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We propose a scenario with string theory in the deep ultraviolet, an intermediate asymptotically safe 
scaling regime for gravity and matter, and the Standard Model in the infrared. This could provide a new 
perspective to tackle challenges of the two models: For instance, the gravitational Renormalization Group 
flow could connect a negative microscopic to a positive macroscopic cosmological constant, potentially 
rendering string theory on an anti-de Sitter background observationally viable. Further, the unitarity of 
a string-theoretic ultraviolet completion could be inherited by an asymptotically safe fixed point, despite 
the presence of higher-order interactions. We discuss necessary conditions on the scale of asymptotic 
safety and the string scale for our scenario to be viable. As a first test, we explore the weak-gravity 
conjecture in the context of asymptotically safe gravity.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Asymptotic safety and string theory

What is the fundamental nature of the building blocks of 
our universe? String theory and the asymptotically safe Standard 
Model (ASSM) are both possible candidates. The latter relies on 
scale-symmetry kicking in at microscopic distance scales. If real-
ized, it provides a predictive quantum field theory of the Standard 
Model plus quantum gravity, see [1–5] for RG studies and [6] for 
a recent review. It is based on an interacting fixed point of the 
Renormalization Group (RG), generalizing the concept of asymp-
totic freedom to a setting in which both gravity as well as Abelian 
gauge sectors could be included without Landau poles. Compelling 
indications for asymptotic safety in pure Euclidean gravity, pro-
posed in [7], have been collected in [8–38], starting from the pio-
neering work [8], and matter-gravity systems have been explored, 
see, e.g., [1–3,39–49,4,5,50,51]. For related Monte Carlo studies see 
e.g. [52,53] and references therein. Potential cosmological impli-
cations are reviewed in [54] and possible consequences for black-
hole physics explored, e.g., in [55–63], see [64–66] for recent re-
views. See [67] for an introduction to quantum scale symmetry 
and [68] for a review of asymptotic safety and underlying mecha-
nisms in various models.
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The transition scale ktr is defined as the energy scale at which 
a departure from scale-symmetry sets in, such that below ktr the 
couplings deviate from their values in the asymptotically safe scal-
ing regime. The additional scale-symmetry in the asymptotically 
safe regime can even result in enhanced predictive power, poten-
tially fixing the values of some of the Standard-Model couplings at 
k = ktr, and thereby at all scales [1–5]. For our scenario, it is key 
that the determination of infrared (IR) values of couplings follow-
ing from scale-symmetry also carries over (at least approximately) 
if an asymptotically safe scaling regime is only realized over a fi-
nite, but large enough, range of scales, with new physics kicking in 
at very high energy scales.

On the other hand, string theory goes beyond the local quan-
tum field theory framework, resulting in the requirement for extra 
dimensions as well as supersymmetry, see, e.g., [69–71] for re-
views. Both the transition scale ktr in asymptotic safety and the 
string scale Ms, are usually associated with the Planck scale. There-
fore, a relation between these two candidates for a microscopic 
description of nature might not be immediately obvious, but could 
actually be possible whenever these two scales are separated, i.e., 
ktr < Ms. Here, we set out to investigate a possible connection. We 
refer to Fig. 1 for an illustration of our proposal. Specifically, the 
scenario we explore assumes that string theory provides the most 
fundamental description of nature. Below the string scale Ms , this 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. We illustrate our scenario, indicating how an asymptotically safe scaling 
regime can generate universal predictions for couplings, coming from a range of 
values resulting from different choices of compactification for the string theory at 
the string scale Ms . The scale ktr is the transition scale from an asymptotically safe 
scaling regime, where relevant operators kick in and drive the flow away from the 
scale-invariant point.

results in an effective quantum-field theoretic description1. We as-
sume that the values of couplings at Ms lie in the IR basin of 
attraction of the asymptotically safe fixed point. This assumption 
results in constraints on those couplings that are relevant at the 
interacting fixed point, as those are the IR-repulsive directions, 
cf. Fig. 2. Along the IR attractive (irrelevant) directions of the fixed 
point, the flow is pulled towards the fixed point. This results in 
an RG trajectory that spends a large amount of RG “time” close to 
the fixed point and then emanates from its vicinity close to the 
UV critical surface. In the simplest case, the compactification scale 
and scale of supersymmetry breaking are both close to the string 
scale Ms , so that the effective field theory is four-dimensional, po-
tentially facilitating an asymptotically safe fixed point for all gauge 
interactions, including an Abelian one [72]. For the simplest sce-
nario, we also assume that additional states from string theory 
(such as heavy moduli and superpartners) decouple at high ener-
gies (i.e., directly below the string scale), so that the effective-field 
theory regime contains only the Standard Model and gravity. This 
assumption can be relaxed to accommodate further matter fields 
that arise from string theory, if an asymptotically safe fixed point 
persists under extensions by the corresponding additional fields. 
We will work with general numbers of matter fields (which may 
include light moduli, axions, etc) in the following. In brief, our 
setup explores those parts of the string landscape that feature an 
emergent scale-symmetry.

The degree to which the asymptotically safe scaling regime de-
termines the deep-IR physics by mapping a given range of initial 
conditions at the string scale to a narrow IR range of couplings, 
cf. Fig. 1, depends on the following two properties:

(i) How strongly the irrelevant couplings are attracted to the 
asymptotically safe fixed point.

(ii) How large the separation is between the asymptotically safe 
transition scale ktr and the string scale Ms .

In such a setting, the physics in the deep IR is essentially deter-
mined by the ASSM. This might include the intriguing consequence 
that the Higgs mass [1,74,75], the top quark mass [2], the bot-
tom quark mass [5] and the Abelian gauge coupling [76,3] could 
emerge as predictions of string theory. This follows since func-
tional RG studies indicate that the respective couplings come out 
as irrelevant couplings with finite asymptotically safe fixed-point 
values. In turn, the relevant couplings in state-of-the-art approx-
imations in asymptotically safe gravity are the cosmological con-
stant, the Newton coupling, and a superposition of the 4-derivative 

1 For simplicity, we are taking the compact volume to be not that large so that 
the Kaluza-Klein (compactification) scale is close to the string scale.
Fig. 2. We show a sketch of a three-dimensional space of couplings with an asymp-
totically safe fixed point (light purple) and its UV critical surface (purple). Its IR crit-
ical surface is one-dimensional, and the starting point provided by a string model 
(light cyan) lies within it, resulting in the effective QFT description of this string 
model approaching the fixed point very closely, before the RG trajectory leaves the 
fixed-point regime close to the UV critical surface. For an alternative string model 
(string ’) the starting point for the QFT description (darker cyan) lies off the IR crit-
ical surface of the fixed point.
An earlier discussion explaining how models which are not fundamentally 
asymptotically safe can nevertheless appear effectively asymptotically safe can be 
found in [73].

curvature couplings, see, e.g., [16,23,30]. Thus, the constraint of 
reaching this fixed point with the given relevant couplings from 
string theory selects a highly predictive corner of the string land-
scape.

We also point out that the gravitational RG flow can connect 
a fixed-point regime at negative cosmological constant to an IR 
regime with a tiny, positive value of the cosmological constant, 
as required observationally. This could help to address a challenge 
in string theory, where the existence of consistent de Sitter (dS) 
backgrounds such as the D̄ (anti-D-brane) uplift of KKLT [77], see 
also [78–80] for other potential constructions, is under debate, see, 
e.g., [81–86]. Typically, in string theory, it is more natural to get 
anti-de Sitter (AdS) backgrounds, and in contrast to the supersym-
metric AdS background of KKLT (prior to introducing D̄ ’s) one can 
even get SUSY broken AdS backgrounds [87]. In most string phe-
nomenology discussions based on the latter, some additional input 
(not necessarily D̄ ’s, see e.g., [78–80]) is used to ‘uplift’ such an 
AdS minimum to dS. However, this last step is somewhat less well 
under control compared to the original AdS construction in [87].

The difficulty of getting stable dS vacuum configurations in 
string theory (see [88] for a recent discussion) has even been el-
evated to the level of a conjecture [89] [90], see also [91], stating 
that it is not possible to get a stable dS solution in a controlled 
approximation scheme within string theory. Be that as it may (and 
in fact, this conjecture is indeed controversial, see, e.g., [92]), it 
should be pointed out that while the effective field theory arising 
from string theory is expected to be defined at (or close to) the 
string scale, the observed positive cosmological constant is mea-
sured in the deep IR. Hence it is conceivable that a negative cos-
mological constant obtained from string theory is consistent with 
a positive cosmological constant at cosmological scales. It should 
be emphasized that the cosmological constant is an IR repulsive 
coupling of the asymptotically safe scaling regime. Hence, an RG 
trajectory which realizes such an AdS-dS transition is not generic 
but has to be set by rather specific initial conditions of the effec-
tive field theory arising from string theory. Nevertheless, it could 
connect a string theory with a negative microscopic cosmological 
constant to a positive cosmological constant in the infrared.
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Establishing a relation between asymptotically safe gravity and 
string theory is also interesting for the following reason: The pres-
ence of a fixed point of the RG flow is not sufficient to guarantee 
a well-defined ultraviolet completion, as the microscopic dynamics 
might feature kinematical instabilities, leading to a unitarity prob-
lem. Four-derivative gravity, which features an asymptotically free 
UV completion [93], is typically considered an example of the fact 
that the presence of higher-derivative terms can spoil unitarity. 
Note, however, that the mere existence of kinematic instabilities 
at the classical level or at a finite order of derivatives is far from 
being conclusive with regard to unitarity or its lack. The possibility 
of non-perturbative cures of perturbative unitarity problems has 
been investigated recently in e.g., [94–97].

Asymptotically safe gravity is an example of a non-perturbative 
setup and higher derivative terms typically come to all orders. 
Thus, a Taylor expansion of the inverse propagator up to finite 
order in momenta (which generically features additional zeros) is 
inadequate to answer the question if asymptotically safe gravity is 
unitary. For a recent discussion of this see, e.g., [98]. Of course, in 
turn, it makes a conclusive analysis even more intricate.

Within the scenario we explore here, the above intricacies are 
softened: Additional poles in the gravity propagator can be present 
without spoiling the consistency of the theory, as long as they lie 
at or beyond the string scale. Conversely, within the present sce-
nario one can even use the scale of additional poles in order to 
estimate the required value of the fundamental string scale.

In Sec. 2, we present explicit conditions on the parameters of 
the fundamental string theory and the intermediate asymptotically 
safe scaling regime that are necessary to realize the required sep-
aration of scales, i.e., ktr < Ms , cf. Fig. 1. In Sec. 3, we comment 
on the possibility of a transition from a negative cosmological con-
stant at Ms transitioning to a viable positive value at macroscopic 
scales. In Sec. 4, we discuss first implications of the weak gravity 
conjecture in the presented scenario. Finally, we summarize and 
give an outlook in Sec. 5.

2. Conditions realizing an intermediate scaling regime

Let us now analyze the conditions on the string scale Ms and 
the transition scale ktr that have to hold within our proposed sce-
nario. These considerations can inform model-building efforts, both 
on the string-theory side as well as the asymptotically safe side. 
To that end, we now discuss the flow of the gravitational coupling. 
Define the dimensionless gravitational coupling at the momentum 
scale k as

g(k) ≡ k2

8π M2
Pl(k)

. (1)

Here MPl(k) is the running Planck scale - the physical gravitational 
coupling giving the initial condition in the deep IR is M2

Pl(k = 0) ≡
1/(8π GNewton). To lowest order in the truncation of the infinite 
series for the beta function of the gravitational coupling we have 
in a semi-perturbative approximation2

βgravity = dg

dt
= 2g − 2

g2

g∗
. (2)

Here t = ln k and g∗ is the fixed point value of g . The fixed-point 
coupling g∗ needs to be positive in order to have a physically 

2 In this approximation higher dependencies of the coupling g that come from 
the fully non-perturbative propagator are neglected. Applying this approximation to 
marginal couplings allows us to recover the universal 1-loop coefficients, see, e.g., 
[99].
meaningful asymptotically safe theory. For a UV fixed point with 
g∗ < 0 the fixed point at g∗ = 0 shields the UV fixed point from a 
low-energy regime with attractive gravity, as realized in our uni-
verse. In pure gravity the UV fixed point has been found at g∗ > 0, 
[8–38]. This is a consequence of gravitational fluctuations having 
an antiscreening effect on the Newton coupling, thereby generating 
an asymptotically safe fixed-point regime. Of course, matter fluctu-
ations also drive the value of g∗ , towards either larger or smaller 
values, as has been explored in [41–43,45–47,5,49–51]. In a first, 
rough, approximation we may write this dependence of g∗ as

g∗(Neff) ≈ 12π

Neff
. (3)

Roughly speaking, Neff comprises a weighted sum of the num-
ber of spin s fields with s = 0, 1/2, 1, 3/2 and contains the ef-
fect of metric fluctuations, s = 2. The higher spin modes (see 
[100]) are required for supersymmetric extensions of the Standard 
Model. The detailed fixed-point properties of fully coupled gravity-
matter system -which contain higher-order as well as non-minimal 
interactions- is subject of current research.

We proceed with the discussion of the consequences of this 
setup. We first focus on the case g∗(Neff) > 0, that is Neff > 0, 
and comment on the second case below. Integrating the flow equa-
tion (2) and re-expressing in terms of the running Planck scale, cf. 
equation (1), we have

M2
Pl(k) = M2

Pl(0) + 1

8π g∗
k2 , (4)

where M2
Pl(0) is the low-energy Planck mass, i.e., we have set the 

low-energy reference scale k0 = 0. For k2 � 8π M2
Pl(0) g∗ , the di-

mensionful Planck mass is essentially constant, M2
Pl(k) ≈ M2

Pl(0), 
as expected in the classical-gravity regime. In contrast, for k2 >

8π M2
Pl(0) g∗ , we are in the asymptotically safe scaling regime, 

where the Planck mass exhibits scaling, MPl(k2) ∼ k2.
At the transition scale k = ktr, the scale-dependence vanishes, 

such that the following estimate for the transition scale holds

k2
tr = 8π M2

Pl(0) g∗ . (5)

If the fixed-point value is sufficiently low, fixed-point scaling can 
even set in well below the Planck scale. For g∗ ∼ O (1) the quan-
tum correction to the running (squared) Planck scale is a small 
(∼ 4%) effect even at k = MPl(0). But, if Neff � 1, so that g∗ � 1, 
the quantum corrections can be significant. Such a change of 
the fixed-point value of the Newton coupling could follow from 
the impact of quantum fluctuations of matter, see e.g., [41,42,45]. 
Whether this is indeed realized with a suitable number of matter 
fields is beyond the scope of the present work.

In view of the flow equation (4), one needs to reconsider the 
relation between the matching scale k̄, at which QFT should be 
replaced by string theory, and the low-energy Planck scale MPl(0). 
If an asymptotically safe scaling regime is realized, the matching 
relations should actually use the running Planck scale, cf. Eq. (1), 
at the matching scale k̄, which differs from the low-energy Planck 
scale

M2
Pl(k̄) = k̄2

8π g(k̄)
= M2

s V√
gs

, (6)

where V is the volume of the compact space in string units, and 
gs is the string coupling. This is because the relation between the 
4D Planck scale and the string scale is expected to be valid at the 
cutoff scale which we denote by k̄. This relation can be read off 
from the low-energy effective action.
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The matching scale k̄ should be somewhat less than the Kaluza-
Klein (KK) scale, which is related to the string scale by M2

KK =
M2

s /V1/3. Using Eq. (6) to solve for the string scale we arrive at

M2
KK =

√
gs

V4/3

k̄2

8π g(k̄)
� k̄2 . (7)

This gives the bound on the compact space volume

V4/3

√
gs

� 1

8π g(k̄)
<

1

8π g∗
M2

Pl(k̄)

M2
Pl(0)

. (8)

The second inequality comes from the requirement that there is a 
scaling regime, i.e., that

k̄2 > k2
tr. (9)

In full theory space (i.e., the space of gravitational couplings), the 
existence of the scaling regime depends on the values of the grav-
itational couplings at k̄ in relation to the location of the asymp-
totically safe fixed point. For simplicity we now strengthen the 
inequality (8) by neglecting the flow of all other couplings.

Now from Eq. (4) we have

M2
Pl(k̄)

M2
Pl(0)

=
(

1 − g(k̄)

g∗

)−1

. (10)

This shows that for a long scaling regime, g(k̄) should be suffi-
ciently close to g∗ , just as one would expect.

We may rewrite the second inequality in (8) further as

1

g(k̄)
<

1

g∗ − g(k̄)
. (11)

Further using that g∗ > 0, this implies that

1 <
g∗

g(k̄)
< 2 , (12)

where the first inequality comes from the requirement of positivity 
of g(k̄). The first inequality also ensures that the potential scaling 
regime connects the string theory to the Gaussian fixed point, i.e., 
to a viable IR limit. Thus, the bound on the volume in (8) can be 
expressed in terms of the fixed- point value of the dimensionless 
gravitational coupling as

V4/3

√
gs

� 1

8π g(k̄)
<

2

8π g∗
. (13)

The two inequalities (13) and (12) together ensure that there is a 
scaling regime, i.e., that k̄2 > k2

tr, and that it connects to a viable IR 
limit. Accordingly these inequalities can be satisfied by either

1. a small asymptotically safe fixed-point value for g∗ ,
2. or a large string coupling gs .

Note that a third possibility i.e., V < 1 is not realizable because 
of T-duality considerations. This essentially means that the string 
scale is a lower limit for length scales - smaller scales have to be 
analysed in terms of the T-dual theory. For instance a type IIB com-
pactification with a Calabi-Yau space with some Euler character χ
at below the string scale is actually a type IIA theory with Euler 
character −χ . Thus one simply has to replace one string com-
pactification model by another. (See for instance the discussion in 
[69,70] chapters 8 and 13.) Given either of these conditions the 
proposed scenario summarized in Fig. 1 might be realized. Let us 
now comment on them further.
The first option for satisfying Eq. (13) is a fixed-point value of 
the Newton coupling which is sufficiently small. In such a setting 
k̄ might even be as low as the infrared Planck scale, while k2

tr <

M2
Pl(0) would need to hold. This would imply a weakly coupled 

asymptotically safe regime with a very small fixed-point value. It 
is intriguing that hints for a rather weakly-coupled (in the sense 
of near-Gaussian scaling behavior) asymptotically safe regime have 
been found in pure gravity [23,101,35], and in particular with mat-
ter [48,5,49]. The latter also might allow a near-perturbative UV 
completion for the Standard Model [2–4,72]. Such a scenario might 
be achievable under the impact of an appropriate number and type 
of matter degrees of freedom [41–43,45–47,5,49,50].

For the second option, the string theory would have to be 
strongly coupled, i.e., gs could be sufficiently large. While this is 
not necessarily a regime that is computationally easy to access 
on the string side, it is nevertheless intriguing to observe that 
the strongly-coupled string regime could be related to a weakly-
coupled asymptotically safe regime in our setting. However often 
a strongly coupled string theory is S-dual to another string theory 
in the weak coupling regime - for instance, type I string theory in 
strong/weak coupling is S-dual to heterotic SO(32) string theory, 
while type IIB string theory is self-dual under S-duality (in effect 
SL(2,Z)) transformations. Hence if one finds that a given asymptot-
ically safe field theory is related to a strongly coupled regime of 
the corresponding string theory, the latter should be replaced by 
its S-dual weakly coupled partner and the corresponding field the-
ory looked at for its asymptotically safe properties.3 In the case 
of type IIB not only the string coupling, but also the fluxes in the 
compactification manifold change, thus changing the phenomenol-
ogy.

In the other case, Neff < 0, there is no asymptotic safety, since 
g∗ < 0, and the cutoff scale following from the running of g in 
Eq. (2) is

k̄2 	96π2M2
Pl(0)

|Neff| � M2
Pl(0) , (14)

where the inequality holds for large |Neff|. This scale is basically 
the so-called species scale kspecies ∼ MPl(0)/

√
N (see for instance 

[102], especially the argument around eqn. 5.16).
The sign of Neff is crucial. If it is positive, we could have asymp-

totic safety and the above arguments for a potential compatibility 
with string theory would be valid. In this case the UV Planck mass 
may be much larger than the IR Planck mass and gravity is weakly 
coupled in the UV. On the other hand for Neff < 0 the UV Planck 
mass is much smaller, so gravity becomes strongly coupled in the 
UV. Of course all of the above arguments are strictly valid only in 
the leading order truncation of the RG equations.

The above discussion would mean that the existence of an 
asymptotically safe fixed point would (approximately) determine 
the infinite set of irrelevant couplings at the string/cutoff/KK scale. 
In string theory terms it would mean that the bottom up physics is 
fixing the particular compactification, the choice of the Calabi-Yau 
manifold, set of fluxes etc., i.e., a particular string theory vacuum 
from the landscape.

3. From microscopic anti de Sitter to macroscopic de Sitter

Another important property of our scenario is the dynamical 
change of the cosmological constant in the UV regime. This dy-
namics can turn a negative cosmological constant at microscopic 
(UV) scales to a positive one at large (IR). This happens as the cos-
mological constant is not protected by symmetries in the presence 

3 We wish to thank Arthur Hebecker for drawing our attention to this issue.
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Fig. 3. We show the RG flow towards the IR in the (g − λ) plane in the approxima-
tion of [41], which exhibits RG trajectories crossing from the fixed point at negative 
cosmological constant to a tiny positive cosmological constant in the infrared for 
Neff = 42 and N ′

eff = 66, based on Eq. (2) and Eq. (15). The chosen values for Neff
and N ′

eff correspond to the matter content of the Standard Model in the approxima-
tion of [41].

of gravitational fluctuations (i.e., at g �= 0). We exemplify this in 
the simple approximation of matter-gravity systems in [41], where 
the RG flow of the dimensionless cosmological constant λ = �/k2

is given by

βλ = −2λ + g
λ

6π
(−Neff + 30) − g

4π
N ′

eff. (15)

Here, N ′
eff and Neff depend on the number of matter fields. The last 

term in Eq. (15) drives the RG flow of λ across λ = 0 to positive 
values for N ′

eff > 0. The determination of N ′
eff and Neff is subject 

to systematic uncertainties due to the choice of truncation, see, 
e.g., [41,42,45,50]. Working in the approximation of [41], we show 
the RG flow in the (g − λ) plane with the desired characteristics 
in Fig. 3. As one can see from the flow, multiple trajectories con-
nect the fixed-point value at negative λ∗ to a positive IR-value of 
the cosmological constant. Since the cosmological constant is as-
sociated with a relevant direction of the fixed point, its IR value 
is a free parameter, allowing us to connect a negative fixed-point 
value with the observed value. For an example of such a concrete 
RG trajectory that is obtained as a solution to the system Eq. (2)
and (15), see Fig. 4.

4. Weak gravity conjecture

For the above scenario to be realized, requirements from string 
theory for a consistent low-energy description should be satisfied 
by asymptotic safety. A prominent example is given by the weak 
gravity conjecture (WGC) [103], see also, e.g., [104–107] and, e.g., 
[108,109] for applications, which states that in a theory with a 
U(1) gauge symmetry and corresponding coupling e, there should 
be a charged particle with charge q (we replace eq → e) and mass 
MWGC, such that

eMPl ≥ MWGC . (16)

Here, MPl = MPl(k) is the energy dependent Planck mass. In par-
ticular, it should not be confused with the low-energy value of the 
Planck mass MPl(0) introduced earlier.

As a minimal requirement for whether asymptotically safe 
models could lie in the string-theoretic landscape, we will inves-
tigate whether the weak gravity conjecture holds in the ASSM. 
Fig. 4. We show the product G · � = g · λ of the dimensionfull Newton coupling G
and dimensionful cosmological constant � along an RG trajectory that solves Eq. (2)
and (15) for Neff = 42 and N ′

eff = 66. Along the trajectory, the dimensionful cosmo-
logical constant, measured in units of the Planck mass, exhibits the asymptotically 
safe scaling regime in the UV, and a classical scaling regime in the IR, where it 
transitions from negative values (anti de Sitter) to positive values (de Sitter).

Within string theory, proofs of the conjecture based on various as-
sumptions can be found, e.g., in [110–112].

A second motivation to study the WGC in the context of asymp-
totic safety is independent of string theory. Given the remoteness 
of the Planck scale from experimentally directly accessible scales, 
direct observational tests of quantum gravitational physics are 
challenging. Accordingly, deriving restrictions on particle physics 
that come from a consistent embedding into a more fundamen-
tal theory including quantum gravity can serve as an observational 
guide towards quantum gravity, highlighting the importance of un-
derstanding the interplay of quantum gravity with matter, as also 
emphasized, e.g., in [113]. In this spirit, asymptotic safety has been 
investigated in [114,41,42,44,115,46]. In string theory, this is the 
program of delineating the landscape with respect to the swamp-
land [116], see [102] for a recent review. As there are more generic 
arguments concerning global and gauged symmetries in black-hole 
spacetimes [117,118,103,104] [119], the weak-gravity conjecture 
might be expected to hold beyond string theory. It is therefore 
of independent interest to determine whether asymptotically safe 
gravity-matter models obey the weak-gravity conjecture, irrespec-
tive of a possible embedding in string theory.

To be more specific, some comments about the inequality (16)
are in order. It is introduced based on actions that describe the 
physics of processes at the corresponding scale. A basic lesson from 
quantum field theory is that all couplings depend on the energy 
scale used to probe any physical process. Therefore, the couplings 
appearing in the inequality should be interpreted as running cou-
plings, as was already pointed out in the original paper [103]. In 
particular, the Planck mass, which describes the strength of grav-
itational interactions and the mass MWGC depend on the energy, 
too. To describe this properly, we will focus on the ratio of MWGC

and Planck mass, writing the above inequality (16) as

e(k) ≥ mWGC(k)

mPl(k)
, (17)

where k is the energy scale of the relevant physics. mWGC and mPl

are the dimensionless counterparts of the two mass-scales. In par-
ticular, such dimensionless ratios of masses run, i.e., depend on the 
energy scale. In the scale-invariant, asymptotically safe fixed-point 
regime, all dimensionless counterparts of couplings are constant. 
This implies that in this regime
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e(k) = e∗ ,
mPl(k)

mWGC(k)
= mPl, ∗

mWGC ∗
. (18)

Herein, e∗ , mPl, ∗ and mWGC ∗ are the fixed-point values of these 
couplings. Accordingly, the fixed-point properties of asymptotically 
safe quantum gravity determine whether the weak-gravity conjec-
ture holds. In the following we will only investigate a necessary 
condition for this, namely that (17) is satisfied at the fixed point, 
and will not analyze whether further constraints arise along the 
full RG flow.

Asymptotically safe quantum gravity is compatible with two 
distinct fixed-point structures in the matter sector, as discussed 
in [115]. The interacting nature of gravity at an asymptotically safe 
fixed point always percolates into the matter sector, such that it is 
not possible to set all matter interactions to zero, as pointed out 
in [114,120]. Yet, marginal interactions, such as those in the Stan-
dard Model, as well as masses, can either be finite or vanishing, 
depending on the respective choice of one of two possible fixed-
point structures.

A first option is a maximally symmetric fixed point, at which 
only higher-order interactions, not relevant for our considerations, 
are present [114,120,121]. At this fixed point, all minimal gauge-
interactions and scalar-potential-terms vanish, i.e., mWGC ∗ = 0 and 
e∗ = 0. Accordingly, the scenario summarized in the inequality (17)
does not apply and one would have to derive similar constraints 
for higher-order couplings.

A second fixed point, at which mWGC ∗ �= 0 and e∗ = 0 violates 
the WGC. Conversely, a fixed point at which e∗ �= 0 but mWGC ∗ = 0
would trivially satisfy the WGC, but such fixed-points cannot exist, 
since for a charged scalar, a finite fixed-point value of the mass is 
necessarily induced by non-vanishing gauge interactions.

The final option is a fixed point at which a finite value for the 
gauge coupling [76,121,3,4] as well as for the mass [122] is real-
ized. A finite fixed-point value e∗ > 0 could be realized in asymp-
totically safe gravity-matter models. In the approximations of the 
dynamics in [123,76,124,121,3,46,4], it arises from a balance of an-
tiscreening quantum gravity fluctuations with screening quantum 
fluctuations of charged matter, encoded in the beta function as fol-
lows

βe = − f g e + β(1) e3 +O(e5) , (19)

where the second term is the standard one-loop term from 
charged matter. The first term arises from quantum-gravity fluc-
tuations, and f g depends on the gravitational couplings. Most im-

portantly, it is proportional to the Newton coupling, i.e., to m−1/2
Pl . 

Further, it depends on additional gravitational couplings, such as 
the cosmological constant. In a perturbative setting, a similar con-
tribution has been discussed in [125–129]. In the asymptotically 
safe fixed-point regime, mPl = mPl, ∗ , such that f g = const. Func-
tional RG studies yield f g ≥ 0 [123,76,124,121,3,46,4]. Hence, a 
fixed point for the gauge coupling in the one-loop approximation 
arises at

e∗ =
√

f g

β(1)
. (20)

We now distinguish between fermionic and bosonic fields as can-
didates for the light, charged particle in the WGC. In the Standard 
Model, fermions are protected from acquiring a mass at high ener-
gies by chiral symmetry, even in the presence of quantum-gravity 
fluctuations [114,130,44,115,131]. An explicit breaking of chiral 
symmetry through finite fixed-point values for Yukawa couplings 
is possible [132,115,2,4] in conjunction with a finite vacuum-
expectation value for a scalar, leading to finite fermion masses. 
Here, we assume that no spontaneous symmetry breaking oc-
curs beyond the Planck scale, or to be more precise beyond eMPl. 
Therefore fermions remain massless in the UV fixed-point regime. 
Thus, as e∗ > 0, the weak-gravity conjecture is trivially satisfied in 
this case. We conclude that asymptotically safe models in which 
a light charged fermion exists, which acquires its mass through 
spontaneous symmetry breaking below the Planck scale, appear to 
be compatible with the weak-gravity conjecture. Accordingly, such 
models could lie in the landscape of string theory.

In the following, we focus on a charged scalar field as the light-
est charged particle. As a consequence of finite fixed-point values 
for the Planck mass and the gauge coupling, mWGC ∗ must be finite, 
as well. Specifically, the beta function for the mass is given by

βm2
WGC

= k ∂k m2
WGC

= −2 m2
WGC + fm m2

WGC − 3

32π2
e2 + . . . (21)

It includes a canonical term −2 m2
WGC, a contribution from gauge-

field fluctuations ∼ e2 and a gravitational contribution ∼ fm . Just 
as in the case of the gauge coupling, fm depends on the grav-
itational couplings including the Newton coupling but also, e.g., 
the cosmological constant, see, e.g., [39,133–135,74] for the explicit 
form. For simplicity, we have omitted additional contributions due 
to scalar self-interactions here. At the asymptotically safe fixed 
point, mPl = mPl, ∗ and e = e∗ . As a consequence of e∗ �= 0, we can-
not set mWGC ∗ = 0. Instead, a finite fixed-point value for the mass 
is generated, see also [122],

m2
WGC ∗ = −3 e2∗

32π2 (2 − fm)
. (22)

This expression requires some explanations. Depending on fm , 
m2

WGC ∗ can have either sign. A negative sign indicates a phase 
of spontaneously broken symmetry. In the following, we focus 
on the simpler case fm > 2. The beta function Eq. (21) already 
shows that the quantum-gravity contribution acts like an effec-
tive change of dimensionality for the mass parameter. It is positive 
[39,133–135,74], and can even become larger than 2. In this case, 
quantum-gravity fluctuations render the Higgs mass-parameter ir-
relevant. This could provide a solution to the gauge-hierarchy prob-
lem, as proposed in [136]: Starting from an arbitrary value of the 
Higgs mass at the scale �string, quantum fluctuations of the metric 
drive the mass towards zero for a sufficiently large separation be-
tween �string and ktr, such that it becomes naturally tiny at the 
Planck scale. This solution to the gauge-hierarchy problem also 
becomes available for those string models for which asymptotic 
safety is the effective low-energy description. We highlight that the 
present solution only requires new physics at the Planck scale. This 
is unlike most solutions to the hierarchy problem, which require 
new physics close to the electroweak scale. The key point about 
the resurgence mechanism is that the new physics – in this case 
quantum gravity – provides a very particular microscopic value 
of the Higgs mass parameter at the Planck scale, such that it is 
automatically much smaller than the Planck scale, even though it 
depends on the cutoff scale quadratically below the Planck scale. 
For this scenario, fm > 2 must hold such that the fixed-point value 
for the mass is positive. Accordingly, the weak-gravity conjecture 
becomes a nontrivial constraint on the asymptotically safe theory, 
as we will show now.

Inserting the fixed-point value (22) for the mass mWGC, the 
fixed-point value for the charge actually drops out of the inequal-
ity (17), to wit

g∗ ≤ 4π
( fm − 2) . (23)
3
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Herein, we have used the relation between Newton coupling and 
Planck mass, g = 1/(8πm2

Pl). The inequality (23) actually consti-
tutes a nontrivial constraint on the microscopic gravitational pa-
rameter space, since fm depends on g as well as additional grav-
itational couplings. In the simplest approximation, this becomes a 
restriction on the microscopic value of the cosmological constant. 
Given this restriction on parameter space, one can check whether 
an asymptotically safe fixed point exists which lies in the string 
landscape.

5. Conclusions and outlook

We have found indications that the weak gravity conjecture 
imposes constraints on the microscopic parameter space of asymp-
totically safe models. This observation in itself is independent of 
the existence of an embedding of the ASSM into string theory.

In a scenario with string theory as the fundamental theory of 
quantum gravity, an intermediate asymptotically safe fixed point, 
see Fig. 1, is expected to be subject to the weak gravity conjec-
ture. Moreover, such a scaling regime is a potential candidate for 
the low-energy effective description emerging from string theory. 
Our work, therefore, provides a first indication that an asymp-
totically safe region might exist in the landscape. We highlight 
that the RG flow of an asymptotically safe scaling regime could 
potentially connect a compactification of string theory on a back-
ground with a negative microscopic value of the cosmological con-
stant to infrared physics in dS space (i.e., with a positive low-
energy value of the cosmological constant). We hasten to add that 
further conditions beyond the weak-gravity conjecture should be 
satisfied. Most importantly, we have not constructed a specific 
choice of compactification, for which the coupling-values at k̄ lie 
in the basin of attraction of the asymptotically safe fixed point, 
and where k̄ � ktr. We simply point out that such a construc-
tion could be possible. In that region of the string-theoretic land-
scape, the low-energy phenomenology of asymptotic safety and 
string theory would essentially be indistinguishable. This would, 
in particular, imply that first-principle calculations of Standard 
Model couplings, which could be possible in asymptotic safety, 
would also apply to string theory. On the other hand, embedding 
asymptotic safety in a UV completion provided by string theory 
places questions about unitarity in asymptotic safety [96,137] in 
a different light. In a string-embedding, asymptotic safety could 
even feature unstable propagating modes. As long as their masses 
are at or above the string scale, these instabilities simply con-
stitute a signature for a more fundamental UV completion and 
do not pose problems for the stability of the theory. Accordingly, 
the class of fixed points that allows for the presented scenario 
might be larger than the class of fixed points that allows for 
fundamental asymptotic safety, where ghost modes should be ab-
sent.

There has been much discussion on the constraints on QFTs 
coming from the requirement of a consistent coupling to quan-
tum gravity. Most of the discussion has been in the context of 
string theory - i.e., under the assumption that quantum gravity 
corresponds to string theory. Asymptotic safety also gives restric-
tions and has been explored, e.g., in terms of its implications 
for chiral fermions [114], a light Higgs [136], restrictions on the 
maximum number of matter fields [41,100,42] and the allowed 
interaction structures for matter [132,120,115]. It is of interest 
to understand to what extent such restrictions are compatible 
(or in conflict with), the string theory restrictions, i.e., delineate 
the boundaries and overlapping regions of the respective land-
scapes.
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