e2y4

)
(−z2 + z1 (z2 − 1) + 1) k4t k3t )

2

−4r1sz1 (z1 (z2 − 1) − z2 + 1) (z2 − 1)

× (
ey4k3t + ey3k4t

) (
e2y3+y4k3t + ey3+2y4k4t

)
. (34)

In the Eq. (33), only x−
1 gives us the physical result, and

x+
1 does not play any role in our calculation. Hence in what

follows, we write x−
1 as x1 for simplification. Having x1 obvi-

ously the following equation can be obtained for x2:

x2 = β1 +
(
k3t e−y3 + k4t e−y4

)
√
s

. (35)

After, simplifying the Eq. (29), we can find the following
relation for the cross section of the 2 → 2 sub-process:

σ qq =
∑

q

∫
1

16π(x1x2s)2 |Mqq |2,

× fq(x1, z1, k
2
1t , μ

2) fq(x2, z2, k
2
2t , μ

2)

×dk2
3t
dk2

1t

k2
1t

dk2
2t

k2
2t

dz1dz2dy3dy4
dφ1

2π

dφ2

2π
. (36)

Then, similar to the above 2 → 2 sub-process, one can
also write the cross section for the 2 → 3 sub-process, i.e.,

Eq. (26), as follows:

σ qg =
∑

q

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dz1

∫ 1

x2

dz2

∫ ∞

0

dk2
1t

k2
1t

×
∫ ∞

0

dk2
2t

k2
2t

fq(x1, z1, k
2
1t , μ

2) fg(x2, z2, k
2
2t , μ

2)

× d3k3t

(2π)32E3

d3k4t

(2π)32E4

d3k5t

(2π)32E5
(2π)4δ4(k1 + k2 − k3 − k4 − k5)

dφ1

2π

dφ2

2π

dφ3

2π

dφ4

2π

|Mqg|2
2x1x2s

, (37)

where φ1 and φ2 are the azimuthal angles of the incoming
partons, while φ3 and φ4 are the azimuthal angles of the first
and second outgoing particles. The amplitude of the sub-
process in the Eq. (26) can also be calculated by the Feynman
rules as:

Mqg = − g2
wgs

4cos2θw

taεμ(k2)

×us1(k1)

(
γ ν(Cq

V − Cq
Aγ 5)

k̂1 + k̂2

s
γ μ

+γ μ −k̂2 + k̂5

(−k2 + k5)2 γ ν(Cq
V − Cq

Aγ 5)

)
us2(k5)

×
(
gρν − (k3 + k4)ρ(k3 + k4)ν

m2
Z

)

×ur1(k3)γ
ρ(Ce

V − Ce
Aγ 5)vr2(k4)

×
(

1

(k3 + k4)2 − m2
Z − imZ�Z

)
. (38)

The integrals in the Eq. (37) can also be simplified using the
Dirac delta functions corresponding to the following conser-
vation of energy and momenta relations:

k1t + k2t = k3t + k4t + k5t , (39)

x1
√
s − β2

√
s = [

k3t e
y3 + k4t e

y4 + k5t e
y5

]
, (40)

x2
√
s − β1

√
s = [

k3t e
−y3 + k4t e

−y4 + k5t e
−y5

]
. (41)

After performing simplifications in a similar manner as what
we did for the Eq. (29), with the help of the Mathematica
software, the relations for x1 and x2 can be obtained. Due
to the lengthy and complicated relations for x1 and x2, their
full expressions are not expressed here. Performing these
calculations similar to the 2 → 2 sub-process, the Eq. (37)
becomes as follows:

σ qg =
∑

q

∫
1

256π3(x1x2s)2 |Mqg|2

× fq(x1, z1, k
2
1t , μ

2) fg(x2, z2, k
2
2t , μ

2)dk2
3t dk

2
4t
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×dk2
1t

k2
1t

dk2
2t

k2
2t

dz1dz2dy3dy4dy5
dφ1

2π

dφ2

2π

dφ3

2π

dφ4

2π
.

(42)

Additionally, to compare our calculations with those of
the Ref. [22], we calculate the cross section of higher order
sub-processes, i.e, g+ g → Z + q + q , g+ q → Z + g+ q
and q + q → Z + g + g, using the branching ratio method.
The Feynman diagrams of these sub-processes are presented
in the Fig. 3. We also adopt f (Z0 → e+ + e−) = 0.0336
[50], as the branching ratio in our calculation. This choice
is mostly due to the increase of numerical speed and the
reduction of integrals. Also, it should be stressed that these
sub-processes, as it will be shown in the Sect. 4, have negli-
gible roles in the final results. Because these sub-processes
have the kinematics of 2 → 3, therefore one can use the
Eq. (42), but by replacing with the parameters involved in the
three aforementioned sub-processes, including their matrix
elements, as shown in the Appendix 1. Additionally, similar
arguments for double counting and divergency still hold in
the (z, kt )-factorization as in the kt -factorization. Finally, it
should be stressed that to avoid soft gluon divergence, we
set a cutoff on transverse momentum of final state gluon
to be larger than the factorization scale like what we per-
formed for the kt -factorization. On the other hand, there is
also another divergence when k2

t → 0, i.e., final state jets
become collinear to the incoming hadron. But, in accor-
dance to the Ref. [23], this divergence does not happen in
the kt -factorization. Because, our UPDFs and DUPDFs are
convoluted to the partonic cross section, and they are set to
zero when their transverse momenta are less than 0.03, i.e.,
fa(x, kt < 0.03, μ) = 0 and fa(x, z, kt < 0.03, μ) = 0.
It is also shown in the figure 11 of the Ref. [23], that with
this aforementioned constraint on the minimum transverse
momentum of the incoming parton, results are convergent
within the kt -factorization cross section calculation. After
this lengthy discussion about the DMRW model, in the fol-
lowing section, we discuss our numerical methods for calcu-
lating the above integrals and also other parameters involve
in our work.

3.3 Numerical methods within the DMRW model

Generally, the cross section calculation within the DMRW
model, because of the additional integrals, and also its com-
plicated kinematics is more difficult with respect to the
MRW framework, wherein the full kinematics of hard par-
ton is not considered. The main component of these two
equations, i.e., the Eqs. (36) and (42), is the matrix ele-
ments squared of Eqs. (28) and (38), corresponding to the
q + q → Z → l+ + l− and q + g → Z + q → l+ + l− + q
sub-processes. The aforementioned matrix element squared
is calculated, with the help of Feynart [51] and FeynCalc

[52] Mathematica packages. It should also be noted that
in order to be consistent with the method of Refs. [29,31],
in calculating the DMRW approach amplitude, the momenta
of incoming partons are only kept in their full kinematics
in the denominator of the scattering amplitude, while in its
numerator the collinear kinematics is kept.

To compute the cross sections, the multidimensional inte-
grals of the Eqs. (36) and (42) are performed with the VEGAS
Monte Carlo method. Additionally, similar to the MRW case,
for the factorization and renormalization scales, we choose

μ f = μr =
√
pll 2
t + mll 2, where pllt and mll are the trans-

verse momentum and the invariant mass of the output dilep-
ton, respectively. Also, the non-logarithmic loop corrections
to the sub-process of the Eq. (25) are taken into account by
including the K -factor in our calculation, as:

K = exp

[
CF

αs(μ
2)

2π
π2

]
, (43)

where CF = 4/3, and the particular choice μ2 = pll
4/3

t M2/3
Z

is proposed to eliminate the sub-leading logarithmic terms
[31].

Finally, it should be mentioned that the MRW DUPDFs
(DMRW) can simply be obtained similar to the MRW
UPDFs, but here we do not perform the integration on z
parameter. Also, to speed up our calculation only the first
three quark flavors are taken into account, i.e., up, down, and
strange.

4 Results and discussion

One of the useful tools to study the hadronic interactions in
the high energies is the Z boson production. The interme-
diate Z bosons are mostly produced through qq annihila-
tion decaying into the lepton pairs, i.e., the sub-process of
the Eq. (25), and also from the Compton scattering of sub-
process in the Eq. (26). In this section, it is intended to dis-
cuss the results of Z boson production within the MRW and
DMRW factorizations by comparing these predictions with
the 13 T eV data of the ATLAS [47], CMS [28], and LHCb
[48], and also their corresponding collinear counterparts. As
it was noted before, a similar calculation in DMRW model is
performed originally by Watt, Martin, and Ryskin [31]. How-
ever, as it was pointed out in the introduction, their calcula-
tions are simplified from two sides. First of all, in their report,
only one 2 → 2 sub-process is considered, i.e., the Eq. (25).
Second, they do not fully consider the leptonic final state, and
calculate their results with the help of the branching ratio of
Z boson to the corresponding leptonic final state. While, our
calculations intended to performed, by fixing these two flaws
of the Ref. [31]. Additionally, to compare our results with
the work of Ref. [22] (calculated by considering up to NNLO
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Fig. 3 The 8 left panel Feynman diagrams correspond to the q + q → Z + g + g, the 8 right panel Feynman diagrams correspond to the
g + g → Z + q + q and the 6 bottom panel Feynman diagrams correspond to the g + q → Z + g + q sub-process

sub-processes using the branching ratio), and also see the role
of the higher order sub-processes, some of these higher order
sub-processes corresponding to the aforementioned work is
calculated with the help of the branching ratio [50]. Before
presenting our results, it should be mentioned that in all of
the figures, the MRW and DMRW predictions with the MRW
UPDFs and DUPDFs, are all denoted by MRW and DMRW,
respectively. Also, all collinear results presented in our work
are extracted from the corresponding experimental papers
and we only did use the result of MadGraph5-aMC@NLO,
Pythia8 and ResBos event generators from mentioned ref-
erences, respectively, [28,47,48]. Therefore, if one needs a
detailed discussion of the calculation method, should be con-
sulted with the reference of each experiment mentioned in
this work. Finally, as it will be presented in our results, as one
should expect, generally, the collinear factorization shows a
better behavior with respect to the MRW and DMRW frame-
works. However, as it is discussed in the Ref. [31], although
the result of the MRW and DMRW frameworks are not as
good as those of collinear factorization, but calculating cross
section with the MRW UPDFs and DUPDFs is more sim-
plistic, since they reduce the numbers of Feynman diagrams
and the computational time with respect to that of collinear
factorization.

In the Fig. 4 our predicted 1/σdσ/dPll
t and 1/σdσ/dφ∗

η ,
is compared with those given by 13 TeV ATLAS data. In this
experiment, the pseudorapidity of each final state electron is

limited to the |η| < 2.47, excluding 1.37 < |η| < 1.52. The
invariant mass of the final state leptons is limited between
66 GeV < Me−e+

< 116 GeV. Additionally, the transverse
momenta of each final state electron are larger than 27 GeV.
In the left and right panels of this figure, the above DCS
with respect to Pll

t , and φ∗
η in the kt and (z, kt )-factorization

frameworks, i.e., MRW and DMRW approaches, are com-
pared to the ATLAS data,as well as, the Pythia8 results [47].
It can be seen from this figure, that both of the MRW and
DMRW results, show relatively the same behavior. This is
consistent with this fact that they mostly become different
from each other, at large rapidity regions, and also large z
limit, where one can expect that the DMRW behaves better
than the MRW. Despite this similarity, at small dilepton trans-
verse momenta, the DMRW tends to be larger than the MRW.
This behavior is actually due to the effect of the K -factor, i.e.,
the Eq. (43), which leads to this conclusssion that the DMRW
become larger compared with the MRW in this region, where
K -factor is omitted. Also it should be mentioned that, both
of these frameworks tend to overestimate the data at large
transverse momenta. However, it is obvious from this figure
that the DMRW shows much better prediction at medium
range of dilepton transverse momenta relative to the MRW.
The reason for this overestimate, at large transverse momenta
of lepton pair, is mostly due to the MRW and DMRW mod-
els. For example, if instead of the LO MRW, one uses the
NLO-MRW or PB UPDFs models, a better result at the large
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Fig. 4 The Left (right) panel shows the comparison of MRW and DMRW results using the MRW UPDFs and DUPDFs with the 13 T eV ATLAS
experimental data [47], and also the Pythia8 [47] results for the DCS with respect to pllt (φ∗

η )

transverse momenta is obtained [23]. This issue is discussed
in the kt -factorization framework, for example by comparing
the results of the various DCS, using the LO MRW model
with those of the NLO MRW or PB UPDFs, see the Refs.
[23–25]. As it was explained in these references, the reason
for this overestimation of LO MRW model with respect to
those of NLO MRW and PB UPDFs is due to this fact that at
kt > μ, the corresponding the UPDFs have a larger contri-
bution compared with other UPDFs such as the NLO-MRW
or PB UPDFs. For example in the case of the NLO-MRW,

one has k2 = k2
t

1 − z
< μ2 virtuality ordering constraint, i.e.,

�(μ2 − k2). This constraint within this model becomes 0
at kt > μ. Hence, one expects that the NLO MRW, as it is
shown in the aforementioned references, to perform much
better in those regions.

In the right panel of the Fig. 4, the MRW and DMRW DCS
with respect to the φ∗

η are plotted. This variable is defined as:

φ∗
η = tan

(
φacop

2

)
× sin(θ∗

η ), (44)

where φacop = π −|
φ|, and cos(θ∗
η ) = tanh[(η−−η+)/2].

Here 
φ is the azimuthal angle (in radians) between the
two leptons, and η−(+) is the pseudorapidity of the nega-
tively (positively) charged leptons. The parameter φ∗

η is more
of interest to the experimentalists compared to the dilep-
ton transverse momentum. Mostly, because this parameter
dependens only on measuring the direction of final state lep-
tons, rather than their momenta. By observing the right panel
of this figure, in contrast to dσ/dPll

t , where the DMRW tends
to be larger than the MRW, in the small dilepton transverse
momentum, here in the range of small and medium φ∗

η , the
exact opposite behavior occurs, and the DMRW underesti-

mates the data relative to the MRW. Although, the DMRW
gives better description of the data in the range of large φ∗

η

with respect to the MRW. Additionally, as it was pointed out
before, the Pythia8 results cover the data well in all regions.

In the Figs. 5, 6 and 7 the MRW and the DMRW for
the 13 TeV LHCb data [48] are presented. Additionally, in
the Fig. 5, a comparison with the ResBos [48] results is pre-
sented. The experimental data belong to the Z → μ+μ−
process, where each of the muons is within the pseudorapid-
ity interval of 2.0 < η < 4.5 and has the transverse momen-
tum pT > 20 GeV. Additionally, the pair of produced muons
invariant mass is required to be 60 GeV < Mμμ < 120 GeV.

In the top left and right panels of the Fig. 5, a comparison
between the DCS of KMR, MRW and DMRW, with respect
to the Pll

t and φ∗
η is shown, respectively. It is observed that

similar to the ATLAS data in the Fig. 4, the DMRW gives
much better description of data relative to the MRW in the
range of small to medium transverse momenta. While the
DMRW in the range of small φ∗ tends to underestimate the
data, which is in contrast to the MRW, that can cover the
data well within this limit. Additionally, by comparing the
KMR prediction of the Ref. [22] (calculated with the branch-
ing ratio method), with the MRW, which is calculated with
the KATIE event generator, one can notice that these two
UPDFs, i.e., the KMR and MRW, are only similar to each
other in the intermediate range of transverse momentum, and
they become different from each other at the small and large
transverse momenta. One of the main reason for these differ-
ences between the KMR and the MRW results can be due to
this fact that, the different implementation of angular order-
ing cutoffs is utilized in this two models. However, since their
calculation methods are different, other parameters may also
be involved. Also, one should note that, the results of Ref.
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Fig. 5 The Upper left (right) panel shows the comparison of the KMR
[22], the MRW and the DMRW results with the 13 TeV LHCb exper-
imental data [48], and those of ResBos [48] results with respect to
pllt (φ∗

η ). In the left bottom panel, the same comparison for DCS with
respect to yZ is shown. The right bottom panel of this figure shows

the relative contribution of the higher order sub-processes (the sum of
g+g → Z+q+q, g+q → Z+g+q and q+q → Z+g+g), denoted
by σ2, and lower order sub-processes (the sum of q + q → Z → l+l−
and q + g → Z + q → l+l− + q), denoted by σ1, for the MRW and
the DMRW

[22] is limited to pllt < 50 GeV, and the comparison with the
data in all regions is not reported. The last thing to note in this
figure is that, the ResBos results, like what was observed in
the Pythia8 of the ATLAS experiment, give better description
of the data compared to both of the MRW and the DMRW.

In the bottom left panel of Fig. 5, one observes the vari-
ation of KMR, MRW and DMRW approaches with respect
to the yZ . It is evident from this figure that, their results
are close to each other in the Z boson rapidity region of
yZ < 4, while they become separate from each other in the
yZ > 4, wherein the MRW fails to describe the data well in

that region. This issue can be attributed to the problematic
behavior of the MRW in defining the last step emitted par-
ton, which is discussed at the beginning of Sect. 3. In fact, the
last step emitted parton can actually play an important role in
the forward region, hence one can expect that the MRW to be
worse compared to the DMRW. Therefore it is essential in this
region to treat correctly the last step emitted parton. Although
it should also be stressed that the difference between these
two frameworks essentially is not significant. One final note
about this figure is that, interestingly the KMR UPDFs of the
Ref. [22], can cover the data well in all yZ regions, including
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the forward ones. This may be due to the different method of
calculation of Ref. [22], which are done with the branching
ratio, while in this work our the MRW is performed with the
KATIE parton level event generator. Additionally, despite the
fact that the ResBos result, can cover the data well within all
rapidity regions, but it tends to overestimate the data at large
yZ limit.

In the bottom right panel of the Fig. 5, a comparison
between the contribution of the higher order sub-processes
(the sum of g + g → Z + q + q , g + q → Z + g + q
and q + q → Z + g + g), denoted by σ2, and lower
order sub-processes (the sum of q + q → Z → l+l− and
q+g → Z+q → l+l−+q), denoted byσ1, for the MRW and
the DMRW are compared. As it was discussed before, in the
Ref. [22], the aforementioned higher order sub-processes are
included. Therefore, their contributions in the dσ/dpllT DCS
are calculated. As it is obvious from this figure, the role of
higher order sub-processes, i.e., those calculated in the Ref.
[22], is negligibly relative to the lower order sub-processes.
Therefore one can safely ignore their contributions into our
calculation.

In the Fig. 6, it can be observed the double DCS with
respect to pllt in various rapidity regions of the produced Z
boson. Similar to our previous results for the cross section
with respect to pllt , it can be obtained relatively the same
behavior in all of the regions except where 4 < yZ < 4.5.
As it is obvious from the left bottom panel of the Fig. 5,
i.e., dσ/dyZ , it can be expected similar worse behavior for
the MRW compared to the DMRW within the large rapidity
regions. In fact as we move toward large rapidity regions, the
DMRW becomes much better relative to the MRW, especially
in small and large dilepton transverse momentum regions.
Also, while at small rapidity region, the DMRW treats better
especially at the small dilepton transverse momentum, the
MRW tends to underestimate the data.

In the Fig. 7, the double DCS predictions of the MRW
and the DMRW with respect to φ∗

η in the various yZ regions
are shown. Generally, the results are in accordance with
our expectations, and the DMRW underestimates the data
at small φ∗

η , while its predictions cover the data at large φ∗
η .

Also, in the most φ∗
η and yZ regions, the MRW can cover the

data well. However, as it was discussed before, at large rapid-
ity region, i.e., 4 < yZ < 4.5, the DMRW results behave
better, and its prediction covers the data relatively well in all
φ∗

η regions, while the MRW underestimates the data in all φ∗
η

regions, even for those of small φ∗
η limit.

In the Fig. 8, the results of MadGraph5-aMC@NLO [28],
the KMR, the MRW and the DMRW for the 13 TeV, CMS
data are shown. These data belong to the Z → l+l− process,
where each of the leptons is within the pseudorapidity interval
of |η| < 2.4. These produced leptons are required to have
the transverse momentum pT > 25 GeV and the invariant

mass of the pair of produced leptons is required to be |mll −
91.1876 GeV| < 15 GeV.

Also, in the Fig. 8, the DCS with respect to Pll
t , φ∗

η , and
yZ are shown. Similar to our results of the MRW and the
DMRW for the 13 TeV ATLAS and LHCb data, it can also
be observed relatively the same behavior for the 13 TeV CMS
data. It should be mentioned that because in this experiment
the forward regions, i.e., 2.5 ≤ yz ≤ 4.5, do not play any
role in calculation, therefore it is expected that, the MRW
and DMRW become similar to each other for the ATLAS
experiment. Comparing the predictions of KMR UPDFs of
Ref. [22] with our results, also show that this model can cover
the data of dσ/dyZ , and also dσ/dPll

t . It should be noted that
again the result of the dσ/dPll

t is limited to Pll
t < 50 GeV

region, and therefore a full comparison with our work in
all dilepton transverse momentum regions is not possible.
Finally, it should be mentioned that the collinear results of
MadGraph5-aMC@NLO can predict the data well in all of
the channels in the Fig. 8.

5 The glance of the double counting

Before presenting conclusions, it is useful to discuss an
important topic about the double counting between the lower
and higher order sub-processes in the kt -factorization. Some
authors argue that there is the double counting, for example,
between q + q → Z → l+ + l− and q + g → Z + q →
l+ + l− + q sub-processes, and if one address the double
counting, the predictions will be improved at the large dilep-
ton transverse momentum. However, as stated in the Refs.
[53,54], there is no double counting between the 2 → 2
and 2 → 3 sub-processes. The KMR and MRW UPDFs
in the kt and (z, kt )-factorizations should correspond to the
PDFs in the collinear case. All the splittings and real emis-
sions of partons, including the last step emission, are indeed
factorized in the UPDFs. Additionally, any changes to the
UPDFs have a problematic effect on the normalization con-
dition that relates UPDFs to PDFs. Another argument that
contradicts the idea of having double counting is also men-
tioned on page 536, paragraph 4 of Ref. [54]. However, we
are also interested in checking how our results would be
affected if we assume that there is double counting between
the aforementioned sub-processes. In order to resolve the
double counting issue, we utilize the method proposed in
Ref. [55]. In accordance with the approach of this article,
we limit the transverse momenta of incoming partons in the
q + q → Z → l+ + l− sub-process to the regions less
than the factorization scale. Additionally, in the sub-process
q + g → Z + q → l+ + l− + q, we impose a cut on the
final quark transverse momentum such that to be larger than
the incoming partons transverse momentum. According to
the Ref. [55], the first constraint excludes the possible extra
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Fig. 6 This figure shows the comparison of kt and (z, kt )-factorizations predictions for the double DCS with respect to pllt in the regions of yZ
using the MRW and DMRW models, respectively

hard emissions from the UPDFs, and the second constraint
also limits the final state jet to contribute from the matrix
element. We calculate our kt -factorization results in accor-

dance with this approach, which is shown in the Fig. 9. As
can be seen from the Fig. 9, even treating the double count-
ing with this approach, the significant effect dose not appear
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Fig. 7 This figure shows the comparison of kt and (z, kt )-factorizations predictions for the double DCS with respect to φ∗
η in the regions of yZ

using the MRW and DMRW models, respectively

in our results. It should be noted that the UPDFs alone have
the biggest role in our predictions. Moreover, considering the
large contribution of q + q → Z → l+ + l− process(see
the Fig. 9), we can observe that even this simple sub-process

overestimates experimental data at large dilepton transverse
momenta. Therefore, it is clear that even if it were assumed
that there is a double counting, treating it, would not improve
our results at large dilepton transverse momentum.

123



678 Page 16 of 19 Eur. Phys. J. C (2023) 83 :678

Fig. 8 The Upper left (right) panel shows the comparison of kt
and (z, kt )-factorizations predictions using the KMR [22], MRW and
DMRW models with the 13 TeV CMS experimental data [28], and also

MadGraph5-aMC@NLO [28] results for the DCS with respect to pllt
(φ∗

η ). In the bottom panel, the same comparison for the DCS with respect
to yZ is shown

6 Conclusions

In this work, the Z boson production cross section calculated
within the kt and (z, kt )-factorizations frameworks using the
MRW UPDFs and DUPDFs by considering q + q → Z →
l+ + l− and q + g → Z + q → l+ + l− + q sub-processes.
Furthermore, this study examines the role of some higher
order sub-processes that are computed in the Ref. [22] by
employing the branching ratio method and compares our pre-
dictions with the outcomes of this reference. Our results are
compared with various channels of 13 T eV data of ATLAS
[47], CMS [28], and LHCb [48], and also their correspond-
ing collinear results. This calculation is performed for the
first time within the (z, kt )-factorization by including one
higher order sub-process and also keeping the kinematics of
the final state dilepton into our calculation. It is showed that
both of the MRW and the DMRW behave relatively similar

to each other. However, we observed that the MRW UPDFs
in the rapidity region of 4 < yZ < 4.5 fails to describe the
experimental data. This is in contrast to the DMRW result,
which is successfully cover this limit. The reason for this
behavior is that the MRW, in contrast to the DMRW does not
treat the last step emitted parton along the evolution ladder
as a real detectable particle, and hence in this forward region,
we can expect this framework to fail. Additionally, It is also
observed that in the small and medium transverse momen-
tum of final state dilepton, the DMRW shows better behavior
with respect to its counterpart. However, it was showed that
at small φ∗

η , the DMRW underestimate the experimental data,
although the MRW is pretty successful in those regions. Also,
a comparison with the results of the Ref. [22] shows that the
KMR UPDFs describe the data of the LHCb and CMS data
much better compared to the MRW and the DMRW models
due to the additional constraint on the quark emission terms
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Fig. 9 Comparison between different contributions of the q + q →
Z → l+ + l−, and q + g → Z + q → l+ + l− + q sub-processes,
calculated based on the method proposed by the Ref. [55] (Maciula
and Szczurek), and also our calculation in the kt -factorization using the
MRW UPDFs model

of its UPDFs. Finally, it should be clarified that although
the collinear framework can describe experimental data well
with respect to the kt and (z, kt )-factorizations, it should be
noted that these two frameworks can also exhibit remark-
able results of exclusive processes with suitable UPDFs and
DUPDFs. For instance, our recent works on three-photon
productions [23] and Drell–Yan [24] processes have demon-
strated that NLO-MRW and PB UPDFs can yield remarkable
results. However, in this work, we aim to provide a one-to-
one comparison between the kt and (z, kt )-factorizations to
better understand the difference between these two frame-
works. As we have demonstrated in this work, the kt and
(z, kt ) frameworks exhibit relatively similar behavior in all
regions except for large rapidity limits. One reason we do not
compare our predictions with other UPDFs models is that
obtaining DUPDFs with those models is a challenging task
and there is no straightforward approach to obtain them. Nev-
ertheless, it is an important goal to generate these DUPDFs
and better describe the results.
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Appendix A: The matrix elements of the partonic sub-
processes

In this appendix we write the amplitudes of the Ref. [21] due
to lengthy terms involves in their corresponding amplitudes.
As it is mentioned in this reference due to the equality of
squared amplitudes of |Mgg|2 and |Mqq |2, the amplitudes
for each sub-process can be written as follows:

Mab =
8∑

i=1

Mab
i , a, b = q, g, (A1)

with

Mqg
1 = g2

s u(k1) t
aγμεμ(p1)

(� k1 −� p1) + m

(k1 − p1)2 − m2 Gλ
Zελ(p3)

(� k2 +� p2) + m

(k2 + p2)2 − m2 tbγνε
ν(k2) ū(p2), (A2)

Mqg
2 = g2

s u(k1) t
bγνε

ν(k2)
(� k1 +� k2) + m

(k1 + k2)2 − m2 Gλ
Zελ(p3)

(� k1 +� k2 −� p3) + m

(k1 + k2 − p3)2 − m2 taγμεμ(p1) ū(p2), (A3)

Mqg
3 = 2g2

s u(k1) t
aγμεμ(p1)

(� k1 −� p1) + m

(k1 − p1)2 − m2

tbγνε
ν(k2)

(� p2 +� p3) + m

(p2 + p3)2 − m2 Gλ
Zελ(p3) ū(p2), (A4)

Mqg
4 = 2g2

s u(k1) t
aγμεμ(k2)

(� k1 +� k2) + m

(k1 + k2)2 − m2

tbγνε
ν(p1)

(� k1 +� k2 −� p1) + m

(k1 + k2 − p1)2 − m2 Gλ
Zελ(p3) ū(p2),

(A5)

Mqg
5 = g2

s u(k1) γ ρCμνρ(k2,−p1, p1 − k2)

εμεν

(k2 − p1)2 f abctc
(� p2 +� p3) + m

(p2 + p3)2 − m2 Gλ
Zελ(p3) ū(p2),

(A6)

Mqg
6 = g2

s u(k1) G
λ
Zελ(p3)

(� k1 −� p3) + m

(k1 − p3)2 − m2

γ ρCμνρ(k2,−p1, p1 − k2)
εμεν

(k2 − p1)2 f abctc ū(p2),

(A7)
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and

Mgg
1 = g2

s ū(p1) t
aγμεμ(k1)

(� p1 −� k1) + m

(p1 − k1)2 − m2 Gλ
Z ελ(p3)

(� p2 +� k2) + m

(p2 + k2)2 − m2 tbγνε
ν(k2) u(p2), (A8)

Mgg
2 = g2

s ū(p1) t
aγμεμ(k1)

(� k2 −� p1) + m

(k2 − p1)2 − m2 Gλ
Z ελ(p3)

(� k1 +� p2) + m

(k1 + p2)2 − m2 tbγνε
ν(k2) u(p2), (A9)

Mgg
3 = g2

s ū(p1)
(� p1 +� p3) + m

(p1 + p3)2 − m2 taγμεμ(k1)

(� p1 +� p3 −� k1) + m

(p1 + p3 − k1)2 − m2 Gλ
Zελ(p3) t

bγνε
ν(k2) u(p2),

(A10)

Mgg
4 = g2

s ū(p1) G
λ
Zελ(p3) t

aγμεμ(k1)
(� p1 −� k1) + m

(p1 − k1)2 − m2

tbγνε
ν(k2)

(� p1 −� k1 −� k2) + m

(p1 − k1 − k2)2 − m2 u(p2), (A11)

Mgg
5 = g2

s ū(p1) G
λ
Zελ(p3)

(� p1 +� p3) + m

(p1 + p3)2 − m2 tbγνε
ν(k2)

(� p1 +� p3 −� k2) + m

(p1 + p3 − k2)2 − m2 taγμεμ(k1) u(p2), (A12)

Mgg
6 = g2

s ū(p1) G
λ
Zελ(p3) t

bγνε
ν(k2)

(� p1 −� k2) + m

(p1 − k2)2 − m2

taγμεμ(k1)
(� p1 −� k1 −� k2) + m

(p1 − k1 − k2)2 − m2 u(p2), (A13)

Mgg
7 = g2

s ū(p1) γ ρCμνρ(k1, k2,−k1 − k2)
εμεν

(k1 + k2)2 f abctc

(� p1 −� k1 −� k2) + m

(p1 − k1 − k2)2 − m2 Gλ
Zελ(p3) u(p2), (A14)

Mgg
8 = g2

s ū(p1) G
λ
Zελ(p3)

(� p1 −� p3) + m

(p1 − p3)2 − m2

γ ρCμνρ(k1, k2,−k1 − k2)
εμεν

(k1 + k2)2 f abctc u(p2), (A15)

where Gλ
Z is defined as:

Gλ
Z = eem

sin2θw

γ λ
[
I3,q(1 − γ 5) − 2eqsin

2θw

]
. (A16)

Also I3,q is the weak isospin component of the quark and
the standard QCD three-gluon coupling can be written as
follows:

Cμνρ(k1, k2, k3) = gμν(k2 − k1)
ρ

+gνρ(k3 − k2)
μ + gρμ(k1 − k3)

ν.

(A17)
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