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Abstract: In this paper, we extensively analyzed the reheating dynamics after inflation
and looked into its possible implication on dark matter (DM) and inflaton phenomenology.
We studied the reheating through various possible channels of inflaton going into massless
scalars (bosonic reheating) and fermions (fermionic reheating) via non-gravitational and
gravity-mediated decay processes. We further include the finite temperature effect on the
decay process. Along with their precise roles in governing the dynamics, we compared
the relative importance of different temperature-corrected decay channels in the gradual
process of reheating depending on the reheating equation of state (EoS), which is directly
related to inflaton potential. Particularly, the universal gravitational decay of inflaton is
observed to play a very crucial role in the reheating process for a large range of inflaton
decay parameters. For our study, we consider typical α-attractor inflationary models. We
further establish the intriguing connection among those different inflaton decay channels
and the CMB power spectrum that can have profound implications in building up a unified
model of inflation, reheating, and DM. We analyze both fermion and scalar DM with
different physical processes being involved, such as gravitational scattering, thermal bath
scattering, and direct inflaton decay. Gravitational decay can again be observed to play a
crucial role in setting the maximum limit on DM mass, especially in the FIMP scenario,
which has already been observed earlier in the literature [52]. Depending on the coupling
strength, we have analyzed in detail the production of both FIMP and WIMP-like DM
during reheating and their detailed phenomenological implications from the perspective of
various cosmological and laboratory experiments.
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1 Introduction

Reheating is a phenomenon that has been studied quite extensively over the years. It is
the phase that bridges the two paradigms of cosmology, namely, inflation [1–3] and the
standard Big Bang. While inflation sets the uniform initial condition for all the causally
disconnected patches of exponentially large homogeneous space of the size of our present
universe, the subsequent phase fills the spaces with visible hot matters homogeneously
distributed through the process called reheating [4–7]. In the standard scenario, reheating
is the physical process through which the inflaton field decays into the visible matter fields.
The endpoint of the reheating is when the standard radiation-dominated universe begins,
which sets the proper initial conditions for Big Bang nucleosynthesis (BBN). From these
chronological cosmological events, it is obvious that the state of our present universe must
be non-trivially dependent on the process of reheating. Depending on the nature of inflaton
and its decay, reheating dynamics can be effectively described by parameters such as the
equation of state of inflaton (EoS) and its coupling with other fields. Investigation of this
phase is still an ongoing effort since its theoretical inception proposed in [4–7]. Since there is
no way to directly probe this phase with the present experimental techniques, it is important
instead to understand this phase through various possible physical processes and look for
direct/indirect process-dependent observables which can be probed directly/indirectly in
future experiments. Our present study comes with two main objectives: firstly, study the
reheating through various possible decay channels; namely, i) inflaton (φ) decaying into
bosonic radiation through gr1φs

2, gr2φ
2s2 interaction, ii) inflaton decaying into fermionic

radiation through hrφff̄ interaction, iii) inflaton decaying into all fundamental fields
through minimal s-channel graviton exchange interaction, (1/MP )(hµνTµνφ + hµνT

µν
s/f ) [8, 9],

and identify the region of their dominance in the parameter space of bosonic coupling gri
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and fermionic coupling hr. Tµν is the energy-momentum tensor and hµν is the tensor metric
perturbation. To this end, we would like to point out that in the context of gravity-mediated
decay, the effect of non-minimal Ricci curvature (R) coupling ξφ2R has been considered
in the reference [10]. However, the contribution of such a term has been shown to be
negligible for dimensionless coupling ξ < 1 and hence will be ignored in this paper. On
top of those couplings, we further included the finite temperature effect on the decay
process and compared it with the zero-temperature case for all the cases. Our second
objective is to study the dark matter (DM) production during reheating considering different
physical processes via gravitational scattering, thermal bath scattering, and direct inflaton
decay to DM via gx1φS2, gx1φ

2S2 interactions for scalar DM S, and hxφF̄F interaction for
fermionic DM F .

From the phenomenological perspective, DM is assumed to be an integral part of the
visible standard model components in quantum field theoretic framework [11–32]. In this
framework it is just the DM mass and the cross-section which are shown to be sufficient to
explain the current abundance of DM. However, a large number of attempts over the years
to detect [33–37] such particle appeared to go in vain. Therefore, going beyond the existing
framework of both experimental and theoretical approaches to understanding dark matter
may seem to be important [38–41]. Towards this endeavor recent proposal of graviton
mediated DM production [42–51] has been shown to have some promising universal features,
and it cannot be ignored in any DM studies. Interestingly such gravitational production
has been observed to set a limit on the maximum possible value of the DM mass [52, 53].
In the standard DM literature, two distinct DM production mechanisms exist in the early
universe. For the standard WIMP (Weakly Interacting Massive Particle) scenario, the DM
is assumed to be in thermal equilibrium with the radiation bath. During the course of
background evaluation, DM particles became thermally decoupled from the bath (known
as the Freeze-out mechanism), and the present value of abundance is achieved [54–61]. In
the second type, known as FIMP (Feebly Interacting Massive Particle) scenario, the DM is
assumed to remain out of equilibrium with the radiation bath and produced due to decay
of other fields throughout. During the course of background evaluation, the decay channel
ceases to produce DM at some point (known as the Freeze-in mechanism), and the present
value of abundance is achieved [14, 16, 19, 20, 62–66]. In this paper, we will explore those
mechanisms in the context of the early universe with a non-trivial reheating phase. Apart
from understanding the very nature of DM, such studies actually open up the possibilities of
looking for the signature of reheating and, most importantly, the nature of inflaton through
the physics of DM.

Most of the DM phenomenological studies were confined to the early radiation-
dominated universe [54–61]. DM physics during reheating has gained significant interest
only recently [25, 26, 62, 68–77]. Primary motivation of this attempt has two-folds: a) to
construct a unified framework where inflaton is assumed to be an integral part of DM model
building, and b) explore the physics of reheating and its impact on DM physics. Finally,
analyze and constrain the inflaton, reheating and DM parameters through the constraint on
extra relativistic degrees of freedom in terms of ∆Neff at the time of Big-Bang Nucleosynthe-
sis (BBN) [78–81], and different DM searches in the astrophysical/cosmological/laboratory
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experiments [82–86]. Keeping those two-fold motivations in mind, we study in detail the
parameter space wherein both WIMP and FIMP-type mechanisms can be realized. In this
study, we will further see how universal gravitational DM production during the initial
stage of the reheating phase plays an important role in constraining the DM parameters.
WIMP production during reheating has been considered very recently in [87, 88]. However,
detailed studies taking into account the physics of inflation and the subsequent reheating
processes are still lacking. In this paper, we fill this gap and study in detail its constraints
and significance in the context of present and future experiments.

We organize our paper as follows: in section 2, we will discuss the basic setup for
the perturbative reheating processes for different decay channels and their connection
with the inflationary parameters. As mentioned earlier, we include the effect of finite
temperature corrections in the decay widths for various decay channels. In section 4, we
discuss in detail the reheating dynamics due to two different bosonic decay channels. We
identify the parameter regions with respect to reheating EoS, where reheating can be
successfully achieved depending upon the strength of the different decay channels under
consideration. We further discuss the possible constraints on those inflationary coupling
parameters with respect to the CMB observations. In section 5, we discuss in detail the
fermionic reheating scenario where the reheating occurs due to the inflaton decaying into
fermionic radiation. Similar to the bosonic reheating case, we analyze and constrain the
inflaton-fermion coupling parameter through the perspective of inflationary observable and
CMB constraints. In section 6, We consider various possible scenarios corresponding to
DM production. We elaborately discuss DM production from direct inflaton decay and
thermal radiation separately. In section 7 and 8, we discuss their possible constraints from
the perspective of various theoretical and experimental bounds. Finally, we conclude with
some future directions.

2 Perturbative reheating: general set up

In the first half of our present paper, we will discuss in detail the single-sector reheating,
which has been studied earlier for some special cases [25, 26, 71, 89–91]. However, we
will perform a comprehensive study on this with many significantly new results. In the
second half, we include dark matter production and explore different possible production
mechanisms and their observable possibilities in a unified framework.

After the end of inflation, the inflaton field starts to oscillate with a decaying amplitude.
During this phase, the inflaton field transfers its energy into massless fields termed as
radiation (R) through various decay channels, φ→ ss/f̄f and φφ→ ss, where we assume
explicit coupling between inflation and daughter fields. In addition, there exists universal
gravitational coupling between inflaton and daughter field through s-channel graviton
(hµν) exchange interaction, (1/M2

P )hµνTµν , which has recently been shown to influence
the reheating dynamics [53, 92]. In our present analysis, we shall include such universal
contributions as well. When we talk about gravitational scattering, we mainly consider
the process φφ→ hµν → ss/ff . In figure 1, we have shown the Feynman diagram for all
possible interactions between inflation (φ), and radiation (R). We consider inflaton coupled
with scalar (s) and fermion (f) as massless radiation for the case of bosonic and fermionic
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Figure 1. Fynmann diagram for all possible interactions between inflaton (φ) and radiation (R).

reheating, respectively. Compared to the direct decay with free coupling parameters, decay
due to gravitational interaction is universal and hence will always be present. Setting
all the direct inflaton coupling to zero implies purely gravitational scattering, named as
gravitational reheating (GR), which has been studied in detail by two of the present authors
in [53, 92]. Therefore, we consider following general interaction Lagrangian,

Lint = hµν
MP

(Tµνφ + Tµνs/f ) + gr1φs
2 + gr2φ

2s2 + hrφf̄f, (2.1)

where gr1 is the coupling parameter for the trilinear interaction with mass dimension
unity, gr2 is the dimensionless coupling parameter for quartic interaction and hr is the
Yukawa coupling.

2.1 Finite temperature decay widths and Boltzmann equation

The standard assumption of any reheating studies is that radiation is always thermalized
among its constituents throughout the entire process. Hence, inflaton decay products must
encounter a finite temperature thermal bath which will modify the decay width [93–96].
Such finite temperature effect has already been discussed in [97–99] for the special cases
with a matter-dominated reheating phase. Our goal is to generalize those studies for the
arbitrary inflaton equation of state (EoS) wφ, which has not been studied earlier. For the
bosonic decay of inflaton, the thermal effect introduces Bose enhancement factor into the
decay width, which makes bosonic reheating efficient compared to the zero temperature one.
On the other hand, for fermionic decay of inflaton, the thermal bath induces an additional
Pauli blocking factor into the decay width, which makes fermionic reheating less efficient
compared to the zero-temperature one. Including the finite temperature effect, we list up
the following decay widths1 for various decay/scattering channels as [71, 91, 99–101]

Γs/f =


Γφ→ss = (gr1)2

8πmφ(t)(1 + 2fB(mφ/2T )) , for gr1φs
2

Γφφ→ss = (gr2)2ρφ(t)
8πm3

φ
(t) (1 + 2fB(mφ/T )) , for gr2φ

2s2

Γφ→f̄f = (hr)2

8π mφ(t)(1− 2fF (mφ/2T )) , for hrφf̄f

(2.2)

Γgrφφ→ss = ρφmφ

1024πM4
p

(1 + 2fB(mφ/T )) , [50, 91] (2.3)

Γgrφφ→ff =
ρφm

2
f

4096πM4
pmφ

(1− 2fF (mφ/T )) , [50, 91] (2.4)

1In our study, we have not taken the oscillation effect of the zero mode inflaton [71] in the decay width
formula. However, even taking the oscillation effect in the production rate, our illustrated results would be
the same, only there would be a minute modification in the fermionic gravitational dark matter production
(for detailed discussion, see appendix-E).
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where fB/F (z) = 1
ez∓1 are the equilibrium Bose-Einstein (B)(−) and Fermi-Dirac (F)(+)

distribution function. The last two decay width expressions are the gravity-mediated
inflaton decay to other fields. In these expressions, we ignore the effect of thermal mass
correction due to self-interaction. mφ(t) corresponds to time-dependent inflaton mass
defined as m2

φ(t) = ∂2V (φ)/∂φ2 for a generic inflaton potential V (φ). It is obvious from
the expression that when the temperature of the radiation bath is greater than the inflaton
mass, i.e. (Trad > mφ(t)), the Bose-enhancement or Pauli-blocking is effective. Due to the
Bose enhancement, the decay rate is enhanced for the Bosons, and due to Pauli blocking,
the decay rate is suppressed for the Fermions.

Since the radiation particles are massless, the total decay width for the gravitational
sector is mainly associated with the scalar particles. For fermionic particles, the decay width
for gravitational interaction ∝ m2

f , and that is the reason for not taking the contribution
from the fermionic particles in the thermal bath for gravitational production. In addition,
in the case of vector boson production, we need to introduce the mass term to break the
conformal invariance; thus, massless vector boson production is impossible. Therefore, the
total gravitational scattering rate to radiation production will be simply Γgrφφ→RR = Γgrφφ→ss.
One important point is to note that we consider only one type of scalar particle in the
radiation bath, and all other particles are assumed to be fermions or vector bosons, so their
gravitational production is unimportant. It has already been established that for inflaton
equation of states wφ > 0.65, the gravitational scattering can alone reheat the universe (see,
for instance, reference [92]). In this paper, we will include the explicit inflaton coupling with
radiation and do a comprehensive combined analysis to figure out the complete parameter
space for successful single-sector reheating. The general set of Boltzmann equations for
single sector reheating are [70, 102]

ρ̇φ + 3H(1 + wφ)ρφ + (Γs/f + Γgrφφ→RR)(1 + wφ)ρφ = 0, (2.5)

ρ̇rs/f + 4Hρrs/f − Γs/f (1 + wφ)ρφ = 0 (2.6)

ρ̇rgr + 4Hρrgr − Γgrφφ→RR(1 + wφ)ρφ = 0. (2.7)

Where ρφ is the inflaton energy density. ρrs/f corresponds to radiation energy density from
direct inflaton decay to either scalar (s) or fermion (f) via the coupling parameters (gri , hr)
respectively. ρrgr is the radiation energy density produced through universal gravitational
scattering. For solving this set of equations numerically, we define dimensionless comoving
variables Φ = ρφA

3(1+wφ)/(mend
φ )4, and Rrad = ρradA

4/(mend
φ )4. Where Rrad is the radiation

produced from either direct decay or gravitational scattering from inflaton. The derivative is
taken with respect to the cosmic time defined through the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2). The normalized scale factor is
defined as A = a/aend, with aend as the scale factor at the end of inflation, and the Hubble
expansion parameter H = Ȧ/A. At the end of inflation i.e., A = 1, ρφ = 3V (φend)/2 and
the energy densities of all the other components are set to be, ρrs/f/gr = 0. Hence the
appropriate initial condition for the above set of Boltzmann equations is,

Φ(A = 1) = 3
2
V (φend)
(mend

φ )4 ; Rb(A = 1) = Rf (A = 1) = Rgr(A = 1) = 0 . (2.8)
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Where (φend,m
end
φ ) are the values of the inflaton field and its mass at the end of inflation,

which we define later.

2.2 Relating reheating and inflationary parameters through CMB

The connection between inflation and reheating parameters are established through the
initial conditions eq. (2.8). We consider the well known α-attractor E-model [104–106]
inflaton potential,

V (φ) = Λ4
(

1− e−
√

2
3α

φ
Mp

)2n
, (2.9)

where Λ is the mass-scale fixed by the CMB power spectrum, which is typically of the order
8× 1015 GeV, and the parameter (α, n) controls the shape of the potential. Through out
our analysis we have taken α = 1, although our analysis is not much sensitive within the
allowed range of α values from Planck and BICEP/Keck combined results [126, 127]. Using
the slow roll parameters ε(φ) = (M2

p /2)(V (φ)′/V (φ))2 and η(φ) = M2
p (V (φ)′′/V (φ)), one

obtains physically measurable quantities namely scalar spectral index (ns) and the tensor
to scalar ratio (r) defined at a particular pivot scale k,

ns = 1− 6ε(φk) + 2η(φk) ; r = 16 ε(φk) . (2.10)

Another important quantities are inflationary e-folding number (Nk) and the Hubble
constant Hk defined for a particular pivot scale as,

Nk =
∫ aend

ak

d(ln a) = 1
Mp

∫ φend

φk

dφ√
2ε
,

Hk =
√
V (φk)
3M2

p

= πMp

√
r As√

2
,

(2.11)

where As represents the amplitude of the inflation fluctuation. Throughout our analysis,
we assume the central value of As ∼ 2.1× 10−9 from Planck [107]. Here φk and φend are
the values of the inflaton field at the point of horizon crossing for a particular pivot scale
and at the end of the inflation, respectively. φend is obtained from the ending condition of
the inflation ε(φend) = 1. The field and the potential value at the end of inflation take the
following form

φend =
√

3α
2n Mp ln

(
2n+

√
3α√

3α

)
, V (φend) = Λ4

( 2n
2n+

√
3α

)2n
. (2.12)

Combining eqs. (2.10)–(2.12), one can find the field value φk and the mass scale Λ as,

φk =
√

3α
2 Mp ln

1 +
4n+

√
16n2 + 24αn(1− nks)(1 + n)

3α(1− nks)

, (2.13)

Λ = Mp

(
3π2rAs

2

)1/4 [2n(2n+ 1) +
√

4n2 + 6α(1 + n)(1− ns)
4n(1 + n)

]n/2
. (2.14)
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After the end of the inflation, inflaton field oscillates around its minima, and the reheating
phase begins. At the minimum of the potential, we expand the inflaton potential (eq. (2.9))
in the limit φ�Mp as

V (φ) ' Λ4β2nφ2n, (2.15)
where β =

√
2/3αM2

p . The field-dependent mass becomes,

m2
φ = V

′′(φ0) ' 2n(2n− 1)Λ4β2
(
V (φ0)

Λ4

)1− 1
n

. (2.16)

Using the envelope approximation at any instant of time, the envelope value of the field
φ0 must satisfy V (φ0) ' ρφ(t) [71]. Under this approximation, the inflaton mass can be
written as

m2
φ(t) = 2n(2n− 1)β2Λ4/nρφ(t)

n−1
n . (2.17)

Using the virial theorem, one can further calculate the equation of states (EoS) wφ as a
function of the power of the inflation potential [71]

wφ = n− 1
n+ 1 . (2.18)

Through the background dynamics and entropy conservation, we can connect the
inflationary parameters defined above with the reheating parameters. The reheating period
is effectively described by very few parameters viz. reheating temperature (Tre), reheating
e-folding number (Nre), and the equation of state of inflation ωφ. In general, the end of
reheating is marked at the point when the condition ρφ(Are) = ρr(Are) is satisfied. Where
ρr is the total radiation density constituted of all massless daughter fields. The reheating
temperature Tre can be expressed in terms of the radiation temperature Trad as

Tre = Trad (Are) =
( 30
π2g?(Tre)

) 1
4
ρ1/4
r (Are), (2.19)

where g?(Tre) is the effective number of relativistic degrees of freedom at the end of
reheating, and we take g?(Tre) = 100 though out the paper. Combining the above two
equations, we can get the one-to-one correspondence between the coupling constant (gri ,hr)
and reheating temperature Tre, where i = 1, 2 corresponding two different inflaton-Boson
couplings described in the introduction. One can further obtain a constraint relation
between reheating temperature Tre and the present CMB temperature (T0) by considering
a physical assumption that from the end of reheating to the present time, the co-moving
entropy density of the universe is conserved. This condition leads to [108],

Tre =
( 43

11g?(Tre)

) 1
3
(
a0T0
k

)
Hke

−Nke−Nre . (2.20)

Where k/a0 = 0.05 Mpc−1 is the CMB pivot scale, the present CMB temperature T0 = 2.725
K and a0 is the present day scale factor. Combining the above eq. (2.20) and (2.19), we
can essentially obtain an indirect connection between the coupling constant (gri ,hr) and the
inflationary spectral index ns, which parameterizes the anisotropies in the CMB fluctuations.
In the next section we moved our discussion to the possible constraints on the perturbative
reheating scenario from the fragmentation of the inflaton that leads to self-resonance.
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3 The effect of self-resonance in reheating parameter space

Homogeneous oscillation of the inflation condensate can be unstable, leading to self-resonance.
In figures 2 and 7, we have shown the region in the wφ versus coupling parameter space
where self-resonance may be important. It has been pointed out that self-resonance can be
sufficient to reheat the universe (except wφ = 0) without any coupling to the other fields
with inflaton [124, 125], however, that strictly depends on the values of α. When α� 1/6,
self-resonance is efficient, and the RD universe is established within less than an e-fold of
expansion after inflation end. However, for α > 1/6, self-resonance is not very efficient, and
it takes many e-folds to give rise to radiation dominated universe. In the reference [125],
the authors provide an estimation for the number of e-folds calculated from the end of
inflation to the beginning of the radiation domination for the α-attractor E-model,

∆Nsr '


n+1

3 ln
[√

6α
2dδ

k
∆k
|4−2n|
n+1

]
for n > 1 (n 6= 2)

ln
[√

6α
2dδ

]
for n = 2,

(3.1)

where ∆k/k is the fractional width of the resonance band, d is its dimensionless “strength”
and δ = 0.126 is a dimensionless number which is independent of n. This bound can be
used as an upper bound on the transition duration between the inflation end and the
radiation-dominated states of the universe.

Self-resonance can significantly modify the dynamics for which a comprehensive analysis
is required. Here, we have shown the region where it can play its role. If the perturbative
reheating is completed with e-folding number < ∆Nsr, our analysis will not be affected.
Otherwise, self-resonance will significantly affect the parameter space, which needs to be
taken into account, and we defer this for our future study. Using the bound from eq. (3.1),
in figures 2, 6, 7, and 10 we have shown regions where the self-resonance effect is important.
We have found that self-resonance is effective when 0 < wφ ≤ 0.75 for α = 1.

4 Bosonic reheating: dynamics and constraints

4.1 Dynamics: probing different decay channels

During reheating, if the dominant decay channel of the inflaton is through massless Bosons,
we call it bosonic reheating. For our phenomenological purpose, we discuss two different
non-gravitational bosonic channels φ→ ss and φφ→ ss of inflaton along with gravitational
scattering process φφ → hµν → ss. The total radiation component will be composed of
all these thermalized decay products produced from different decay channels. Most of the
studies on this single sector reheating were done at zero temperature, except for a few
very special cases [97, 99]. Therefore, a more realistic consideration would be to take into
account finite temperature correction due to radiation baths. We compare the results with
the zero temperature case in all the figures to quantify such effects. The detailed analytic
calculation for both zero and finite temperature cases and the description of the dynamics
are given in appendix-A.
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We solve the Boltzmann equations for the general inflaton equation of state wφ and
scan the entire inflaton-scalar coupling (gri ) parameter space and figure out one of our most
significant results shown in figure 2. The parameter space (wφ, gri ) can be generically divided
into five regions marked in different colors: i) Light-cyan region is where reheating is entirely
controlled by the gravity-mediated decay channel (gravitational reheating), ii) Yellow region
is controlled by mostly inflaton-Boson coupling, iii) Light-red region is where successful
reheating cannot be achieved as reheating temperature Tre < TBBN , iv) Pink region where
initial parametric resonance will be the important and v) Light-blue region where the
self-resonance of the inflaton will be important. In our present paper, we ignore both
effects and defer for our future study. The system has two competing effects due to direct
and gravity-mediated inflaton decay. Based on their relative dominance, we observe three
distinct regions of coupling gri where reheating evolution will be different: 1) Case-I: entire
reheating dynamics will be dominated by direct inflaton decay, 2) Case-II: both the decay
processes will partially dominate the reheating dynamics, 3) Case-III: entire reheating
dynamics will be dominated by gravity mediated decay (gravitational reheating [92]). These
three cases immediately suggest the existence of two critical coupling values for every
individual inflaton-scalar radiation coupling gri , which set the phase boundaries among those
three cases in (wφ, gri ) plane. If the coupling gri > G 1, th

ci ' G 1
ci, the reheating evolution will

be according to case-I. Where, G 1
ci is computed without thermal effect, for it turned to be

same for both with and without thermal effect (see detailed derivation in the appendix-A).
The critical coupling strength G 1

ci is found to be,

G 1, th
ci =



3(5+3wφ)(Hendm
end
φ )2

128M2
p (1+15wφ)

[(
9+15wφ

8

) −8
1+15wφ −

(
9+15wφ

8

)−9−15wφ
1+15wφ

]
[(

8
3(1−wφ)

) 3(wφ−1)
(5+3wφ)−

(
8

3(1−wφ)

) −8
5+3wφ

]


1/2

for gr1φs
2 ,

 (9wφ−1)(mend
φ )4

64M4
p (1+15wφ)

[(
9+15wφ

8

) −8
1+15wφ −

(
9+15wφ

8

)−9−15wφ
1+15wφ

]
[(

9(1−wφ)
8

) 9(wφ−1)
1−9wφ −

(
9(1−wφ)

8

) −8
1−9wφ

]


1/2

for gr2φ
2s2 .

(4.1)
If we lower the couplings gri below G 1, th

ci , the gravitational scattering starts to reveal its
presence in the early phase of the reheating process, and the complete takeover happens
if the non-gravitational coupling strength is lower than a new critical coupling which we
denoted as G 2, th

ci . Therefore, if coupling strength in between G 2, th
ci < gri < G 1, th

ci , the
reheating evolution will be according to case-II. The expressions of G 2, th

ci for different
interaction are calculated as,

G 2, th
ci =



[(
9(1+wφ)H3

endm
end
φ

512π(1+15wφ)

)(
4πε1/4(mend

φ )2(3wφ+1)
3(1+wφ)M2

pHend

)4/3
(Agrre)−2−6wφ

]3/8

for gr1φs
2

[(
9(1+wφ)H3

endm
end
φ

512π(1+15wφ)

)(
8πε1/4(mend

φ )4(5wφ−1)
9(1+wφ)M4

pH
3
end

)4/3
(Agrre)2−10wφ

]3/8

for gr2φ
2s2 ,

(4.2)
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where, Agrre is the scale factor defined at reheating end for the gravitational reheating scenario
(see, for this instance, eq. (A.17)).

Finally, as pointed out just above, if gri < G 2, th
ci , the reheating evolution will be

according to case-III, which we call gravitational reheating. Detailed analysis on this
possibility have been discussed in [92]. We will now dwell on these three cases and discuss
their thermal histories in detail:

Case-I: coupling strength gri > G 1, th
ci : in this regime, direct decay of inflaton into

radiation controls the entire reheating process. In the left panel of figure 4, we showed
the evolution of the different energy components with the coupling parameter. Since the
radiation bath of temperature Trad is produced from the decay products of homogeneous
inflaton background, the typical energy of the bath particles will be of the order of inflaton
mass mφ. And hence for the condition Trad > mφ(t), the thermal effect will be dominant.
For any reheating dynamics, there exist two important energy scales of importance, and
those are maximum radiation temperature (Tmax

rad ) and the reheating temperature (Tre).
Given the inflation model under consideration, we have two free parameters namely, the
inflaton equation of state (ωφ) and the inflaton-Boson coupling (gri ), where “i” stands for
two different bosonic decay channels mentioned earlier. Depending upon the evolution of
(Trad,mφ), and consequently the behavior of thermal effect, we have observed rich reheating
histories. In the following section, we lay bare the detailed discussions on those for different
cases in different temperature regimes.

When Tmax
rad > mend

φ : this is the situation which typically occurs for large value of
inflaton-scalar coupling mostly in the pink region of figure 2. Since the maximum radiation
temperature Tmax

rad is greater than the inflaton mass mend
φ defined at the end of inflation,

the thermal effect influences the reheating dynamics significantly. Details of this finite
temperature effect will be further controlled by the parameters (wφ, gri ) and the time-
dependent inflaton mass mφ(t). We will first discuss the situation when Trad > mφ(t)
throughout the entire period of reheating. However, important to remember that such a
condition does not satisfy though out the entire reheating parameter range, and this can be
observed from figure 2.

It is observed that in this region the ratio Trad/mφ(t) varies as A(9wφ−1)/2(A(11wφ−3)/2)
for φ→ ss(φφ→ ss). Such variation of the ratio indicates that there exists a critical value
ωcφ = 1/9 for the decay channel φ → ss and ωcφ = 3/11 for the decay channel φφ → ss,
above which Trad > mφ(t) condition is always maintained. With this condition, the finite
temperature decay widths can be approximated as,

Γφ =


Γφ→ss = 4(gr1)2Trad

8πm2
φ

(t) ,

Γφφ→ss = 2(gr2)2

8π
ρφ(t)Trad
m4
φ

(t) ,
(4.3)

and with this the reheating temperatures are estimated for two different decay channels as,

Tre =



[
3M2

p (1+wφ)Hend
4πε(1+3wφ)(mend

φ
)2 (gr1)2A

− 3
2 (1−3wφ)

re

]1/3
for gr1φs

2 ,[
9M4

p (1+wφ)H3
end

8πε(5wφ−1)(mend
φ

)4 (gr2)2A
−3(3−5wφ)

2
re

]1/3

for gr2φ
2s2 .

(4.4)
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Figure 2. We have plotted the Variation of the dimensionless bosonic coupling g̃r1 = gr1/m
end
φ

(for φs2 left figure) and gr2 (for φ2s2 right figure) as a function of wφ. Dashed and solid lines
correspond to without and with the thermal effect being taken into account in the decay process
respectively. The yellow and pink shaded regions indicate the explicitly coupling-dominated region
where the decay channel controls the reheating temperature. The light-cyan region corresponds
to gravitational reheating. The light-red region corresponds to Tre < TBBN ' 10MeV. The light-
gray region corresponds to the no reheating region where inflaton energy density falls faster than
radiation energy density, and successful reheating is not impossible. The pink region corresponds
to the non-perturbative regime where bounds on coupling. g̃r1 ≥

(
V

1/2
end m

end
φ /(24Mpφ

2
end)

)1/2

and gr2 ≥ (V 1/8
end /φend)

(
V

1/2
end (mend

φ )3/(
√

2Mpφ
4
end)

)1/4
are obtained from resonance condition of

Mathieu equation for scalar field [109–111]. The light-blue region corresponds to the self-resonance
domination region.

Channel
T � mφ(t) (Without thermal effect) T � mφ(t) (With thermal effect)
Non-gravitational Gravitational Non-gravitational Gravitational

φ→ ss A−
3(1−wφ)

8 A−1 A−
(1−3wφ)

2 A−1

φφ→ ss A−
9(1−wφ)

8 A−1 A−
(3−5wφ)

2 A−1

Table 1. The evolution of bath temperature for bosonic reheating.

Where, Are is the normalized scale factor at the end of reheating (detailed derivations
and expressions can be found in appendix-A). To this end we would like to point out an
interesting fact associated with the maximum radiation temperature Tmax

rad , which generically
satisfies Tmax

rad > Tre. We observed the existence of a critical value of wtφ = (1/3, 3/5) for
two different bosonic decay channel φ → ss and φφ → ss (see, for instance, eqs. (A.23)
and (A.24)). If wφ < wt, the maximum radiation temperature (Tmax

rad ) satisfies the usual
condition mentioned above,

Tmax
rad 'T r,maxs =

[
3M2

p (1+wφ)Hend
4πε(1+3wφ)(mend

φ
)2 (gr1)2

{(
2

1−3wφ

) 3wφ−1
3+9wφ −

(
2

1−3wφ

) −2
3+9wφ

}]1/3

for gr1φs
2 ,[

9M4
p (1+wφ)H3

end
8πε(5wφ−1)(mend

φ
)4 (gr2)2

{(
2

3−5wφ

) 5wφ−3
5wφ−1−

(
2

3−5wφ

) −2
5wφ−1

}]1/3

for gr2φ
2s2 .

(4.5)
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Where T r,maxs indicates the maximum radiation temperature. Surprising result emerges,
however, for wφ > wtφ case, for which the evolution of radiation and background conspire
in such a manner that at the end of reheating maximum radiation temperature becomes
equal to the reheating temperature, Tmax

rad ' Tre (for better visualization, see the left most
plot of figure 4). Such behavior has been observed before considering the phenomenological
expression of the decay rate as a function of temperature [112]. The implication of this
specific case could be interesting to study.

Again, when EoS stays within 0 ≤ wφ < wcφ, due to initial high radiation temperature
thermal correction will have a significant effect. As the reheating progresses, such effect
diminishes with the complete takeover by the zero temperature dynamics at a certain value
of scale factor Ac, which depends on the inflaton equation of state as follows,

Ac =


(Amax)

1−3wφ
1−9wφ

(
mend
φ

(ρr,max
s /ε)1/4

)− 2
(1−9wφ)

for gr1φs
2 ,

(Amax)
3−5wφ
3−11wφ

(
mend
φ

(ρr,max
s /ε)1/4

)− 2
3(1−11wφ)

for gr2φ
2s2 ,

(4.6)

where Amax and ρr,max
s are defined in eqs. (A.26), (A.25). After this crossover happens,

the radiation energy density simply follows eqs. (A.10). In the DM studies, we will see
such an intermediate scale will have non-trivial dependence on its abundance. We find the
associated reheating temperature as

Tre =


(

6M2
p (1+wφ)Hend

8πε(5+3wφ)mend
φ

(gr1)2
)1/4

A
− 3

8 (1−wφ)
re for gr1φs2 ,(

9M4
p (1+wφ)H3

end
4πε(9wφ−1)(mend

φ
)3 (gr2)2

)1/4
A

9(wφ−1)
8

re for gr2φ2s2 ,

(4.7)

where

Are =


(

4π(5+3wφ)Hendm
end
φ

(1+wφ)(gr1)2

) 2
3+9wφ for gr1φs2 ,(

4π(9wφ−1)(mend
φ )3

3(1+wφ)M2
pHend(gr2)2

) 2
3(5wφ−1)

for gr2φ2s2 .

(4.8)

In reheating model building, gravitational contribution to the radiation sector is
universally present along with the non-gravitational one. Therefore, it is natural to expect
that the Tmax

rad for a given reheating model can not assume an arbitrarily low value. In fact,
due to universal gravitational contribution, there exists a lower limit on Tmax

rad , which is set
by the gravitation reheating T r,max

gr ' 1011 → 1012 GeV [53, 92]. The small variations are
due to different values of ωφ. Therefore, the minimum possible value of Tmax

rad simply turns
out as T r,max

gr . In the following discussion, we now consider the regime where Tmax
rad > T r,max

gr

but less than mend
φ .

When T r,max
gr < Tmax

rad < mend
φ : the parameter region (see figure 2) wherein this condition

is satisfied belong to the yellow region. However, for this case, initially Tmax
rad < mend

φ ,
and hence there is no thermal effect initially, and the ratio Trad/mφ ∝ A−(3−27wφ)/8

(A−(9−33wφ)/8) for φ→ ss(φφ→ ss) respectively. Thus, for wφ < wcφ (defined before), the
finite temperature effect will never be significant. Consequently, the reheating dynamics will
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Figure 3. Variation of maximum radiation temperature Tmax
rad as function of dimensionless coupling

parameter g̃r1 = g
mend
φ

,gr2, for three different inflaton equation of state wφ = 0.0(0.23), 0.50, 0.99 for
the φ→ ss (left-most), and φφ→ ss (right-most) model.

be the same as that of the zero temperature, and details of such dynamics are described in the
appendix-A (for example, the radiation energy density evolves following eq. (A.10)). However,
if the inflaton equation of state satisfies the condition wφ > wcφ, the finite temperature effect
(Trad > mφ) is expected to occur at some intermediate radiation temperature Tc = Trad(Ac)
with the scale factor Ac during reheating. We have

Ac =


(Amax)

1−wφ
1−9wφ

(
mend
φ

(ρr,max
s /ε)1/4

)− 8
3(1−9wφ)

for gr1φs
2 ,

(Amax)
3(1−wφ)
3−11wφ

(
mend
φ

(ρr,max
s /ε)1/4

)− 8
3(1−11wφ)

for gr2φ
2s2 ,

(4.9)

where Amax and ρr,max
s are defined in eqs. (A.13), (A.14). After this crossover happens, the

radiation energy density simply follow the eqs. (A.23) and (A.24). In the DM studies, we
will see such an intermediate scale will have non-trivial dependence on its abundance.

For case-I, above two temperature regimes will be possible. To this end let us point
out an another important situation that deserves detailed discussion is a special case when
Tmax

rad = T r,max
gr , which indicates that the initial phase of reheating must be dominated by

the graviton mediated inflaton decay. And such situation arises only when non-gravitational
inflaton coupling gri < G 1, th

ci . This condition, therefore, belongs to the other two cases of
coupling ranges mentioned before.

Case-II: coupling strength in between G 2, th
ci < gr

i < G 1, th
ci : in this coupling range,

gravitational interaction drives the dynamics of reheating at the beginning. The gravitational
production is nearly instantaneous and happens just at the beginning of reheating. In
fact, this case is true for the entire range of coupling with gri < G 1, th

ci , and Tmax
rad = T r,max

gr

condition always holds. However, since the non-gravitational bosonic coupling is non-zero,
during the reheating process gravitational coupling, non-gravitational coupling, and thermal
effect of the produced radiation undergo interesting interplay among themselves. Let us
illustrate the following two different possibilities of thermal history in this context,
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Figure 4. Evolution of inflaton and radiation energy density as a function of normalized scale
factor A = a/aend for both φ→ ss and φφ→ ss with and without thermal effect (solid line for with
thermal effect and dashed line for without thermal effect). Left panel: coupling is in the range of
gri > G 1, th

ci . Middle panel: coupling is in the range of G 2, th
ci /G 2

ci < gri < G 1, th
ci . Right panel: coupling

is in the range of gri < G 2, th
ci /G 2

ci. For all these cases, we have considered the inflaton equation of
state wφ = 0.82.

• The thermal effect may start dominating the early phase when gravity-mediated decay
controls the reheating. During this phase the ratio behaves Trad/mφ(A) ∝ A3wφ−1.
Hence, for wφ > 1/3, it is clear from this ratio that the thermal effect cannot be ignored.
And we found a particular value of scale factor Agc , after which Bose enhancement
starts affecting the dynamics,

Agc =
[
Amax

(
mend
φ

(ρr,max
gr /ε)1/4

)] 1
1+3wφ

, (4.10)

where, Amax is the scale factor at which Trad = Tmax
rad = T r,max

gr , and maximum
radiation energy density (ρr,max

gr ) is obtained from gravitational decay (see, for instance,
the last expression of eq. (A.13) and eq. (A.15)). After this point, the radiation energy
density simply varies as A−4. However, as reheating proceeds towards the end, there
is another crossover from gravitational decay domination to non-gravitational decay
domination, which will happen at the value of scale factor, defined as

Agr→ngr =


(

2M2
p (1+wφ)Hend

8π(1+3wφ)(mend
φ

)2(C(wφ))3 (gr1)2
) −2

3(1+3wφ)
For gr1φs2 ,(

4(3M2
pH

2
end)2M2

p (1+wφ)Hend
8π(5wφ−1)(mend

φ
)4(C(wφ))2 (gr2)2

) 2
3(1+5wφ)

For gr2φ2s2 ,

(4.11)

where C(wφ) =
(

9(1+wφ)H3
end

1024π(1+3wφ)εM2
p

)1/3
. The reheating temperature assumes the same

form as eq. (4.4). For better visualization of the evolution of different energy com-
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ponents see the middle panel of figure 4. In summary, the reheating dynamics can
be read off as follows: at the beginning gravitational sector dominates the porcess
with radiation temperature varies as Trad ∝ A−1 → as reheating proceeds the thermal
effect starts to play its role but with the same temperature evolution Trad ∝ A−1 →
non-gravitational coupling takes over the process, and the radiation temperatures
vary as Trad ∝ A−

1
2 +

3wφ
2

(
A−

3−5wφ
2

)
for the decay process φ→ ss (φφ→ ss)).

• There may be a situation where the thermal effect will be important only during
non-gravitational production. For this case, reheating proceeds from gravity-mediated
decay to explicit inflaton decay domination, and the transition occurs at the scale
factor,

Agr→ngr =



ρr,max
gr

ρr,max
s

(
9+15wφ

8

) 8
1+15wφ

(
8

3(1−wφ)

) 3(wφ−1)
5+3wφ


2

5+3wφ

for gr1φs2 ,

ρr,max
gr

ρr,max
s

(
9+15wφ

8

) 8
1+15wφ

(
9(1−wφ)

8

) 9(wφ−1)
1−9wφ


2

9wφ−1

for gr2φ2s2 ,

(4.12)

where ρr,max
gr and ρr,max

s are defined in eqs. (A.14), (A.15). Once reheating process
starts to dominate by the explicit inflation coupling, the scale factor beyond which
the thermal effect starts working is followed by eq. (4.9). Finally, the decay channel
defines the reheating temperature (see, for instance, eq. (4.4)). In summary, dynamics
can be described as follows: reheating proceeds through gravity-mediated decay with
no finite temperature effect (Trad ∝ A−1) → non-gravitational decay dominates the
phase with negligible thermal effect with radiation temperature varies as Trad ∝
A−

3
8 (1−wφ)

(
A−

9
8 (1−wφ)

)
for decay process φ → ss (φφ → ss)) → non-gravitational

coupling domination with significant thermal effect (Trad ∝ A−
1
2 +

3wφ
2 (A−

3−5wφ
2 ) for

φ→ ss (φφ→ ss)).

Case III: when gri < G 2
ci: the bath temperature always falls as A−1, and thermal effect

is observed to play no role throughout. The gravity-mediated decay of inflaton controls
the entire dynamics of reheating, and the scenario is termed as gravitational reheating, ant
that will occur only for wφ > 0.65 (see the light-cyan region of figure 2). The reheating
temperature is defined when ρφ = ρrgr, and the condiction gives

T grre =
(

9H3
endm

end
φ (1+wφ)

512επ(1+15wφ)(Agrre)4

)1/4

, Agrre =
(

512πM2
p (1+15wφ)

3Hendmend
φ (1+wφ)

) 1
3wφ−1

, (4.13)

where Agrre is the normalized scale factor at the end of gravitational reheating. In the right
panel of figure 4, we have shown the dynamical behaviour of different energy components,
and in table-1, showing the evolution of the bath temperature with A for non-gravitational
reheating and gravitational reheating.

In the subsequent section, we will focus on the possible constraints on the inflaton
coupling strengths depending on the CMB (ns) and reheating parameter Tre.
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Figure 5. Variation of reheating temperature Tre as a function of spectral index ns for α−attractor
model (α = 1) with wφ = (0, 0.20 0.50, 0.82, 0.99). The plot is on the left side for the bosonic
reheating with φ→ ss process and on the right side for the process φφ→ ss. The solid lines are for
considering the thermal effect, and the dashed lines are for without the thermal effect.

4.2 Inflaton phenomenology: constraining reheating and bosonic decay
parameters

For illustration, we consider five different values of the inflaton equation of state wφ =
(0, 0.2, 0.5, 0.82, 0.99). For each wφ, we have plotted:(i) Tre vs ns, (ii) gri vs ns, (iii) gri vs
Tre. We compare the results with and without the thermal effect for all cases.

i) Reheating temperature (Tre) in terms inflationary (CMB) parameter (ns):
from the figure 5 we observe that the evolution of reheating temperature in terms of the
inflationary scalar spectral index (ns) is insensitive to the finite temperature correction
of inflaton decay width. Such behavior of the reheating temperature has already been
reported in [97]. The generic feature is that for wφ < 1/3, (see figure 5), Tre increases with
increasing ns, and as a consequence the reheating e-folding number Nre decreases with ns.
This indicates the existence of a maximum scalar spectral index nmax

s corresponding to
the maximum reheating temperature Tmax

re = 1015 GeV and that is called instantaneous
reheating. Similarly, the minimum reheating temperature Tre = TBBN ∼ 10MeV [115–117],
corresponds to a minimum allowed spectral index nmin

s for a given the inflaton equation of
state wφ. On the other hand, for wφ > 1/3, one finds the opposite feature: maximum Tre
corresponds to the minimum spectral index nmin

s and vice versa. When the reheating phase is
dominated by purely gravitational interaction, the minimum possible reheating temperature
fixes the maximum possible value of ns for the equation of state wφ ≥ 0.65. For example, as
shown in the figure 5, for ωφ = (0.82, 0.99), we obtain Tmin

re ' (103, 106)GeV, respectively.
From figure 5, it is clear that thermal feedback to the decay rate does not affect the variation
of reheating temperature with ns. In table 2, we have given the possible bound on the
inflationary parameters such as spectral index ns and the maximum inflationary e-folding
number Nmax

k where Nmax
k is the maximum inflationary e-folding number corresponding to

the maximum reheating temperature Tmax
re ∼ 1015 GeV.
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Parameters
φ→ ss φφ→ ss

wφ = 0.0 wφ = 0.20 wφ = 0.50 wφ = 0.82 wφ = 0.99 wφ = 0.23 wφ = 0.50 wφ = 0.82 wφ = 0.99
nmin
s 0.95520 0.96220 0.96473 0.96455 0.96440 0.96294 0.96473 0.96455 0.96440

nmax
s 0.96540 0.96505 0.96722 0.96855 0.96809 0.96506 0.96722 0.96855 0.96809

Nmax
k 55.69 55.78 55.71 55.83 56.04 55.78 55.71 55.83 56.04

Table 2. Bosonic reheating: bounds of the inflationary parameters.
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Figure 6. Upper panel: variation of dimensionless coupling parameters with respect to the spectral
index ns for wφ = 0.0 (black), 0.20 (orange), 0.50 (green), 0.82 (red), 0.99 (blue). The dashed lines
are for without the thermal feedback effect, and the solid lines are for with the thermal feedback
effect. The purple-shaded region corresponds to the non-perturbative regime. The region below
the green and orange lines corresponds to self-resonance dominated regions for wφ = 0.5 and 0.2
respectively. However, for other values of wφ = 0.0, 0.82, 0.99, there is no self-resonance-dominated
region. Lower panel: variation of dimensionless coupling parameters as a function of reheating
temperature Tre. The description of this plot is the same as the upper panel.
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ii) Constraining inflaton couplings with bosonic radiation (gr1, gr2): one of the
most important findings of our present analysis is illustrated in figure 2. The figure clearly
depicts different regions in the parameter space of (wφ, gri ), where the effect of different
inflaton decay channels on the reheating process can be understood. At this point, let
us reiterate different regions again: i) the light-cyan region is where reheating is entirely
controlled by the gravity-mediated decay channel (gravitational reheating), ii) the yellow
region is controlled by mostly inflaton-scalar coupling, iii) the light-red region is where
successful reheating cannot be achieved as reheating temperature Tre < TBBN , and iv)
pink region where initial parametric resonance will be important which we ignored in
this paper. Furthermore, in the right panel of figure 2, there is a light-gray region where
reheating is not possible for the decay process φφ → ss. For this process, if the thermal
effect is subdominant at the beginning (mend

φ < Tmax
rad limit), the ratio between inflaton and

radiation energy density varies as ρφ
ρrs
∝ A

3
2 (1−5wφ) (see, for instance, eqs. (A.1) and (A.10)),

and hence if wφ < 1/5, the universe will always be inflaton dominated irrespective of
the value of inflaton-scalar coupling gr2. In addition to that, if the thermal effect starts
dominating from the beginning (mend

φ > Tmax
rad limit), the ratio varies as ρφ

ρrs
∝ A(3−13wφ)

(see, for instance, eqs. (A.1) and (A.10)) which implies that if wφ < 3/13 ∼ 0.23 achieving
radiation domination is not possible. However, for extremely large coupling, parametric
resonance may have some effect.

From figure 2, a generic feature can be observed, and that is related to the monotonic
decrease of gri with wφ for a fixed reheating temperature Tre. The reason behind this
behavior can be understood as follows: with increasing wφ, inflaton energy density dilutes
faster, and hence to achieve the reheating condition ρφ = ρrs, one needs to lower the coupling.
Furthermore, mφ(t) decays faster with increasing wφ, and for both types of bosonic decay
channels (φ→ ss and φφ→ ss), the production rate goes as ∝ 1/mφ(t), which will boost
up the production. As a result, to keep reheating temperature fixed, one needs to lower the
value of gri again.

Due to very nature of the bosonic particles the finite temperature correction in the decay
width enhances the particle production rate from the inflaton condensate. As discussed,
this physical fact is imprinted in the reheating dynamics and is further reflected in the
parameter plot shown in figure 6. Finite temperature correction naturally increases the
effective decay width of the inflaton to scalar radiation, and consequently, one needs to
lower the values of the dimensionless coupling parameters gr1 = g̃r1m

end
φ and gr2 as compared

to their zero temperature case to have successful reheating. This can be observed in figure 6
both with respect to reheating temperature (Tre) (lower two plots) and CMB spectral index
ns (upper two plots).

The maximum limiting value of the coupling parameters will naturally be set by the
maximum possible reheating temperature Tmax

re ' 1015 GeV, where all the lines converge
(see figure 6). If the reheating dynamics are controlled directly by the inflaton-radiation
coupling, the minimum possible value of the coupling will be set by the minimum reheating
temperature. However, such a limit on the inflaton coupling is observed to be dependent
on the finite temperature correct, which will be discussed in detail. When the radiation
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temperature Trad � mφ(t), the thermal effect significantly influences the radiation dynamics
and consequently affects on the possible constraints on the coupling parameter as compared
to the zero temperature case. It can be observed that higher the value of ωφ, more will be the
effect of finite temperature correction on the thermal bath. For wφ = 0, the effective mass of
the inflaton mφ(∼ 1013) remains constant; as a result, the thermal effect manifests (see left
two plots of figure 6) itself only very near and above the reheating temperature ∼ 1013 GeV
(or for ns > 0.9645). On the other hand, for wφ > 0, the rate of decrease of effective
inflaton mass mφ ∝ ∂2

φV increases with increasing ωφ such that the condition Trad > mφ(t)
becomes easier to satisfy even at a lower temperature. For example, for wφ = 0.2, the
above condition begins to satisfy (see left figure 6) when ns > 0.9639 (T ∼ 108)GeV, and
accordingly, the finite temperature effect (solid line) manifest itself after Tre ∼ 108 GeV.
For wφ = 0.50, 0.82, 0.99, the condition Trad > mφ(t) can be observed to satisfy throughout
the whole range of reheating temperature.

To this end, we would like to elaborate on the finite temperature effect for low reheating
temperatures. The author in the reference [97] claims that the thermal effect will be
insignificant at low reheating temperatures. However, generically such an effect depends
on the evolution of the ratio mφ/Trad. And we found that the finite temperature effect
can be significant at low reheating temperature for the higher equation of state wφ =
(0.20, 0.50, 0.82, 0.99) (see solid and dotted lines in figure 6), for which inflaton mass
undergoes non-trivial evolution. As can be seen from the second row of figure 6, for the
higher equation of state finite temperature effect becomes more prominent at lower reheating
temperature mainly because inflaton mass can become significantly smaller during the
course of reheating. Moreover, for higher equation state (w = 0.82, 0.99), the gravitational
reheating has been observed to give a lower limit of the reheating temperature (103, 106 GeV),
which is again found to be directly corresponding to specific inflationary scalar spectral index
ns. The spectral indices associated with those temperatures are ns = 0.96855 and 0.9681
for w = 0.82 and 0.99, respectively. When ns reaches these values, the coupling parameter
tends towards zero, i.e., gravitational scattering solely controls the reheating dynamics.

5 Fermionic reheating: results and constraints

5.1 Dynamics: probing different decay channels

During reheating, if the dominant decay channel of the inflaton is through massless fermions,
we call it fermionic reheating. For this purpose, we consider inflaton decaying only into
massless Fermion though the standard Yukawa decay channel φ→ f̄f along with gravita-
tional scattering process φφ→ hµν → ss. Instantaneous thermalization of those different
components are assumed throughout. To study the evolution of the radiation energy
density, we took the finite temperature effect arising due to Pauli blocking (see, for instance,
appendix-B for details calculation). Similar to bosonic reheating, for the fermionic case,
we identified distinct regions in (wφ, h) plane depending upon different physical processes
involved in controlling the reheating dynamics (see figure 7). For this case, we have plotted
separately with and without the finite temperature effect and observed the quantitative
change in parameter space due to the finite temperature effect where reheating would
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be successful. The parameter space (wφ, h) is again divided into four regions marked
in different colors: i) Light-cyan region is where reheating is entirely controlled by the
gravity-mediated decay channel (gravitational reheating), ii) Yellow region is controlled
by mostly inflaton-Fermion coupling, iii) Light-red region is where successful reheating
cannot be achieved as reheating temperature Tre < TBBN , and iv) Pink region signifies
initial parametric resonance domination which we ignored in this paper. As we discussed for
bosonic reheating, based on whether gravitational or non-gravitational sectors dominate the
dynamics, we have a fermionic critical coupling Hc which sets a boundary for two distinct
scenarios:

1) Case-I: the entire reheating dynamics is dominated by the Yukawa coupling. For
this case, the fermionic coupling parameter is in the range hr > Hc. The critical coupling
Hc is identified by equating the maximum energy densities from non-gravitational and
gravitational sector ρr,max

f = ρr,max
gr . One can find the expression for the critical coupling

for fermionic reheating as

Hc =


3(5− 9wφ)H2

end
128M2

p (1 + 15wφ)

[(9+15wφ
8

)− 8
1+15wφ −

(9+15wφ
8

)− 9+15wφ
1+15wφ

]
[(

8
3(1+3wφ)

)− 3(1+3wφ)
5−9wφ −

(
8

3(1+3wφ)

)− 8
5−9wφ

]


1/2

. (5.1)

The maximum energy densities for both gravitational and non-gravitational sectors appear
at the initial stage of reheating, and as the radiation bath associated with gravity mediated
process dilutes faster than the non-gravitational one, for hr > Hc reheating dynamics
always have explicit fermionic coupling domination.

2) Case-II: for this case coupling parameter satisfies hr < Hc and both sectors partially
dominates the reheating phase. However, when EoS wφ lies above 0.65, gravity-mediated
decay controls the reheating phase termed as gravitational reheating. In our succeeding
discussion, we will discuss these two cases in detail:

Case-I: coupling strength hr > Hc: in this coupling regime, non-gravitational decay
of inflaton into fermionic radiation controls the entire reheating process. In order to give
analytical estimation and compare our result with the zero temperature scenario, we consider
two separate regimes of the maximum radiation temperature (see figure 8 for its depiction),
and those are as follows:

When Tmax
rad > mend

φ : if the maximum radiation temperature is greater than mend
φ , the

coupling parameter associated with this region entirely lies in the pink region of figure 7
(non-perturbative resonance-dominated region). Due to strong inflaton-Fermion coupling,
the gravitational channel is naturally subdominant throughout the reheating, and the
thermal effect is non-negligible from early stage of reheating. However, its effectiveness
through out the reheating process will depend on how Trad/mφ evolves. Since Trad > mφ at
the initial stage, decay width can be approximated as,

Γφ→f̄f = (hr)2

8π
m2
φ(t)

4Trad
. (5.2)
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Figure 7. The description of this plot is the same as figure 2, the main difference is that we
have shown the results in (hr, wφ) plane for the fermionic decay channel φ → f̄f . On the left
panel, we have plotted for without thermal effect, whereas on the right, the results are for the with
thermal effect. The pink-shaded region corresponds to the non-perturbative regime where bounds
on coupling hr ≥

(
V

1/2
end (mend

φ )3/
√

2Mpφ
4
end

)1/4
are obtained from the resonance condition of the

Mathieu equation for the fermion field [97, 113, 114].

With the aforementioned decay width, one can estimate the behavior of radiation energy
density,

ρrf (A) =
[
ζ(wφ)(hr)2ε1/4M2

P

A5 (mend
φ )2Hend

(
A

7−15wφ
2 −1

)]4/5

, where ζ(wφ) = 15(1+wφ)
64π(7−15wφ) .

(5.3)
The above equation suggests that the evolution of the radiation component is entirely
different in two different regimes

• wφ > 7/15: most of the production occurs at the initial reheating stage, and
temperature decreases with the scale factor as A−1. Since the ratio Trad/mφ behaves
as A3wφ−1, Trad always remains greater than mφ, and hence the finite temperature
effect will be significant till the end of reheating. The reheating temperature for this
case assumes the following form,

Tre =
[
ζ(wφ)(hr)2M2

P

ε
(mend

φ )2HendA
−5
re

]1/5

, Are =
[
ζ(wφ)h2ε1/4M2

p (mend
φ )2Hend

(3M2
pH

2
end)5/4

] 5(1−3wφ)
4

.

(5.4)

• 0 ≤ wφ < 7/15: for this case, the ratio Trad/mφ ∝ A
3
10 (5wφ−1) induces two different

evolution history with regard to the finite temperature effect. It turns out that when
EoS stays within 0 ≤ wφ < 1/5, due to initial high radiation temperature thermal
correction will have a significant effect. As the reheating progresses, such effect
diminishes with the complete takeover by the zero temperature dynamics at a certain
value of scale factor, which depends on the inflaton equation of state as follows,

Ac =
(
ζ(wφ) (hr)2M2

pHend

ε(mend
φ )3

)2/(3−15wφ)

. (5.5)
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Figure 8. The description of this plot is the same as figure 3, the main difference is that here we
have shown results for the fermionic reheating.

After this intermediate scale factor, the dynamics is governed by the zero temperature
decay channel following the eq. (B.3) (see without thermal effect section of appendix-B
for details calculation) till the end of reheating and eventually equating ρφ = ρrf , we
find the associated reheating temperature as,

Tre =
(

6M2
p (1+wφ)mend

φ Hend

8πε(5−9wφ) (hr)2

)1/4

A
−3(1+3wφ

8
re , Are =

(
8π(5−9wφ)Hend

2(1+wφ)mend
φ

(hr)2

) 2
3−3wφ

.

(5.6)
On the other hand when wφ is in between 1/5 < wφ < 7/15, the thermal effect will
be non-negligible throughout the entire reheating history, and we have the associated
reheating temperature

Tre =
(
ζ(wφ)(hrMP )2

ε
(mend

φ )2Hend

)1/5

A
−3−15wφ

10
re , Are =

[
ζ(wφ)ε 1

4 (hrMpm
end
φ )2Hend

(3M2
pH2

end)5/4

]− 4
3(3+5wφ)

.

(5.7)

When T r,max
gr < Tmax

rad < mend
φ : for this case, the coupling parameter mostly lies in the pink

region of figure 7. Similar to the previous case, whole reheating dynamics are governed
by non-gravitational coupling. Since Trad < mφ at the initial stage, the thermal effect is
minimal. As reheating progresses, depending on the ratio Trad

mφ
, the thermal effect may state

dominating the dynamics. Thus initially, the radiation component evolves as

ρrf (A) =
6M2

p (1 + wφ)mend
φ Hend

8π(5− 9wφ)A4 (hr)2(A
5−9wφ

2 − 1) . (5.8)

The aforementioned equation clearly suggests that the radiation component behaves differ-
ently for wφ < 5/9 and wφ > 5/9. Let us discuss these two cases,

• wφ > 5/9: maximum production happens initially, and the bath temperature falls
as A−1. For this case, Trad/mφ ∝ A3wφ−1 and hence finite temperature effect will be
important near the final stage of reheating, and the reheating temperature can be
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Figure 9. Evolution of inflaton and radiation energy density as a function of normalized scale factor
A for φ→ f̄f decay channel with and without thermal effect (solid line for with thermal effect and
dashed line for without thermal effect). Left panel: coupling is in the range of hr > Hc. Right panel:
coupling is in the range of hr < Hc. We have considered two distinct values of wφ = (0.82, 1/3) for
these two cases.

expressed as,

Tre =
(

6M2
p (1 + wφ)mend

φ Hend

8πε(9wφ − 5) (hr)2
)1/4

A−1
re ; Are =

(
8π(9wφ − 5)Hend
2h2(1 + wφ)mend

φ

) −1
1−3wφ

(5.9)

• 0 ≤ wφ < 5/9: for this case, Trad/mφ ∝ A−3/8(1−5wφ) implies two different evolution
histories depending on the value of equation state greater or less than 0.2. For
0 ≤ wφ < 0.2, the thermal correction will be subdominant, and the reheating
temperature can be simply read off from eq. (5.6). Whereas for EoS wφ > 0.2, the
thermal effect will start to dominate at some intermediate time within the reheating
phase, which we call the crossover point,

Ac =
(

6M2
p (1 + wφ)mend

φ Hend

8πε(5− 9wφ) (hr)2
) −2

3(1−5wφ)

, (5.10)

and reheating temperature is given by eq. (5.7).

Case-II: coupling strength hr < Hc: In this coupling regime, the maximum tem-
perature is always controlled by the gravitational sector Tmax

rad = T r,max
gr . This condition

generally satisfies within the entire allowed region shown in figure 7 except the parametric
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Channel
T � mφ(t) (Without thermal effect) T � mφ(t) (With thermal effect)
Non-gravitational Gravitational Non-gravitational Gravitational

φ→ f̄f A−
3(1+3wφ)

8 (A−1) for wφ < 5/9(> 5/9) A−1 A−
3(1+5wφ)

10 (A−1) for wφ < 7
15(> 7

15) A−1

Table 3. The temperature evolution for fermionic reheating.

resonance dominated region shaded in pink. Evolution of the different energy densities in
two different regimes hr > Hc and hr < Hc with two distinct values of inflaton equation of
state wφ(1/3, 0.82) are shown in figure 9. Depending on the inflaton equation of state, here
also we have the following three different scenarios.

• wφ > 0.65: for this case, the gravitational sector governs the entire reheating
phase, and we termed this as gravitational reheating. The parameter space where
this condition is met is shaded in light cyan in both the figures 7. The reheating
temperature can be followed from eq. (A.17), which depends only on the reheating
equation of state.

• 5/9 < wφ < 0.65: this case turned out to be within the light red shaded region in
the (h, wφ) plane of figure 7. As the figure suggests, reheating temperature evolved
into below BBN temperature, which does not support the standard cosmological
constraints.

• 0 ≤ wφ < 5/9: in this case, the competition between two sectors of production, along
with the finite temperature effect, leads to two different physically distinguishable
reheating dynamics. In the (wφ, h) plane, the condition under consideration lies in
the light yellow region of figure 7. Here we have two different possibilities depending
on how the thermal effect plays its role during the reheating history. As discussed for
the bosonic reheating case

1) The thermal effect starts to influence the reheating dynamics in its early stage
(Trad > mφ) during the gravitational decay of inflaton. For this case, the behavior of
the radiation component during non-gravitational sector domination is simply followed
by eq. (5.3), and we have reheating temperature as in eq. (5.7).

2) The thermal effect starts dominance during the later stage of reheating when it is
governed by non-gravitational inflaton decay. The scale factor associated with the
point where the thermal effect starts to influence the dynamics can be the same as
the eq. (5.10), and reheating temperature is given by eq. (5.7).

5.2 Inflaton phenomenology: constraining reheating and fermionic decay
parameters

Similar to the bosonic reheating case, to illustrate our results in terms of inflationary
parameter ns and to see how the coupling strength behaves as a function of reheating
temperature, we have taken five different sample values of wφ = (0, 0.2, 0.5, 0.82, 0.99) and
compare the results for with and without thermal effect.

– 24 –



J
H
E
P
0
9
(
2
0
2
3
)
0
1
2

ωϕ = 0.0

ωϕ = 0.20

ωϕ = 0.50

ωϕ = 0.82

ωϕ = 0.99

ϕ → f f

non - perturbative regime

0.9575 0.9600 0.9625 0.9650 0.9675
10-17

10-12

10-7

10-2

ns

h
r

ωϕ = 0.0

ωϕ = 0.20

ωϕ = 0.50

ωϕ = 0.82

ωϕ = 0.99

ϕ → f f

non - perturbative regime

0.01 10 104 107 1010 1013
10-17

10-12

10-7

10-2

Tre [GeV]

h
r

Figure 10. The description of the plot is the same as figure 6, the only difference is that here
we have plotted for fermionic reheating and the self-resonance dominated region is same for both
wφ = 0.5 and 0.2 shaded by orange-shaded region.

i) Reheating temperature (Tre) in terms inflationary (CMB) parameter (ns): the
qualitative relation between reheating temperature and inflationary parameters remains
similar to that of the bosonic case discussed earlier. Therefore, the possible bounds on
inflationary parameters such as spectral index ns, the maximum inflationary e-folding
number Nmax

k do not depend on the details of the reheating dynamics but only the reheating
temperature. As a result, bounds on the inflationary parameters remain the same as bosonic
reheating (see, for instance, table-2). This can easily be read off from the left plot of figure 5.
In addition, figure 5, further indicates that the thermal feedback on the decay process does
not affect the reheating temperature variation with ns.

(ii) Constraining inflaton couplings with fermionic radiation (hr): for the fermionic
reheating, the parameter space in figure 7 illustrates different regions in (wφ, hr) plane,
where the effect of different inflaton decay channels on the reheating process can be read
off. We have given two plots with and without finite temperature effects for clear depiction.

An interesting distinction can be observed as compared to the scalar reheating case
is that for fermionic reheating inflaton-Fermion coupling hr does not vary monotonically
with respect to wφ given a fixed reheating temperature. There exists a critical value of
wφ ' 7/15(5/9) for with (without) thermal effect, below which one requires a higher hr value
for a higher equation state for a fixed reheating temperature. And this can be understood
from the behavior of Fermion production rate ∝ Γφ→f̄fρφ ∝ (hr)2mφ(t)ρφ. With increasing
wφ, the effective mass of the inflaton decreases faster with time; hence, to achieve a fixed
reheating temperature, hr needs to be enhanced. However, this simple physical argument is
no longer tenable after wφ ≥ 7/15 (5/9) for with (without) thermal effect. For such cases,
most of the production happens initially, and the radiation energy density simply dilutes
as A−4, which is slower than that of the inflaton energy density. In such a situation with
increasing wφ and fixed reheating temperature, we need a lower the value of hr to satisfy
the reheating condition ρφ = ρrf .

Due to its intrinsic nature, the finite temperature Fermion bath diminishes its own
production rate from the inflaton condensate. Consequently, for successful reheating one
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Figure 11. Fynmann diagram for dark-matter (DM) production. The solid black circle corresponds
to effective vertex representing 2 → 2 scattering process between the bath particle (R) and DM
(S,F).

needs higher values of the dimensionless coupling parameters hr as compared to the zero
temperature case. This can be clearly observed from figure 10, and such behavior is opposite
to that of the scalar reheating case. The qualitative behavior of the fermionic coupling in
terms of the spectral index and reheating temperature are the same as that of the scalar
reheating case. For example, for wφ = 0 the coupling parameter hr with thermal effect
begins to affect only at very high temperatures at around ∼ 1013 GeV, and in terms of
the spectral index, the deviation is visible for ns > 0.9645. On the other hand, since the
effective mass of the inflaton varies as A−3wφ (see, for instance, eq. (A.7)), for wφ > 0, mφ(t)
decrease faster with increasing ωφ and the Trad > mφ(t) condition becomes easier to fulfill
even at a lower radiation temperature. As a result, for wφ = 0.2, the thermal effect starts
dominating even at smaller radiation temperature Trad ≥ 108 GeV when ns > 0.9639. The
situation is entirely different though for wφ > 5/9. For EoS greater than 5/9, the maximum
radiation production happens initially, and hence thermal effect will be dominant from the
beginning, which indicates maximum radiation temperature Tmax

rad > mend
φ . From figure 10,

we can clearly see that for EoS wφ = (0.82, 0.99), the deviation between the results for with
and without thermal effect start visible when Tmax

rad ∼ mend
φ .

6 FIMPs and WIMPs during reheating and observational constraints

Discussion on DM will be considered in three parts. In the first part, we discuss the
production of DM exclusively from the inflaton through non-gravitational and gravitational
interaction. We mainly point out the constraints on the inflaton-DM coupling and DM
mass from both theory and observation. Since it is produced solely from the inflton decay,
we call these as FIMP like DM. In the second part, we discuss the production from the
thermal bath assuming an effective radiation to DM annihilation cross-section 〈σv〉, added
with the universal gravitational production discussed in the first section. For this case,
we will have both the Freeze-in and Freeze-out production scenarios depending upon the
strength of 〈σv〉. The DM produced due to thermal Freeze-out from the radiation bath will
be generally called WIMPs. On the other hand, DM produced by the decay process from
the radiation bath via the Freeze-in mechanism will be called FIMPs. In the third part, we
discuss about the experimental constraints on various reheating and DM scenarios.

6.1 Constraining light DM through ∆Neff during BBN

In this short section, we would like to point out the BBN bound on the additional light
degrees of freedom. In our present paper, we use this bound to constrain the DM parameter
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space of both FIMPs and WIMPs scenarios that were relativistic at the time of BBN. If the
DM is relativistic at the time of BBN, it would inevitably modify the background expansion
and may jeopardize the formation of the light elements, which is tightly constrained by the
BBN observation. The total effective number of relativistic degrees of freedom is defined as
Neff = NSM

eff + ∆Neff. At the time of BBN, if the active neutrinos are the only relativistic
without any new particle, Neff = NSM

eff = 3.046 (∆Neff = 0). BBN observation gives the
bound of ∆Neff ≤ 0.5 at 95% [78–81] confidence level. A general expression of ∆Neff can
be written as [122]

∆Neff =
( extra radiation energy density(ρDM)
energy density of single SM neutrino species(ρν)

)
T=TBBN

=
(43

7

)(
ρDM

ρrad

)
T=TBBN
(6.1)

We will be discussing two production mechanisms. For FIMP like DM, we intend to
separately discuss its production from the direct inflaton decay and radiation bath. For
inflaton decaying into DM, production freezes during reheating or at the end of reheating,
depending on the decay channels and DM mass. On the other hand, for DM from the thermal
bath, its production rate crucially depends on the radiation production rate. Therefore, in
this case, also freeze-in occurs mostly during or at the end of reheating, depending on DM
mass. Overall, for the freeze-in mechanism, we, therefore, can always express

∆Neff =
(43

7

)(
ρDM
ρrad

)
T=TBBN

=
(43

7

)(
ρDM
ρrad

)
T=Tre

. (6.2)

If the DM is relativistic after Freeze-in, both radiation (ρrad) and relativistic DM energy
density (ρDM) fall as a−4. The ratio ρDM/ρrad, therefore, stays constant between reheating
and BBN. Hence, the above equality eq. (6.2), holds true generically for any FIMP scenario.

For WIMP, on the other hand, the situation becomes very different but simpler. For
such cases, till it freezes out, DM remains in equilibrium with the thermal bath. Therefore,
any relativistic DM being in the thermal bath at the time of BBN always behaves like an
additional degree of freedom. Therefore, ∆Neff naturally transforms into [122, 123]

∆Neff = 4
7jx =

{
0.571 scalar DM
1.14 fermionic DM (6.3)

Where jx is the DM’s intrinsic number of degrees of freedom, WIMPs mass lighter than
TBBN ∼ 10MeV always behaves like dark radiation at the time of BBN. Hence, Therefore,
all the WIMPs of mass mx ≤ 10MeV violate the BBN bound of ∆Neff (see eq. (6.3)).

6.2 Freeze-in production of dark matter from inflaton decay and constraints

Similar to massless radiation production, we will now discuss DM production during
reheating, considering various decay channels for both scalar and Fermion DM. As discussed
in the introduction, we considered two categories of production channels: (i) DM production
from inflaton through gravitational scattering and (ii) production through explicit coupling-
dependent decay channel.
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The governing equation for the DM number density (nx) produced from direct inflaton
decay takes the following form

ṅx + 3Hnx = Γφxρφ
〈Ex〉φ

(6.4)

where Γφx is the inflaton decay width to DM and 〈Ex〉φ the average energy of the DM particles.

6.2.1 Freeze-in production via gravitational interaction

Gravitational freeze-in production of DM is universal in nature and hence will always
be present in any inflationary scenario. In this work, we have considered scalar (S) and
Fermion (F) DM (see figure 11 for relevant Feynman diagrams for gravitational scatting
from inflaton). The decay rates associated with the gravitational production are [50, 51]

Γφx =


ρφmφ

1024πM4
p

(
1 + m2

x

2m2
φ

)2√
1− m2

x

m2
φ

for hµν(TµνS + Tµνφ )

ρφm
2
f

4096πM4
pmφ

(
1− m2

x

m2
φ

)3/2
for hµν(TµνF + Tµνφ ).

(6.5)

Since, DM are feebly coupled with the radiation bath, the thermal correction to the decay
width will be unimportant. Using the above equations in eq. (6.4), we have obtained the
following solutions for the number density,

ngx(A) =


3H3

end
512π(1+3wφ)A3

(
1−A−

3(1+3wφ)
2

)
for hµν(TµνS + Tµνφ )

3H3
end

2048π(1−wφ)A3

(
mx
mend
φ

)2 (
1−A−

3(1−wφ)
2

)
for hµν(TµνF + Tµνφ ).

(6.6)

Therefore, the gravitational contribution to the DM abundance is calculated as2

Ωg
xh

2 =


Ωrh

2 3mxH3
end

512πε(1+3wφ)Tnow

(
ε

3M2
pH

2
end

)1/1+wφ
T

1−3wφ
1+wφ
re for hµν(TµνS + Tµνφ )

Ωrh
2 3m3

xH
3
end

2048πε(1−wφ)M 2
φ
Tnow

(
ε

3M2
pH

2
end

) 1+2wφ
1+wφ

T

1−3wφ
1+wφ
re for hµν(TµνF + Tµνφ ).

(6.7)
Where the suffix “g” stands for production due to the gravitational scattering process.
Ωrh

2 ' 5 × 10−5 is the present value of the radiation abundance. It is clear from the
expression above that gravitational production depends on Hend, mend

φ , and DM mass mx.
Given an inflation model, inflationary parameters such as Hend, mend

φ are fixed by CMB
observation. Therefore, wφ and DM mass mx are the only free-parameter. Therefore, the
present DM abundance can completely fix the DM mass once a particular inflaton equation
of states wφ is assumed. We will later observe that the aforesaid mass will set a maximum

2In the final DM abundance, we also include the gravitational production of DM from the thermal bath.
But for scalar DMs, which are produced from the thermal bath scattering, it has no contribution to the final
DM abundance as it is always subdominant compared to the production from inflaton scattering through
gravitational interaction. However, for the fermionic DM, gravitational production from the radiation bath
can be dominant when reheating temperature Tre ≥ 1013 GeV (for the details calculation, see ref. [52]).
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possible limit on the DM mass, which we symbolized as mg,max
x , for a large range of coupling

and the inflaton equation of state. To this end, let us reiterate that due to its universal
nature, the gravitational contribution to DM must be added to all the additional production
processes we take up in the following sections.

6.2.2 Freeze-in production via inflaton direct decay

We introduce different inflation coupling to DM. We consider three types of possible
interaction: gx1φS2, gx2φ2S2, hxφF̄F (see figure 11 for relevant Feynman diagrams), and
corresponding decay widths are,

Γφ,cx =



(gx1 )2

8πmφ(t)

√
1− 4m2

x

m2
φ

for gx1φS
2

(gx2 )2

8π
ρφ(t)
m3
φ

(t)

(
1− m2

x

m2
φ

)1/2
for gx2φ

2S2

(hx)2

8π mφ(t)
(

1− 4m2
x

m2
φ

)3/2
for hxφF̄F

(6.8)

Using the above equation in eq. (6.4), we have obtained the following solution of number
density,

nx(A) =
M2
pHend

2π


(gx1 )2

(1+3wφ)(mend
φ

)2A3

(
A

3
2 (1+3wφ) − 1

)
for gx1φ

1S2

3(gx2HendMp)2

2(5wφ−1)(mend
φ

)4A3

(
A−

3
2 (1−5wφ) − 1

)
for gx2φ

2S2

(hx)2

(1−wφ)A3

(
A

3
2 (1−wφ) − 1

)
for hxφF̄F

(6.9)

Unlike the previous gravitational production case, we now have additional coupling parame-
ters gxi , hx in the problem. Therefore, the present DM abundance will provide the constraint
equation between (mx, g

x
i /h

x) once we fix a particular reheating history by fixing (wφ, Tre)
and gri /hr.

Depending upon the DM mass, we will have two different expressions for the DM
abundance. If mx > mφ(Are), the DM freezes in before the end of reheating at some
intermediate scale factor A = Are(mx/mφ(Are))−1/3wφ for wφ 6= 0, and, if mx < mφ, the
DM freezes in after the end of reheating. The contribution to the DM abundance for
different direct decay channels are calculated as (mx < mφ(Are)),

Ωdcay
x h2 = mxnx(Are)

εT 3
reTnow

Ωrh2

= Ωrh2 Mp

2
√

3επTnow

mx

Tre



(gx1 )2

(1+3wφ)M2
φ

T

−8wφ
1+wφ
re for gx1φS

2

ε(gx2 )2

2(5wφ−1)M4
φ

T

4(1−3wφ)
1+wφ

re for gx2φ
2S2 with wφ> 0.2

ε(gx2 )2T

2(1−wφ)
1+wφ

re

2(1−5wφ)M4
φ

(
ε

3M2
pH

2
end

) 5wφ−1
1+wφ for gx2φ

2S2 with wφ< 0.2

(hx)2

1−wφ for hxφF̄F.

(6.10)
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Figure 12. Variation of the inflaton-DM matter coupling against the DM mass for wφ = 0.0, 0.50
for DM production processes φ→ SS (left), φφ→ SS (middle) and φ→ F̄F (left). The different
colour lines correspond to different reheating temperatures. The yellow-shaded region is ruled out
by BBN bound of ∆Neff. The gray-shaded region corresponds to the no reheating region where the
radiation domination era is impossible after inflaton domination. The vertical dashed lines (upper
plot) correspond to the kinematically maximum allowed DM mass mend

φ .

We introduce a new symbol, Mφ =
√

2n(2n− 1)βΛ2/nεw/1+w and mφ = MφT
4wφ/(1+wφ)
re is

the inflaton mass defined at the end of reheating. Note that for φφ→ SS (with wφ < 0.2)
DM production channel, most of the DM production happens at the initial phase of the
reheating similar to the gravitational production. On the other hand if mx > mφ(Are),
we have

Ωdcay
x h2 = Ωrh2 Mp

2
√

3επTnow

mx

Tre



(gx1 )2

(1+3wφ)M 2
φ

(
mx
Mφ

)− 1+3wφ
2wφ T

2(1−wφ)
1+wφ

re for gx1φS
2

ε(gx2 )
2(5wφ−1)M 4

φ

(
mx
Mφ

) 1−5wφ
2wφ T

2(1−wφ)
1+wφ

re for gx2φ
2S2 with wφ> 0.2

(hx)2

1−wφ

(
mx
Mφ

)wφ−1
2wφ T

2(1−wφ)
1+wφ

re for hxφF̄F

(6.11)
Once we obtain products from the direct decay, the total DM abundance can be expressed as

Ωxh
2 = Ωg

xh
2 + Ωdcay

x h2 = 0.12. (6.12)

In order to constrain the coupling parameters, we consider the total DM abundance.

6.2.3 Constraining the inflaton-DM couplings (gxi , hx) and DM mass (mx)

Figure 12 depicts detailed allowed parameter space for which present DM abundance is
satisfied. Let us emphasize again that while plotting the DM abundance, we take into
account the contribution from both the direct and the universal gravity-mediated decay of
inflation. For the sake of presentation, we have considered two sample values of the inflation
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equation of states wφ = (0.0, 0.50) with reheating temperatures range between maximum
and minimum values Tre = (TBBN , 10, 106, 1010, 1015)GeV.

In each plot for a fixed (Tre, wφ) we see the maximum limit on DM mass (mg,max
x ) [52, 53]

which is due to gravitational interaction as mentioned before. However, since DMs are
produced from the inflaton decay, purely kinematic constraints can also set the upper limit
to be mend

φ for some specific cases when mg,max
x > mend

φ which is observed for wφ = 0 (see
figure 12). It is natural to expect that for mx < mg,max

x , the DM from the decay channel
solely controls the abundance. Upon mx approaching mg,max

x value, the gravitational
contribution starts dominating the abundance till mx = mg,max

x .
However, the lower bound on the DM mass will be fixed either from observation or

theory. For example, the lower bound has been observed to be controlled by reheating
temperature and the physical processes of reheating under consideration. In general, for
this scenario lower the DM mass, the larger would be the inflaton-DM coupling to achieve
the correct DM abundance. However, the inflaton-DM coupling should be bounded from
above so that the universe should be radiation dominated from the end of reheating (Tre)
to the matter-radiation equality (Teq ' 10−9 GeV). Hence, there exists an upper limit of
the DM coupling, above which we always get the DM-dominated universe after the inflaton
domination, or in other words one never achieve the radiation-dominated universe. Since
there is a one-to-one correspondence between the DM coupling and the DM mass, a lower
limit of the DM mass corresponds to the upper limit of the DM coupling, and that can be
obtained by equating the DM energy density and the radiation energy density at the time
of matter-radiation equality. The upper limit of coupling are calculated as

gx1, c =
(

9π
√
ε(1+3wφ)Mφ√

3Mp

)1/2

T

1+3wφ
1+wφ
re for gx1φS

2

gx2, c =
(

9π(5wφ−1)M 3
φ√

3εMp

)1/2

T

5wφ−1
1+wφ
re for gx2φ

2S2 with wφ> 0.2

gx2, c =
(

12π(1−5wφ)M 3
φ√

3εMp

)1/2(
ε

3M2
pH

2
end

) 1−15wφ
12(1+wφ)

T

2(3wφ−1)
3(1+wφ)
re for gx2φ

2S2 with wφ< 0.2

hxc =
(

9π
√
ε(1−wφ)√

3MpMφ

)1/2

T

1−wφ
1+wφ
re for hxφF̄F.

(6.13)
which does not depend on the details of the reheating history but on the nature of DM,
reheating temperature, and equation of states. The corresponding lower limit on the DM
mass can similarly be calculated as (see figure 12)

mx,min = 4.3× 10−10mφ(Tre)
Tre

= 4.3× 10−10MφT

3wφ−1
1+wφ
re (6.14)

However, such theoretical lower bound will be further constrained by the observational BBN
bound on ∆Neff ≤ 0.50 (yellow shaded region). Using this in eq. (6.3) one readily infers
that the relativistic DM energy density should be less 8% to the over all energy budget at
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the end of reheating. Upon incorporating such observational constraints we arrive at the
following modified expression of lower limit of the DM mass as

mx,min ' 10−8MφT

3wφ−1
1+wφ
re (6.15)

To this end, we would like to point out the fact that there exists Lyman−α bound on the
DM mass mLyman

x > 5× 10−6 GeV. However, such bound on DM depends non-trivially on
the details of its phase-space distribution and equation of state. Therefore, we defer this
discussion in detail for our future studies.

From our discussion so far, we have obtained two broad conditions on the DM mass,
say mx > mφ(Are) and mx < mφ(Are). When the DM mass satisfies the condition
mx < mφ(Are), its abundance decrease with increasing reheating temperature, as shown in
eq. (6.10) (see also figure 12). As a result, in order to achieve correct abundance for a fixed
DM mass, the inflaton-DM coupling must be increased for larger reheating temperature with
an exception (see figure 12) for φφ→ SS production channel with wφ < 1/3. The reason is
that for such a situation, the φφ→ SS channel produces DM only during the initial stage
of reheating. On the other hand, when the DM satisfies mx > mφ(Are), the slope of the
figure changes (see the bottom plot of figure 12), and the co-moving DM freezes in at any
point during reheating due to kinematics reason where mx ∼ mφ. As a consequence, the
mass dependency of the abundance Ωxh

2 also changes (see eq. (6.11)).

6.3 Freeze-in and Freeze-out production of DM from radiation bath

In this section, we will discuss DM production exclusively from the thermal bath. In
addition, the universal gravitational production of DM will always be present, which can
not be ignored. The associated Boltzmann equations (see, for instance, eq. (2.7)) for the
freeze-in production scenario are

ρ̇rtot + 4Hρrtot − Γrφ(1 + wφ)ρφ − 2〈σv〉〈Ex〉r
[
(nrx)2 − (nrx,eq)2

]
= 0, (6.16)

ṅrx + 3Hnrx + 〈σv〉
[
(nrx)2 − (nrx,eq)2

]
= 0. (6.17)

And for the freeze-out scenario, since the cross-section is strong enough, the gravitationally
produced DM from inflaton and radiation occurs at the initial reheating stage and reaches
thermal equilibrium within a short period. Thus, the Boltzmann equations associated with
DM take the following form

ṅrx + 3Hnrx + 〈σv〉
[
(nrx)2 − (nrx,eq)2

]
−

Γφφ→SS/FFρφ
mφ(t) −

γS/FT
8
rad

M4
p

= 0. (6.18)

Where Γrφ = Γths/f + Γgrφφ→RR, γS = 1.9× 10−4 for scalar DM, γF = 1.9× 10−3 for fermionic
DM [50]. In the above expression, the fourth and last terms are associated with the DM
production through gravitational scattering from inflaton, and radiation bath respectively
(see figure 11 for relevant Feynman diagrams for gravitational scattering from the thermal
bath (R)). 〈Ex〉r =

√
m2
x + 9T 2

rad is the average energy per DM particle produced from the
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thermal bath [70]. 〈σv〉 be the thermally averaged cross section times velocity. nrx,eq be the
equilibrium number density of the DM, which can be expressed as

nrx,eq = jx
2π2

∫ ∞
mx

√
E2
x −m2

x

eEx/Trad + 1
ExdEx = jxT

3
rad

2π2

(
mx

Trad

)2
K2

(
mx

Trad

)
, (6.19)

where, Trad is the temperature of the radiation bath and jx be the internal degrees of
freedom of DM and K2(x) is the modified Bessel function of the second kind. The
expression of the DM relic abundance in terms of radiation abundance [118, 119] Ωxh

2 =
(mxN

r
x(AF )Ωrh

2)/(εT 3
FA

3
FTnow), where TF be the temperature of the radiation bath at the

very late times AF , when both the radiation and DM energy density became freezes, and
N r
x = nrxA

3 is the co-moving number density of DM. We constrain the DM parameter
space (mx, 〈σv〉) in terms of (wφ, Tre). The population of the DM particles produced from
the thermal bath strongly depends on the scattering cross-section 〈σv〉. If the scattering
cross-section is large enough, the produced DM particles reach thermal equilibrium, and
when the bath temperature falls below the DM mass, the number density of DM freezes
out-this mechanism is known as the freeze-out mechanism [54–61]. On the other hand, if
the scattering cross-section is small enough, the DM can never reach thermal equilibrium,
and this mechanism is called the freeze-in mechanism [14, 16, 19, 20, 62, 64–66]. In this
paper, we will discuss both production mechanisms and analyze the parameter space needed
to satisfy the correct relic.

6.3.1 Freeze-in from radiation bath: bosonic and fermionic reheating

For the freeze-in from the thermal bath, the DMs will never be in thermal equilibrium,
and hence DM number density generically satisfies nrx � nrx,eq. Dynamical equation
eq. (6.17) then transformed into simplified form in terms of co-moving DM number density
N r
x = nrxA

3 as,
dN r

x(A)
dA

= A2

H
〈σv〉

(
nrx,eq

)2
. (6.20)

The above equation suggests that the production rate is simply proportional to the square
of the equilibrium DM number density. In the mx < Trad limit, it behaves as ∝ T 6

rad. Thus
freeze-in production from radiation bath naturally follows the way radiation temperature
evolves up to the point mx ∼ Trad. The production for the masses mx > Trad will
naturally be Boltzmann suppressed. As we have extensively discussed, the evolution of the
bath temperature is conditioned non-trivially not only by the production process and its
constituents, but also by the bath temperature itself. Therefore, details of the reheating
history is expected to have interesting impact on DM evolution and its final abundance.
Throughout our analysis, we will provide a detailed analysis of DM phenomenology and its
dependence on the reheating history for different physical situations discussed before.

♣: Freeze-in from the bosonic radiation bath

Earlier, we discussed different possible bosonic reheating histories. In this section, we
will quote our findings of the DM abundances for those different reheating histories. The
detailed calculations are shown in the appendix-C. As discussed for the bosonic reheating
case, depending on the range of inflaton-scalar coupling, we have three different cases,
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Case-I: coupling strength gri > G 1, th
ci : in this regime, direct decay of inflaton into

radiation controls the entire reheating process, and as discussed we have the two broadly
classified thermal histories,

When Tmax
rad > mend

φ : for this case, the direct inflaton decay channel controls the re-
heating dynamics and the thermal effect is effective throughout the reheating period for
wφ > wcφ, so the temperature evolves according to eq. (A.23), (A.24). With this reheating
background, we now find the DM abundance for two different mass ranges. When mx < Tre,
the present-day DM abundance can be obtained as,

Ωxh
2 = Ωrh

2 6Mp〈σv〉j2
x

(3ε)3/2π4Tnow



mxTre
1+7wφ for gr1φs

2

mxTre
11wφ−3 for gr2φ

2s2 with wφ > 3/11

mxTre
3−11wφ

(
Tre
Tmax

rad

) 3(11wφ−3)
3−5wφ for gr2φ

2s2 with wφ < 3/11.
(6.21)

When the DM mass is lower than the reheating temperature, kinematically, DM production
is expected to continue even after reheating until the point when mx ∼ Trad. However, it
is important to note that freeze-in production of DM from the radiation bath typically
follows the evolution of the bath itself. In most cases, the comoving radiation energy density
freezes at the end of reheating. Therefore, for analytical calculation, it is safe to take DM
production up to the end of reheating even for mx < Tre. On the other hand, there are
some situations where radiation production happens initially, which is visible in most of the
scenarios where wφ < 3/11 for φφ→ ss reheating process. For such case, DM production
similarly happens instantaneously at the end of inflation, and its number density turned
out to be independent of mass but depends on the maximum radiation temperature T rad

rad .
The resulting expression for the abundance is given in the last expression of eq. (6.21).
Therefore, for this particular reheating, since maximum production happens initially, the
above expression of the abundance will remain the same even for mx > Tre. However, this
should not be true in general.

Generically if one considers the mass mx > Tre, the DM is naturally expected to be
produced during reheating until mx ∼ Trad, and the abundance for different decay channels
are obtained as

Ωxh
2 = Ωrh

2 6Mp〈σv〉j2
x

(3ε)3/2π4Tnow


mxTre
1+7wφ

(
Tre
mx

) 3(1+7wφ)
1−3wφ for gr1φs

2

mxTre
11wφ−3

(
Tre
mx

) 3(11wφ−3)
3−5wφ for gr2φ

2s2 with wφ > 3/11
(6.22)

At this point, we would like to elaborate the exceptional case for wφ > wtφ, for which
the reheating temperature equals the maximum radiation temperature (see, for instance,
eq. (A.23)). If the EoS satisfies wφ > wtφ and mx > Tre, the DM production remains always
suppressed and the dominating contribution comes from the initial stage of reheating. On
the other hand, for wφ < wtφ where maximum radiation temperature appears at the initial
phase of reheating and for mx > Tre DM production occurs till the point mx ∼ Trad.
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As discussed earlier, when wφ < wcφ, we found an intermediate temperature scale Tc
(at the point Ac defined in eq. (4.6)) above which bath temperature dynamics is controlled
by the thermally corrected decay width. Hence, for mx > Tre, since the freeze-in occurs
during the reheating epoch itself, two different possibilities arise. If mx > Tc > Tre, the DM
will freeze in during the early phase of reheating, where the evolution of bath temperature
is controlled by thermally corrected production rate, and the abundance will take the
following form,

Ωxh
2 = Ωrh

2 6Mp〈σv〉j2

(3ε)3/2π4Tnow


mxTre
1+7wφ

(
Tc
mx

) 3(1+7wφ)
1−3wφ

(
Tre
Tc

) 2(3+5wφ)
1−wφ for gr1φs

2 .

mxTre
3−11wφ

(
Tre
Tmax

) 3(11wφ−3)
3−5wφ for gr2φ

2s2
(6.23)

Whereas for Tc > mx > Tre, the DM will freeze in during the later part of the reheating
phase when finite temperature effect is diminished, and the abundance assumes different
form as,

Ωxh
2 = Ωrh

2 12Mp〈σv〉j2

(3ε)3/2π4Tnow


mxTre
3+5wφ

(
Tre
mx

) 2(3+5wφ)
1−wφ for gr1φs

2 .

mxTre
3−11wφ

(
Tre
Tmax

) 2(11wφ−3)
3(1−wφ) for gr2φ

2s2
(6.24)

And if mx < Tre, the DM abundance at the present time can be written as

Ωxh
2 = Ωrh

2 12Mp〈σv〉j2

(3ε)3/2π4Tnow


mxTre
3+5wφ for gr1φs

2

mxTre
3−11wφ

(
Tre
Tmax

) 2(11wφ−3)
3(1−wφ) for gr2φ

2s2
(6.25)

When T r,max
gr < Tmax

rad < mend
φ : for this case, direct inflaton decay channel controls the

entire reheating dynamics. Similar to the discussion above for mx < Tre, the abundance
can be written as

Ωxh
2 = Ωrh

2 12Mp〈σv〉j2

(3ε)3/2π4Tnow



mxTre
3+5wφ for gr1φs

2 with wφ < wcφ

mxTre
1+7wφ for gr1φs

2 with wφ > wcφ

mxTre
3−11wφ

(
Tre
Tmax

rad

) 3(11wφ−3)
3−5wφ for gr2φ

2s2 with wφ < wcφ

mxTre
11wφ−3 for gr2φ

2s2 with wφ > wcφ.

(6.26)
However, for mx > Tre freeze-in will naturally occur during reheating, and for w < wcφ the
abundance can be found to be the same as eq. (6.24). On the other hand for w > wcφ the
abundance will be same as eq. (6.22) for mx < Tc, and for mx > Tc is

Ωxh
2 = Ωrh

2 12Mp〈σv〉j2

(3ε)3/2π4Tnow


mxTre
3+5wφ

(
Tc
mx

) 2(3+5wφ)
1−w

(
Tre
Tc

) 3(1+7wφ)
1−3wφ for gr1φs

2

mxTre
11wφ−3

(
Tc
mx

) 2(3+5wφ)
1−w

(
Tre
Tc

) 3(11wφ−3)
3−5wφ for gr2φ

2s2 ,

(6.27)
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Case-II: coupling strength in between G 2, th
ci < gri < G 1, th

ci : as discussed earlier, for
this coupling range, the gravitational interaction drives the dynamics of reheating at the
initial stage. Therefore, the maximum temperature is always controlled by the gravitational
sector T r,max

gr = Tmax
rad . In this coupling range, a cross-over temperature scale Ts (at the

point Agr→ngr-see eq. (4.12)) exists across which gravitational decay dominated to non-
gravitational decay-dominated reheating occurs. When mx < Tre, the DM will be produced
up to the end of reheating (except for gr2φ2s2 with wφ < 3/11), and hence the maximum
production occurs at the end of reheating, and the abundance follows eqs. (6.21), (6.25).
However, if Ts > mx > Tre and freeze-in occurs during the decay channel-dominated phase,
and the final abundance follows the same form as expressed in eqs. (6.22), and (6.24) with
Tc being replaced by Ts. However, if mx > Ts > Tre and freeze-in happens during the
universal gravitational decay-dominated phase, and we have

Ωxh2 = Ωrh2 6Mp〈σv〉j2

(3ε)3/2π4Tnow

mxTre
1−wφ

(
Tmax

rad
Ts

) 3(1−wφ)
2


(
Tre
Ts

) 3(1+7wφ)
1−3wφ for gr1φs

2 with wφ>w
c
φ(

Tre
Ts

) 3(11wφ−3)
3−5wφ for gr2φs

2 with wφ>w
c
φ ,

(6.28)
and

Ωxh2 = Ωrh2 6Mp〈σv〉j2

(3ε)3/2π4Tnow

mxTre
1−wφ

(
Tmax

rad
Ts

) 3(1−wφ)
2


(
Tre
Ts

) 2(3+5wφ)
1−wφ for gr1φs

2 with wφ<w
c
φ(

Tre
Ts

) 2(11wφ−3)
1−wφ for gr2φs

2 with wφ<w
c
φ .

(6.29)

Case III: when gri < G 2
ci: for this case the gravity-mediated decay of inflaton controls

the entire dynamics of reheating (termed as gravitational reheating). This particular phase
is realized for wφ > 0.65 (see the light-cyan region of figure 2). Similar to the previous case,
T r,max
gr = Tmax

rad will always holds. Since gravitational radiation production happens only at
the beginning of reheating, most of the DM production is also expected to happen at the
initial phase of the reheating, and the abundance for such a case is calculated to be,

Ωxh
2 = Ωrh

2 6Mp〈σv〉j2

(3ε)3/2π4Tnow

mxTre
(1− wφ)(Tre/T rad

max)3(wφ−1)/2 . (6.30)

♣: Freeze-in from the Fermionic radiation bath

Details of the fermionic reheating has been discussed. In this section, we will quote
our findings of the DM abundances for those different reheating histories. The detailed
calculations are shown in the appendix-C. The distinct behaviour of fermionic reheating, as
opposed to bosonic one, mainly arises for the higher value of inflation equation of state, say
wφ > 7/15 (5/9) for with (without) thermal effect. In addition to that, if wφ > 7/15 (5/9),
most of the fermionic radiation production occurs during the initial stage of reheating due
to its specific behaviour of production rate from the inflaton. Similar to the bosonic one,
for fermionic reheating depending on the range of inflaton-Fermion coupling we have two
different possibilities,
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Case-I: coupling strength, hr > Hc: as discussed before, for this coupling regime,
non-gravitational decay of inflaton into radiation controls the entire reheating process. In
the following subsection consider different temperature regimes

When Tmax
rad > mend

φ : for this case, the thermal correction in the decay rate will be
dominant from the beginning. Depending upon the equation of state we have two different
possibilities of evolution of the radiation component: (i) 1 > wφ ≥ 7/15, the radiation
production mainly takes place at the initial stage, (ii) 0 ≤ wφ < 7/15, radiation production
happens throughout the reheating phase (see, for instance, eq. (5.3)).

• 1 > wφ ≥ 7/15: as just pointed out, radiation production occurs at the initial stage
and hence the comoving radiation density becomes constant early. Following the
radiation evolution, the DMs are also produced at the beginning of reheating. As a
result the abundance (see, eq. (6.31)), naturally be controlled by the Tmax

rad , as follows

Ωxh
2 = Ωrh

2 6Mp〈σv〉j2
x

(3ε)3/2π4(1− wφ)Tnow
mxTre

(
Tre
Tmax

rad

) 3(wφ−1)
2

, (6.31)

• 0 ≤ wφ < 7/15: for this range of EoS, the ratio Trad/mφ varies as A− 3
10 (1−5wφ) which

indicates that the thermal effect is dominant throughout the entire reheating phase
when 7/15 > wφ > 1/5. However, for 0 ≤ wφ < 1/5, there exists an intermediate
temperature scale Tc with the scale factor Ac (see eq. (5)) above which the thermal
effects drops down drastically. Let us discuss two possible scenarios in this context:

1. Dominant finite temperature effect during entire reheating period for EoS 1/5 <
wφ < 7/15 : We found two different sub-possibilities depending on EoS.

a) When EoS is in the range of 9/25 < wφ < 7/15, comoving DM freezes at the
initial stage of reheating, and due to that, there is an explicit maximum temperature
dependence in the DM abundance. Henceforth, for both mx > Tre and mx < Tre, we
have the same DM abundance expression, and that is,

Ωxh
2 = Ωrh

2 30Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
(25wφ − 9)

(
Tre
Tmax

rad

) 9−25wφ
1+5wφ

, (6.32)

b) When EoS lies between 1/5 < wφ < 9/25, the expression for DM abundance will be
different for mx < Tre (comoving DM freezes at the end of reheating) and mx > Tre
(comoving DM freezes at any intermediate point during reheating where mx ∼ Trad).
For mx < Tre, DM abundance is found to be,

Ωxh
2 = Ωrh

2 30Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
9− 25wφ

, (6.33)

and for mx > Tre we have,

Ωxh
2 = Ωrh

2 30Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
9− 25wφ

(
Tre
mx

) 9−25wφ
1+5wφ

. (6.34)
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2. Finite temperature effect will not be dominant during the entire reheating period
for EoS 0 ≤ wφ < 1/5 : as already discussed earlier, for this range of EoS, there exits
an intermediate temperature scale Tc across which thermal effect drops down (see
discussion around eq. (5.5)). Therefore, for mx > Tre (comoving DM freezes in during
reheating), we have two different possibilities:

i) When mx > Tc > Tre, the DM freezes in before thermal to non-thermal domination
crossover, and we get

Ωxh
2 = Ωrh

2 30Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
9− 25wφ

(
Tc
mx

) (9−25wφ)
1+5wφ

(
Tre
Tc

) 2(3−7wφ)
1+3wφ

. (6.35)

ii) When Tre < mx < Tc, the comoving DM freezes after thermal to non-thermal
domination crossover, and abundance assumes,

Ωxh
2 = Ωrh

2 4Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
3− 7wφ

(
Tre
mx

) 2(3−7wφ)
1+3wφ

, (6.36)

when mx < Tre, the Comoving DM freezes at the end of reheating, and the abundance
can be expressed as

Ωxh
2 = Ωrh

2 4Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
3− 7wφ

. (6.37)

T r,max
gr < Tmax

rad < mend
φ : in this case, as described earlier in detail (see, for instance,

section-5) there is no thermal effect at the beginning of reheating. Depending on the
reheating background, there are two different possibilities (see, for instance, eq. (5.8)):

• 1 > wφ ≥ 5/9: the bath temperature always falls as A−1 since the radiation
component is frozen at the beginning of reheating. For the freeze-in mechanism
from the thermal bath, it is expected that the DM component follows the radiation
and freezes at the beginning, irrespective of its mass. Thus the expression for the
abundance will be exactly the same as defined earlier in eq. (6.31).

• 0 ≤ wφ < 5/9: in this scenario, the thermal effect is subdominant at the beginning,
but there is a chance of the thermal effect being dominant at any intermediate scale
where Trad ∼ Tc. However, depending upon the way the finite temperature effect made
its presence on the DM evolution, the EoS range is divided into three sub-ranges,

1. Sub-dominant finite temperature effect during the reheating for EoS 0 ≤ wφ < 1/5 :
if the thermal correction is not applicable throughout reheating, then the abundance
follows the eq. (6.37) for mx < Tre and eq. (6.36) for mx > Tre.

2. Dominant finite temperature effect at intermediate temperature Tc for 1/5 < wφ <

3/7 : here we have two different cases depending on different EoS regimes:

i) In the presence of the thermal effect when EoS lies within 9/25 < wφ < 3/7, most
of the DM production occurs before the intermediate temperature scale Tc. Hence,
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for any value of mx < Tc, the DM always freezes-in its production near around the
Tc, and DM abundance assumes the form,

Ωxh
2 = Ωrh

2 4Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
3− 7wφ

(
Tc
Tre

)−9+25wφ
1+5wφ

. (6.38)

Whereas, for the same EoS range when mx > Tc > Tre, the comoving DM will freeze
in during the initial phase when the thermal effect would be subdominant, and the
abundance takes the following form

Ωxh
2 = Ωrh

2 4Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
3− 7wφ

(
Tc
mx

) 2(3−7wφ
1+3wφ

(
Tre
Tc

) 9−25wφ
1+5wφ

. (6.39)

ii) For the range of EoS 1/5 < wφ < 9/25, the DM production continues up to the
end of reheating, and for mx < Tre, the abundance follows the eq. (6.33). Whereas,
when mx > Tre, the DM production continue up to mx ∼ Trad. Therefore, for
Tc > mx > Tre, the DM abundance will follow the eq. (6.34) and for mx > Tc > Tre,
eq. (6.39) will be the abundance expression.
3. For EoS 3/7 < wφ < 5/9: for this case, it is observed that the comoving DM freezes
immediately after the reheating begins irrespective of DM mass, and the abundance
of the DM takes the following form,

Ωxh
2 = Ωrh

2 4Mp〈σv〉j2
x

(3ε)3/2π4Tnow

mxTre
7wφ − 3

(
Tre
Tmax

rad

) 2(3−7wφ)
1+3wφ

. (6.40)

Case-II: coupling strength, hr < Hc: as discussed before, for this coupling regime,
gravitational decay of inflaton into radiation controls the entire reheating process. Therefore,
Tmax

rad = T r,max
gr will always be the case. Depending on the different EoS, there are the

following possibilities,

• 1 > wφ > 0.65: since for this case hr < Hc and wφ > 0.65, the gravitational sector is
the governing reheating dynamics, termed as gravitational reheating. In gravitational
reheating following the radiation component, the DM component will also freeze just
at the beginning of reheating, irrespective of its mass, and the abundance will be of
the same form as expressed in eq. (6.30).

• 0 ≤ wφ < 0.65: for this case, purely gravitational production will not be sufficient
to reheat the universe. Hence, to have successful reheating, one needs to have
non-gravitational production during the later stage of reheating, and the reheating
temperature is defined by non-gravitational fermionic coupling. We found three
interesting cases, which are as follows:
1. Reheating temperature Tre < TBBN for EoS, 5/9 < wφ < 0.65: it is observed that
if the EoS lies in this range, both gravitational and non-gravitational production
happen very early in reheating phase. Due to subsequent expansion, the reheating
temperature turns out to be always < TBBN (see the red shaded region of figure 7).
However, from the figure 7 it is clear that for EoS between 0 ≤ wφ < 5/9, we have
non-trivial dynamics
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2. Dominant finite temperature effect at intermediate temperature Ts for EoS, 1/5 <
wφ < 5/9 : in the range of EoS, the finite temperature effect start to dominate at
some intermediate temperature scale Ts during reheating. Now, if mx < Tre, the DMs
are expected to freeze after the end of reheating, and consequently, its abundance is
calculated to be the same as given in eq. (6.33). If Ts > mx > Tre, the DMs freeze
in during the later phase of reheating when non-gravitational decay dominates, and
the abundance assumes the form of eq. (6.34). Finally, if mx > Ts > Tre, the DM
will freeze during the initial part of the reheating phase when gravity-mediated decay
controls the reheating, and for such case, the abundance has been calculated as

Ωxh
2 = Ωrh

2 2Mp〈σv〉j2
x

(3ε)3/2π4(1− wφ)Tnow
mxTre

(
Ts
Tmax

rad

) 3(wφ−1)
2 (

Tre
Ts

) 9−25wφ
1+5wφ

. (6.41)

3.For EoS 0 < wφ < 1/5: when mx < Tre, the DM abundance is the same expression
as eq. (6.37) and when Ts < mx < Tre, the abundance is same as defined in eq. (6.36).
Again, if mx > Ts, the DM will freeze in during the initial gravitational channel
domination sector; in such a case, the DM abundance follows the below equation

Ωxh
2 = Ωrh

2 2Mp〈σv〉j2
x

(3ε)3/2π4(1− wφ)Tnow
mxTre

(
Ts
Tmax

rad

) 3(wφ−1)
2 (

Tre
Ts

) 2(3−7wφ)
1+3wφ

. (6.42)

6.3.2 Freeze-out from the bosonic and fermionic radiation bath

For freeze in mechanism, the interaction cross-section 〈σv〉 is so small that DM can never
reach thermal equilibrium. However, if 〈σv〉 is large enough, the DM can strongly interact
with the SM bath and be in thermal equilibrium. The background expansion eventually
helps the DM freeze out from the bath at a certain temperature Tf . Conventionally these
DMs are called WIMP. The freeze-out temperature Tf is defined as,

〈σv〉nrx,eq(Tf ) = H(Tf ). (6.43)

During reheating, inflaton decays into radiation; hence, entropy is not conserved. Due to
this physical situation, one can find two distinct situations:

Freeze out after reheating: if the mass of the DM mx < Tre, it will freeze out after
reheating, i.e., during the radiation-dominated era. Moreover, after the freeze out, the
co-moving number density N r

x = nrxA
3 will be much larger than the comoving equilibrium

number density N r
x, eq. Thus after freeze-out happens, one can neglect N r

x, eq in comparison
with N r

x and from the eq. (6.17), one can find3

dN r
x

dA
= − 〈σv〉

H(Are)
(A/Are)2(N r

x)2 . (6.44)

3Near the DM thermal freezes-out temperature, the non-thermal gravitational production can become
dominant as compared to thermal one. This is usually interpreted as the re-annihilation phase [67]. We thank
the anonymous referee for pointing out this important fact. In our analysis, we ignored this effect. However,
it is to be noted that if freeze-out occurs after reheating, such an effect turns out to be subdominant. The
reason for this is that during radiation domination, the inflation energy density is negligible compared to
the radiation energy density implying Γφφ→SS/FF ρφ

mφ
� 〈σv〉(nrx,eq)2 at Tf . On the other hand, for Tf > Tre,

such an effect can become important, particularly for the higher DM mass range which we discussed in the
appendix-F.
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Integrating from freeze-out point (A = Af ) to the present time (A = A0), we get

N r
x(A0) = H(Are)

〈σv〉
AfA

2
re =⇒ Ωxh

2 = 1√
3εMp〈σv〉

(mx/Tf )(Ωrh
2/T0) (6.45)

N0 is identified as the present day comoving number density leading to Ωxh
2 ∝ 1/〈σv〉.

Hence, the abundance decreases with increasing 〈σv〉.

Freeze out during reheating: alternatively, DM freeze-out could occur during reheating
if mx > Tre. During reheating H = H(Are)(A/Are)−

3(1+w)
2 , after utilizing this in eq. (6.17)4

dN r
x

dA
= − 〈σv〉

H(Are)A4
re

(A/Are)
3wφ−5

2 (N r
x)2 (6.46)

Freeze-out occurs during reheating at some intermediate scale factor Af < Are. Therefore,
integrating the above equation for the number density from Af to Are, the comoving number
density at the end of reheating is

Nx
r (Are) = 3(1− wφ)

2〈σv〉 H(Are)A3
re (Are/Af )−3(1−wφ)/2 (6.47)

Therefore, the current abundance can be written as,

Ωxh
2 = Ω†h2

(
mx

Tre

)(
Af
Are

) 3(1−wφ)
2

; Ω† =
√

3(1− wφ)
2
√
εMp〈σv〉

Ωr

Tnow
(6.48)

We will evaluate the abundance for the aforementioned two cases for different reheating
models discussed earlier in detail.

Freeze out temperature: the freeze-out temperature Tf in general can be computed
from eq. (6.43) by assuming H(Tf ) ∝ T kf as,

T
3/2
f e−mx/Tf = K(Tre, Tc)T kf . (6.49)

The general solution of the above equation is expressed in terms of Lambert function W−1(q)
of branch −1 with argument q,

Tf = − 2mx

2k − 3
1

W−1(q) with q = − 2mx

2k − 3K
2

2k−3 . (6.50)

We further assume the approximate 〈σv〉 being independent of temperature in the above
expression and throughout our paper. If freeze-out happens after the reheating, one will
simply have K = K0 =

√
ε√

3Mp〈σv〉jx
(2π/mx)3/2, and k = 2. Consequently, the DM parameter

space (mxvs〈σv〉) turns out to be the same for all reheating temperatures and inflaton
equations of states. However, if freeze-out happens during reheating, the expression of
(K, k) will differ. It is observed that generically we can express K(Tre, Tc/s) = K0T

µ
reT

ν
c/s,

where (µ, ν) will assume different values for different reheating history and that will be our
subject of our subsequent discussion.

4To find out the analytical expressions of the DM abundance, here we neglect the re-annihilation of DM.
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Figure 13. The evolution of the co-moving number density of the DM (WIMP) as a func-
tion of the normalized scale factor A for bosonic reheating (φ → ss) for three different cases-
I(left),II(middle),III(right).

♣: Freeze-out from the bosonic radiation bath

Case-I: coupling strength gri > G 1, th
ci : similar to the freeze-in case, let us discuss two

different regimes.
When Tmax

rad > mend
φ : if the inflaton equation of state wφ > wcφ, the abundance due to

freeze-out can be calculated as,

Ωxh
2 = Ω†h2


(
mx
Tre

) (
Tre
Tf

) 3(1−wφ)
1−3wφ for gr1φs

2, and ν = 0, µ = 2− k, k = 3(1+wφ)
1−3wφ(

mx
Tre

) (
Tre
Tf

) 3(1−wφ)
3−5wφ for gr2φ

2s2, and ν = 0, µ = 2− k, k = 3(1+wφ)
3−5wφ

(6.51)
where Tf is the freeze-out temperature which we already defined in eq. (6.50).

However, if wφ < wcφ, as has already been discussed for the bosonic reheating, there
exists an intermediate temperature scale Tc at which the ratio Trad/mφ goes less than
unity, and the thermal effect becomes subdominant at the later part of the reheating phase.
Therefore, if Tf > Tc, DM freezes out during early reheating phase and the abundance is
calculated to be

Ωxh2 =

Ω†h2


(
mx
Tre

)(
Tre
Tc

)4(
Tc
Tf

) 3(1−wφ)
1−3wφ for gr1φs

2 and ν= 4(1+wφ)
1−wφ −k,µ= −2(1+3wφ)

1−w ,k= 3(1+w)
1−3wφ(

mx
Tre

)(
Tre
Tc

) 4
3
(
Tc
Tf

) 3(1−wφ)
3−5wφ for gr2φ

2s2 and ν= 4(1+wφ)
3(1−wφ)−k,µ= 2(1−5wφ)

3(1−wφ) ,k= 3(1+wφ)
3−5wφ
(6.52)

However, if Tc > Tf , the freeze-out occurs during the later phase of reheating, and the
abundance assumes a different form as

Ωxh2 = Ω†h2


(
mx
Tre

)(
Tre
Tf

)4
for gr1φs

2 and ν= 0,µ= 2−k,k= 4(1+wφ)
1−wφ(

mx
Tre

)(
Tre
Tf

)4/3
for gr2φ

2s2 and ν= 0,µ= 2−k,k= 4(1+wφ)
1−wφ

(6.53)

T r,max
gr < Tmax

rad < mend
φ : for this case, if the inflaton equation of state wφ < wcφ, the effective

mass of inflaton remains to be greater than the radiation temperature, and the finite
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temperature effect will be subdominant throughout. The DM abundance for such case will
be same as eq. (6.53), and the evolution of the comoving number density is depicted in
figure 13. Whereas for wφ > wcφ, a new temperature scale Tc emerges as before. If DM
mass happens to satisfy the condition mx < Tc, DM freezes out with radiation temperature
T < Tc, and the abundance assumes the same form as expressed in eq. (6.51). On the
other hand if mx > Tc, freeze-out occurs during the initial non-thermal phase, and DM
abundance becomes,

Ωxh2 =

Ω†h2


(
mx
Tre

)(
Tc
Tf

)4(
Tre
Tc

) 3(1−wφ)
1−3wφ for, gr1φs

2, ν= 3(1+wφ)
1−3wφ −k,µ= −(1+9wφ)

1−3wφ ,k= 4(1+w)
1−wφ(

mx
Tre

)(
Tc
Tf

)4/3(
Tre
Tc

) 3(1−wφ)
3−5wφ for gr2φ

2s2, ν= 3(1+wφ)
3−5wφ −k,µ= 3−13wφ

3−5wφ) ,k= 4(1+w)
3(1−wφ)
(6.54)

Case-II: coupling strength in between G 2, th
ci < gr

i < G 1, th
ci : This reheating history

is described in the bosonic reheating section. The gravity-mediated decay channel controls
the initial reheating dynamic up to T = Ts, and then the non-gravitational decay channel
controls the reheating dynamics. As a result, initially, DM production is driven by the
gravity-mediated decay channel (up to T = Ts) and then driven by the non-gravitational
decay channel (see middle figure 13). For wφ > wcφ, if the DM freezes out during the late
non-gravitational decay channel domination phase, i.e., Tf < Ts, then the DM abundance
follows the eq. (6.51), and if the DM is frozen out during gravity mediated reheating phase
Tf > Ts, the DM has following abundance,

Ωxh2 =

Ω†h2


(
mx
Tre

)(
Ts
Tf

) 3(1−wφ)
2

(
Tre
Ts

) 3(1−wφ)
1−3wφ for, gr1φs

2, ν= 3(1+wφ)
1−3wφ −k,µ= −(1+9wφ)

1−3wφ ,k= 3(1+w)
2(

mx
Tre

)(
Ts
Tf

) 3(1−wφ)
2

(
Tre
Ts

) 3(1−wφ)
3−5wφ for gr2φ

2S2, ν= 3(1+wφ)
3−5wφ −k,µ= 3−13wφ

3−5wφ ,k= 3(1+w)
2

(6.55)
Again for wφ < wcφ, if the DM is frozen out during the late decay channel domination
phase, the abundance has the eq. (6.53), and if the DM is frozen out during the initial
gravity-mediated reheating phase, the DM abundance has the following equation

Ωxh2 =

Ω†h2


(
mx
Tre

)(
Ts
Tf

) 3(1−wφ)
2

(
Tre
Ts

)4
for, gr1φs

2, ν= 4(1+wφ)
1−wφ −k,µ= −2(1+3wφ)

1−wφ ,k= 3(1+w)
2(

mx
Tre

)(
Ts
Tf

) 3(1−wφ)
2

(
Tre
Ts

)4/3
for gr2φ

2S2, ν= 4(1+wφ)
3(1−wφ)−k,µ= 2(1−5wφ)

3(1−wφ) ,k= 3(1+w)
2

(6.56)

Case-III: for this reheating scenario, the gravitational sector is the governing reheating
dynamics termed as gravitational reheating (GR). The evolution of co-moving number
density is shown in the left plot in figure 13. The DM abundance is

Ωxh
2 = Ω†h2(mx/Tre)(Tre/Tf )

3(1−wφ)
2 , and ν = 0, µ = 2− k, k = 3

2(1 + wφ) (6.57)
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Figure 14. 〈σv〉 vs mx for both freeze-in and freeze-out with five different reheating temperature
Tre = (TBBN , 10, 106, 1010, 1015 GeV for wφ = 0.0. The left plot is for scalar DM, and the right plot
fermionic DM. The solid (dashed) lines for freeze-in (freeze-out). The Small filled circle denotes
the freeze-in and freeze-out coincidence point. The yellow-shaded region is ruled out by the ∆Neff
bound at BBN, and purple shaded region is ruled by the unitarity bound.

♣: Freeze-out from the Fermionic radiation bath

• wφ > 5/9: for wφ > 5/9, the bath temperature always behaves as Trad = Tre(Are/A),
and using this equation into eq. (6.48), the abundance is,

Ωxh
2 = Ω†h2(mx/Tre)(Tre/Tf )

3(1−wφ)
2 , and ν= 0,µ= 2−k,k= 3

2(1+wφ) (6.58)

• 0 < wφ < 5/9: for this range of equation of state, we discuss three different
possibilities as follows:

Case-I: coupling strength hr > Hc: Tmax
rad > mend

φ : depending upon the evolu-
tion of radiation, we will have different behavior of the DM abundance in terms of
reheating temperature. For 7/15 < wφ < 5/9 the radiation temperature behaves A−1,
and abundance follows the eq. (6.58). On the other hand if 1/5 < wφ < 7/15, radiation
temperature behaves Trad = Tre(A/Are)−

3(1+5wφ)
10 , and using this in eq. (6.48), we get

Ωxh
2 = Ω†h2(mx/Tre)(Tre/Tf )

5(1−wφ)
1+5wφ and ν = 0, µ = 2− k, k = 5(1 + wφ)/1 + 5wφ

(6.59)
Finally, if the 0 ≤ wφ < 1/5 similar to scalar reheating case, the intermediate
temperature scale Tc, leads to two different possibilities. If mx > Tc, DM freezes out
during the early reheating phase, and we have,

Ωxh
2 = Ω†h2

(
mx

Tre

)(
Tc
Tf

) 5(1−wφ)
1+5wφ

(
Tre
Tc

) 4(1−wφ)
1+3wφ

and µ = 2(wφ − 1)
1 + 3wφ

, ν = 5(1 + wφ)
1 + 5wφ

− k, k = 5(1 + wφ)
1 + 5wφ

(6.60)
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where On the other hand, if mx < Tc, DM freezes out during the late reheating phase
when the finite temperature effect is subdominant, and we have

Ωxh
2 = Ω†h2

(
mx

Tre

)(
Tre
Tf

) 4(1−wφ)
1+3wφ

and ν = 0, µ = 2− k, k = 4(1 + wφ)
1 + 3wφ

(6.61)

T r,max
gr < Tmax

rad < mend
φ : for this case, finite temperature correction is subdominant at

the beginning. In fact, for lower EoS, namely 0 < wφ < 1/5, such finite temperature
effect will be subdominant throughout the reheating, and hence the abundance turned
out to be same as eq. (6.61). On the other hand, for wφ > 1/5, the finite temperature
effect will become dominant after an intermediate temperature scale Tc, and if the
DM freeze-out temperature satisfies Tf < Tc, the abundance obeys the eq. (6.59).
Conversely, if the DM freezes out during the early non-thermal phase with Tf > Tc,
one will have

Ωxh
2 = Ω†h2

(
mx

Tre

)(
Tc
Tf

) 4(1−wφ)
1+3wφ

(
Tre
Tc

) 5(1−wφ)
1+5wφ

and ν = 4(1 + wφ)
1 + 3wφ

− k, µ = −3 + 5wφ
1 + 5wφ

, k = 4(1 + wφ
1 + 3wφ

(6.62)

ii) Coupling strength hr < Hc: for this case, initially, the reheating phase is
governed by the gravity-mediated decay channel up to a point Agr→ngr, and the later
part of the phase is dominated by direct inflaton decay. If the freeze-out happens
during the later phase, the abundance will be the same as eq. (6.59) for wφ > 1/5
and eq. (6.60) for wφ < 1/5. If freeze-out occurs at the early phase of reheating, the
abundance assumes,

Ωxh2 =

Ω†h2mx

Tre


(
Ts
Tf

) 3(1−wφ)
2

(
Tre
Ts

) 5(1−wφ)
1+5wφ for wφ> 1/5, ν= 5(1+wφ)

1+5wφ −k,µ= −3+5wφ
1+5wφ ,k= 3(1+w)

2(
Ts
Tf

) 3(1−wφ)
2

(
Tre
Ts

) 4(1−wφ)
1+3wφ for wφ< 1/5, ν= 4(1+wφ)

1−wφ −k,µ= −2+2wφ
1+3wφ ,k= 3(1+w)

2

(6.63)

7 DM Parameter space, (〈σv〉,mx) for FIMPS and WIMPS from
radiation bath

In this section, we will discuss in detail the parameter region where DM production
mechanisms are at play for different reheating histories. For the sake of completeness and
understanding the DM parameter space, we consider three different EoS (wφ = 0.0, 0.20, 0.50)
with five different reheating temperature (TBBN , 10, 106, 1010, 1015)GeV which includes both
minimum and maximum reheating temperature. An important point we want to infer is that
in the final contribution to DM abundance, we ignore any possible contribution from the
non-gravitational inflaton-DM coupling but include the universal gravitational production
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Figure 15. 〈σv〉 vs mx for both freeze-in (solid lines) and freeze-out (dashed lines) with five different
reheating temperature Tre = BBN, 10, 106, 1010, 1015 GeV for wφ = 0.20. The left plot is for scalar
DM, and the right plot fermionic DM. The small filled circle is the freeze-in and freeze-out meet
point. The yellow-shaded region is ruled out by the ∆Neff bound at BBN, and purple shaded region
is ruled by the unitarity bound.

from both inflaton and radiation scattering. And as we pointed out before, such universal
production has been observed to set a maximum limit on the DM mass mg,max

x (≤ mend
φ of

course) specifically for the freeze-in production. Interestingly for a given wφ, we found a
universal feature of lowest possible DM mass within mmin

x ' 150− 300 eV (see eq. (D.3))
irrespective of its nature and the reheating histories for which freeze-in and freeze-out
mechanism coincides during the radiation-dominated era. Below this mass scale, all the
DM has under abundance today. However, the critical cross-section 〈σv〉crit (for analytical
expressions, see appendix-D) at which this coincidence occurs depends on the reheating
temperature, which is represented by filled black circles in figures 14–16. Moreover, another
critical cross-section exists for higher DM mass (mmax

x ) where the freeze-in and freeze-out
mechanism coincides during reheating. Unlike the lower DM mass bound, mmax

x has been
found to have non-trivial dependence on the reheating temperature but also depends on the
EOS wφ, reheating background. All these features are clearly observed in figures 14, 15, 16.
In some reheating temperatures, there is no meet point of freeze-in and freeze-out; it is
due to the gravitational DM, which gives the overabundance for the freeze-in mechanism
where we expect the meet point occurs. When mmax

x < mg,max
x condition is satisfied, then

the abundance condition Ωxh
2 = 0.12 gives rise to a closed contour in (mx, 〈σv〉) plane

due to aforementioned two critical cross-sections for two different masses (mmin
x ,mmax

x ),
where the smooth transition happens from freeze-in to freeze-out or vice versa. For example,
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Figure 16. Here we have plotted the 〈σv〉 as a function of dark matter mass mx for wφ = 0.50 for
five different reheating temperature Tre = BBN, 10, 106, 1010, 1015 GeV. The plot is on the left side
for scalar dark matter and the right side for fermionic dark matter. The solid lines for the freeze-in
mechanism and the dotted lines for the freeze-out mechanism. The yellow-shaded region is ruled out
by the ∆Neff bound at BBN, and purple shaded region is ruled by the unitarity bound.

see figure 14 where we have found close contours for Tre = (10−2, 10, 106)GeV and in
figure 15 for Tre = (10−2, 10)GeV with bosonic reheating (for fermionic reheating we only
have closed contour for Tre = 10GeV). On the other hand, if mend

φ > mmax
x > mg,max

x ,
the critical cross-section disappears for higher mass values; for such cases, the maximum
allowed DM mass is turned out to be mg,max

x (mmax
x ) for freeze-in (freeze-out) mechanism.

Again, when mmax
x > mend

φ (it happens for higher reheating temperatures), one can find
the freeze-in and freeze-out meet point, but the close contour is not formed. To this end,
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we would also like to point out that DM annihilation is dominant but under-abundant
in the region outside the closed contours, whereas shaded regions are under-abundant for
open contours. The minimum and the maximum DM masses up to which DM can give
present abundance are 10−7 and 7× 1016 GeV, respectively. But, further, some parameter
space is ruled out by the ∆Neff at BBN (yellow shaded region) and by unitarity bound
of 〈σv〉 ≤ 8π/m2

x [70, 120, 121]. When WIMP DM has a mass scale in the order of TBBN
or below, it violates the ∆Neff bound at BBN. Again for WIMP DM, freeze-out happens
during RD (mx < Tre) if the mass scale lies above 105 GeV, it violates the unitarity bound
of 〈σv〉, which is shown by the light purple color region. Using two bounds, for the freeze-in
mechanism, the maximum and the minimum allowed scalar (fermionic) DM masses are
10−7(10−7)GeV, 4× 1016(1015)GeV respectively.

When mx < Tre, we obtained some generic behavior of the DM abundance specifically
for freeze-in production. Moreover, in the freeze-in production mechanism, if DM freezes
during the radiation-dominated era, 〈σv〉 behaves as ∝ 1/mx (see eqs. (6.21), (6.25), (6.26)).
On the other hand, when mx < Tre, for the freeze-out scenario, even though we do not have
such simple relation, it turned out that 〈σv〉 generically increases slowly with increasing mx.

8 WIMPs, experimental bounds and constraints on reheating

In this section, we would like to discuss our results from the perspective of some indirect
experimental constraints with their future projected sensitivity limit on the DM cross-section
and its mass plane. BBN constraints on the effective number of relativistic degrees of
freedom ∆Neff put direct constraints on the possible lower limit on the DM mass. In
all the 〈σv〉 Vs mx plots, the yellow shaded regions depict the forbidden region coming
from BBN bound. For WIMP-like DM, the condition of the ∆Neff at BBN sets the
approximate lowest possible DM mass mx ∼ TBBN . In addition, for 2 → 2 scattering
processes, the unitarity constraints further provide a bound on the maximum possible mass
mx ∼ 105 GeV for thermally produced DMs which freeze out, particularly during the RD
era (Tre > mx). However, if freeze-out occurs during reheating era (Tre < mx), DM mass
can be large, which is observed from the pink dotted curve of the third and fourth plot
of figure 17. Therefore, reheating dynamics plays a significant role in setting the possible
values of maximum DM mass, and it depends non-trivially on the inflationary parameter
such as inflaton equation of state. In figure 17, we have shown where our WIMP DM
parameter space lies with the available sensitivity curve for indirect experiments within
the mass range (0.01 − 105) GeV such as (i) PLANCK CMB measurement [82] labeled
as CMB shown in the light yellow region in the mass range of 0.1 to 10GeV. (ii) Alpha
magnetic spectrometer (AMS)-02 experiment [83, 84] provided cosmic ray positron (e+)
and antiproton (p̄) data with unprecedented precision in the mass range 5→ 103 GeV. (iii)
Combined bounds (labeled as Combined) from Fermi-LAT, HAWC, HESS, MAGIC, and
VERITAS experiment [85] provided a upper limit on the DM annihilation cross-section in
the case of two annihilation channels b̄b (purple dashed) and τ+τ− (red dashed). (iv) CTA
experiment [86] is a ground-based gamma-ray detector that could be capable of searching
the WIMP DM at the TeV scale with large sensitivity. The brown (orange) dashed line
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Figure 17. 〈σv〉 Vs mx for WIMP with experimental bound and future sensitivity for three different
EOS wφ = 0.0(green), 0.20(magenta), 0.50(cyan). The upper plot for the bosonic reheating (φ→ ss)
and the left plot for the fermionic reheating φ→ f̄f . The left (right) plot for the scalar (fermionic)
DM. The solid (dot-dashed) lines for Tre = TBBN (10)GeV and the small filled circle corresponding
to the freeze-in and freeze-out meet point.

shows its expected sensitivity for WIMP annihilation to b̄b (W+W−). In the near future,
CTA might be able to probe a significant portion of TeV scale WIMP DM that freeze-out
during either RD or reheating era.

In order to illustrate our result, we choose wφ = (0.0, 0.20, 0.50) with the background of
both bosonic (upper plot) and fermionic reheating (lower plot). The solid and dot-dashed
lines are for Tre = TBBN , 10GeV, respectively. The black solid lines correspond to those
DMs which freeze out during the RD era and for which one requires 〈σv〉 ∼ O(10−9)GeV−2

to get correct present-day DM relic. Moreover, most of the parts of this black line are
ruled out by the experimental bound (except CTA since it is a future experiment) as it
lies inside the regime of the sensitivity curves. For bosonic reheating, if wφ = 0.5, for both
Tre = TBBN and Tre = 10GeV, the WIMPs follow the black line (see, for instance, first and
the second plot of figure 17) to achieve the correct relic. For lower EOS, wφ = 0.0, 0.20 with
low reheating temperature, WIMP-like DM freezes out during reheating, and one requires
the lower value of 〈σv〉 to obtain present-day DM relic. Therefore, the DM parameter space
for freeze-out during reheating is still very much allowed. Thus in order to detect those
DMs in the near future, we need to increase the sensitivity of the experiments.
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9 Conclusions and Outlook

In this paper, we performed a detailed analysis of the physics of reheating after the end of
inflation. The physics after the end of inflation is expected to play a significant role in every
aspect of the late time universe. Apart from the well-established correspondence between
the physics of CMB and the early inflationary era, the intriguing effects of reheating on
our present universe can not be avoided. Unlike inflation, broadly reheating is similar
to the usual phases of the standard big-bang model, except for the fact that it occurs
right after the end of inflation. Therefore, experimentally it is challenging to look for its
direct signatures. Further, it is generically argued that decoding any physics information is
challenging because of non-linear thermalization processes during this phase. Over the years,
however, endeavor toward understanding this phase has gained significant interest due to
its rich new physics contents. Reheating is the phase that naturally encodes the physics
of inflaton itself. The way inflaton decays into different fundamental fields is expected to
be imprinted into different cosmological observables such as CMB anisotropy, DM, and
gravitational waves in terms of new physics. Therefore, reheating could be an interesting
playground for phenomenological studies of DM and inflation in a unified framework that
has not been studied extensively in the literature, and this is the main objective of our
present paper. We have addressed two main topics:

Inflaton phenomenology: in the first part, we have studied in detail the dynamics of
reheating separately through inflaton decaying into scalar field (bosonic reheating) and
decaying into fermions (fermionic reheating). Apart from the direct decay term, we further
include two important effects, namely, the universal gravity-mediated decay of inflaton, and
the finite temperature correction on different decay channels. The effects of gravitational
decay have already been analyzed before [92]. It has been shown that purely gravitational
reheating sets a lower bound on the reheating temperature when the inflaton equation
of state satisfies wφ > 0.65. Such a lower limit on the reheating temperature further
sets constraints on the inflaton direct coupling parameter below which gravity-mediated
decay will be the dominant channel for reheating process (see the cyan shaded region in
figure 2, 7). The cyan zone of these plots is the important outcome of our present analysis.
There is an equation of state-dependent critical values of the coupling constant below which
reheating dynamics become completely independent of direct inflaton coupling. Combining
this gravitational decay with the finite temperature correction in the direct decay, we
observe intriguing interplay among those different physical effects during reheating. The
thermal effect is expected to influence the dynamics when radiation temperature satisfies
the condition Trad > mφ(t). Depending on the strength of the inflaton-radiation coupling,
we observed several interesting reheating histories which have not been reported earlier.
Let us outline the main interesting outcomes in the following discussion
♠ We particularly observed a new reheating history for which reheating temperature

(Tre) and maximum radiation temperature (Tmax
rad ) coincide when the equation of state

wφ > (1/3, 3/5) for two different bosonic decay channels φ→ ss and φφ→ ss (see, figure 4
for depiction) respectively.
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♠ Another interesting observation in the case of fermionic reheating is that when EoS
lies above 5/9(7/15), maximum radiation production takes place at the initial stage of
reheating. In this respect, therefore, fermionic reheating turns out to be qualitatively similar
to gravitational reheating. The bosonic reheating through φφ→ ss decay process deserves
special mention with regard to the fact that, if wφ < 3/13(1/5) with (without) thermal
effect, successful reheating can not be achieved (see the grey shaded region of figure 2).
♠ The phenomenological constraints on the inflaton coupling are shown in figure 2 for

bosonic reheating and in figure 7 for fermionic reheating. The plots depict an interesting
connection between the inflaton coupling parameters (gri ,hr) and inflationary parameter n
(power of the inflaton potential at its minimum), which is translated into effective EoS wφ
through the relation (n− 2)/(n+ 2) during reheating. Contrary to the earlier claim [97], we
observe that the thermal effect appeared to be most significant at low reheating temperatures
for non-zero inflaton equation state, wφ = (0.20, 0.50, 0.82, 0.99) (see solid and dotted lines
in figure 6, 10), for which inflaton mass undergoes non-trivial evolution.
♠ Thermal correction in the production rate significantly modifies the production rate

(enhances for bosonic channels and diminishes for fermionic channel), which is imprinted in
the radiation temperature evolution. Better visualization of how the thermal correction
affects the evolution of the radiation temperature with respect to scale factor is shown in
tables-1, 3.
♠ For higher equation state (w = 0.82, 0.99), the gravitational reheating has been

observed to give a lower limit on the reheating temperature (103, 106) GeV, which is
associated with the fixed scalar spectral index ns = 0.9685 and 0.9681, respectively. When
ns reaches these values, the coupling parameter tends towards zero, i.e., gravitational
scattering solely controls the reheating dynamics.

DM phenomenology: in the second half of the paper, we have extensively analyzed DM
phenomenology in the context of production during reheating. We have discussed all known
DM production mechanisms, namely: (i) gravitational production from both the inflaton
and radiation scattering, (ii) production from direct inflaton decay through various decay
channels, (iii) production from the thermal bath through effective average cross-section
times velocity 〈σv〉 in both freeze-in and freeze-out mechanism with assuming 〈σv〉 as
a free parameter. The universal gravitational production of DM is always incorporated
throughout our analysis. In the following, we summarize some of the main results and
important outcomes of our analysis:
♠ When DMs are produced from direct decay of inflaton (see figure 12), the final

abundance appears to depend only on the coupling strength, DM mass (mx), and reheating
temperature (Tre). We call this FIMP-like dark matter. For a fixed inflation EoS and
reheating temperature, the minimum DM mass is fixed by the ∆Neff bound at BBN, and
the maximum allowed DM mass is fixed by either gravitational decay or the inflaton mass.
♠ For the production of DM from the thermal bath, we have considered both freeze-in

(FIMP) and freeze-out (WIMP) mechanisms. Since the DM is produced from the thermal
bath, the DM production strictly depends on the evolution of the bath temperature. Due
to the thermal effect, the bath temperature evolves differently during reheating, and the
thermal effect directly influences DM production and its final abundance.
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♠ In the context of both bosonic and fermionic reheating, we have discussed the DM
production (both FIMP and WIMP) and derived the analytical expressions of the DM
abundance. In section-7, we have shown in detail the DM parameter space (〈σv〉 Vs. mx) for
both FIMP and WIMP production mechanisms. Interestingly, the lowest possible DM mass
for both the mechanisms assumes a universal theoretical value mx ∼ 10−7 GeV, which is
independent of Tre, wφ and the nature of DM. However, constraints from different physical
considerations such as lyman-α, ∆Neff bounds may not satisfy this universal bound. For
WIMPs, the minimum allowed value of DM mass is TBBN due to restriction from the ∆Neff .
Depending on the reheating parameters such as reheating temperature, inflation EOS wφ,
and the background reheating dynamics, a maximum allowed DM mass also exists. In most
of the scenarios, the maximum allowed mass is given by a particular mass scale where there
is a transition happening from freeze-in to Freeze-out mechanism or vice versa (see, for
instance, black circle of figures 14–16).

♠ For the DM production from the radiation bath, if one incorporates the unitarity
bound, the DM mass lies above 105 GeV is ruled out in most of the cases. However,
for both fermionic and bosonic reheating, we still have some parameter space even for
mx > 105 GeV (see, for instance, the third and fourth plot of figure 17), which are consistent
with the unitarity bound and satisfies the correct relic. The reason behind this is that if
freeze-out happens during reheating (mx > Tre), the freeze-out temperature shifts towards
the maximum radiation temperature with the increasing mass, and we need to lower the
cross-section to meet the correct relic. Such lowering of the cross-section with higher DM
mass (mx > 105 GeV), therefore, naturally evades the aforementioned unitarity bound.

♠ Important distinction of fermionic decay width from that of the bosonic one is
its proportional behavior in terms of inflaton mass, which dilutes faster with increasing
wφ. Due to this, one finds a critical wφ ' 7/15 considering the thermal effect from the
beginning of reheating, below which the inflaton decay process occurs throughout and above
which it occurs at the beginning of the reheating. These two different reheating histories
have had their distinct effects on the DM production, which is reflected on 〈σv〉 V s mx

parameter plane (see, for instance, third and forth plot of figures 15, and fifth and sixth
plots of 16). This phenomenon can also be explained from the eqs. (6.58)–(6.61). For
wφ = 0.5 > 7/15, a fixed value of Tre < mx and Tf ∼ mf , the relic abundance behaves as
Ωxh

2 ∝ m1/4
x /〈σv〉 (see eq. (6.58)), which implies that with increasing mx, 〈σv〉 increases

(see, for instance, fifth and sixth plots of figure 16). However, for wφ = 0 < 7/15, for a fixed
Tre if freeze-out happens during reheating one has following relation mx ∝ 〈σv〉−3 (see, for
instance, eq. (6.61)). This clearly suggests that with increasing DM mass above reheating
energy scale, 〈σv〉 decreases (see, for instance, figure 14).

♠ The oscillating inflaton condensate may be fragmented due to self-resonance (see, for
instance, refs. [124, 125]), which is expected to cause reheating dynamics non-trivial. It is
observed that such an effect is not significant for n = 1 (wφ = 0). However, for higher n,
self-resonance effects turned out to be important and may lead to radiation dominated (RD)
universe depending on both α and n values. When α� 1/6, self-resonance is efficient, and
the RD universe is established within less than an e-fold of expansion after inflation end.
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Whereas for α > 1/6 and n > 2, the self-resonance effect increasingly becomes inefficient,
and the inflaton condensate remains intact for a long time without any other decay channel.
It is in this parlance our present study is important. In our study, we considered α = 1 and
further checked that the final results, namely the estimates of reheating temperature for
different inflaton couplings and the whole DM parameters space, are not much sensitive with
the increase of α within the limit set by recent Planck and BICEP/keck data [126, 127].
For higher α values, even though the self-resonance effect would be inefficient (as pointed
out in [124, 125]), it may have a non-trivial effect on the reheating parameter space.

Another important way forward of our present work would be to construct particle
physics-motivated UV complete models that can be directly probed through laboratory
and cosmological experiments. One may further study the gravitational wave dynamics
in this context and explore the potential signature of reheating through the present-day
gravitational wave spectrum. Finally, the analysis of cosmological perturbation will be
interesting to work on, which will be a good probe of early universe physics. We defer all
these topics for our future work.
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A Bosonic reheating: analytical studies

A.1 Without thermal effect

During reheating, the exponential decay term associated with the evolution of the inflaton
energy density is always sub-dominant compared to the dilution due to the expansion. Thus,
we can safely approximate the solution of eq. (2.5) as

ρφ = ρend
φ A−3(1+wφ)e−(Γs+Γφφ→RR)(t−tend) ' ρend

φ A−3(1+wφ) (A.1)

where ρend
φ and tend be the inflaton energy density and time at the inflation end. The

evolution equation of radiation energy density can be written as (see, for instance, eq. (2.6))

d(ρrsA4) = Γs ρφ (1 + wφ)A4 da

AH
(A.2)
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In the limit of Trad � mφ(t), finite temperature correction to the decay width [71] can be
safely ignored (see, eq. (2.2))

Γs =


Γφ→ss '

(gr1)2

8πmφ(t) for gr1φs
2

Γφφ→ss '
(gr2)2ρφ(t)
8πm3

φ
(t) for gr2φ

2s2.
(A.3)

Where mφ(t) be the time-dependent inflaton mass which is defined as m2
φ(t) = V

′′(φ0(t)).
Since reheating happens near the minimum of the potential, we can expand the inflaton
potential (eq. (2.9)) in the limit φ�Mp as

V (φ) ' Λ4β2nφ2n (A.4)

where β =
√

2
3α

1
Mp

. The field-dependent mass becomes,

m2
φ = V

′′(φ0) ' 2n(2n− 1)Λ4β2
(
V (φ0)

Λ4

)1− 1
n

. (A.5)

Using the envelope approximation at any instant of time, the envelope value of the field φ0
must satisfy V (φ0) ' ρφ(t). Under this approximation, the inflaton mass at the inflation
end is given by

(mend
φ )2 ' 2n(2n− 1)Λ4β2

(
ρend
φ

Λ4

)1− 1
n

. (A.6)

After utilizing eqs. (A.5), (A.6) and (A.1), one can find the evolution of the inflaton mass as

m2
φ(t) = (mend

φ )2
(
ρφ(t)
ρend
φ

)1− 1
n

' (mend
φ )2A−6wφ . (A.7)

Inserting the above equation in eq. (A.3), we can re-write decay width in terms of the scale
factor as

Γφ→ss = (gr1)2

8πmend
φ

A3wφ , Γφφ→ss =
(gr2)2ρend

φ

8π(mend
φ )3A

−3(1−2wφ). (A.8)

Upon substitution of the above decay width (eq. (A.8)) in eq. (A.2), we have the evolution
of the energy density associated with the bosonic non-gravitational channel as

d(ρrsA4) =


3M2

p (1+wφ)Hend
8πmend

φ

(gr1)2A
3
2 (1+wφ) dA for gr1φs

2 ,

9M4
p (1+wφ)H3

end
8π(mend

φ
)3 (gr2)2A

3
2 (3wφ−1) dA for gr2φ

2s2 ,
(A.9)

where, Hend =
√
ρend
φ /3M2

p . Since during reheating, the background dynamics is mainly
governed by the inflaton field, we approximate H '

√
ρφ/3M2

p = Hend(a/aend)−(3+3wφ)/2,
which is used to determine the above equation. After straightforward integration of eq. (A.9),
we obtain,

ρrs(A) =


6M2

p (1+wφ)Hend(gr1)2

8π(5+3wφ)mend
φ

A4

(
A

5+3wφ
2 − 1

)
for gr1φs

2 ,

9M4
p (1+wφ)H3

end(gr2)2

4π(9wφ−1)(mend
φ

)3A4

(
A

9wφ−1
2 − 1

)
for gr2φ

2s2 .
(A.10)
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We will follow the similar procedure to find the expression of gravitational radiation
energy density, and the production width associated with the gravitational sector can be
expressed as

Γφφ→RR =
3M2

pH
2
endm

end
φ

1024πM4
p

A−3−6wφ (A.11)

Combining eqs. (2.7) and (A.11), we have the following solution for the radiation energy
density associated with the gravitational sector

ρrgr(A) =
9(1 + wφ)H3

endm
end
φ

512π(1 + 15wφ)A4

(
1−A−

1+15wφ
2

)
. (A.12)

The total energy density of the radiation bath is simply sum of the contribution from both
gravitational and non-gravitational sector ρrtot(A) = ρrs(A) + ρrgr(A) and the corresponding
radiation temperature Trad =

(
30ρrtot/(π2g?)

)1/4. Where g? is the total relativistic degrees
of freedom associated with the thermal bath. Now let us find the maximum radiation energy
density for both gravitational and non-gravitational sectors separately.

At the beginning of the reheating, the individual components of radiation (both non-
gravitational and gravitational) set to be ρrs(A = 1) = ρrgr(A = 1) = 0. Within a very short
time, during the initial stage of reheating, both the components attain a maximum value
when

d ρr
s/gr

dA = 0, which is associated with a specific value of the scale factor

Amax =



[
8

3(1−wφ)

] 2
5+3wφ for gr1φs

2 ,[9(1−wφ)
8

] 2
1−9wφ for gr2φ

2s2 ,[9+15wφ
8

] 2
1+15wφ for gravitational reheating .

(A.13)

That, in turn, fixes the maximum value of the radiation component as

ρr,max
s =


6M2

p (1+wφ)Hend
8πmend

φ
(5+3wφ) (gr1)2

[(
8

3(1−wφ)

) 3(wφ−1)
(5+3wφ) −

(
8

3(1−wφ)

)− 8
5+3wφ

]
for gr2φ

2s2 ,

9M4
p (1+wφ)H3

end(gr2)2

4π(9wφ−1)(mend
φ

)3A4

[(9(1−wφ)
8

) 9(wφ−1)
1−9wφ −

(9(1−wφ)
8

) −8
1−9wφ

]
for gr2φ

2s2 ,

(A.14)

ρr,max
gr =

9(1 + wφ)H3
endm

end
φ

512π(1 + 15wφ)

(9 + 15wφ
8

)− 8
1+15wφ −

(9 + 15wφ
8

)− 9+15wφ
1+15wφ

 . (A.15)

Since the gravitational scattering process is a kind of irreducible background, which will be
present regardless of the coupling-dependent decay channel. However, a critical coupling
exists G 1

ci, above which the non-gravitational decay channel always controls the reheating
dynamics. The maximum gravitational production happens initially, and the temperature
associated with it falls off faster than the non-gravitational one. Thus, the critical coupling
G 1
ci, above which value the non-gravitational sector dominates throughout reheating, is

defined from the condition ρr,max
s = ρr,max

gr . Since in the gravitational sector domination, the
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maximum radiation temperature comes out to be 1011 → 1012 GeV, which is less than the
inflaton mass mφ(Amax); thermal effect not in working situation. Therefore the expression
for critical coupling for with and without thermal effect be the same G 1, th

ci = G 1
ci (see,

for instance, eq. (4.1)). In the limit of gci > G 1
ci, the maximum radiation temperature is

followed by eq. (A.14), whereas, for gci < G 1
ci gravitational sector determines the maximum

radiation temperature (see, eq. (A.15)).
If the bosonic coupling strength is less than G 1

ci, the gravitational sector can not reheat
the universe before BBN energy scale for the equation of state wφ < 0.65. Therefore
those (gri , wφ) parameter space are forbidden from BBN constraints (see, for instance, light
red region of figure 2). However, for wφ > 0.65, the gravitational sector can successfully
reheat the universe and sets the lower bound of reheating temperature that is defined in
eq. (A.17). There exists another critical coupling parameter G 2

ci, indicating below which
only the gravitational sector defines the reheating temperature (see, for instance, light cyan
region of figure 2). We have the expression of G 2

ci as follows

G 2
ci =



(3(5+3wφ)(Hendm
end
φ )2

128M2
p(1+15wφ)

)(
512πM2

p(1+15wφ)
3Hendmend

φ
(1+wφ)

) 5+3wφ
2(3wφ−1)

1/2

for gr1φs2 and wφ≥ 0.65 ,

( (9wφ−1)(mend
φ )4

64M4
p(1+15wφ)

)(
512πM2

p(1+15wφ)
3Hendmend

φ
(1+wφ)

) 1−9wφ
2(3wφ−1)

1/2

for gr2φ2s2 and wφ≥ 0.65 .

(A.16)
and when the gravitational sector controls the reheating temperature, the reheating tem-
perature can be expressed as

T grre =
(

9H3
endm

end
φ (1 + wφ)

512επ(1 + 15wφ)(Agrre)4

)1/4

, Agrre =
(

512πM2
p (1 + 15wφ)

3Hendmend
φ (1 + wφ)

) 1
3wφ−1

, (A.17)

where Agrre is the normalized scale factor at the end of gravitational reheating. When the
coupling parameter gri > G 2

ci, the decay channel controls the reheating temperature and
that can be defined as

Tre =


(

6M2
p (1+wφ)Hend

8πε(5+3wφ)mend
φ

(gr1)2
)1/4

A
− 3

8 (1−wφ)
re for gr1φs2 ,(

9M4
p (1+wφ)H3

end
4πε(9wφ−1)(mend

φ
)3 (gr2)2

)1/4
A

9(wφ−1)
8

re for gr2φ2s2 ,

(A.18)

where

Are =


(

4π(5+3wφ)Hendm
end
φ

(1+wφ)(gr1)2

) 2
3+9wφ for gr1φs2 ,(

4π(9wφ−1)(mend
φ )3

3(1+wφ)M2
pHend(gr2)2

) 2
3(5wφ−1)

for gr2φ2s2 .

(A.19)

A.2 With thermal effect

If the radiation temperature is much smaller than the inflaton mass scale, we can safely use
the zero-temperature decay width. But, for the cases where radiation temperature is much
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higher than the inflaton mass scale, the thermal effect becomes very efficient. In the limit
Trad � mφ(t), the inflaton decay rate for different decay channels can be expressed as

Γφ→ss = (gr1)2

8πmφ(t)
4Trad
mφ(t) ,

Γφφ→ss = (gr2)2ρφ(t)
8π(mφ(t))3

2Trad
mφ(t) .

(A.20)

When the bosonic non-gravitational channel dominates over the gravitational one, we can
approximate radiation temperature as Trad =

(
ρrtot
ε

) 1
4 '

(
ρrs
ε

) 1
4 ,where ε = π2

30 g∗(Trad). And
under this consideration utilizing eq. (A.7), one can find the decay width as

Γφ→ss = 4(gr1)2

8πε1/4(mend
φ )2

(
ρrs(A)A4)1/4
A1−6wφ

Γφφ→ss = 2(gr2)2

8πε1/4(mend
φ )4

(
ρrs(A)A4)1/4
A3−9wφ

(A.21)

Further Combining eq. (A.2) and eq. (A.21), we have

d(ρrs(A)A4) =


12(gr1)2M2

p (1+wφ)Hend
8πε1/4(mend

φ
)2 A

1+9wφ
2

(
ρrs(A)A4)1/4 dA ,

18(gr2)M4
p (1+wφ)H3

end
8πε1/4(mend

φ
)4 A

5(3wφ−1)
2

(
ρrs(A)A4)1/4 dA . (A.22)

Straightforward integration of the above equation, radiation energy density takes the
following form

ρrs(A) =
[

3M2
p (1+wφ)Hend

4πε1/4(1+3wφ)(mend
φ )2A3 (gr1)2

(
A

3(1+3wφ)
2 −1

)]4/3

for gr1φs
2 , (A.23)

ρrs(A) =
[

9M4
p (1+wφ)H3

end
8πε1/4(5wφ−1)(mend

φ )4A3 (gr2)2
(
A

3(−1+5wφ)
2 −1

)]4/3

for gr2φ
2s2 . (A.24)

These aforementioned equations represent the modified expression of the bosonic radiation
energy density when the thermal effect is functional (Trad � mφ(t)). The maximum value
of this radiation component associated with the scale factor Amax at which the dρrs/dA = 0.
We have the maximum radiation energy density

ρr,max
s '=



[
3M2

p (1+wφ)Hend

4πε1/4(1+3wφ)(mend
φ

)2 (gr1)2
{(

2
1−3wφ

) 3wφ−1
3+9wφ −

(
2

1−3wφ

) −2
3+9wφ

}]4/3

for gr1φs
2 ,[

9M4
p (1+wφ)H3

end
8πε1/4(5wφ−1)(mend

φ
)4 (gr2)2

{(
2

3−5wφ

) 5wφ−3
5wφ−1−

(
2

3−5wφ

) −2
5wφ−1

}]4/3

for gr2φ
2s2 ,

(A.25)
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and the scale factor Amax associated with the maximum radiation energy density can be
expressed as

Amax =


(

2
1−3wφ

) 2
3(1+3wφ) for gr1φs

2 ,(
2

3−5wφ

) 2
3(5wφ−1) for gr2φ

2s2 .
(A.26)

Now let us define reheating temperature in this context. For the coupling gr1φs2, we have

Tre =
[

3M2
p (1+wφ)Hend(gr1)2

4πε(1+3wφ)(mend
φ )2 A

− 3
2 (1−3wφ)

re

]1/3

, Are =
(

4π(1+3wφ)(mend
φ )2

(1+wφ)(gr1)2( ε3 )1/4

(
Hend

Mp

)1/2
) 4

3(1+9wφ)

.

(A.27)
Whereas for the coupling gr2φ2s2

Tre =
[

9M4
p (1+wφ)H3

end (gr2)
8πε(5wφ−1)(mend

φ )4

2

A
−3(3−5wφ)

2
re

]1/3

, Are =
(

8π(27ε)1/4(5wφ−1)
9(1+wφ)M5/2

p H
3/2
end

(mend
φ )4

) 4
3(13wφ−3)

.

(A.28)

B Fermionic reheating: analytical studies

B.1 Without thermal effect

In the absence of thermal effect, the decay width for φ→ f̄f can be written as [71]

Γφ→f̄f = (hr)2

8π mφ(t) ' (hr)2

8π mend
φ A−3wφ . (B.1)

To derive the above equation, we utilized eq. (A.7). Upon substitution of the above decay
width in eq. (2.6), the evolution equation for the radiation energy density arising from the
fermionic non-gravitational coupling can be expressed as

d
(
ρrf (A)A4

)
=

3M2
p (1 + wφ)mend

φ Hend

8π (hr)2A
3
2 (1−3wφ) dA . (B.2)

After integrating the above equation, we have

ρrf (A) =
6M2

p (1 + wφ)mend
φ Hend

8π(5− 9wφ)A4 (hr)2(A
5−9wφ

2 − 1) . (B.3)

Similarly, we can find ρrgr, the energy density associated with the gravitational sector
(see, for instance, eq. (A.12)). We can follow the Bosonic reheating section in appendix-A
for detailed derivation. The total energy density of the radiation bath is simply sum of
the radiation components originated from both gravitational and non-gravitational sector,
ρrtot(A) = ρrf (A) + ρrgr(A)

ρrtot(A) =
6M2

p (1+wφ)mend
φ Hend

8π(5−9wφ)A4 (hr)2(A
5−9wφ

2 −1)+
9(1+wφ)(1+γ)H3

endm
end
φ

512π(1+15wφ)A4

(
1−A−

1+15wφ
2

)
,

(B.4)
and the radiation temperature Trad = (ρrtot/ε)1/4. After the end of the inflation, the energy
budget associated with the thermal bath begins to increase from zero initial value and attain
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a maximum value when dρrf/gr/dA = 0, then starts to fall off. We obtain the maximum
radiation energy density corresponding to both gravitational and non-gravitational sector as

ρr,max
f/gr =


(

6M2
p (1+wφ)mend

φ Hend

8π(5−9wφ) (hr)2
)[(

8
3+9wφ

)−3(1+3wφ
5−9wφ −

(
8

3+9wφ

) −8
5−9wφ

]
for hrφf̄f ,

9(1+wφ)H3
endm

end
φ

512π(1+15wφ)

[(
9+15wφ

8

)− 8
1+15wφ −

(
9+15wφ

8

)− 9+15wφ
1+15wφ

]
for gravitational scattering .

(B.5)
And the scale factor correlated with these maximum energy densities turns out as

Amax =

 ( 8
3+9wφ )2/5−9wφ for hrφf̄f ,[9+15wφ

8

] 2
1+15wφ for gravitational scattering

. (B.6)

Since the gravitational scattering process is always present, there exists a critical value of
coupling below which the gravitational sector always defines maximum radiation temperature
Tmax

rad . Equating ρr,max
f = ρr,max

gr , one can find the expression for the critical coupling for
fermionic reheating as

Hc =


3(5− 9wφ)H2

end
128M2

p (1 + 15wφ)

[(9+15wφ
8

)− 8
1+15wφ −

(9+15wφ
8

)− 9+15wφ
1+15wφ

]
[(

8
3(1+3wφ)

)− 3(1+3wφ)
5−9wφ −

(
8

3(1+3wφ)

)− 8
5−9wφ

]


1/2

wφ 6= 5/9 .

(B.7)
Therefore, in the limit of hr > Hc, Tmax

rad can be approximated as Tmax
rad '

(
ρr,max
f /ε

)1/4
,

whereas for hr < Hc, Tmax
rad '

(
ρr,max
gr /ε

)1/4
.

Another interesting fact is that the behavior of the radiation component associated
with the non-gravitational sector is different for wφ < 5/9 and wφ > 5/9 (see, for instance,
eq. (5.3)). For wφ > 5/9, the radiation component decays as A−4 as the gravitational sector.
Thus, if your Yukawa coupling strength hr < Hc and wφ > 0.65, then reheating dynamics is
governed by the gravitational sector, which is termed as gravitational reheating. Moreover,
the reheating temperature is followed by eq. (A.17). Otherwise, in all (hr, wφ) parameter
space reheating end is defined via explicit coupling. In such cases, Tre and Are is defined as:

when wφ < 5/9

Tre =
(

6M2
p (1+wφ)mend

φ Hend

8πε(5−9wφ) (hr)2
)1/4

A
−3(1+3wφ

8
re ; Are =

(
8π(5−9wφ)Hend
2(1+wφ)mend

φ

(hr)2
) 2

3−3wφ
,

(B.8)
and when wφ > 5/9

Tre =
(

6M2
p (1 + wφ)mend

φ Hend

8πε(9wφ − 5) (hr)2
)1/4

A−1
re ; Are =

(
8π(9wφ − 5)Hend

2(hr)2(1 + wφ)mend
φ

) −1
1−3wφ

.

(B.9)
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B.2 With thermal effect

Here we are mainly focused on the situation where Trad > mφ and the analysis for Trad < mφ

will be the same as without thermal effect. In the limit, Trad > mφ, the thermal effect
significantly impacts the reheating dynamics due to the explicit temperature dependence
on the decay rate. The expression for decay rate in this limit can be written as (see, for
instance, eq. (2.2))

Γφ→f̄f = (hr)2

8π
m2
φ(t)

4Trad
' (hr)2

8π
(mend

φ )2

4Trad
A−6wφ (B.10)

Inserting the above decay rate in eq. (2.6), one can find the evolution of the radiation energy
density for fermionic coupling as

ρrf (A) =
[
ζ(wφ) (hr)2ε1/4M2

P

A5 (mend
φ )2Hend

(
A

7−15wφ
2 − 1

)]4/5

, (B.11)

ζ(wφ) = 15(1+wφ)
64π(7−15wφ) . The aforementioned equation clearly suggests that the radiation

energy density behaves differently depending on the inflaton equation state, whether it
is greater than or less than 7/15. If the coupling strength hr > Hc, fermionic coupling
always defines reheating temperature and eventually equating ρφ = ρrf , we find reheating
temperature as

Tre =
(

6M2
p (1+wφ)mend

φ Hend

8πε(5−9wφ) (hr)2
)1/4

A
−3(1+3wφ)

8
re ; Are =

(
8π(5−9wφ)Hend
2(1+wφ)mend

φ

(hr)2
) 2

3−3wφ

(B.12)
The above equation is valid when wφ < 7/15. However, for wφ > 7/15 we have

Tre =
[
ζ(wφ)(hr)2M2

P

ε
(mend

φ )2HendA
−5
re

]1/5

, Are =
[
ζ(wφ)(hr)2ε1/4M2

p (mend
φ )2Hend

(3M2
pH

2
end)5/4

] 5(1−3wφ)
4

.

(B.13)
Moreover, in the limit of hr > Hc, the maximum radiation energy density is also defined by
the non-gravitational sector, which can be expressed as

ρr,max
f =

[
ζ(wφ) (hr)2ε1/4M2

P (mend
φ )2Hend

(
A
−3(1+5wφ

2max −A−5
max

)]4/5

, (B.14)

where, Amax =
(

10
3+15wφ

)2/7−15wφ . On the other hand, when hr < Hc and wφ > 0.65, the
gravitational sector drives the reheating dynamics and the reheating temperature to be the
same as eq. (A.17).

C Analytical expressions of co-moving number density for FIMP which
are produced from thermal bath

For freeze in production of DM from the thermal bath, the DM can never reach thermal
equilibrium i.e. nrx � nrx,eq, hence the co-moving number density N r

x = nrxA
3 follow the
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following simple equation,
N r
x(A)
dA

= A2

H
〈σv〉(neqx )2. (C.1)

For this case, the DM production continue to happen untill the radiation temperature
equals the DM mass Trad ' mx. Therefore, in order to solve the above equation, DM can
be safely assumed to be relativistic, and in the limit mx < Trad, the equilibrium number
density becomes,

nrx,eq = jxT
3
rad

π2 (C.2)

The Hubble parameter can also be written as

H(A) = H(Are)
(
A

Are

)− 3
2 (1+wφ)

(C.3)

where H(Are) =
√
εT 2
re√

3Mp
hubble parameter at the end of reheating. So, combining above

three equations, one can gate

N r
x(A)
dA

= 〈σv〉j
2
xA

2
re

π4H(Are)

(
A

Are

) 7+3wφ
2

T 6
rad (C.4)

.

C.1 Bosonic reheating

C.1.1 Without thermal effect

From eq. (A.10), the bath temperature can be written as

Trad =

 Tre(A/Are)
−3(1−wφ)

8 for gr1φs
2

Tre(A/Are)
−9(1−wφ)

8 for gr1φ
2s2

(C.5)

Using above equation in eq. (C.4), one can find the below solution of N r
x(A) at arbitrary

point A ≤ Are

N r
x(A) = 4

√
3Mp〈σv〉j2

xT
4
re

3
√
επ4 A3

re


1

(3+5wφ)

[(
A
Are

) 3(3+5wφ)
4 −

(
A

Amax

) 3(3+5wφ)
4

]
for gr1φs

2

1
(11wφ−3)

[(
A
Are

) 3(11wφ−3)
4 −

(
A

Amax

) 3(11wφ−3)
4

]
for gr2φ

2s2

(C.6)
The above equation shows that most of the production of DM happens at the beginning of
reheating for φφ→ ss reheating process for wφ < 3/11.

C.1.2 With thermal effect

From eq. (A.23), the bath temperature can be written as

Trad =

 Tre(A/Are)
−(1−3wφ)

2 for gr1φs
2

Tre(A/Are)
−(3−5wφ)

2 for gr1φ
2s2

(C.7)
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Utilising above equation in eq. (C.4), we have obtained following solution of N r
x(A) at

arbitrary point A ≤ Are

N r
x(A) = 2

√
3Mp〈σv〉j2

xT
4
re

3
√
επ4 A3

re


1

(1+7wφ)

[(
A
Are

) 3(1+7wφ)
2 −

(
A

Amax

) 3(1+7wφ)
2

]
for gr1φs

2

1
(11wφ−3)

[(
A
Are

) 3(11wφ−3)
2 −

(
A

Amax

) 3(11wφ−3)
2

]
for gr2φ

2s2

(C.8)
Like earlier, most of the production of DM happens at the beginning of reheating for
φφ→ ss reheating process for wφ < 3/11

C.2 Fermionic reheating

C.2.1 Without thermal effect

• For wφ > 5/9: the bath temperature can be written as

Trad = Tre(A/Are)−1 (C.9)

Upon substituting the above equation in eq. (C.4) along with eq. (C.3), the co-moving
number density at any point A during reheating takes the following form

N r
x(A) =

√
3Mp〈σv〉j2

xT
4
re√

επ4 A2
re

∫ A

Amax
(A/Are)

−5+3wφ
2 dA

= 2
√

3Mp〈σv〉j2
xT

4
re

3
√
επ4 A3

re(Amax/Are)3(1−wφ)/2
(C.10)

The co-moving number density is constant from the beginning of reheating.

• For wφ < 5/9: the bath temperature can be written as

Trad = Tre(A/Are)−
3
8 (1+3wφ) (C.11)

Upon substituting the above equation in eq. (C.4) along with eq. (C.3), the co-moving
number density at any point A during reheating takes the following form

N r
x(A) =

√
3Mp〈σv〉j2

xT
4
re√

επ4 A2
re

∫ A

Amax
(A/Are)

5−21wφ
4 dA

= 4
√

3Mp〈σv〉j2
xT

4
re

3
√
ε(3− 7wφ)π4 A

3
re

[
(A/Are)

3(3−7wφ)
4 − (Amax/Are)

3(3−7wφ)
4

] (C.12)

When wφ > 3/7, the DM production happens instantaneously just at the end of
inflation, as a result, the co-moving number density is constant.

C.3 With thermal effect

When wφ > 7/15, the same situation will be happen as we discuss for without thermal
effect for wφ > 5/9. Now for wφ < 7/15, the bath temperature is

Trad = Tre(A/Are)−
3
10 (1+5wφ) (C.13)
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Upon substituting the above equation in eq. (C.4) along with eq. (C.3), the co-moving
number density at any point A during reheating takes the following form

N r
x(A) =

√
3Mp〈σv〉j2

xT
4
re√

επ4 A2
re

∫ A

Amax
(A/Are)

17−75wφ
4 dA

= 10
√

3Mp〈σv〉j2
xT

4
re

3
√
ε(9− 25wφ)π4 A

3
re

[
(A/Are)

3(9−25wφ)
10 − (Amax/Are)

3(9−25wφ)
10

] (C.14)

When wφ > 9/25, the DM production happens instantaneously just at the end of inflation.
As a result, the co-moving number density is constant.

D Analytical expressions of minimum critical mass where both Freeze-in
and Freeze-out mechanism coincides

When the DM mass mx is smaller than Tre, the DM abundance follows simple relation
Ωxh

2 ∝ mx〈σv〉 for the freeze-in scenario for a fixed Tre. Therefore, the cross-section
becomes inversely proportional to the DM mass. This suggests the existence of a critical
〈σv〉 and the associated mass for which the DM equilibrates with the thermal bath and
freeze out happens. At that critical 〈σv〉crit, DM number density must equate with the
equilibrium number density at the end of reheating. Corresponding to these critical 〈σv〉crit,
there exists a minimum critical mass mx,min which satisfies present-day abundance. Below
this mass, no mass will be available, which can give the correct abundance. Equating the
solution of the DM number density nrx with the equilibrium number density nrx,eq at the
end of reheating Are, one can find following expressions of 〈σv〉crit without thermal effect

〈σv〉crit =
√

3επ2

4Mpjx



3+5wφ
Tre

for gr1φs
2

11wφ−3
Tre

for gr2φ
2s2 with wφ > wcφ

3−11wφ
Tre

(
Tre
Tmax

) 2(3−11wφ)
3(1−wφ) for gr2φ

2s2 with wφ < wcφ

2(1−wφ)
Tre

(
Tre
Tmax

) 3(wφ−1)
2 for hrφf̄f with wφ > 5/9

7wφ−3
Tre

(
Tre
Tmax

) 2(7wφ−3)
1+3wφ for hrφf̄f with 3/7 < wφ < 5/9

3−7wφ
Tre

for hrφf̄f with wφ < 3/7

(D.1)

and with thermal effect

〈σv〉crit =
√

3επ2

4Mpjx



2(1+7wφ)
Tre

for gr1φs
2

2(11wφ−3)
Tre

for gr2φ
2s2 with wφ > wcφ

2(3−11wφ)
Tre

(
Tre
Tmax

) 2(3−11wφ)
3(1−wφ) for gr2φ

2s2 with wφ < wcφ

2(1−wφ)
Tre

(
Tre
Tmax

) 3(wφ−1)
2 for hrφf̄f with wφ > 7/15

2(25wφ−9)
Tre

(
Tre
Tmax

) (25wφ−9)
1+5wφ for hrφf̄f with 9/25 < wφ < 7/15

2(9−25wφ)
5Tre for hrφf̄f with wφ < 9/25

(D.2)
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Above this critical 〈σv〉crit, the DM can produce only from the freeze-out mechanism. Using
the above critical 〈σv〉crit in the DM abundance expressions, one can find the following
expression of minimum critical mass

mx,min = Ωxh
2

Ωrh2
επ2Tnow
jx

' 2× 10−7(GeV )
jx

(D.3)

The minimum mass is independent of background reheating dynamics, i.e., reheating
temperature and inflation equation of states.

E Modified inflaton decay width incorporating inflation oscillation

After inflation ends, the inflaton field φ starts to oscillate around the minima of its potential
with decreasing amplitude. The character of the oscillations strongly depends on the shape
of the potential V (φ) in the vicinity of the minimum. The solution of the inflation field
φ(t) can be written as φ(t) = φ0(t).P(t) [51], where P(t) is a quasi-periodic, fast-oscillating
function and φ0(t) is the envelope function which is a slowly time-varying function. After
taking care of the zero mode inflaton oscillations, the expression of the decay width for
the non-gravitational couplings would be the same; the only difference is that now our
mentioned coupling parameters gri and hr behave as an effective coupling and can be related
with the actual coupling parameter gri, act and hract as [71, 91] (see, for instance, eq. (2.2))

(gr1)2 = (gr1, act)2(2n+ 2)(2n− 1)γ
∞∑
k=1

k|Pk|2

(gr2)2 = (gr2, act)22n(2n+ 2)(2n− 1)2γ
∞∑
k=1

k|P2
k |2 (E.1)

(hr)2 = (hract)2(2n+ 2)(2n− 1)γ3
∞∑
k=1

k3|Pk|2

γ =
√

πn

2n− 1
Γ
(

1
2 + 1

2n

)
Γ
(

1
2n

)
ω = γ ×mφ(t)

In the case of gravitational interactions, the oscillation effect slightly modifies the production
rate; however, all of our predictions quantitatively remain the same. The following relation
can follow the modified decay rate [53, 91]

Γgrφφ→ss = ρφ(t)ω
8π(1 + wφ)M4

p

(1 + 2fB(mφ/T ))
∞∑
k=1

k|P2n
k |2 (E.2)

Γgr
φφ→f̄f =

ρφ(t)m2
f

2π(1 + wφ)ωM4
p

(1− 2fF (mφ/T ))
∞∑
k=1

1
k
|P2n
k |2 (E.3)

Where w is the frequency of inflation oscillations and Pk is the Fourier coefficients in the
expansion of P(t). In table-4, we have provided the Fourier summations for different values
of n.
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n(wφ) ∑
k|Pk|2

∑
k|P2

k |2
∑
k3|Pk|2

∑
k|P2n

k |2
∑ 1

k |P
2n
k |2

1 (0.0) 1
4

1
8

1
4

1
8

1
32

2 (1/3) 0.229 0.125 0.241 0.141 0.030
3 (0.50) 0.218 0.124 0.244 0.146 0.024
10 (0.82) 0.191 0.114 0.286 0.149 0.007
200 (0.99) 0.174 0.100 0.358 0.140 0.0001

Table 4. Numerical values of the Fourier summations for different values of n.
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Figure 18. The description of this plot is the same as figure 14. Here we have shown the DM
parameter space with considering the DM re-annihilation.

F The re-annihilation of DM and its effects on DM parameter space

Near the freeze-out temperature, the thermal production of DM receives Boltzmann suppres-
sion, and during this time the gravitational scattering may become the dominant channel
for the DM production. For such case following conditions must satisfy

Γφφ→SS/FF (t)ρφ(t)
mφ(t) ≥ 〈σv〉(nrx,eq(t))2. (F.1)

In our analysis, we ignored such an effect, and it is also important to note that such an
effect is not important when the DMs freeze out during the RD era. However, when the DM
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freeze-out takes place during reheating, the DM re-annihilation turns out to be important
within a very narrow DM mass range (1011−mend

φ ) GeV, and its evolution till the Freeze-out
point governed by,

d(a3nrx)
dt

= −a3〈σv〉(nrx)2 + a3Γφφ→xxρφ(t)
mφ(t) . (F.2)

From the equation, it is clear that DM re-annihilation to thermal bath plays a crucial
role along with gravitational production. Such re-annihilation is therefore, expected to be
important for higher reheating temperatures and large DM masses. The final DM abundance
clearly becomes Ωxh

2 ∝ Γφφ→xx/〈σv〉. Gravitational production rate of DM increases with
DM mass. Therefore, with increasing DM mass, the cross-section has to increase to maintain
the correct abundance, which is indeed observed in figure 18 for wφ = 0, for which the
inflaton mass mφ is constant. It turns out that most of the parameter regions we found
are above the unitarity bound shown in figure 18. For wφ = 0, we observed the effect of
re-annihilation for Tre = 1010 GeV. For this temperature, the corresponding DM mass range
where this effect modifies the cross-section turns out to be within (8× 1012 −mend

φ )GeV for
scalar DM and (1.5× 1013 −mend

φ )GeV for fermionic DM.
For the equation of state other than zero, the situation becomes different due to time-

varying inflaton mass. For higher DM mass possibility may arise that its gravitational
production becomes kinematically suppressed due to decreasing inflaton mass. For such
cases, the re-annihilation stops, and standard DM freeze-out occurs, which we discussed in
detail. As an example for wφ = 0.20, we indeed see such an effect which we have shown in
figure 18. One particularly notices the curve associated with Tre = 106 in the inset. The
raising part of the curve corresponds to the re-annihilation phase for the mass range within
(6× 1010, 9× 1011)GeV for scalar DM and (3× 1011, 4× 1012)GeV for fermionic DM. For
higher mass values, kinematic suppression comes into play, and the cross-section needs to
be reduced, as discussed before. For Tre = 1010, we found that the re-annihilation is not
prominent due to the kinetic suppression effect.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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