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Abstract: In ref. [1], we analyzed the reflected entropy (SR) in random tensor networks
motivated by its proposed duality to the entanglement wedge cross section (EW ) in holo-
graphic theories, SR = 2EW4G . In this paper, we discover further details of this duality by
analyzing a simple network consisting of a chain of two random tensors. This setup models
a multiboundary wormhole. We show that the reflected entanglement spectrum is con-
trolled by representation theory of the Temperley-Lieb algebra. In the semiclassical limit
motivated by holography, the spectrum takes the form of a sum over superselection sec-
tors associated to different irreducible representations of the Temperley-Lieb algebra and
labelled by a topological index k ∈ Z>0. Each sector contributes to the reflected entropy
an amount 2kEW4G weighted by its probability. We provide a gravitational interpretation
in terms of fixed-area, higher-genus multiboundary wormholes with genus 2k − 1 initial
value slices. These wormholes appear in the gravitational description of the canonical
purification. We confirm the reflected entropy holographic duality away from phase tran-
sitions. We also find important non-perturbative contributions from the novel geometries
with k ≥ 2 near phase transitions, resolving the discontinuous transition in SR. Along with
analytic arguments, we provide numerical evidence for our results. We finally speculate
that signatures of a non-trivial von Neumann algebra, connected to the Temperley-Lieb
algebra, will emerge from a modular flowed version of reflected entropy.
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Figure 1. EW (A : B) is the minimal area surface that divides the entanglement wedge of AB,
bounded by the RT surface γAB , into regions homologous to subregions A and B respectively.

1 Introduction

The intriguing connection between geometry and entanglement in the context of holography
has resulted in big leaps in our understanding of quantum gravity. The Ryu-Takayanagi
(RT) formula [2–4] relating boundary entropy to the area of bulk extremal surfaces is the
hallmark of such an emergence of spacetime from entanglement. In the pursuit of more such
links, a proposal for the holographic dual to another geometric object, the entanglement
wedge cross section, was made in ref. [5]. The proposed dual, the reflected entropy, is a
novel measure of correlation between bipartite mixed states, or equivalently tripartite pure
states.

The reflected entropy is defined as

SR(A : B) = S(AA∗)|√ρAB〉, (1.1)

where the state |√ρAB〉 ∈ HAB ⊗HA∗B∗ is the canonical purification of the density matrix
ρAB. The subsystems A∗, B∗ are referred to as the reflected copies of the subsystems A,B
respectively. The holographic proposal then states

SR(A : B) = 2EW (A : B)
4G , (1.2)

where EW (A : B) is the minimal cross section splitting the entanglement wedge of AB (see
figure 1). In eq. (1.2), we have ignored quantum corrections, as well as time dependence
(see refs. [6, 7] for details). For simplicity, this paper will be limited to discussing the static,
classical proposal although there is no reason to suspect the results do not generalize.1 This
proposal has already been useful in demonstrating the need for large amounts of tripartite
entanglement in holographic states [11]. More so, it can be thought of as a generalization of
the RT formula with a boundary dual that is rigorously well defined even in the continuum
limit [5]. Thus, it is interesting to find evidence for such a duality.

1While time dependence is straightforward, quantum corrections would likely include subtleties arising
from corrections to the QES formula [8–10].
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Figure 2. (left) The 2TN tensor network considered in this section is built from two random tensors
T1 and T2. The parameters are the boundary bond dimensions χA, χB , χC1 , χC2 and the internal
bond dimension χ. (right) The wormhole solution that is modeled by 2TN. The external bond
dimensions corresponds to the three horizon areas and the internal bond dimension χ corresponds
to the cross-section surface γW .

The original argument for the proposal involved a two-parameter replica trick, followed
by an analytic continuation à la Lewkowycz-Maldacena [12]. While the proposal passes
various sanity checks, it was noted in ref. [13] that the replica trick argument itself suffered
from an order of limits issue. More so, the EW cross-section undergoes a discontinuous
transition when the entanglement wedge changes from disconnected to connected. This
raises the possibility of non-perturbative effects becoming important to resolve the phase
transition. Thus, it is of interest to use solvable toy models to better understand the above
issues.

In ref. [1], we used random tensor networks (RTNs) [14] as a playground to understand
the various subtleties associated with the replica trick argument. In particular, for a
tripartite state generated from a single random tensor, we were able to use analytic and
numerical techniques to extract the reflected spectrum, the entanglement spectrum of ρAA∗ .
A crucial role was played by the addition of a novel saddle which dominated in portions
of parameter space and motivated a resolution to the order of limits issue. Our analysis
provided evidence for the validity of the proposal in eq. (1.2). Since the replica trick in
RTNs involves a sum over permutations that is quite analogous to the sum over topologies
in the gravitational path integral, there is good reason to believe that the analysis in RTNs
is a faithful indicator of the calculation in gravity. Moreover, we were also able to solve the
above problem in the West Coast model consisting of Jackiw-Teitelboim gravity coupled to
end-of-the-world branes [15], finding further evidence for eq. (1.2) along with novel features
near phase transitions [16].

In this paper, we carry on with our analysis of reflected entropy in RTNs in the hope
of finding other undiscovered aspects of the replica trick. In particular, we will focus on an
RTN consisting of two random tensors, which we refer to as 2TN. 2TN can be interpreted
as a model for a four-boundary wormhole as depicted in figure 2, where the areas of the
labelled surfaces are fixed to a narrow window [17–19]. More generally, we will provide
heuristic arguments that the calculations in 2TN are also useful for more general settings,
e.g., the familiar setup of two intervals in vacuum AdS depicted in figure 1. Since the bulk
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Figure 3. The canonical purification |√ρAB〉 consists of a superposition of a one parameter family
of geometries labelled by k. They are obtained by gluing together 2k copies of the shaded portion
(see figure 2) of the connected entanglement wedge of AB in the four boundary wormhole. The
k-th geometry has 2k copies of the entanglement wedge cross section labelled EW .

geometry is coarse-grained down to just two tensors, the model cannot capture any of the
local dynamics. However, it does capture general topological aspects of the gravitational
calculation which turn out to be the relevant aspect for the reflected entropy, including
near phase transition effects.

In section 2, we start by motivating the gravitational construction of novel, higher
genus saddles that contribute to the canonical purification. We consider the gravitational
state corresponding to the four boundary wormhole depicted in figure 2, prepared using
a Euclidean path integral with fixed area boundary conditions. As discussed in refs. [8–
10, 15, 17–19], the replica trick for such fixed-area states is simplified by the fact that one
can simply glue together multiple copies of the original bulk geometry without having to
solve for a new backreacted geometry. Thus, we have control over the different saddles
contributing to the canonical purification. By doing a replica trick to construct the state
|ρm/2
AB 〉 for even integer m [5], we find saddles labelled by a topological index k ∈ Z>0. They

correspond to geometries with initial data slices obtained by gluing together 2k copies of
the shaded region (see figure 2) of the connected entanglement wedge of AB in the original
state. Each such geometry contributes with an amplitude √pk computed from the path
integral. The canonically purified state can then be obtained via analytic continuation to
m = 1, and is approximately given by a superposition over such geometries as shown in
figure 3. Thus, we obtain a family of geometries that contribute to the entanglement wedge
gluing procedure dual to the canonical purification [5, 8, 20, 21]. Finally, computing the
reflected entropy, we see that the geometry labelled by k contributes an amount 2kEW (A:B)

4G
weighted by its probability.

Having motivated the existence of these higher genus geometries from the gravitational
path integral, we set up the 2TN problem in section 3 to get a better handle on such effects.
The replica trick for reflected entropy, discussed in section 3.1, involves computing the so
called (m,n)-Rényi reflected entropy [5]. Here n is the usual Rényi entropy index and m
labels the state |ρm/2

AB 〉, a generalization of the canonical purification. For the reflected
entropy, one needs to then analytically continue to m,n→ 1. Analyzing the (m,n) replica
trick for the 2TN problem beyond the saddle point approximation requires a new tool, the
Temperley-Lieb (TL) algebra [22], which we introduce in section 3.2. Using the resolvent
trick [1, 10, 15, 16, 23–25], we show that the reflected spectrum can be categorized into
different sectors in terms of the irreducible representations of the TL algebra. These irreps
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Figure 4. Sketch of spectrum of 1TN vs 2TN. While the 1TN model has two peaks corresponding
to the connected and disconnected phases, the 2TN model has infinitely many peaks corresponding
to the novel, higher-genus saddles discovered in section 2.

are labeled by an index k which we call “topological” since it corresponds to the topology
of the higher genus saddles in the gravitational path integral.

With the formalism for computing the reflected spectrum set up, we compute and
analyze the 2TN reflected spectrum and entropy using the TL algebra in section 4. As a
proof of principle, we first solve for the spectrum at first few even integer values of m in
section 4.1. In order to then relate to the semiclassical limit in gravity, we take the limit
where χ is large in section 4.2. In this limit, we find the leading-χ contribution to reflected
spectrum that can be analytically continued to m = 1. The spectrum exhibits an infinite
sequence of delta function peaks, labelled by the index k ∈ Z≥0. Each peak consists of
χ2k eigenvalues, thus contributing to the reflected entropy by an amount 2kEW (A : B).
This 2TN spectrum has a much richer structure than the single random tensor analyzed
in ref. [1], see comparison in figure 4. We analyze the properties of the 2TN spectrum and
its relation to emergent superselection sectors and quantum error correction in section 4.3.
Using the reflected spectrum, we find consistency with the holographic proposal, eq. (1.2),
away from phase transitions where either k = 0 or k = 1 dominates. More so, the new
sectors k ≥ 2 become important near the phase transition and smooth out the discontinuity
in the reflected entropy. In section 4.4 we consider the leading corrections to the large χ
limit. We find that these corrections shift the locations of the delta functions and spread
them into peaks with finite width containing χ2k eigenvalues. We give an estimate of the
shift and relevant widths. Finally, we demonstrate the consistency of our calculations with
numerical results in section 4.5.

With this, we conclude in section 5 with a discussion of how the results obtained here
generalize to arbitrary RTNs which model multiboundary wormholes. We provide heuristic
arguments that these additional sectors also contribute to the canonical purification in
more general settings such as the two interval example in vacuum AdS. We also comment
on the relation of our results to the emergence of non-trivial von Neumann algebras in
gravitational theories.

We provide additional details about multiboundary wormholes in appendix A, and the
Temperley-Lieb algebra in appendix B. Calculations of the leading corrections to the large
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Figure 5. A fixed-area Euclidean saddle B (left) computing the norm of the state |ψ〉 representing
a four boundary wormhole (right). Due to fixed-area boundary conditions at the relevant surfaces
γA,B,C,W , generically the saddle consists of conical defects at these locations. The Z2 symmetric
slice of the saddle is a Cauchy slice Ξ of the wormhole geometry with shaded regions and extremal
surfaces represented on either side. The surfaces Ξ1 (light and dark green) and Ξ2 (dark blue) are
identified as shown, but can be cut open to use as a building block for the replica trick.

χ limit can be found in appendix C. Proofs of various results used in section 4 are available
in appendix D.

2 Motivation: canonical purification in gravity

Before analyzing the 2TN model in detail, we provide motivation for the anticipated results
by constructing novel gravitational saddles that contribute to the canonical purification.
We will discover new features from the gravitational path integral that will be mirrored
by the 2TN model in section 4. For simplicity, our discussion will focus on pure 3D
gravity with a negative cosmological constant, where multiboundary wormholes are well
understood [26–28]. In this context, we can make a direct connection between wormholes
and RTNs, closely following and elaborating on the analysis in ref. [29].

The 2TN model can be directly translated into a four-boundary wormhole with a
hyperbolic metric as shown in figure 2. First, it is useful to match the degrees of freedom
on either side. The parameters in the tensor network are the bond dimensions. On the other
hand, the moduli of the wormhole can be understood by a pair-of-pants decomposition of
the hyperbolic geometry into two constituent three-boundary wormholes. For each three-
boundary wormhole, the moduli are the three horizon areas. Gluing them together removes
one degree of freedom due to identification and simultaneously introduces additional Dehn
twist moduli. In order to have a reflection symmetric Cauchy slice and be able to apply
the RT formula, we can set the twist to zero [29]. This leaves us with the areas of the
labelled extremal surfaces, each corresponding to a bond in the tensor network. For the
calculation of reflected entropy, these are the only surfaces that are relevant.2 Thus, the

2There are other possible cross-sections in the geometry which could be minimal. We discuss these in
appendix A and for the comparison, one can restrict to a regime of parameters where the surface γW is
indeed minimal.

– 5 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
7

2TN model, despite being a rather coarse-grained description of the geometry, is sufficient
to model the four-boundary wormhole accurately.

The construction of these wormhole geometries using a Euclidean path integral is also
well understood (see ref. [29] and references therein). Namely, given a spatial geometry Ξ,
a corresponding Euclidean spacetime geometry that prepares such initial data is given by

ds2 = l2
(
dt2E + cosh2 tE dΞ2

)
, (2.1)

where l is the AdS scale and tE is the Euclidean time coordinate. However, since we are
interested in preparing holographic states that are modelled by an RTN, it is important
to fix the areas of the various surfaces that correspond to maximally entangled bonds [17–
19]. Since these surfaces are all spacelike separated from each other, the areas can be
simultaneously fixed. While the geometry in eq. (2.1) is a valid Euclidean saddle for the
fixed-area problem, other ways of preparing the same state would generically contain conical
defects at the fixed-area surfaces as shown in figure 5. Moreover, Einstein’s equations
require the conical defects to be located at extremal surfaces [19], and this is true by
construction for the wormhole that we’re interested in.3

Once we pick any such Z2 symmetric Euclidean geometry B, we can cut it open to
obtain a preparation of the state |ψ〉 which has a spatial geometry Ξ. As usual, the norm
of |ψ〉 is computed by B as depicted in figure 5. Moreover, the advantage of using fixed-
area states is that we can find candidate geometries for computing tr (ρmAB) by using B as
a building block. More specifically, we can cut open B in the region Ξ1 ∪ Ξ2 such that
∂Ξ1 = γA ∪ γB ∪ γC1 ∪ γC2 and ∂Ξ2 = A ∪ B ∪ γA ∪ γB. We can then glue together m
copies cyclically in the region Ξ2 as shown in figure 6. We are then left with picking a way
to glue together the remaining section Ξ1. The different ways of gluing Ξ1 are fixed by an
element of the permutation group Sm. An example of this correspondence is demonstrated
in figure 6.4 The fixed-area boundary condition ensures that all the contributing geometries
solve Einstein’s equations and satisfy the correct boundary conditions. Any such geometry
Bm,g, obtained by gluing in a manner corresponding to a permutation g, contributes to the
computation of tr(ρmAB). It is also easy to check that the Euclidean action agrees with the
domain wall cost in the RTN [17]. Thus, it is clear that there is a direct correspondence
between the RTN replica partition function and the gravitational path integral, which is a
fact that has already been exploited in various calculations [8–10, 17, 18].

We can now look at Bm,g for even integer m, and interpret it as computing the norm of
the state |ρm/2

AB 〉. It is well-known from the correspondence to the RTN that only the saddles
corresponding to non-crossing permutations are important [8–10, 15], thus we will neglect
all other permutations. Once we do so, it is useful to classify the non-crossing permutations
by the number of cycles crossing the horizontal middle line, which is representative of the

3Note that despite the fact that eq. (2.1) provides a valid saddle, there is no guarantee that it dominates
and in general, it is not completely well understood which saddles dominate the path integral [30–32]. Our
results should be understood to apply when such a dominant Euclidean saddle can be found.

4In principle, we have two independent permutations on the two different portions separated by the
fixed-area surface γW in correspondence with the two tensors in the RTN. However, saddles with different
permutations are suppressed due to the cost of having a domain wall at γW .
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Figure 6. The computation of 〈ρm/2
AB |ρ

m/2
AB 〉 = tr(ρmAB) (e.g. m = 8) involves Euclidean saddles

constructed by gluing m copies of the original fixed area saddle in different ways. E.g., a particular
saddle Bm,g is in a one-to-one correspondence to permutation g acting on m elements. Here, we
depict one such example. The Z2 symmetric slice (black dotted) is then a Cauchy slice Σk for
Lorentzian evolution and consists of 2k copies of the entanglement wedge, where k is the number
of permutation cycles crossing the horizontal dotted line on the right (here k = 2).

Z2 symmetric Cauchy slice of the geometry.5 For a crossing number k, it can be checked
that the spatial geometry Σk is obtained by gluing together sections of 2k copies of the
original Ξ at the horizons. We illustrate one such example in figure 6. As described before,
these are also hyperbolic geometries with a different pair-of-pants decomposition and by
construction are prepared by a Euclidean path integral which solves Einstein equations with
fixed-area boundary conditions.6 Given the Cauchy data on Ξ that satisfies the constraint
equations, one can then evolve it in Lorentzian time to find the full spacetime geometry.7

Since the spatial geometries on the Z2 symmetric slice are different for different values
of k, the states are orthogonal in the gravitational path integral approximation. Thus, we

5The slice is only locally Z2 symmetric, but not globally so in general. The overall Z2 symmetry is
restored by the sum over saddles.

6It is important to note that in general there are also perturbative corrections which have completely
neglected in this analysis since there is no corresponding feature in the RTN. Thus, even at this level the
RTN only captures certain topological aspects of the gravitational path integral, but they are usually the
important non-perturbative corrections near phase transitions.

7Depending on how sharply the areas have been fixed, there may or may not exist a smooth spacetime
to the future and past of these fixed-area surfaces (see ref. [33] for more details).
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can divide the path integral into a sum over the index k as

Zm =
m/2∑
k=0

Zk,m, (2.2)

and for each value of k, we can write down

Zk,m = 〈ψk,m|ψk,m〉. (2.3)

The state |ψk,m〉 has an associated geometry Σk and can be written as a superposition over
different half-permutations with appropriate weight-factors that contribute to its norm.
For example, we have (for m = 4)

, (2.4)

where the states written above are not normalized and the overlaps of these states can be
computed by closing up the open ends of the permutation and computing the action of
the corresponding Euclidean saddle. We will later see in section 4.2 that the states |ψk,m〉
are naturally associated with specific states in the standard module of the Temperley-Lieb
algebra that dominate in the large χ limit. Thus, we now have written the state |ρm/2

AB 〉 in
terms of a superposition of geometries with appropriate weights determined by the path
integral.

The spatial geometry Σk consists of 2k copies of the surface γW , which is the entan-
glement wedge cross section in the connected phase. Now we can use the fact that the
entropy of a superposition of a small number of fixed-area states behaves approximately
linearly as argued in refs. [8, 10, 34]. Thus, the analog of reflected entropy for the state
|ρm/2
AB 〉 is computed by averaging over the different sectors, i.e.,

S
(m)
R (A : B) = S(ρAA∗)|ρm/2

AB 〉

=
m/2∑
k=0

pk(m)(2kEW (A : B))− pk(m) log pk(m),
(2.5)

where EW (A : B) is used as a shorthand to represent the area of γW , independent of
which phase dominates. The weights pk(m) = 〈ψk,m|ψk,m〉 can be thought of as probability
weights associated to the geometries Σk. We postpone the precise formulae for pk(m) to
section 4.2, but note for now that we will find a function that is analytic in m. By extending
the sum in eq. (2.5) to all integer k, we can thus analytically continue the answer away
from even integer values of m. Doing so, we obtain an expression for the reflected entropy,

SR(A : B) =
∞∑
k=0

pk(2kEW (A : B))− pk log pk, (2.6)

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
7

where pk ≡ pk(1). Thus, we have found that the canonical purification is given by a
superposition of geometries obtained by gluing together multiple copies of the entanglement
wedge of AB as demonstrated in figure 3. As we shall see later, the different geometries Σk

obtained by this construction can equivalently be interpreted in terms of new RTNs which
are obtained by gluing multiple copies of the network at different bonds, see figure 15.
Thus, this provides a refined version of the effective description suggested in ref. [1] for the
canonical purification.

3 Setup

In this section, we set up the problem of finding the reflected entropy in our model of
interest, the 2TN model. Section 3.1 describes the replica trick for reflected entropy,
discussing the relevant saddle point configurations. Section 3.2 then sets up the problem of
computing the resolvent for the reflected density matrix by introducing the Temperley-Lieb
algebra.

3.1 Replica trick for the 2TN model

RTNs prepare boundary states by choosing random tensors at the vertices of an arbitrary
graph G = (V,E) and contracting them by projecting onto maximally entangled pairs
along the edges of G. Namely, the unnormalized state takes the form

|ψ〉 =
(
⊗{x,y}∈E 〈xy|

)
(⊗x∈V |Vx〉) , (3.1)

where |Vx〉 is a Haar random state chosen at vertex x and |xy〉 represent maximally entan-
gled pairs along the edge connecting vertices x and y.

The replica trick for the reflected entropy then involves computing the (m,n) Rényi
reflected entropy defined as [5]

S
(m,n)
R (A : B) = Sn(AA∗)|ρm/2

AB 〉
, (3.2)

which is the nth Rényi entropy of subregion AA∗ in a state |ρm/2
AB 〉 that generalizes the

canonical purification.8 For integer n and m
2 , eq. (3.2) can be computed using correlation

functions of appropriately defined twist operators on mn copies of the system [1, 5], i.e.,

S
(m,n)
R (A : B) = 1

1− n log
(

Zm,n
(Zm,1)n

)
Zm,n = 〈ψ|⊗mn ΣA(gA)ΣB(gB) |ψ〉⊗mn

Zm,1 = 〈ψ|⊗m ΣAB(τm) |ψ〉⊗m ,

(3.3)

where ΣR(g) implement the permutation g on subregion R. The permutation τm is a cyclic
permutation on m elements, while the permutations gA, gB are depicted in figure 7.

8Note that we ignored normalization factors in the state for simplicity of notation.
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Figure 7. A graphical representation of the elements gA and gB . Each circle represents m replicas
of the original tensor and each circle is replicated n times. A cycle of the permutation is represented
by a directed closed loop. The element gB is a product of individual cyclic permutations τm on
each circle. The element gA is additionally conjugated by the twist operator γτ (indicated by red
arrows) whose action can be thought of as slicing each circle in half and shifting the lower half in
an n-cyclic order.

Further, for an RTN state |ψ〉, eq. (3.3) can be computed on average using Haar
integrals to reduce Zmn to a sum over the permutation group Smn [1], i.e.,

Zm,n =
∑

gx∈Smn

x∈{V \∂}

exp

− ∑
{x,y}∈E

(lnχxy) d(gx, gy)

 , (3.4)

where ∂ represents the boundary vertices. The permutation group elements on ∂ are fixed
as boundary conditions to be gA on subregion A, gB on subregion B and e (the identity
element) on subregion C. The exponent is a sum over the Cayley distances9 d(gx, gy)
weighted by the bond dimensions of each edge, denoted χxy.

We can now specialize to the 2TN model, which is depicted in figure 2. It models
a four-boundary wormhole with horizon areas Ai which are related to the external bond
dimensions χi = exp[Ai

4G ], where i ∈ {A,B,C1, C2}. Moreover, the internal bond dimension
χ is related to the area AW of the cross section surface γW in a similar fashion. For
convenience, we denote χC1χC2 = χC , which is related to the total horizon area for region C.

When min(AA,AB) < AW , the analysis is similar to that done for the single random
tensor which was studied in detail in ref. [1]. Thus, here we will only be interested in the
situation where the minimal entanglement wedge cross section EW (A : B) is indeed given
by AW in the connected phase. We will ensure this to be the case by picking AW to be
parametrically smaller than AA/B/C .

For this problem, there are two limits of interest that we can discuss:

• The Temperley-Lieb (TL) limit: qA = χA
χC1

,qB = χB
χC2

, χ held finite while taking all
external bond dimensions χA/B/C1/C2 →∞.

9The Cayley distance d(gx, gy) is a metric on Smn measuring the number of two-element swaps required
to go from gx to gy.
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Figure 8. (a): an illustration of the phase diagram in the saddle point limit for 2TN for generic
values of m ≥ 2, n ≥ 1, χ as a function of logχA

logχC
and logχB

logχC
. The dominant elements in each phase

are shown in a tuple as (g1, g2). The green square roughly indicates the region of the phase diagram
accessed by the TL limit. (b): as we take the limit logχ

logχC
→ 0, the yellow and blue domains shrink

in the phase diagram.

• The saddle point limit: logχi
logχC

is held finite while taking all bond dimensions χi →∞.

While our calculations in this paper will be in the TL limit, we briefly make a detour
to discuss the phase diagram for the 2TN model in the saddle point limit. The saddle point
limit is useful since it can be shown that at every point in phase space, one only needs to
optimize over the set {e, gA, gB, X}10 [35].

For simplicity, we consider the phase diagram in the case χC1 = χC2 = √χC . Doing
so, we obtain the phase diagram shown in figure (8a) at generic values of m ≥ 2 and n ≥ 1.
The first thing to note is that the phase diagram is convex as expected from the fact that
the contributions of each possible permutation tuple is linear in logχA/B.

The TL limit approximately arises when we take the limit logχ
logχC

→ 0 and zoom into
a small, restricted region around

(
1
2 ,

1
2

)
. This follows from the fact that the ratios qA and

qB are held finite. In the TL limit, the domains involving the X element shrink and we
obtain the simpler phase diagram shown in figure (8b).

Returning to the calculation in eq. (3.4) for the 2TN model, we have

Zm,n = 1
(χAχBχC1χC2χ)mn

∑
g1,g2∈Smn

χ
#(g1g

−1
A )

A χ
#(g2g

−1
B )

B χ
#(g1)
C1

χ
#(g2)
C2

χ#(g1g
−1
2 ), (3.5)

where #(g) counts the number of cycles in permutation g (including trivial ones) and we
have used the relation d(g, h) = nm − #(gh−1). In the TL limit, the elements g1/2 are

10X is the unique element that lies on the commmon geodesic Γ(gA, e) ∩ Γ(gB , e) while being closest to
gA and gB . Please refer to ref. [1] for a detailed discussion on element X.
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Figure 9. A graphical representation of the elements lying on the geodesics Γ(gA, e) and Γ(gB , e).
An element g2 ∈ Γ(gB , e) consists of products of non-crossing permutations acting within each
circle; whereas an element g1 ∈ Γ(gA, e) is similar to g2, but is additionally conjugated by the twist
operator γτ .

then constrained to lie on the geodesics between gA/B and e, labelled by Γ(gA/B, e), since
the contributions of all other elements are infinitely suppressed. The relevant geodesic
condition reads

#(g1g
−1
A ) + #(g1) = n(m+ 1), #(g2g

−1
B ) + #(g2) = n(m+ 1), (3.6)

and the permutation elements that satisfy these conditions can be parameterized as:

g1 = γτ

(
n∏
i=1

hi

)
γ−1
τ , g2 =

n∏
i=1

ki, (3.7)

where hi, ki are permutations that act in a non-crossing fashion on the elements m(i−1)+
1, · · · ,mi and trivially on all other elements. γτ can be thought of as a “twist operator”
that acts on the lower m/2 elements in each circle, cyclically permuting them as shown
in figure 9. We refer the reader to ref. [1] for more details on the geodesic elements and
non-crossing permutations.

3.2 Resolvent via the Temperley-Lieb algebra

Now, restricting the sum to the permutations on the relevant geodesics, we can write Zmn
using the parametrization of eq. (3.7) as

Zm,n =
(
χAχB
χmCχ

m

)n ∑
{hi,ki}

q
−
∑

i
#(hi)

A q
−
∑

i
#(ki)

B χ#(g1g
−1
2 ). (3.8)

To proceed, we must find a way to express #(g1g
−1
2 ) solely in terms of hi and ki. To attack

this problem we introduce the Temperley-Lieb algebra, denoted by TLm.
The Temperley-Lieb (TL) algebra is an abstract algebra with basis vectors consisting

of diagrams of non-crossing strands between 2m points arranged on two vertical lines as
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Figure 10. A non-crossing permutation is represented in double line notation, where there is an
incoming and outgoing line at each vertex. The mapping from h ∈ NCm to D(h) ∈ TLm can be
thought of as slicing the circle in half and straightening the two boundary arcs into lines while
preserving the connections.

follows:

, (3.9)

where each point necessarily has a strand emerging from it. This vector space is further
endowed with a bilinear product given by concatenating two diagrams and replacing each
closed loop by a power of χ. As an illustrative example, consider the following:

(3.10)

In our problem, the parameter χ in the algebra is chosen to be the same as the internal
bond dimension in the 2TN model. For the interested reader, we present a short review of
the TL algebra in appendix B.

For our purposes, the important point is that there is a natural one-to-one correspon-
dence between the set of non-crossing permutations NCm and the elements of TLm as
shown pictorially in figure 10. We denote the element in TLm corresponding to h ∈ NCm
as D(h). There is also a natural trace TrTLm on TLm, defined diagrammatically for basis
elements by closing the strands on opposing ends and assigning the value χ#loops, e.g.

(3.11)

The trace is then linearly extended to the full algebra.
We now claim that

χ#(g1g
−1
2 ) = TrTLm

[
D(h1)TD(k1)D(h2)TD(k2) · · ·D(hn)TD(kn)

]
, (3.12)
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where D(h)T denotes the transpose of D(h), obtained by flipping the diagram across its
central axis between two boundary lines. Instead of providing a formal proof, we demon-
strate the above statement via pictures. For example, for (m,n) = (4, 2), we have

#(g1g
−1
2 ) = #

(
γτh1h2γ

−1
τ k−1

2 k−1
1

)
. (3.13)

Then, as a sample configuration consider:

. (3.14)

For the above configuration, we have

, (3.15)

as the reader can easily verify. This generalizes in a straightforward manner to arbitrary
(m,n).

Using this result we can then do the sum in eq. (3.8):

Zm,n =
(
χAχB
χmCχ

m

)n
TrTLm

 ∑
h∈NCm

D(h)q−#(h)
A

 ∑
k∈NCm

D(k)q−#(k)
B

n (3.16)

where we have used the fact that the h sum is invariant under D(h)→ D(h)T to drop the
transpose.

We will now use eq. (3.16) to obtain the reflected entanglement spectrum via the
resolvent trick [1, 16]. The resolvent for the reflected density matrix ρ(m)

AA∗ is defined as

Rm(λ) =
∞∑
n=0

Zm,n
λ1+n (3.17)
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where Zm,0 = χ2
A and Zm,1 = TrρmAB (which can also be checked from eq. (3.16)). Plugging

eq. (3.16) into eq. (3.17) we obtain a formal expression for the resolvent:

Rm(λ) = TrTLm

λ− χAχB
χmCχ

m

 ∑
h∈NCm

D(h)q−#(h)
A

 ∑
k∈NCm

D(k)q−#(k)
B

−1

. (3.18)

Once we evaluate the resolvent, one can extract the eigenvalue spectrum Dm(λ) of ρ(m)
AA∗

from it using:

Dm(λ) = − 1
π

lim
ε→0

ImRm(λ+ iε). (3.19)

From the spectrum, one can obtain all the (m,n)-Rényi reflected entropies as well as the
reflected entropy after analytically continuing to m = 1.

Now, in order to evaluate eq. (3.18) we will pick a representation of TLm. However,
an arbitrary representation will not do the job for us. In particular, we must pick a
representation such that the trace function on this representation correctly reproduces
TrTLm defined above. Such a representation will in general be decomposed into a direct
sum of irreducible representations (irreps). Thus, we expect the reflected entanglement
spectrum to be grouped into different “sectors” labeled by these irreps. This is precisely
the form of spectrum we will find for the 2TN model.

There are many ways of classifying the irreps of the TL algebra. Here, we will make
use of the standard module [36]. It is defined by considering vector spaces with basis vectors
called link states, made by cutting the basis elements of the TLm algebra into half. Cutting
a diagram in half will always expose an even number of “defects” (since m is even in our
case), which we label by 2k with 0 ≤ k ≤ m/2. We call such a diagram with 2k defects a
(m, k)-link state and the set of all (m, k)-link states B

(m)
k . The vector space spanned by

B
(m)
k is denoted by V(m)

k .
There is a natural action of TL diagrams on (m, k)-link states given by concatenating

and replacing closed loops with powers of χ. Such a concatenation may result in a number
of disconnected strands that decrease the number of defects. We will further require that
the action maps the link state to zero whenever there are any disconnected strands after
concatenation. For example:

(3.20)

This action then defines a representation of TLm on V(m)
k , called the standard module. The

usefulness of the standard modules comes from the fact that they classify all the finite
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dimensional irreducible representations of TLm.11 We will denote π(m)
k (t) to be the matrix

representation of t ∈ TLm associated with V(m)
k . For more details on the standard module,

we refer the reader to appendix B.
Our goal is to build a finite dimensional representation

V(m) =
⊕

k=0,1,··· ,m/2
d

(m)
k V

(m)
k , (3.21)

where the coefficients d(m)
k represent the number of times the irrep V(m)

k appears in V(m).
These coefficients are uniquely determined by demanding that the trace of V(m) agree with
the trace in the TL algebra TrTLm . We will see that d(m)

k is in fact independent of m and
thus, the superscript will be omitted from now on. The trace on TLm then decomposes
into the sum of matrix traces in each submodule, i.e.,

TrTLm(t) =
∑

k=0,1,··· ,m/2
dk tr(π(m)

k (t)), ∀t ∈ TLm. (3.22)

Finally, in order to compute the resolvent, we are left with computing the matrix

M
(m)
k (q) =

∑
h∈NCm

q−#(h)π
(m)
k (D(h)). (3.23)

for all k. From eq. (3.18), we see that the spectrum of the product M (m)
k (qA)M (m)

k (qB)
determines the full spectrum of the reflected density matrix. In more detail, the resolvent
is given by

Rm(λ) =
∑
k,i

dk
λ− χAχB

(χχC)mλM(m)
k

,i

, (3.24)

where λ
M

(m)
k

,i
are the eigenvalues of M (m)

k (qA)M (m)
k (qB). Thus, we obtain the spectrum:

D(λ) =
∑
k,i

dk δ

(
λ− χAχB

(χχC)mλM(m)
k

,i

)
=
∑
k,i

dk δ
(
λ− λ(m)

k,i

)
, (3.25)

where λ(m)
k,i ≡

χAχB
(χχC)mλM(m)

k
,i
. The spectrum takes the simple form of a sum over poles

where the coefficients dk determine the degeneracy, while the eigenvalues are given by
χAχB/(χχC)m times the eigenvalues of M (m)

k (qA)M (m)
k (qB).

We emphasize that, so far, our result is valid for large χA/B/C � 1 with the ratios
qA = χA/χC1 , qB = χB/χC2 held fixed. The internal bond dimension is kept finite and
thus, χA/B/C � χ. To match the gravitational saddles, we will eventually take the limit
χ� 1, but the more general result eq. (3.25) is valid for all values of χ.

11There are certain values of χ where the standard modules are reducible. However those values are
discrete and only exist for χ < 2, thus, irrelevant for our problem of interest.
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4 Reflected entropy in 2TN

Having set up the formalism for computing the reflected spectrum via the TL machinery,
we will now compute and analyze the spectrum in this section. First, we demonstrate the
formalism by performing the analysis at finite χ in section 4.1, focusing on m = 2, 4 as
illustrative examples. We will then analyze the large χ limit in section 4.2. Working in this
limit enables us to obtain the spectrum as an analytic function of m and thus, continue
to m = 1. With the spectrum at hand, we compute the reflected entropy and discuss
the interpretations in terms of superselection sectors in section 4.3. We then analyze the
leading effect of finite external bond dimensions in section 4.4. We will see that they shift
the locations and give rise to a width for each of the peaks in the spectrum. Finally, we
demonstrate consistency of our analysis with numerics in section 4.5.

4.1 Finite χ

The recipe outlined in section 3.2 allows one to compute the spectrum exactly for arbitrary
even integer m. In this subsection, we will work out the detailed spectrum for m = 2 and
m = 4 following this recipe. The purpose of this analysis is twofold: first, it serves as a proof
of principle for analyzing the spectrum of arbitrary even integer m. Note that in practice,
such an analysis is not always feasible since the complexity of the calculation increases
exponentially as m increases. Second, since we pose no restriction on χ here rather than
χA/B/C � χ, we expect our result to hold even when χ is small. This particular small χ
regime allows us to make non-trivial predictions for the Rényi reflected spectrum at even
integer m. Such predictions can be checked numerically up to high accuracy, as opposed
to the χ→∞ results we will obtain in section 4.2 and section 4.3, where our numerics are
limited by finite χ effects.

• m = 2
Let us begin with a trivial case. The diagrammatic basis of the TL2 algebra is
given by

(4.1)

which we will refer to as D(τ2) and D(e) following the notation of NC2. There are
two standard modules V(2)

0 and V(2)
1 , each being one-dimensional:

, (4.2)

where we remind the reader that the modules are labelled by half the number of open
lines. Using the diagrammatic action described previously, we compute

π
(2)
0 (D(τ2)) = 1, π

(2)
0 (D(e)) = χ;

π
(2)
1 (D(τ2)) = 1, π

(2)
1 (D(e)) = 0.

(4.3)
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sector eigenvalue λ(m)
k multiplicity dk

k = 0 (q−1
A + χ−1)(q−1

B + χ−1)/χC 1
k = 1 1/(χ2χC) χ2 − 1

Table 1. The list of eigenvalues and their degeneracies for the m = 2 reflected spectrum.

To reproduce the TL trace, it is easy to check that we must pick d0 = 1 and d1 =
χ2 − 1. Thus, the matrices M (2)

k (q) (which are simply 1-dimensional here) are:

M
(2)
0 (q) = χq−2 + q−1, M

(2)
1 (q) = q−1 (4.4)

Using eq. (3.25), we find the spectrum to be a sum over two poles, which have
degeneracies and eigenvalues summarized in table 1.

• m = 4
Moving on to a slightly more involved example, consider the TL4 algebra which has
14 basis diagrams:

(4.5)

There are three standard modules now: V(4)
0 , V(4)

1 , V(4)
2 with dimensions 2, 3, 1 re-

spectively:

(4.6)

Note that any two of the (m, k)-link states with same k can be “paired up” to form
a unique TL diagram with 2k crossing connections. In the case at hand the total
number of diagrams that can be formed this way are 22 + 32 + 12 = 14, i.e. such
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sector eigenvalue λ(m)
k multiplicity dk

k = 0 `+ 1
k = 0 `− 1
k = 1 (5q−1χ−1 + (2q−2 + 1))2/(χ3

Cχ
2) χ2 − 1

k = 1, 2 1/(q2χ3
Cχ

4) χ4 − χ2 − 1

Table 2. The list of eigenvalues and their degeneracies for the m = 4 reflected spectrum. We have
set qA = qB = q to simplify expressions.

pairings generate the entire set of TL4 basis diagrams. This pairing up action will be
important in our large χ analysis in the next subsection.
Similar to the previous m = 2 calculation, the module is determined by the diagram-
matic action of TL diagrams on link states. The matrix M

(4)
k is then determined

by a weighted sum over the module representation of these diagrams. Since it is
conceptually straightforward, albeit tedious, to carry out the analysis, we skip the
details and present the results. They read:

M
(4)
0 (q) =

(
χ2q−4 + 5χq−3 + 3q−2 χ2q−3 + 3χq−2 + q−1

χ2q−3 + χ(q−4 + 2q−2) + 4q−3 χ2q−2 + χ(q−3 + q−1) + 3q−2

)
(4.7)

M
(4)
1 (q) =

χq
−3 + 2q−2 χq−2 + 2q−3 χq−3 + q−2

χq−2 + q−1 χq−1 + 3q−2 χq−2 + q−1

χq−3 + q−2 χq−2 + 2q−3 χq−3 + 2q−2

 (4.8)

M
(4)
2 (q) = q−2. (4.9)

Reproducing the TL trace requires us to pick d0 = 1, d1 = χ2−1 and d2 = χ4−3χ2+1.
The eigenvalues and their corresponding degeneracies are given in table 2. Note that
two eigenvalues of M (4)

2 (q) turn out to coincide with the eigenvalue of M (4)
4 (q). The

k = 0 eigenvalues `± is complicated, arising from the eigenvalues of the matrix in
eq. (4.7):

`±= 1
4q6χ3

Cχ
4

(
(q2+1)χ2+(q3+6q)χ+6q2

±
√

(q2+1)2χ4+(2q5+10q3+12q)χ3+(q6+20q4+44q2)χ2+(8q5+52q3)χ+16q4
)2

(4.10)

At large χ, the expressions simplify and we find

`+ ≈
(q2 + 1)2

χ3
Cq

6 , `− ≈
1

χ3
Cχ

2(q2 + 1)2 . (4.11)

We see that `+ scales as O(χ0), while `− is suppressed by O(χ−2) and comes close
to the eigenvalue of the k = 1 sector. However, since the multiplicity of λ(4)

1 scales
as O(χ2) at large χ, λ− can be ignored (at leading order in χ) when calculating the
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Figure 11. A sketch of the spectrum we obtained for m = 2 (left) and m = 4 (right). The
eigenvalues of k > 0 sectors are depicted here as having a small width. This is found by including
the finite external bond dimension effects, which we will study in section 4.4

entropy. The same can also be said for the sub-leading eigenvalue of the k = 1 sector
(they coincide with that of k = 2). At large χ the k = 2 sector multiplicity scales as
O(χ4) and it dominates over the subleading poles of the k = 1 sector.

We depict the spectra we found form = 2 andm = 4 in figure 11. For higherm, similar
calculations can be still be carried out, although the dimension of matrices M (m)

k (q) will be
large and one has to revert back to numerical methods to find their eigenvalues. However,
the lesson we learnt from studying m = 2, 4 modules still holds: in general there will
be m/2 sectors, and the leading eigenvalue in each sector behaves as O(χ−2k) and with
multiplicity ∼ χ2k. This hierarchy structure is a general feature for the 2TN spectra and
we will see that it persists through analytical continuation m→ 1.

4.2 Large χ limit

We have already seen how one can use the standard module of the TL algebra to extract
the reflected spectrum of the 2TN at even integer m for arbitrary values of χ. In this
subsection we will study this problem in the limit χ→∞. This limit is physically relevant
for comparison with holography since it corresponds to the G → 0 limit in gravity. In
section 4.2.1 we obtain the leading χ behavior of the spectrum in this limit. Then we will
analytically continue the spectrum in m in this limit in section 4.2.2. This information will
allow us to work at m = 1 to understand the reflected entropy, which is the main focus of
section 4.3.

4.2.1 Even integer m

We begin with a preliminary statement on the coefficients d(m)
k introduced previously.

Proposition 1. The module multiplicity number d(m)
k satisfies the following properties:

• d
(m)
k is independent of m.

• As a function of χ, dk is determined by

dk = [2k + 1]q, (4.12)
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where the q-number [·]q is defined as

[k]q = qk − q−k

q − q−1 = qk−1 + qk−3 + · · ·+ q−(k−3) + q−(k−1). (4.13)

χ and q are related by χ = [2]q = q + q−1.

One can solve for q in terms of χ to obtain

dk = 1
4k

k+1∑
n=1

(
2k + 1
2n− 1

)
χ2(k−n+1)(χ2 − 4)n−1, (4.14)

so that dk is a polynomial in χ. In fact one can show that the coefficients of this polynomial
are integers. For instance, the first few values of dk are

d0 = 1,
d1 = χ2 − 1,
d2 = χ4 − 3χ2 + 1,
d3 = χ6 − 5χ4 + 6χ2 − 1

(4.15)

Although this result holds for all χ, we will mostly just need the large χ behavior of dk,
which is

dk ≈ χ2k +O(χ2k−2) (4.16)
Proving this proposition requires some additional facts about the standard module. For
this reason we present it in appendix D.

Before moving on, let us introduce some useful notation. We define an inner product
〈·, ·〉 on V(m)

k as follows: if x, y are two link states, 〈x, y〉 is given by flipping x across the
vertical axis, matching to y and assigning a power of χ for every closed loop. Furthermore,
we define 〈x, y〉 to be nonzero only if every defect in x ends up being connected to a defect
in y. A few examples should suffice to clarify the definition:

(4.17)

Note that if x, y are two link states in V(m)
k , then

〈x, y〉 = δx,yχ
m/2−k +O(χm/2−k−1), (4.18)

where δx,y = 1 if x = y and 0 otherwise. In other words, the set of link states form an
approximately orthogonal basis for V(m)

k in the χ → ∞ limit. This fact will turn out to
be useful later in this section, as well as in order to get a gravitational interpretation in
section 2.

We also define a bilinear map | · · | : V(m)
k × V(m)

k → TLm, by flipping y across the
vertical axis and “pairing up” with x to form a TL diagram. For instance,

. (4.19)
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Figure 12. The leading contributions in M (m)
k come from the TL diagrams whose right half is a

mirror image of the bases in V(m)
k . The contributing power is related to the number of defects by

χm/2−k. Here m = 8 and k = 1.

This map has a nice property that for all x, y, z ∈ V(m)
k we have

|x y| z = 〈y, z〉x. (4.20)

The proof of this equality is provided in appendix B.
Returning to our main problem of finding the leading χ behavior of M (m)

k , we ask the
following question: for any given link state v ∈ B(m)

k , which set of diagrams acting on v

produce the dominant power of χ? It turns out that, to produce the leading power of χ,
the right half of the TL diagram must be exactly the mirror image of v, since this is the
only way to get the maximum number of closed loops. Moreover, since each closed loop
contributes one power of χ, the overall contribution for such a diagram is O(χm/2−k). This
fact is illustrated in figure 12.

Using our previous notation, the set of all possibly dominant diagrams for a given
vector y ∈ V(m)

k is then all elements of the form |x y| ∈ TLm where x ∈ V(m)
k . Note that

every diagram in TLm will be dominant in exactly one module V(m)
k . It is easy to write

down the sum of such diagrams by making use of the bilinearity of | · · |. For example:

∑
t∈TLm

π
(m)
k (t) ≈ π(m)

k


∣∣∣∣∣∣∣
∑

x∈B(m)
k

x
∑

y∈B(m)
k

y

∣∣∣∣∣∣∣
+O(χm/2−k−1), (4.21)

To actually compute the matrix M (m)
k (q), we still need to weigh the sum by powers of

q−#(h). Given h ∈ NCm, #(h) can be computed by considering a two-sided concatenation of
D(h) with a special link state that we call e0 ∈ V(m)

0 , given by the relation D(e) = |e0 e0|
where e ∈ NCm is the identity permutation. For example, if h = (1456)(23) ∈ NC6, then
we have

(4.22)

This facilitates the definition of the following linear functional fq : V(m)
k → Z[q−1]:

Definition 4.1. If v is a link state in V (m)
k , the value of fq(v) is given by concatenating

the mirrored reflection of e0 with v and assigning a factor of q−1 for every closed loop. The
action of fq on a general vector in V (m)

k follows from the linearity of fq.
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We illustrate the definition with the following example:

(4.23)

where we emphasize that only closed loops are counted, whereas open strands are ignored.
Using the linear functional fq, we can then write

q−#(h) = q−kfq(x)fq(y) (4.24)

for all h ∈ NCm with the decomposition D(h) = |x y| and x, y ∈ V (m)
k . It then follows that

M
(m)
k (q) =

∑
h∈NCm

q−#(h)D(h) ≈ q−k
∣∣∣∣∣∣∣
∑

x∈B(m)
k

fq(x)x
∑

y∈B(m)
k

fq(y)y

∣∣∣∣∣∣∣+O(χm/2−k−1) (4.25)

when considered as a linear operator acting on V(m)
k .

For any v ∈ V (m)
k we can use eq. (4.20) to write ∑

h∈NCm

q
−#(h)
A D(h)

 ∑
k∈NCm

q
−#(k)
B D(k)

 v
≈ (qAB)−k

∑
x,y,z,w∈B(m)

k

fqA(x)fqA(y)fqB (z)fqB (w) 〈y, z〉 〈w, v〉x,
(4.26)

where we use the shorthand qAB ≡ qAqB = χAχB/χC . It then follows that at large χ, the
operator product M (m)

k (qA)M (m)
k (qB) is of rank one with eigenvector ∑

x∈B(m)
k

fqA(x)x and
eigenvalue

λ
M

(m)
k

≈ (qAB)−k
 ∑
x,y∈B(m)

k

fqA(x)fqB (y) 〈x, y〉


2

≈ (qAB)−kχm−2k

 ∑
x∈B(m)

k

fqA(x)fqB (x)


2

,

(4.27)

where we have used eq. (4.18) to arrive at the second expression. All other eigenvalues in
the same sector are suppressed by O(χ−2).12

The sum in eq. (4.27) is related to the generating function G(q, r, z) of link states.
This function can be computed in various ways. We present a diagrammatic derivation in
appendix D and use the result here without proof.

Proposition 2. The fq-weighted generating function G(q, r, z) for the (m, k)-link states is
given by

G(q, r, z) = 1− zC(q, z)
1− z(q + r)− zC(q, z) (4.28)

12Naively just from eq. (4.27) it seems reasonable to assume that the subleading eigenvalue is suppressed
by O(χ−1), rather than O(χ−2). We will prove that the first order correction to the subleading eigenvalue
vanishes in section 4.4.
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where C(q, z) = 1
2z (1− z(q − 1)−

√
(1 + z(q − 1))2 − 4qz) is the generating function of q-

Catalan numbers.13 The argument r counts half the number of defects k and the argument
z counts half the number of marked points m/2.

G(q, r, z) has the following series expansion:

G(q, r, z) = 1 + (q + r)z

+
(
(q + q2) + (1 + 2q)r + r2

)
z2

+
(
(q + 3q2 + q3) + (1 + 5q + 3q2)r + (2 + 3q)r2 + r3

)
z3 + · · ·

(4.29)

where the formal expression G(q, r, z) = ∑
µ,k gµ,k(q)zµrk allows us to compute the eigen-

values relevant for the reflected spectrum.

Corollary 3. The matrix M (m)
k (qA)M (m)

k (qB) has a single nonzero eigenvalue at χ → ∞
given by

λ
M

(m)
k

= (qAB)−kχm−2k(gm/2,k(q−1
AB))2 (4.30)

with multiplicity χk.

To conclude, for each even m we identify m/2 eigenvalues given by eq. (4.30), labeled
by k ∈ {0, · · · ,m/2}. At large χ the multiplicity of these eigenvalues goes as dk ≈ χ2k. All
the other peaks found in section 4.1 vanish in the limit.

4.2.2 Analytic continuation

Here, we will perform the analytic continuation away from even integer m to obtain the
reflected spectrum at m = 1. This will be accomplished by analytically continuing the
generating function coefficient to g1/2,k. We have seen that for even integer m, only a
finite number of eigenvalues are present, i.e., only the sectors labelled by even integer
k ∈ {0, · · · ,m/2}. However when taking the m → 1 limit, we will see that all integer
values of k contribute to the spectrum, forming an infinite tower of eigenvalues.

We start with eq. (4.28). In particular, we need an analytic form for the coefficients
in the series14

G(q, r, z) =
∞∑

µ,k=0
gµ,k(q)zµrk (4.31)

The r expansion is easy to perform:

G(q, r, z) =
∞∑
k=0

(1− zC(q, z))zk
(1− zq − zC(q, z))k+1 r

k =
∞∑
k=0

gk(q, z)rk (4.32)

13For more information on C(q, z) please see the proof of Lemma 5 in appendix B.
14We use the integer variable µ as the z exponent of the generating function G(q, r, z), as opposed to the

even integer valued m. The analytic continuation of m→ 1 is equivalent to continuing µ→ 1/2.
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and thus, we identify

gk(q, z) = (1− zC(q, z))zk
(1− zq − zC(q, z))k+1

= C(q, z)(C(q, z)− 1)kq−k
(4.33)

where we have made use of eq. (D.20) to arrive at the final expression. We then still need
to expand this in terms of z and get a closed form for the coefficients. We will use a contour
integral trick to pick out the appropriate coefficient, i.e.,

gµ,k = 1
2πi

∮
dz

zµ+1 gk(q, z) = 1
2πi

∮
dz

zµ+1C(q, z)(C(q, z)− 1)kq−k (4.34)

Where the contour is chosen to enclose a neighborhood of z = 0. The function C(q, z) has
a branch cut running between

z± = 1
(1∓√q)2 , (4.35)

and there are no other poles or branch cuts on the complex plane.15 We can then deform
the contour to enclose the branch cut running between (z−, z+).

Now we would like to perform the analytic continuation for µ→ 1/2. This introduces
an extra branch cut emanating from z = 0, which does not affect our choice of contour.
Since C(q, z) has the property

lim
Im z→0+

Im(C(q, z)) = − lim
Im z→0−

Im(C(q, z)), (4.36)

one can rewrite the integral as twice of the imaginary part of the UHP contour:

g1/2,k(q) = 1
π
Im
∫ z+

z−

dz

z3/2 C(q, z)(C(q, z)− 1)kq−k. (4.37)

For illustration, we evaluate the integral for the first few values of k:

• k = 0
We have

g1/2,0(q) = 1
π
Im
∫ z+

z−

dz

z3/2 C(q, z) (4.38)

This integral results in the analytic continuation of the q-Catalan numbers at µ = 1/2,

g1/2,0(q) = C1/2(q). (4.39)

Cµ(q) is a piecewise function depending on whether q > 1:

Cµ(q) =

q 2F1(1− µ,−µ; 2; q), q ≤ 1,
qµ 2F1(1− µ,−µ; 2, q−1), q > 1

, (4.40)

15One must be careful about choosing the square root branch cut in C(q, z). In particular if we want the
function to behave nicely at z →∞ we have to use C(q, z) = (1− z(q− 1) + |q− 1|

√
z − z+

√
z − z−)/(2z).

This new C(q, z) is equal to the original definition in Proposition 2 near the z = 0 neighborhood and hence
they have the same Taylor expansion.
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which will be important seeds for expressing the coefficients for all the subsequent k.
The eigenvalue in this sector is

λ0 = qABC1/2(q−1
AB)2 (4.41)

with multiplicity 1.

• k = 1
The k = 1 integral reads

g1/2,1(q) = 1
π
Im
∫ z+

z−

dz

z3/2 q
−1(C2(q, z)− C(q, z)) (4.42)

Using eq. (D.20) it can be shown that C(q, z) satisfies the quadratic equation

C2(q, z) +
(
q − 1− 1

z

)
C(q, z) + 1

z
= 0, (4.43)

so that one can write the integrand as a linear functional of C(q, z):

g1/2,1(q) = 1
π
Im
∫ z+

z−
dz(q−1z−5/2 − z−3/2)C(q, z)

= q−1C3/2(q)− C1/2(q)
(4.44)

The eigenvalue of this sector is given by

λ1 = χ−2(qABC3/2(q−1
AB)− C1/2(q−1

AB))2 (4.45)

with multiplicity χ2.

• k = 2
We can use the same trick to reduce the integrand to be linear in C(q, z):

g1/2,2(q) = 1
π
Im
∫ z+

z−

dz

z3/2 q
−2C(q, z)(C(q, z)− 1)2

= 1
π
Im
∫ z+

z−
dz (q−2z−7/2 − z−5/2(2q−1 + q−2) + z3/2)C(q, z)

= q−2C5/2(q)− (2q−1 + q−2)C3/2(q) + C1/2(q)

(4.46)

The eigenvalue of this sector is

λ2 = q−1
ABχ

−4
(
q2
ABC5/2(q−1

AB)− (2qAB + q2
AB)C3/2(q−1

AB) + C1/2(q−1
AB)

)2
(4.47)

with multiplicity χ4.

Thus, we see a general pattern emerging. The integrand of g1/2,k is a polynomial of
Ck(q, z) and we can always reduce it to some linear functional C(q, z) by repeated uses of
eq. (4.43). The outcome can in turn be expressed in terms of (half-integer valued) q-Catalan
numbers. Therefore, we only need to find out how the reduction works for general k.
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Proposition 4. The generating function G(q, r, z) in Proposition 2 can be alternatively
resummed as

G(q, r, z) = (r + q)C(q, z)− r/z
r2 + (q + 1− 1/z)r + q

(4.48)

We present the proof of this statement in appendix D. This result allows us to write
down an explicit form of gk(q, z) as a linear functional of C(q, z):

G(q, r, z) =C(q, z)
[
1 + (q−1z−1 − 1)r +

(
q−2z−2 − (q−2 + 2q−1)z−1 + 1

)
r2

+
(
q−3z−3 − (2q−3 + 3q−2)z−2 + (q−3 + 2q−2 + 3q−1)z−1 − 1

)
r3 + · · ·

]
+ other terms. . .

(4.49)

The detailed expression of the remaining terms not proportional to C(q, z) is irrelevant for
determining the contour integral. From this expansion, one can read off the coefficients
g1/2,k as linear combinations of q-Catalan numbers easily: a negative power of z−n in the
expansion coefficients becomes C1/2+n(q) after performing the contour integral.

4.3 Reflected spectrum and the effective description

In previous subsections, we have seen exact calculations of spectra for even integer m and
arbitrary χ, as well as how the large χ limit allows us to extract analytic behavior of the
eigenvalues in individual sectors. With these results in hand, we are finally ready to tackle
the problem of analyzing the reflected entropy for the 2TN model.

In the limit χ→∞, the leading eigenvalue in each k sector is

λk = χ−2kq1−k
AB (g1/2,k(q−1

AB))2 ≡ χ−2kpk (4.50)

with multiplicity dk ≈ χ2k. The numbers pk are independent of χ and satisfy ∑k pk = 1
from the normalization condition. We plot the first few pk’s as a function of qAB in figure 13.
The spectrum in this limit is a sum of the eigenvalue over all k sectors:

D(λ) =
∞∑
k=0

χ2kδ (λ− λk) (4.51)

We present a sketch of the full reflected spectrum in figure 14.
The reflected entropy obtained from this spectrum is given by

SR(qAB) = −
∞∑
k=0

χ2kλk ln λk

= −
∞∑
k=0

pk ln pk +
∞∑
k=0

pk (2k lnχ)
(4.52)

Eq. (4.52) is the main result of this paper. There are two different contributions to the
reflected entropy. There is a term from the classical Shannon entropy for the probabilities

– 27 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
7

0.1 0.5 1 5 10
qAB

10-5

10-4

0.001

0.010

0.100

1

p0

p1

p2

p3

Figure 13. The plot showing the first few pk’s as a function of qAB . It is clear that at any point in
parameter space, the dominant contribution comes from either p0 (if qAB < 1) or p1 (if qAB > 1).

Figure 14. The sketch of the 2TN reflected spectrum at m = 1. It features an infinite tower of
eigenvalues labeled by the sector number k. Note that the eigenvalues of the k > 0 sectors are
drawn with a width here. This effect comes from taking the external bond dimensions χA/B/C
large but finite, which we will investigate in detail in section 4.4.

pk, plus an infinite sum over terms proportional to 2k lnχ, weighted by pk. This should
be compared with the result, eq. (2.6) obtained from the gravitational path integral in
section 2. We can now interpret each k sector as a state with a effective tensor network
configuration with different EW cross-sections.

Based on the gravitational calculation (section 2), the results on single random ten-
sor [1], and the analysis on finite external bond dimensions effects (section 4.4), we suggest
that the effective TN states are built as follows: consider the natural doubling proce-
dure [37] for the canonical purification, by duplicating the 2TN state and gluing the two
copies across the boundary of the bulk extremal surfaces (C1 and C2 in our case). Call such
a state |ψ1〉. Then, construct a series of wave functions |ψk〉 by further replicating |ψ1〉 k
times and gluing across the AA∗BB∗ bonds. By construction |ψk〉 will have an entropy of

– 28 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
7

Figure 15. An illustration of eq. (4.53). The canonical purification |ρAB〉 is effectively described
by a superposition of tensor network states. For k = 0 we have the factorized state with zero
cross-section. To form the k > 0 sectors we start from a simple network state made from two copies
of the 2TN state. Then for each k we glue together k such states, resulting in a TN with total
cross-sectional area 2k lnχ, as indicated by the number of bonds cut by blue dashed lines. This
figure should be compared to figure 3, where each effective TN corresponds to a genus-(2k−1) bulk
solution of the replica boundary problem.

2k lnχ and we have the following effective description

|√ρAB〉 = √p0 |ψ0〉+
∞∑
k=1

√
pk |ψk〉 , (4.53)

where |ψ0〉 is a factorized state across AA∗ and BB∗. The states |ψi〉 are approximately
orthogonal at large χ, i.e. 〈ψi|ψj〉 ∼ δij + O(χ−1). Calculating the entropy of eq. (4.53)
gives precisely eq. (4.52) at χ → ∞. We give a diagrammatic illustration of eq. (4.53) in
figure 15.

Eq. (4.53) should be compared to the states prepared by a gravitational path integral in
the sense of eq. (2.4). There we have a superposition of bulk solutions of EW cross-section
2k lnχ, whose reduced density matrices ρk,AA∗ have approximately orthogonal support.
One should think of the integer index k as capturing the topology of the effective description.
By gluing together k copies of the state |ψ1〉 we have created a bulk solution with genus
2k − 1. From the entanglement structure we also identify emergent superselection sectors
labeled by the topological index k ∈ Z≥0. The area operator is:

LAA∗ =
∑
k

2k lnχΠk, (4.54)

where Πk is the projection operator down to the orthogonal subspace of |ψk〉. Note that
in real scenarios with finite bond dimensions, the aforementioned superselection sector is
only approximate as supports of the density matrices are not exactly orthogonal.

As discussed in ref. [38] there is a connection between the area law and quantum error
correcting codes. Taking this seriously here we see that the effective description looks
like an emergent error correcting code, with only a central degree of freedom. Hence it is
perhaps better thought of as a classical error correcting code. Presumably including bulk
degrees of freedom in the original network, before canonically purifying, will give rise to a
genuinely quantum version of this code.

Returning to the calculation of the reflected entropy, the phase transition of SR(A : B)
is controlled by the list of classical probabilities pk as a function of qAB. They can be
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shown to have the following asymptotic behaviors

(p0, p1, pk>1) ∼



(
q−1
AB, 1− 5

4q
−1
AB,

Γ(k − 1/2)2

πΓ(k)2 q1−k
AB

)
, qAB � 1,(

1− 1
4qAB,

1
4qAB,

Γ(k − 1/2)2

π(2k)2Γ(k)2 q
k
AB

)
, qAB � 1.

(4.55)

Away from phase transition, i.e., for qAB � 1 (qAB � 1), one can argue that either
k = 0 (k = 1) is the dominant sector. The probabilities pk of higher k sectors are always
suppressed by factors of q (q−1), as shown in eq. (4.55) and figure 13. This matches our
expectation, as in the limit qAB � 1 the state |ψ0〉 is dominant and we have SR(A :
B) ∼ O(1); whereas as qAB � 1 the state |ψ1〉 is dominant and we get the classical
result SR(A : B) = 2 lnχ = 2EW (A : B). Near the vicinity of phase transition, i.e.
qAB ≈ 1, all the k sectors become important in determining the entropy, as one can check
numerically that the probabilities pk for k ≥ 2 are of comparable order of magnitude,
although numerically smaller than p0,1.

The (1, n)-Rényi reflected entropies are given by the sum

S
(1,n)
R = 1

1− n ln
(∑

k

χ2k(1−n)pnk

)
. (4.56)

In reality, only the first two terms k = 0, 1 can ever dominate the sum as long as n > 1.
Therefore we found that S(1,n)

R has three different approximate behavior depending on the
value of qAB:

S
(1,n)
R ≈


1

1−n ln p0 ≈ 0, qAB � 1,
1

1−n ln p0 ≈ n
n−1 ln qAB, 1� qAB � χ(2−2/n),

2 lnχ, qAB � χ(2−2/n),

(4.57)

which matches exactly the expected results from the phase diagram in figure 8 in the
parameter regime where our analysis is valid. As we take n → 1, the middle regime
vanishes and we get back the single sharp phase transition of reflected entropy.

Interestingly, for n < 1, the k > 2 saddles can dominate. For sufficiently large χ, the
term χ2k(1−n) in eq. (4.56) becomes increasingly important for larger k. For even integer
m, this implies that the highest sector, i.e., k = m

2 , dominates. For m away from the even
integers, this leads to a runoff to arbitrarily high k which leads to the entropy being infinite
in our approximation. In practice, such calculations would receive large corrections from
the finiteness of the external bond dimensions χA/B/C since there is a constraint on the
rank of the reflected spectrum arising from min(χ2

A, χ
2
B).

4.4 Corrections to the spectrum

In this subsection, we study the effect of having finite bond dimensions χ and χA,B,C1,C2 .
This is motivated by comparing to situations such as the four boundary wormholes with
large but finite horizon areas and EW cross-section. Moreover, this allows us to make
better comparison with numerics we obtained in section 4.5.
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Taking the internal/external bond dimensions finite alter the large χ spectrum in
independent ways. In short, the leading effect of finite internal bond dimension χ is to shift
the location of the poles in each sector. In contrast, the leading effect of finite external bond
dimension χA,B,C1,C2 is to spread out each pole into a narrow mound. In the following we
will examine how these effects work together to create a consistent spectrum that matches
our numerical data well and deepens our understanding of the effective description of the
2TN as a sum over superselection sectors. However, the calculation of the finite internal
bond dimension χ corrections is rather technical and involved. For this purpose we present
the full analysis in appendix C for interested readers.

4.4.1 Eigenvalue shifts

Here we give a qualitative summary of the effect of finite internal bond dimension χ. We
identify two phenomena as we take χ finite: first, the orthogonality of link state basis
v ∈ B(m)

k , i.e. eq. (4.18), fails. Second, elements not of the form {|x y|;x, y ∈ B(m)
k } in the

sum∑
π

(m)
k (D(h)) will start to contribute. These two effects introduce O(χ−1) corrections

to the leading eigenvalue in each sector λk. The latter effect also splits the degenerate zero
eigenvalues in each sector. However, such corrections only appear at O(λkχ−2), so they
do not affect the entropy at leading order. Note that O(λkχ−2) is also the order of the
leading eigenvalue λk+1 in sector k+ 1. This is seen in our numerics from the fact that the
number of eigenvalues in each mound is not exactly dk, but has corrections suppressed by
O(χ−2). We will refer to this as sector mixing, which should be understood as a signature
that the wave functions in different superselection sectors acquire a non-zero overlap when
χ is finite. Both effects are seen in our explicit examples of integer m (sector mixing is
only visible in m ≥ 4) in section 4.1.

We conclude the brief discussion by giving expressions for the leading order correction
to the eigenvalues λk for k = 0 and k = 1. We chose to do so since the shifts of these two
eigenvalues completely characterizes the leading order correction to the reflected entropy
for all qAB. Corrections to other sectors are also obtainable via analytic continuation of the
related generating function, but their contribution to the entropy is sub-leading. Please
refer to appendix C for a detailed treatment.

∆λ0 = q−1
A + q−1

B

χ

[
C1/2(q−1

AB)
(
(1 + q−2

AB)D3/2(q−1
AB)− 2(1 + q−1

AB)D5/2(q−1
AB) +D7/2(q−1

AB)
)

+
(
qABC3/2(q−1

AB)− C1/2(q−1
AB)

)2
]
, (4.58)

∆λ1 = q−1
A + q−1

B

χ3

[
3
(
C1/2(q−1

AB)− (2qAB + q2
AB)C3/2(q−1

AB) + q2
ABC5/2(q−1

AB)
)2

+ (−C1/2(q−1
AB) + qABC3/2(q−1

AB))
×
(
(−(q−1

AB − 1)2D1/2(q−1
AB) + 2q−1

ABD3/2(q−1
AB) + q2

ABD5/2(q−1
AB)

− 2(q2
AB + qAB)D7/2(q−1

AB) + q2
ABD9/2(q−1

AB)
)]
. (4.59)
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where the function Dµ(q) is given by

Dµ(q) =

 2F1(1− µ, 1− µ; 1; q), q ≤ 1,
qµ−1

2F1(1− µ, 1− µ; 1; q−1), q > 1.
(4.60)

4.4.2 Fluctuations in each sector

So far, the spectrum we have obtained consists of a bunch of poles, which in turn happened
because we were working in the limit of large external bond dimensions. The leading effect
of taking these dimensions finite will be to spread out each pole into a narrow mound, and
the goal in this part will be to find a crude estimate for the width.

Based on the results obtained in the single random tensor [1], we conjecture that such
spreading effects arise from including non-trivial permutations that act on the n-cycles.
This motivates us to consider summing over a more general class of elements:

g1 = γp

(
n∏
i=1

hi

)
γ−1
p , g2 = γq

 n∏
j=1

kj

 γ−1
q (4.61)

where as before hi, kj ∈ NCm and additionally we pick p, q ∈ NCn. γp stands for the n-twist
operator associated to p applied to the lower half of the elements. This should be contrasted
with eq. (3.7) where we restricted to γp = γτ and γq = e. Note that these elements are
only schematic since there is a possible overcounting when hi, kj ∈ NCm/2×NCm/2, which
will be accounted for later.

We remind the reader that in order to calculate the partition function Zmn in eq. (3.5),
we need to evaluate #(g1g

−1
A ) and #(g1g

−1
B ). These numbers depend on whether hi, kj ∈

NCm/2 ×NCm/2 (in which case we call these permutations disconnected) or not (in which
case they are called connected). For the connected sector, we furthermore classify hi and
kj based on the number of crossing connections when viewed as an element of TLm: we
say h ∈ NCm,k if D(h) = |x y| for some x, y ∈ B(m)

k .
For now we restrict the sum to the set of hi, kj where all of the permutations are in the

same subclass NCm,k but we allow k to vary. Using the formalism of annular non-crossing
permutations (see appendix A of ref. [1] for details) we get

#(g1g
−1
A ) =

{∑
i #(hiτ−1

m ),∑
i #(hiτ−1

m )− 2(n−#(pτ−1
n )),

hi ∈ NCm,0
hi ∈ NCm,k>0

(4.62)

#(g2g
−1
B ) =

{∑
j #(kjτ−1

m ),∑
j #(kjτ−1

m )− 2(n−#(q)),
kj ∈ NCm,0
kj ∈ NCm,k>0

(4.63)

Note that it is possible to give a formula for an arbitrary mixture of two different values of
k but those effects turn out to be subleading in determining the width, so we ignore them
for now.

The partition function factorizes into different subclasses based on the number of
crossings:

Zmn ' Z(0)
mn + Z(1)

mn + Z(2)
mn + · · · (4.64)
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where the disconnected sum is

Z(0)
mn =

(
χAχB
χmCχ

m

)n ∑
hi,kj∈NCm,0

q
−
∑

i
#(hi)

A q
−
∑

j
#(kj)

B TrTLm (D(h1)D(k1) · · ·D(hn)D(kn))

(4.65)
The summation over p, q drops out since they all overcount the same set of permutations.
Since its form receives no correction from the new p, q twist operators, we conclude that
the single eigenvalue λ0 remains unchanged in this approximation. We expect that by
including the correction from mixed k contributions, λ0 may be shifted by a small amount
or spread out to a very narrow peak.

Moving on to the connected sectors, there is no overcounting and we get extra correc-
tions from the cycles in p and q:

Z(k)
mn =

(
1

χAχBχmCχ
m

)n ∑
p,q∈NCn

χ
2#(pτ−1

n )
A χ

2#(q)
B

∑
hi,kj∈NCm,k

q
−
∑

i
#(hi)

A q
−
∑

j
#(kj)

B

×Trpq
−1

TLm
(D(h1)D(k1) · · ·D(hn)D(kn)) , (4.66)

where the trace pattern is determined by the partition pattern in pq−1. For example,

Tr(12)(3)
TLm

(D(h1)D(k1)D(h2)D(k2)D(h3)D(k3))
= TrTLm(D(h1)D(k1)D(h2)D(k2))× TrTLm(D(h3)D(k3))

(4.67)

The dominant contribution in eq. (4.66) comes from p = τn, q = e, which gives the single
eigenvalue identified in section 4.1 and section 4.2. The summation over p and q introduces
nontrivial correlations in Zn, which we now focus on analyzing.

Denoting pq−1 = ∏
i ci to be the individual cycle decomposition of pq−1, we can write

∑
hi,kj∈NCm,k

q
−
∑

i
#(hi)

A q
−
∑

j
#(kj)

B TLpq
−1

TLm
(D(h1)D(k1) · · ·D(hn)D(kn))

=
∏
{ci}

TrTLm

 ∑
h∈NCm,k

q
−#(h)
A D(h)

 ∑
k∈NCm,k

q
−#(k)
A D(k)

|ci|

,

(4.68)

where |ci| is the number of elements in a given cycle. Then, using the fact that the leading
order result Zn ≈ χ2kλnk in large χ limit for such sector, we have

Z(k)
n ≈

(
λk

χ2
Aχ

2
B

)n ∑
p,q∈NCn

χ
2#(pτ−1

n )
A χ

2#(q)
B χ2k#(pq−1), (4.69)

Interestingly, the partition function Z(k)
n is identical to the partition function of an equiv-

alent tensor network (up to an overall normalization), see figure 16. One should view this
effective network as an instantiation of the effective description of the kth superselection
sector, in the sense that our result exposes the effective internal entanglement structure of
a given sector. Note that the while the picture presented here is not the same as the one
proposed in figure 15, they have the same entanglement spectrum up to leading order in
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Figure 16. Calculating the partition function in the each k sector is equivalent to calculating the
partition function for finding the n-th moment of an effective two-tensor model (up to a normal-
ization factor) with two external bonds with bond dimensions χ2

A and χ2
B , along with an internal

bond with dimension χ2k.

χkA/B. We conjecture that by including the sum over different k sectors in the full partition
function, one can restore the hidden internal structure of the effective description.

The normalized spectrum of the tensor network shown in figure 16 is the same as the
spectrum of the product of two rectangular Ginibre matrices, which has been worked out in
the large bond dimension limit [39–41] using techniques from free probability theory [42].
The resolvent for this network can be obtained through the following cubic algebraic equa-
tion

λW (λ) = (1 +W (λ))(1 + cAW (λ))(1 + cBW (λ)) (4.70)

where cA = χ2k/χ2
A, cB = χ2k/χ2

B and W (λ) is related to the resolvent by λR(λ) =
(1 +W (λ)). Working in the limit cA, cB � 1, we expand eq. (4.70) to first order in cA/B:

λW (λ) ≈ (1 +W (λ))(1 + (cA + cB)W (λ)), (4.71)

whose solution gives a Marchenko-Pastur distribution [43] with parameter c = cA + cB =
χ2k(1/χ2

A + 1/χ2
B). Putting back the correct normalization factors, we obtain an approxi-

mate spectrum for the k-th sector

Dk(λ) = 1
2πλλk(χ−2

A + χ−2
B )

√
(λ− λk−)(λk+ − λ), λk± = λk

(
1± χk

√
(χ−2

A + χ−2
B )
)2

(4.72)

i.e. the single eigenvalue λk in each sector spreads out into a narrow peak with width
∼ 4λkχk

√
(χ−2

A + χ−2
B ). Note that the approximation in eq. (4.71) fails when χk and χA/B

are of comparable size. This is the case in numerics when the number of eigenvalues in a
higher k sector approaches the finite rank constraint min(χ2

A, χ
2
B). In this case one should

use the full solution to the cubic equation eq. (4.70) instead.
Note that it is rather straightforward to adapt our calculation for arbitrary finite χ

and finite integer m. First, one needs to replace the number of eigenvalues in each sector by
χ2k → dk in eq. (4.69) to account for the finite χ effects. Further, our previous analysis in
section 4.1 shows that there are subleading eigenvalues in each sector that are suppressed
by O(χ−2) compared to the leading one. Repeating the calculation, we find that every
eigenvalue in a sector will obtain a width, not just the leading one. Finally, for even
integer m the normalization term (Zm,1)n in eq. (3.3) can no longer be ignored. Far from
the EW phase transition, Zm,1 is sharply peaked around min(χAχB, χC)m−1 and it merely
restores the correct normalization for the spectrum. However around the transition, Zm,1
has a large variance and it introduces extra fluctuations to the spectrum by spreading each
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mound further out in addition to the Zm,n effects computed here. While this is indeed a
concern for our computation, we expect our result in this subsection to hold well when our
system is far from the EW phase transition at qAB ∼ 1.

4.5 Numerical results

Throughout this section, we saw that the use of TL algebra is extremely powerful and
enables us to extract various analytical properties for the 2TN reflected spectrum. To
recapitulate, working in the limit χA,B,C � χ, it allows us to obtain χ-exact spectra for even
integer m (section 4.1), leading (section 4.2) and sub-leading (section 4.4.1, appendix C)
contributions tom→ 1 spectra, reflected entropy (section 4.3), as well as fluctuation effects
(section 4.4.2). In this subsection we corroborate these analytical predictions by comparing
to numerical results. All the numerical results presented here are obtained directly from
simulating the 2TN state by contracting two random tensors along the internal bond and
calculating its reflected spectrum using exact diagonalization.

First, in figure 17 we present the histogram of the reflected spectra for m = 2 and
m = 4. The analytic predictions for the locations of the eigenvalues come from table 1, 2,
and the spreading within each sector is given by a modification of eq. (4.72) to accommodate
for finite-χ effects. The bond dimensions used in these plots are {χA, χB, χC1 , χC2 , χ} =
{40, 40, 80, 80, 3}. We remind our reader that the analytic results presented here are exact
for arbitrary χ and when the system is sufficiently far from phase transition. figure 17
serves as an exceptional confirmation of our formalism in the regime of small internal bond
dimension χ.

Moving on to the analytic continuation m → 1 which is relevant to the canonical pu-
rification and reflected entropy, we present a similar histogram of the spectra for m = 1
in figure 18. The bond dimensions used here are {χA, χB, χC1 , χC2 , χ} = {16, 16, 40, 40, 4}
(top) and {30, 30, 70, 70, 4} (bottom). As opposed to the case of even integer m, here we
only have analytic control of the spectra up to first order corrections in χ. The leading
order analytic results of the eigenvalues are given by eq. (4.50), and the first order correc-
tions for λ0 and λ1 are given by eq. (4.58) and eq. (4.59). The corrections to higher λk’s
are obtained via direct numerical contour integration to extract the relevant generating
function coefficients, i.e. eq. (C.17) and eq. (C.39). The number of sectors that show up
in the numerics abides the rank constraint, namely that the total number of eigenvalues
cannot exceed the dimension of the matrix. Therefore, we expect to see higher k sectors
materializing as χAχB increases, which is indeed the case here: as we increase χAχB, we
see an emergent fourth peak in the bottom plot compared to the top plot.

We also plot the transition of classical sector probability pk in figure 19 as functions
of qAB, and likewise the normalized reflected entropy SR/2EW in figure 20. The bond
dimensions used in these two plots are {χA, χB, χ} = {25, 25, 5} and we vary χC1 = χC2

to obtain different values of qAB. The colored dots indicate the numerical results. We
present two different analytical predictions here: solid lines are the ones that includes first
order corrections (eq. (4.58), eq. (4.59), etc.), whereas dashed lines are the leading result
(eq. (4.50) for pk and eq. (4.52) for SR), which is valid in the limit χ→∞. It is evident that
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Figure 17. Plots of spectra of the (unnormalized) density matrix ρ(m)
AB ≡ TrBB∗ |ρm/2

AB 〉 〈ρ
m/2
AB | for

m = 2 (top) and m = 4 (bottom), with the red lines being the analytic predictions. Note that in
the case of m = 4 there is an additional eigenvalue that lies close to the leftmost peak. This is a
finite χ effect that is not visible in our m → 1 analytics. Nevertheless our results for even integer
m are χ-exact which is well confirmed by these two plots.

the first order corrections captures the non-trivial effects of small internal bond dimension
surprisingly well.

5 Discussion

In this paper we have continued the study of canonical purification and reflected entropy
for random tensor networks. The picture developed in ref. [1] for the tensor network version
of the gravitational gluing construction persists to more complicated tensor networks. In
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Figure 18. Plots of spectra of the m = 1 reflected density matrix ρ(1)
AB ≡ TrBB∗ |√ρAB〉 〈

√
ρAB |

for {χA, χB , χC1 , χC2 , χ} = {16, 16, 40, 40, 4} (top) and {30, 30, 70, 70, 4} (bottom). The analytic
predictions are shown as red lines. The mismatch of the k = 3 peak in the bottom plot is due
to the fact that we can only work numerically in low bond dimension. As we scale up the bond
dimensions in numerics, the agreement becomes better. We expect that it can also be resolved by
improving the analytics, including subleading corrections to the eigenvalues beyond first order.
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Figure 19. Plots of the sector probability pk. The analytic result (solid lines) is obtained from the
product of sector multiplicity dk and eigenvalues λk. The dk used here are the exact expressions
in eq. (4.14) and the λk used here includes the first order shifts. We also incorporated the exact
expression of pk at χ→∞ (eq. (4.50)) as dashed lines.

particular we have found a detailed match between gravitational saddles that contribute
to the canonical purification with higher genus equal time surfaces and certain saddles
in the statistical mechanics model governing random tensor network calculations. Area
fluctuations, probed using reflected entropy, are represented by the different topological
sectors.

For the model at hand the topological sectors are governed mathematically by the
Temperley-Lieb algebra. The representation theory of the TL algebra then gives a nice
picture of the emergent superselection sectors that can be vividly seen in the numerics.
The higher genus equal time surface arise from cutting open the TL diagrams. The genus,
and hence topological index, is determined by the number of strands that are cut.

In the rest of the discussion section we summarize some possible avenues for future
work and some intriguing speculative connections to the theory of emergent non-trivial von
Neumann algebras.

5.1 General RTNs and multiboundary wormholes

Our analysis in this paper was focused on the 2TN model, where we performed a concrete
calculation using the TL algebra, and matched the results to those obtained from the
gravitational path integral in section 2. There is in fact a more general connection between
RTNs and multiboundary wormholes [29]. In this section, we would like to make some
comments on the presence of similar saddles for general multiboundary wormholes.
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Numerics
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χ  ∞

Figure 20. Plots of the reflected entropy, normalized by twice the EW cross-section 2 lnχ. The
analytic prediction (red) is obtained by summing over the eigenvalues in k = 0, 1, 2 sectors (these
are the only available ones due to the rank constraint), including the first order corrections and the
contribution from spreading (eq. (4.72)). We have also included the form of SR in the limit χ→∞
shown as the orange dashed line for comparison.

Consider an arbitrary RTN built out of constituent random tensors with three legs, an
example is shown in figure 21. Such an RTN models a multiboundary wormhole where the
tensors correspond to the constituent pair-of-pants decomposition of the spatial geometry.
In general, there are multiple ways to decompose a hyperbolic geometry into pairs-of-
pants. However, the RTN has fixed-area surfaces which pick a preferred pair-of-pants
decomposition. The network is then interpreted as a coarse-grained descriptions of the
given geometry. In ref. [29], it was argued that this model captures the entanglement
entropies of such multiboundary wormholes accurately. Our results here show that the
same is true for the canonical purification and the reflected entropy, thus enlarging the
scope of the random state model discussed in ref. [29].

Firstly, note that the construction of geometries contributing to the canonical purifi-
cation of a multiboundary wormhole is similar to that discussed in section 2. Since all the
horizons have fixed areas, the saddles contributing to the path integral in figure 6 are iden-
tical, except that we now have more ways to glue together the fixed-area saddles. In terms
of the Cauchy surface obtained on the Z2-symmetric slice, the saddles can be classified by
picking a particular choice of entanglement wedge and then gluing together multiple copies
of the respective bulk regions.

In general, the TL algebra techniques can be applied to more general RTNs as well. For
example, consider the 4TN network shown in figure 21. The computation of the average
partition function Zmn in this network includes a sum over independent permutations gi
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Figure 21. (left): the 4TN network consists of four internal vertices connected by internal bonds
χij . (right): it models a four-boundary wormhole with a handle.

on each of the tensors. As before, we can take the limit of external bond dimensions to
be large. In addition, if we also take the internal vertical bonds to be large, it is easy to
see that we can then restrict the sum to the non-crossing permutations g1/3 ∈ Γ(gA, e) and
g2/4 ∈ Γ(gB, e) since the other permutations are suppressed. For each internal horizontal

bond χij , there is a domain wall cost of the form χ
#(gig

−1
j )

ij . As in eq. (3.12), this can be done
by introducing a TL algebra labelled by the bond dimension. Thus, Zmn is computed by a
product of TL traces, one for each horizontal bond. However, the analysis is complicated
by the fact that the traces are coupled to each other. It would be interesting to analyze
this using free probability theory techniques [44, 45] in the future.

5.2 Junctions for the cross section

Our results in this paper rigorously apply to situations where the entanglement wedge cross
section is spacelike separated from all the external RT surfaces. This guarantees that we
can simultaneously fix their areas and thus, model the holographic state by an RTN. Our
TL algebra techniques can then be applied to such situations. However, we now argue that
the TL algebra analysis can be useful for more generic situations in holography where all
the surfaces are not necessarily spacelike separated.

For example, consider a three-boundary wormhole with horizons γi for i = A,B,C,
each of the subregions being one asymptotic boundary. As discussed in ref. [1], when the
minimal entanglement wedge cross section is given by one of the external horizons, this
situation is modelled by a single random tensor with three boundary legs, one for each
subregion. However, in general there is a non-trivial cross section surface γW as shown in
figure 22, which can be important for the reflected entropy. In fact, we show in appendix A
that this is true for a large region in parameter space.

In such a situation, the TL algebra analysis cannot be applied directly since there is
a codimension-3 junction where the surface γW meets γC . One can check that the areas
of γC and γW can indeed be simultaneously fixed. This is manifest from the fact that the
area of γW generates a kink transform [46–48], which preserves the minimal entanglement
wedge cross section. Nevertheless, the RTN in fact fixes the areas of γC1 and γC2 as well,
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Figure 22. A three-boundary wormhole with horizons labeled as γA/B/C and the non-trivial EW
cross-section γW . While one cannot fix the individual area of γW and γC1/C2 simultaneously, the
area of γW and the sum γC = γC1 + γC2 can be fixed simultaneously.

since they correspond to bonds in the network. It can be checked in various models [49]
that these areas do not commute with γW .

Nevertheless, the saddles contributing to the gravitational path integral for tr(ρmAB)
discussed in section 2 are valid even if we don’t fix the area of γW . Thus, for the state
|ρm/2
AB 〉, we still obtain the same geometries Σk, labelled by their genus. While, we cannot

then use the TL algebra technology to compute the Rényi reflected entropies, we can gain
some mileage from directly assuming that the RT formula can still be applied to each of
these geometries. Since this is a superposition over a small number of geometries (not
exponentially large in the entropy), we can use the expectations from ref. [34] to argue
that the (non-linear) entropy is given by the expectation value of the minimal area, a
linear operator defined on the gravitational phase space. This expectation is clearly borne
out in the situation where we could fix the area of γW as seen from eq. (2.5). With this
assumption, even in this situation, we expect to have an analog of eq. (2.5). It would be
interesting to generalize our TL algebra construction to include a non-flat spectrum which
allows fluctuations for γW and make this heuristic argument more rigorous.

With the above heuristic understanding, our 2TN results also apply to a rather generic
situation that arises for subregions in a CFT (see figure 1). In such a situation, the areas
of the extremal surfaces or equivalently the external bond dimensions are IR divergent,
whereas the cross section is finite. The external areas can be regularized by allowing for
a small splitting between the regions. Having done so, the density matrix ρAB can in fact
be defined rigorously by the split construction described in ref. [5]. The regularization
removes subtleties associated with fixing an IR divergent area. With this understanding,
the analysis is similar to the heuristic argument described above for the three-boundary
wormhole and thus, our results are rather generic.

5.3 Emergent von Neumann algebras

Temperley-Lieb (TL) algebras play an important role in the study of type-II1 subfactors,
initiated by Jones. A subfactor is a subalgebra B ⊂ A of von Neumann algebras both of
which do not have centers. In this case the TL algebra emerges from a sequence of further
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subalgebras B ⊂ A ⊂ A1 ⊂ A2 . . . constructed using the Jones basic construction [50].
Then the TL operators are generated by a sequence of projection operators that arise
from the basic construction. The TLm algebra for even m then appears in the relative
commutants Ai+m ∩ A′i of two of the algebras in this sequence. The algebra generated
by all of these relative commutants would reproduce a type-II1 algebra. We might then
speculate that our model gives one more avenue [51–53] through which non-trivial von
Neumann algebras can arise from gravitational like theories.

Comparing to the emergent TL algebras in our tensor network model the relevant
inclusion involves decreasing the number of handles on the fixed time slice. To really see
an emergent type-II1 algebra we would need to move to high topological index. In particular
m → ∞ would be interpreted as giving rise to such a non-trivial von Neumann algebra.
Interestingly by continuing m away from an even integer we have a mechanism by which
arbitrarily high topological index can arise, unfortunately however these states become
increasingly suppressed at high k by the sector probabilities. Near the phase transition all
sectors are excited, however to really claim an emergent type-II1 algebra we would need to
somehow project to a high k sector so that pk is peaked around k0 which is then approaching
∞. If we managed this then the leading reflected entropy ≈ k0 lnχ is diverging with k0, a
necessary condition for an emergent type-II1 von Neumann algebra. Perhaps this can be
achieved by perturbing the original density matrix by some χA,B dependent operator that
excites the topological mode k0(χA,B), with k0 →∞ as we send χA,B →∞ while holding
fixed χ. We certainly need to send the external bond dimensions to ∞ so that the rank
condition does not come into play. A natural guess for such a perturbation is to apply ρisAB
(half sided) modular flow to the original state

∣∣∣ρ1/2
AB

〉
. In fact one can show, using similar

techniques to section 4, that under modular flow the probabilities pk get modified to

pk(s) = q1−k
AB g1/2+is,k(q−1

AB)g1/2−is,k(q−1
AB) (5.1)

at leading order in χ. This change of pk(s) is seemingly consistent with the above require-
ments. We have confirmed this numerically, see figure 23. We would then need to pick
s(χA, χB) diverging and one important question is can we control such a computation while
taking s large? This would be an interesting avenue to pursue since it would give rise to
a computable model of topological gravitational like fluctuations. It is also important to
understand the exact nature of the putative emergent type-II1 von Neumann algebra other
than simply via entropy computations.

There are also some superficial similarities to ref. [54] that are worth exploring further.
Ref. [54] gives a Hilbert space interpretation of the double scaled SYK model, for which
a diagrammatic solution was given in ref. [55]. These are the chord diagrams and the
Hilbert space description is in terms of cutting open these chord diagrams, similar to the
Temperley-Lieb Hilbert spaces. In this case an emergent type-II1 von Neumann algebra
naturally arises.
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Figure 23. (Top) Sketch of the (χ-leading) modular flowed sector probability pk as a function
of modular parameter s. One can see the shift of dominance to higher k sectors as s increases.
(Bottom) The numerical result of pk for k = 0, 1, 2, shown as colored dots. The bond dimensions
used in the numerics are {χA, χB , χC1 , χC2 , χ} = {16, 16, 40, 40, 4}. One sees a good match with
the analytical prediction at small s. To match the behavior at larger s one would need to access
higher k sectors in the numerics.
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Figure 24. A pair of pants decomposition of a four-boundary wormhole. The constituent three-
boundary wormholes have horizons γi with area Li. The surface γW was treated as the minimal
entanglement wedge cross section in our analysis. However, another possible non-trivial entan-
glement wedge cross section surface γ′ exists with an area L′ that could be lesser in regions of
parameter space.

A Multiboundary wormholes

In this appendix, our primary goal is to analyze the extremal surfaces in a multiboundary
wormhole. In particular, we are interested in understanding the competition between
different candidates for the minimal entanglement wedge cross section.

The four boundary wormhole we are interested in can be decomposed into two pair-of-
pants geometries (see figure 24). Without loss of generality, consider one of the constituent
geometries with extremal surfaces γi that have area Li for i = A,C1,W , corresponding to
each of the asymptotic boundary regions as shown in figure 24. In this geometry, there
are three potential candidates for the minimal entanglement wedge cross section for the
region AB, i.e., γA and γW , which have obvious analogs in the 2TN model, as well as a
non-trivial surface γ′, whose area L′ is completely fixed in terms of the moduli Li. In order
for the tensor network to faithfully model this wormhole’s minimal cross section, we need
to ensure that LW < L′.

To compute L′ as a function of Li, we can use the symmetries of the problem and
identities from hyperbolic geometry (see ref. [7] and references therein). In particular, an
identity satisfied by right-angled pentagons in hyperbolic space is

sinh(a) sinh(b) = cosh(c), (A.1)

where a and b are the lengths of adjacent sides of the pentagon and c is the unique side not
adjacent to either of them. Note that all lengths are measured in units of the AdS scale l.
Suppose γ′ splits γC1 into portions of length x and LC1 − x, then we have

sinh(x) sinh
(
L′

2

)
= cosh

(
LW
2

)
,

sinh
(
LC1

2 − x
)

sinh
(
L′

2

)
= cosh

(
LA
2

)
.

(A.2)
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Figure 25. A plot of L′/LW as a function of LW for fixed LA and LC1 . The dashed line labels
the location where the shift of minimal cross-section happens.

Moreover, we are interested in a limit where LA, LC1 � LW . Solving the above set of
equations in this limit, we obtain

L′ = 2 sinh−1
(√

exp (LA − LC1) + 2 exp
(
LA − LC1

2

)
cosh

(
LW
2

))
. (A.3)

We can now compare L′ to LW either by plotting the function as in figure 25, or by
comparing them in various limits. When LA > LC1 , we find that L′ � LW which means
we can ignore the surface γ′ for the cross section. On the other hand, for LA < LC1 , we
find that L′ � LW and thus, it is very important to consider γ′. This means that the 2TN
approximation fails as we go far into the disconnected phase. However, for our calculations
we were mostly interested in the region near phase transitions. Thus for simplicity, consider
the case LA = LC1 . Then, for small LW , we have L′ = 2 sinh−1(

√
3)� LW . For large LW ,

we instead have L′ = LW
2 � LW . As seen from figure 25, there is a transition at an O(1)

value of LW . Identical arguments can be applied to the other constituent pair-of-pants
geometry. Thus, as long as we tune the moduli to such a regime, we find a wormhole
whose minimal entanglement wedge cross section is indeed given by γW and is modelled
well by the 2TN.

On the other hand, it isn’t clear whether such saddles are dominant in the gravitational
path integral. An analysis similar to ref. [31] would be useful to determine if this is the case.
Even if such a saddle is not dominant, we can consider a few alternate options: matter can
be used to source a larger interior region in which case it is clear that L′ > min(LA, LW ).
It may also be possible to simply choose to project on the relevant saddles [56].

B Temperley-Lieb algebra

In this appendix, we will summarize basic aspects of the Temperley-Lieb (TL) algebra and
its representation theory. There are many different flavors of classifying the representations
of TL algebra, with the two most prominent approaches being: 1. As a quotient of the
Iwahori-Hecke algebra [57, 58], or 2. As a algebraic module acting on a specific class of
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“link diagrams”. We will take the second approach here, also known under the name of
standard module [36, 59], or cell modules [60]. The goal of this appendix is to provide
a pedagogical review on various properties of the TL algebra and the standard module
used in our computations. Due to the length constraint we will omit the proof of many
important theorems. Interested reader can refer to [36] for a more complete and rigorous
treatment on this subject.

B.1 Basic definitions

First, we define, for any positive integer n, an n-diagram. It is constructed by first drawing
two parallel lines, each with n marked points. Then, the set of 2n points are connected
pairwise via n non-crossing strands that lies entirely within the space between two parallel
lines. We also define a pairwise product of two n-diagrams by concatenating two diagrams
side by side and replacing each closed loop by a factor of χ. For example, for n = 4 we
write:

(B.1)

This product is associative by construction. Although the parameter χ is considered to be
complex in more general settings, in what is relevant to this note we will assume χ ∈ R+
and we will often consider the limiting case where χ� 1.

Definition B.1 (Temperley-Lieb algebra). The Temperley-Lieb algebra TLn for a positive
integer n, is the (complex) vector space spanned by n-diagrams. This vector space is
equipped with a pairwise product by taking the diagrammatic product from above and
extend it to the whole vector space bilinearly.

Lemma 5. The dimension of TLn vector space is equal to the n-th Catalan number Cn.

Proof. To find the dimension of TLn, we need to count the total number of distinct n-
diagrams for given n. There is a bijection D(·) between n-diagrams and NCn, the non-
crossing permutations on n elements, defined as follows. First, one deforms the n-diagram
h by rotating the r.h.s. of the diagram by 180 degrees and append it below the l.h.s. .
Having done so one now has a diagram with non-crossing strands connecting 2n marked
points arranged on a single line. These diagrams are of one to one correspondence to
the double line notations of non-crossing permutations on n elements. This fact can be
made clear by concatenating the left of the diagram with n “caps” and assigning a number
to each cap. After doing so, the diagram factors into a set of non-crossing closed blocks
partitioning the set {1, · · · , n}, which can be further identified to the cycle decomposition
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of a non-crossing permutation D(h) ∈ NCn. We give a example of the map D below.

The number of distinct non-crossing permutations on n elements is given by Catalan num-
bers Cn. The detailed form of Cn can be worked out using a simple generating function,
but for reference here let us consider a slight generalization by weighing each cycle of D(h)
by a power of q. Define

(B.2)

to be the q−weighted generating function for NCn and F (q, z) the generating function for
connected diagrams, i.e.

C(q, z) = 1 + F (q, z) + F (q, z)2 + · · · = 1
1− F (q, z) (B.3)

C(q, z) and F (q, z) satisfies the following Schwinger-Dyson equation

(B.4)

or
F (q, z) = qz

1− zC(q, z) (B.5)

which can be solved to give

C(q, z) = 1− z(q − 1)−
√

(1 + z(q − 1))2 − 4qz
2z (B.6)

where we pick the sign of the solution by matching the small z behavior. The expansion
coefficients for C(q, z) are called q-Catalan numbers, which can be extracted using the
contour integral trick:

Cn(q) = 1
2πi

∮
dz

zn+1C(q, z) =

q 2F1(1− n,−n; 2; q), q ≤ 1,
qn 2F1(1− n,−n; 2; q−1), q > 1

(B.7)

– 47 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
7

The ordinary Catalan number Cn is related to Cn(q) by

Cn = Cn(q = 1) = 1
n+ 1

(
2n
n

)
(B.8)

It is easy to check that the diagram

(B.9)

acts as an unit in the algebra. Aside from the unit, every n-diagram can be obtained by
multiplying a set of generators e1, e2, · · · , en−1, where

(B.10)

These generators satisfy the following relations

e2
i = , (B.11)

eiei+1ei = , (B.12)

eiej = , (B.13)

and also eiei−1ei = ei, which can be verified through the upside-down mirror of the second
identity. This motivates the another more abstract definition of TL algebra:

Definition B.2 (alternative definition of Temperley-Lieb algebra). The Temperley-Lieb
algebra TLn is the algebra generated by a unit id and a set of n − 1 generators ei with
i = 1, · · · , n− 1 which satisfies the following relations:

e2
i = χei, eiei±1ei = ei, eiej = ejei if|i− j| > 1. (B.14)

The proof that the algebra generated from this definition is isomorphic to the diagram-
matic one (Definition B.1) can be found in standard references of the subject.

We conclude this subsection by introducing a trace function on TLn.
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Definition B.3. For a positive integer n, TrTLn : TLn → C is a cyclic linear function on
TLn. It is defined diagrammatically on an n-diagram by closing the strands on opposing
marked points on two lines and assign a power of χ for each closed loop obtained this way.
TrTLn is cyclic from definition, and it is extended to the full algebra using linearity.

For example,

. (B.15)

We also define a normalized version of this trace, denoted by TrT̂L = χ−nTrTLn . This
normailzed trace is consistent with respect to all n and satisfies the following properties:

TrT̂L(id) = 1, TrT̂L(h) = χTrT̂L(hen−1) (B.16)

where h ∈ TLn−1 ⊂ TLn is an element in the subalgebra of TLn consisting of elements
such that the n-th marked point on both sides of its diagram are connected via a strand.
This fact can be illustrated using the diagrams below.

(B.17)

where we used colored blocks to indicate arbitrary connections in the region. After putting
back the normalization factors one recovers eq. (B.16). In fact the property eq. (B.16)
completely characterizes TrT̂L, as shown in the following lemma:

Lemma 6. TrT̂L is the unique linear function on TLn that is cyclic (Tr(ab) = Tr(ba)) and
such that eq. (B.16) is true.

Proof. Every element h ∈ TLn can be written as a product of finitely many generators
h = ei1 · · · eik where ik ∈ {1, · · · , n − 1}. The eij ’s in the string can be further made
unique by using eq. (B.14) to permute the list and eliminate any duplicates. To evaluate
TrT̂L(h) = TrT̂L(ei1 · · · eik), we use cyclicity of the trace to cycle the possible en−1 to
the end of the list, and we pick up a factor of χ if there is one. Now since the new
list of generators does not contain en−1, the new element h′ obtained by multiplying the
new list of generators is in the subalgebra TLn−1 ⊂ TLn. Using eq. (B.16) we see that
TrT̂L(h) = χbTrT̂L(h′) where b = 0 if there is no en−1 in the generating string of h and
b = −1 if there is one. Now by repeated iteration of this whole process n − 1 times, one
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Figure 26. All the possible (4, 1)-link states.

can eliminate all the generators of h and obtain TrT̂L(h) = χ−kTrT̂L(id) = χ−k where k is
the length of the generating list h = ei1 · · · eik with non-duplicating generators. Thus the
condition eq. (B.14) uniquely fixes the action of TrT̂L on every element in TLn.

B.2 The standard module

To define an algebraic module, one must first form the vector space for the algebra to act
on. In the standard module of Temperley-Lieb algebra such vector space is spanned by a
collection of diagrams called link states (or cup diagrams in Westbury [59]).

An n-diagram can be cut in half across the middle line and expose a number of “de-
fects”, each corresponding to a connection between a point in the left and another point in
the right. The number of defects, denoted l, is always even if n is even and odd if n is odd,
which we keep track of using an integer k ∈ Z≥0, by saying that l = 2k when n is even
and l = 2k+ 1 when n is odd. We will call a half diagram obtained this way an (n, k)-link
state.16 A link state will be drawn with the lines on the left and any possible defects facing
right, as shown in figure 26. We will refer to the set of all (n, k)-link states as B(n)

k .

Lemma 7. For integer n and k ≤ bn/2c, the number of distinct (n, k)-link states is equal
to the number of standard Young tableaux of shape (dn/2e+ k, bn/2c − k).

|B(n)
k | = #SYT

(⌈
n

2

⌉
+ k,

⌊
n

2

⌋
− k

)
(B.18)

Proof. Note that there is a bijection between a link state and a lattice word consisting of
left and right brackets {[, ]} such that every prefix has more opening brackets than closing
brackets. For example, [ [ [ ] [ ] ] ] [ is a lattice word but [ ] [ ] ] [ [ ] ] is not since the prefix [ ] [ ] ]
has more ]’s than [’s. To put it in another way, there can never be a closing bracket without
a previous matched opening bracket, but a standalone opening bracket is allowed. To see
that this is true, simply assign an opening-closing pair to a closed strand in the link state
and any standalone opening brackets to defects, e.g.

(B.19)

where we have color coded the brackets to the matching strands. This correspondence
works in either way so it is really a bijection. Now it is a standard result that the number

16Note that we label link states by k, (one half of) the number of defects, as opposed to the common
practice of labeling by the number of closed arcs p = bn/2c − k. The main advantage for this notation
change is to make the various formulae regarding to different k sector in the main text cleaner.
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of lattice words are counted by standard Young tableaux: given a standard Young tableau
of shape (p, q), construct the following word (s1, · · · , sp+q) via

si =

 [, if i is in first row,
], if i is in second row.

(B.20)

Then at any given point i there can never be more closing brackets than opening brackets
since the tableaux is standard. The number of total brackets are p+ q whereas the number
of standalone opening brackets are p−q from which one immediately sees that p = dn/2e+k
and q = bn/2c − k.

For a n-diagram h ∈ TLn, we define a left action of h on a link state v in a similar
fashion by concatenating h and v from left to right, removing any disconnected open strands
and assign a factor of χ for each closed loop. We illustrate this definition with an example:

(B.21)

This action naturally defines a algebraic module (representation) on the vector space
spanned by link states. We will refer to such module as the link module.

Definition B.4 (link module). For given integer n, the link module, denoted byM(n), is
a left TLn-module on the collective vector space spanned by all link states whose action is
given by the diagrammatic action above and is extended to the whole vector space through
linearity.

Note that the number of defects is not necessarily conserved under the action (eq. (B.21)
is an example where it decreases by two). However, it can only close defects in pairs, so
k is always non-increasing under this action. Acknowledging this fact, one can identify
TLn-submodules M(n)

k ⊆ M(n) spanned by all (n, k′)-link states with k′ < k. There is a
natural chain of submodules

M(n)
0 ⊂M(n)

1 ⊂ · · · ⊂ M(n)
bn/2c =M(n) (B.22)

Consecutive quotients on this chain determines quotient TLn-modules called standard mod-
ules:

Definition B.5 (The standard module). For integer n and k < bn/2c, the (n, k)-standard
module, denoted by V(n)

k , is the quotient module

V(n)
k =

M(n)
k+1

M(n)
k

. (B.23)

The standard module vector space (which we will also refer to as V(n)
k by an abuse

of notation) is the coset [M(n)
k+1 : M(n)

k ], which is isomorphic to the vector space spanned
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by (n, k)-link states. In this regard, we will often talk about the action of (n, k)-standard
module on (n, k)-link states directly, forgetting the fact that it is really the coset that V(n)

k

is acting on. Diagrammatically, the action of an n-diagram h on a (n, k)-link state v is
given by the same action as in the link module, but with the further requirement that h
maps v to zero whenever the number of defects k decreases under the action.

There is a natural inner product 〈·, ·〉 on the vector space V(n)
k defined as follows:

Definition B.6. For x, y ∈ B(n)
k , the inner product between x and y, denoted by 〈x, y〉,

is obtained by first flipping x around the vertical axis and identifying it with the vertical
border of y. Then, define 〈x, y〉 by assigning a factor of χ for every closed loop obtained this
way. Furthermore, we require 〈x, y〉 to be nonzero only when every defect of x is connected
to a defect of y. This product is extended to the full vector space V(n)

k by requiring the
form being linear in the y and anti-linear in x.

As an example, we have

, (B.24)

Note that the link state basis B(n)
k is not orthogonal under this inner product. However,

they are approximate orthogonal at large χ, with corrections ∼ O(1/χ). This inner product
is invariant under the TL action.

Lemma 8. For all x, y ∈ V(n)
k and h ∈ TLn,

〈x, Uy〉 =
〈
U †x, y

〉
, (B.25)

where the “adjoint” U † is obtained by flipping the n-diagrams across horizontally and con-
jugating the complex coefficients.

Along with the inner product we define another sesquilinear form | · · | : V(n)
k ×V

(n)
k →

TLn that takes two (n, k)-link states and form a n-diagram.

Definition B.7. For x, y ∈ B(n)
k , denote |x y| to be the unique n-diagram formed by

flipping y across the vertical axis and identifying its defects with the defects of x. This
form is extended to the full vector space in the same way as in Definition B.6.

For example,

. (B.26)

The usefulness of Definition B.7 comes from the following lemma.

Lemma 9. If x, y, z ∈ V(n)
k , then

|x y| z = 〈y, z〉x (B.27)

– 52 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
7

Proof. Without loss of generality we can consider the case where all of x, y, z are (n, k)-link
states. If |x y| decreases the number of defects in z, then the l.h.s. of eq. (B.27) vanishes.
This is consistent with the r.h.s. as since there must exist disconnected strands in 〈y, z〉
when such a pair of defect is closed, forcing 〈y, z〉 = 0. It remains to check the case
where no defects are closed. In this case the l.h.s. of eq. (B.27) will be proportional to x.
The proportionality factor is given by χ#, where # is the number of closed loops in the
concatenation, which is the same as the number of closed loops in calculating 〈y, z〉.

It is sometimes useful to think of |x y| as the outer product of link states xy†, with
the adjoint y† ∈ V̄ (n)

k in the dual module obtained by flipping y around its vertical axis.
However such analogy is only true when all of x, y, z lie in the same (n, k)-standard module.
When it is not the case, say when x, y ∈ V (n)

k and z ∈ V (n)
k′ , then not only 〈y, z〉 is not

defined, |x y|z will not be proportional to x. For example,

. (B.28)

In general, the standard module classify all the finite dimensional irreducible represen-
tations of TLn for almost all values of χ, except for a discrete set of points when χ < 2.
The key to proving this proposition is by studying the degeneracy of the inner product 〈·, ·〉
through its Gram matrices G(n)

k . The idea is very similar to the process of determining
the reducibility of Verma modules of Virasoro algebra in 2d CFT: G(n)

k being non-singular
implies the irreducibility of V(n)

k . When G(n)
k is singular (i.e. detG(n)

k = 0), there will be
additional null states that one needs to discard to obtain a irreducible representation.

To end this short review we quote an important theorem, first due to Jones [50] and
studied in more detail by Westbury [59].

Theorem 10 (Jones). When χ 6= 2 cos(mπ/n) for some integer m ≥ 3, the algebra TLn
is semisimple and the standard modules V(n)

k form a complete set of finite dimensional
irreducible non-isomorphic representations of TLn.

Due to the length constraint we will not present a proof for this theorem. Interested
reader can refer to the various literature (e.g. refs. [36, 59]) on this subject. Throughout
this note we always work with integer χ ≥ 2, and we frequently consider the case χ � 1.
In this regime the standard modules are always irreducible.

C Finite χ corrections

In this appendix we will study the effect of finite bond dimension χ. As opposed to the
corrections from finite external bond dimensions χA,B,C , the effect of finite χ acts only on
eigenvalues within each k sectors by shifting them by a small amount. In the following we
will give generating functions pertain to these eigenvalue shifts. Analytically continuing the
coefficient of the relevant generating function gives the leading correction of the reflected
spectrum. We give explicit formulae of such analytic continuation for k = 0, 1. The
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correction to these two sectors completely characterizes the leading order corrections to the
reflected entropy in the finite χ limit, which matches well with our numerics (section 4.5).
While the detailed effect of sector mixing is interesting on its own in that there seems to be
an additional hierarchy structure from our TL numerics, its effect on the reflected entropy
is to the order O(χ−2) which is outside the main interest of this note.

C.1 Corrections to orthogonality condition

We will find the first order χ corrections to eq. (4.27). Denote the related generating
function17

G(r, z) =
∑

m∈2Z+,k∈Z+

X
(m)
k (qA, qB, χ)zm/2rk, X

(m)
k (qA, qB, χ) =

∑
x,y∈B(m)

k

fqA(x)fqB (y) 〈x, y〉

(C.1)
We write the function X(m)

k as a sum of diagrams:

(C.2)

where we assign each closed red loop a factor of qA, each closed green loop a factor of qB
and each closed black loop a factor of χ. Note that we work in the limit of large χ and
qA, qB ∼ O(1). The contraction pattern of blue strands is determined by the link states
x (on top) and y (on bottom) where we exclude all contractions in which 〈x, y〉 = 0. The
dominant contribution comes from x = y, reflecting the fact that the link states form a
approximately orthogonal basis for V(m)

k . We now try to determine the first order correction
to this result. Begin by splitting G(r, z) in the following fashion

G(r, z) = G0(r, z) +G1(r, z), (C.3)

where G0(r, z) contains all the leading diagrams (that is with x = y). It is related to the
link state generating function eq. (4.28) by G0(r, z) = G(qAB, r/χ, zχ). G1(r, z) contains
all the next order corrections. Also denote H(r, z) to be the generating function for 1PI
diagrams and split it in a similar fashion

H(r, z) = H0(r, z) +H1(r, z) (C.4)

G(r, z) and H(r, z) are related by

(C.5)
17We will suppress the qA,B dependence in this section unless necessary to make our notation more clear.
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The weights in the sum of G1 counts the number of permutations for the 1PI diagrams.
Algebraically, eq. (C.5) can be written as

G0(r, z) =
∞∑
n=0

Hn
0 (r, z) = 1

1−H0(r, z) ,

G1(r, z) = H1(r, z)
∞∑
n=0

(n+ 1)Hn
0 (r, z) = G2

0(r, z)H1(r, z)
(C.6)

An important seed for the generating function G is the special case k = 0, where the link
states are non-crossing partitions x, y ∈ NCm. Schematically the SD equation for H1 and
k = 0 is

(C.7)

For the diagrammatic notations used here: dashed circles indicate generating functions
such as G(r, z) and H(r, z); and solid line circles indicate the generating functions for the
k = 0 sector, i.e. G(0, z) and H(0, z). In the last two rows the blue connections feature
non-crossing permutations (x, y) of the form (τn, τnσ) or (τnσ, τn), where σ is a simple
transposition (permutation that swaps two elements and keeping all others invariant). The
number of these permutations στn are n(n− 1)/2. We get the following equation

H1(0, z) = qABχ
2z2G1(0, z)

∞∑
n=0

(n+ 1)(χzG0(0, z))n

+ qAB(qA + qB)
∞∑
n=0

n(n− 1)
2 zn(χG0(0, z))n−1

= qAB
χ2z2G1(0, z)

(1− χzG0(0, z))2 + qAB(qA + qB) χz2G0(0, z)
(1− χzG0(0, z))3

(C.8)

This equation, together with eq. (C.6) yields a linear equation for G1(0, z) in terms of
G0(0, z). We get

G1(0, z) = qAB(qA + qB)χz2G3
0(0, z)

(χzG0(0, z)− 1)
(
qABχ2z2G2

0(0, z)− (χzG0(0, z)− 1)2) (C.9)

This generating function characterizes the correction to the single pole λ
M

(m)
0

of the k = 0
sector.

For the k > 0 sectors we must include in our sum connections with open strands,
but only such that each open strand on top is connected to an open strand in bottom,
as required by the condition 〈x, y〉 6= 0. To better organize the SD equation we define an
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auxiliary matrix F0(z)

(C.10)

F0(z) can be thought of as an stripped down version of H0(z) in the sense of the following
equality

(C.11)

Similarly we define the matrix F1(z) that is comprised of the next order diagrams

(C.12)

Note that despite the similarity, F1(z) does not satisfy a simple relation to H1(z) like
eq. (C.11). The SD equation for the connected generating function H(r, z) can then be
formulated using these matrices

(C.13)
As indicated there are three additional diagrams consists of vertical and horizontal reflec-
tions of the “zigzag” diagram. Since each “zigzag” decrease the power of χ by one, dia-
grams that with more than one “zigzags” only contribute at higher orders. Algebraically
this equation is

H1(r, z) = H1(0, z) + zrF1(z) + 2z2r(qA + qB)F0(z)2G0(z) (C.14)

where the non-bold version of Fi denote the common prefactor of the respective matrix.
Together with eq. (C.6) this determines the form of G1(r, z) (since both G1(0, z) and
G0(r, z) are known):

G1(r, z) = G0(r, z)2
(
G1(0, z)
G0(0, z)2 + χz2rG1(0, z)

(1− χzG0(0, z))2 + (qA + qB)χz3rG0(0, z)2

(1− χzG0(0, z))3

+2z2r(qA + qB)G0(0, z)
(1− χzG0(0, z))2

)
(C.15)
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The k = 0 result eq. (C.9) is recovered by taking r = 0. Denote formally the series
coefficient of G1(r, z) by

G1(r, z) =
∑
µ,k=0

g
(1)
µ,k(qA, qB)zµrk (C.16)

The correction to the matrix eigenvalue λ
M

(m)
k

eq. (4.27) from orthogonality is then

∆1λM(m)
k

= 2(qAB)−kχm/2−kgm/2,k(q−1
AB)g(1)

m/2,k(q
−1
A , q−1

B ) +O(χm−2k−2) (C.17)

where gm/2,k(q−1
AB) is the series coefficient of the link state generating function eq. (4.28).

C.2 Corrections from subleading TL diagrams

We now write down the corrections from including the subleading TL diagrams in M (m)
k (q).

We begin by splitting the sum

M
(m)
k (q) =

∑
h∈NCm

q−#(h)π
(m)
k (D(h)) = (M0)(m)

k (q) + ∆M (m)
k (q) (C.18)

where (M0)(m)
k = ∑

h∈NCm,k
q−#(h)π

(m)
k (D(h)) contains diagrams of the form {|x y|;x, y ∈

B(m)
k }18 and ∆M (m)

k = ∑
h∈NCm\NCm,k

q−#(h)π
(m)
k (D(h)) contains the rest. Then we have

∆
(
M

(m)
k (qA)M (m)

k (qB)
)
≈ ∆M (m)

k (qA)(M0)(m)
k (qB) + (M0)(m)

k (qA)∆M (m)
k (qB) (C.19)

up to first order corrections. Our goal is to apply first order QM perturbation theory on
the matrix ∆

(
M

(m)
k (qA)M (m)

k (qB)
)
. Since M (m)

k (qA)M (m)
k (qB) is not Hermitian, we need

a slightly modified version of usual first order perturbation theory.

• correction to leading eigenvalue
Denote v(m)

k (q) = ∑
x∈B(k)

m
fq(x)x, we have (M0)(m)

k (q) = q−k |v(m)
k (q)〉 〈v(m)

k (q)| and
the right (left) eigenvector of the unperturbed matrix |v(m)

k (qA)〉 (〈v(m)
k (qB)|).19 The

first order correction to the leading eigenvalue is

∆λ
M

(m)
k

=

〈
v

(m)
k (qB)

∣∣∣∆M (m)
k (qA)(M0)(m)

k (qB) + (M0)(m)
k (qA)∆M (m)

k (qB)
∣∣∣ v(m)
k (qA)

〉
〈
v

(m)
k (qB)

∣∣∣ v(m)
k (qA)

〉
= q−kA

〈
v

(m)
k (qA)

∣∣∣∆M (m)
k (qB)

∣∣∣ v(m)
k (qA)

〉
+ q−kB

〈
v

(m)
k (qB)

∣∣∣∆M (m)
k (qA)

∣∣∣ v(m)
k (qB)

〉
(C.20)

Hence we must evaluate the expectation values of the form〈
v

(m)
k (q)

∣∣∣∆M (m)
k (q′)

∣∣∣ v(m)
k (q)

〉
=

∑
x,y∈B(m)

k

fq(x)fq(y)
∑

h∈NCm\NCm,k

q′−#(h)
〈
x
∣∣∣π(m)

k (D(h))
∣∣∣ y〉 (C.21)

18Certainly there are diagrams in M0 that contribute at O(χ−1) but their effect is to alter the orthogo-
nality condition eq. (4.27), which we have already dealt with earlier.

19We will use v and |v〉 interchangeably as a vector in the module V(m)
k and 〈v| as the associated vector in

the dual module V?(m)
k defined from the inner product 〈v| ≡ 〈·, v〉 to match the notation of QM perturbation

theory. We hope the change of notation is not too confusing for the readers.
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Figure 27. The leading correction diagrams for 〈x |D(h) | y〉 in the k = 0 sector (D(h) shown as
dashed lines in the middle) is constructed by starting with mirroring the x and y link states (shown
as solid lines on the left and right sides). Then an outer strand is cut on both mirrored link states
before connecting them to form D(h). This construction decreases the contribution of such diagram
by one order of χ compared to |x y|.

We can think of the sum ∑
h∈NCm\NCm,k

〈
x
∣∣∣π(m)

k (D(h))
∣∣∣ y〉 as flipping the diagram

of |x〉 horizontally and try to “fill in” the spaces between |x〉 and |y〉 by TL diagrams
associated with D(h). Every D(h) contributes to this sum in different powers of χ
and for our purpose here it suffices to find the diagrams that contribute at leading
order.
Again an important seed is the k = 0 sector. For k = 0 the leading elements in
the sum ∑

h∈NCm,k>0
q−#(h)

〈
x
∣∣∣π(m)

k (D(h))
∣∣∣ y〉 are elements such that D(h) = |z w|

where z, w ∈ B(m)
2 in which they can be thought of as the “cut-open” versions of x

and y, as shown in figure 27. For a link state x ∈ B(m)
k , denote c(x) to be the number

of outer strands it possesses, then the number of diagrams we should include to get
the leading behavior of ∑h 〈x |D(h) | y〉 is equal to c(x)c(y). We have, up to leading
order in χ:∑

h∈NCm,k>0

q−#(h)
〈
x
∣∣∣π(m)

k (D(h))
∣∣∣ y〉 ≈ χ2m−1qfq(x)fq(y)c(x)c(y), x, y ∈ B(m)

0

(C.22)
c(x) is also equal to the number of connected components x contains, which can be
counted using a modified generating function. Recall that H(q, r = 0, z) eq. (D.18)
is the 1PI generating function of k = 0 link states. Instead of G(q, r = 0, z) =
1/(1−H(q, 0, z)) we can additionally weigh the sum by the number of 1PI diagrams
using

Y (q, z) = H(q, 0, z) + 2H2(q, 0, z) + 3H3(q, 0, z) + · · · = H(q, 0, z)
(1−H(q, 0, z))2 (C.23)

Denote formally the expansion coefficient of Y by

Y (q, z) =
∞∑
µ=0

yµ(q)zµ (C.24)

Then one can write
〈
v

(m)
0 (q)

∣∣∣∆M (m)
0 (q′)

∣∣∣ v(m)
0 (q)

〉
(up to leading order) as〈

v
(m)
0 (q)

∣∣∣∆M (m)
0 (q′)

∣∣∣ v(m)
0 (q)

〉
≈ q′ y2

m/2((qq′)−1)χm−1 +O(χm−2) (C.25)
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Figure 28. The procedure of constructing leading diagrams for 〈x |D(h) | y〉 for the k > 0 sector.
Starting with the diagram |x y|, a similar procedure of cutting and gluing two outer strands are
performed. However different to the k = 0 case, the two outer strands being cut must stay inside
the same block. This is demonstrated using scissors with the same color in the above figure: the
surgery on |x y| can be performed either on the strands with two black scissors (which produces
the first diagram on r.h.s. ), or strands with two red scissors (which produces the second diagram
on r.h.s. ), but performing surgery on a black-red scissor pair is prohibited.

The additional factor of q′ in front comes from the fact that the total number of
loops decreases by one when performing the surgery shown in figure 27. Finally from
eq. (C.20) we obtain the first order correction to λ

M
(m)
0

:

∆2λM(m)
0
' (qA + qB) y2

m/2(q−1
AB)χm−1 +O(χm−2) (C.26)

For the k > 0 sectors one proceeds in a similar fashion but the rule is more compli-
cated. As shown in figure 28, connecting the open strands dissects |x y| into different
blocks. Due to the non-crossing nature of the TL diagram, we must only perform the
surgery on outer strands within the same block. To do the required counting here we
introduce the two-variable generating functions G(z, w) and J0(r, z, w), defined as

(C.27)

and

(C.28)
where the variable z counts the number of TL sites on the left and w counts the
number of TL sites on the right. One can think of G(z, w) as a two-point “propagator”
with k = 0 and J0(r, z, w) as the source which increases k by 1. For example, using
these elements we can write down the two-variable generating function for two-sided
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diagrams

(C.29)

or in algebraic form

Y0(r, z, w) = G(z, w)
(
1 + G(z, w)J0(r, z, w) + G(z, w)2J0(r, z, w)2 + · · ·

)
= G(z, w)

1− G(z, w)J0(r, z, w)
(C.30)

To write down the generating for leading diagrams in 〈x |D(h) | y〉, we introduce
additional c(·)-weighted source functions J1(z, w) and J2(r, z, w), defined by

(C.31)

(C.32)

where we weight each diagram by product of the number of outer strands on each
sides (marked by red crosses above). Algebraically these equations read

J1(z, w) = qz

1− zC(q, z)
qw

1− wC(q, w) = H(q, 0, z)H(q, 0, w) (C.33)

J2(r, z, w) = qr
z2C(q, z)

(1− zC(q, z))2
w2C(q, w)

(1− wC(q, w))2 (C.34)

Finally we can form the generating function for 〈x |D(h) | y〉 using

(C.35)
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and similarly for J2. Algebraically this equation is

Yi(r, w, z) = Ji(r, w, z)G(w, z)2

(1− J0(r, w, z)G(w, z))2 , i = 1, 2 (C.36)

The reason we separate the weighted generating function into Y1 and Y2 is that
after the indicated surgery is performed, the number of loops in diagrams of type J1
decreases by 1 (this is the only case for k = 0); whereas diagrams of type J2 increases
by 1. Denote the triple expansion coefficient of Yi(r, z, w) by

Yi(q, r, w, z) =
∞∑

µ,ν,k=0
y

(i)
µνk(q)z

µwνrk (C.37)

This allows us to write down

q−k
〈
v

(m)
k (q)

∣∣∣∆M (m)
k (q′)

∣∣∣ v(m)
k (q)

〉
≈
(
q′y

(1)
m/2,m/2,k((qq

′)−1 + q′−1y
(2)
m/2,m/2,k((qq

′)−1)
)
χm−2k−1 +O(χm−2k−2)

(C.38)

The first order correction to λ
M

(m)
k

from subleading diagrams is thus

∆2λM(m)
k

≈
(
(qA + qB)y(1)

m/2,m/2,k(q
−1
AB) + (q−1

A + q−1
B )y(2)

m/2,m/2,k(q
−1
AB)

)
χm−2k−1

(C.39)

Although it is not immediately apparent, eq. (C.26) can be recovered by taking k = 0.

• sector mixing
We now give a brief argument that the correction to the degenerate zero eigenvalues
in each sector vanish to the first order. In short, we need to find the first order
corrections to the null states of the product matrix M (m)

k (qA)M (m)
k (qB). We need to

apply first order degenerate perturbation theory. Denote

Π(m)
k = id− |v

(m)
k (qA)〉 〈v(m)

k (qB)|〈
v

(m)
k (qA)

∣∣∣ v(m)
k (qB)

〉 (C.40)

to be the projector onto the left and right null spaces. To find the perturbation one
needs to diagonalize the following matrix

Π(m)
k

(
∆M (m)

k (qA)(M0)(m)
k (qB) + (M0)(m)

k (qA)∆M (m)
k (qB)

)
Π(m)
k = 0, (C.41)

since (M0)(m)
k (q) is annihilated by the projector Π(m)

k . Therefore the order O(χ−1)
corrections to the zero eigenvalues vanish and the degeneracy is not removed.
The degeneracy is only broken at O(χ−2). At the next order one has the second
order contribution of ∆M (m)

k (qA)(M0)(m)
k (qB) + (M0)(m)

k (qA)∆M (m)
k (qB) as well as

the first order contribution of ∆M (m)
k (qA)∆M (m)

k (qB), and all other contribution is
annihilated by the projector. While the detailed effect of sector mixing is interesting
on its own in that there seems to be an additional hierarchy structure from our TL
numerics, its effect on the reflected entropy is to the order O(χ−2) which is outside
our main interest here.
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C.3 explicit form for k = 0 and k = 1

Here we will perform explicit analytic continuation m→ 1 to find the leading order correc-
tions to the spectral eigenvalue λ0 and λ1. Together they determine the leading corrections
to the reflected entropy in powers of χ.

• k = 0
The generating function for ∆1λ can be written as

χ

qA+qB
G1(r= 0,z) = −1+(1+qAB)χz

2q2
ABχ

2z2 + 1−2(1+qAB)χz+(1+q2
AB)χ2z2

2qABχ2z2
√

(1+χz(qAB−1))2−4qABχz
(C.42)

As in the case of main text there is a branch cut induced by the square root. To
perform the analytic continuation via contour integral, we chose our contour to wrap
around the branch cut. Additional poles at z = 0 does not contribute to the integral.
To set up our notation, define

Dn(q) ≡ − 1
π
Im
∫ z+

z−

dz

zn
√

(1 + z(q − 1))2 − 4qz
(C.43)

=

 2F1(1− n, 1− n; 1; q), q ≤ 1,
qn−1

2F1(1− n, 1− n; 1; q−1), q > 1
(C.44)

as the analytic continuation for the series coefficients of z/
√

(1 + z(q − 1))2 − 4qz.
An contour integral gives the expression for δg1/2,0:

δg1/2,0(qA, qB) = − 1
π
Im
∫ z+/χ

z−/χ
G1(0, z)z−3/2dz

= (qA + qB)
2qAB

√
χ

(
(1 + q2

AB)D3/2(qAB)− 2(1 + qAB)D5/2(qAB) +D7/2(qAB)
) (C.45)

and

∆1λ0 = 2qAB√
χ
g1/2,0(q−1

AB)g(1)
1/2,0(q−1

A , q−1
B )

= (q−1
A + q−1

B )
χ

C1/2(q−1
AB)

(
(1 + q−2

AB)D3/2(q−1
AB)− 2(1 + q−1

AB)D5/2(q−1
AB) +D7/2(q−1

AB)
)

(C.46)

The expression for ∆2λ0 is also easy to write down. We work with the single variable
generating function eq. (C.23) here. Use eq. (4.43) one arrives at

Y (q, z) =
(1
z
− q

)
C(q, z)− 1

z
(C.47)

which gives

∆2λ0 = qAB(qA + qB)
χ

(
1
π
Im
∫ z+

z−
Y (q−1

AB, z)z−3/2dz

)2

= qAB(qA + qB)
χ

(C3/2(q−1
AB)− q−1

ABC1/2(q−1
AB))2

(C.48)
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and the first order correction is

∆λ0 = ∆1λ0 + ∆2λ0 (C.49)

• k = 1
Extracting the linear r order coefficient of the generating functions we get

χ2

qA + qB

∂G1(r, z)
∂r

∣∣∣
r=0

= −1 + (qAB + 1)χz + q2
ABz

2 − (q2
AB − qAB)2χ3z3

2q2
ABχ

3z3

+ 1− 2(qAB + 1)χz + χ2z2 + 2q3
ABχ

3z3 − (q2
AB − qAB)2χ4z4

2q2
ABχ

3z3
√

(1 + χz(qAB − 1))2 − 4qABχz
(C.50)

The first term on r.h.s. is irrelevant for determining the contour integral. We have

g
(1)
1/2,1(qA, qB) = − 1

π
Im
∫ z+/χ

z−/χ
∂rG1(0, z)z−3/2dz

= qA + qB
2χ3/2

(
−(qAB − 1)2D1/2(qAB) + 2qABD3/2(qAB) + q−2

ABD5/2(qAB)

−2(q−2
AB + q−1

AB)D7/2(qAB) + q−2
ABD9/2(qAB)

)
(C.51)

and

∆1λ1 = 2
χ3/2 g1/2,1(q−1

AB)g(1)
1/2,1(q−1

A , q−1
B )

= (q−1
A + q−1

B )
χ3 (−C1/2(q−1

AB) + qABC3/2(q−1
AB))

× ((−(q−1
AB − 1)2D1/2(q−1

AB) + 2q−1
ABD3/2(q−1

AB) + q2
ABD5/2(q−1

AB)
− 2(q2

AB + qAB)D7/2(q−1
AB) + q2

ABD9/2(q−1
AB))

(C.52)

The two variable generating function Yi(q, r, z, w) factorizes when expanded as a
series of r. We are interested in terms linear to r here, which is

∂Y2(q, r, z, w)
∂r

∣∣∣
r=0

= qz2w2C(q, z)3C(q, w)3

(1− zC(q, z))2(1− wC(q, w))2 ,

∂Y1(q, r, z, w)
∂r

∣∣∣
r=0

= 2q2∂Y2(q, r, z, w)
∂r

∣∣∣
r=0

(C.53)

Using eq. (4.43) we can write the individual factors as

Ŷ (q, z) ≡ z2C(q, z)2

(1− zC(q, z))2 = −1 + (1 + q)z
q2z2 + 1− (2q + 1)z + q2z2

q2z2 C(q, z) (C.54)

Ŷ (q, z) has the following contour integral

− 1
π
Im
∫ z+

z−

dz

z3/2 Ŷ (q, z) = C1/2(q)− (2q−1 + q−2)C3/2(q) + q−2C5/2(q) (C.55)
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which gives the following analytic continuation for the expansion coefficient

y
(2)
1/2,1/2,1(q) = q

(
C1/2(q)− (2q−1 + q−2)C3/2(q) + q−2C5/2(q)

)2
,

y
(1)
1/2,1/2,1(q) = 2q2y

(2)
1/2,1/2,1(q)

(C.56)

and

∆2λ1 = 3(q−1
A + q−1

B )
χ3

(
C1/2(q−1

AB)− (2qAB + q2
AB)C3/2(q−1

AB) + q2
ABC5/2(q−1

AB)
)2

(C.57)

The first order correction to the leading eigenvalue in k = 2 sector is given by

∆λ1 = ∆1λ1 + ∆2λ1 (C.58)

D Proofs

D.1 Proof of proposition 1

Proof. For given m we have a series of unknowns d(m)
k where k = 0, 1, · · · ,m/2. We pick

m/2 elements ti ∈ TLm such that the trace conditions TrTLmti = ∑
k d

(m)
k tr(π(m)

k (ti)) give
rise to m/2 linear equations for which we check that the proposed solutions d(m)

k = [2k+1]q
satisfy. We pick:

(D.1)

or in terms of generators of TLm:

{ti} = {id, e1, e1e3, e1e3e5, · · · } (D.2)

The element id maps to the identity matrix in every submodule, so the trace condition for
it is simply

m/2∑
k=0

d
(m)
k |V

(m)
k | = χm (D.3)

The element e1 annihilates the module V(m)
m/2 since the action of e1 on any link state will

always contain at least 2 closed strands. Next, to calculate tr(π(m)
k (e1)) we must find all

elements vj ∈ V (m)
k such that π(m)

k (e1)vj ∝ vj . Such a link state must have a closed strand
connecting first two sites, but can otherwise have arbitrary connections in the remaining
m− 2 sites since e1 act on these sites just as identity. The closed loop after concatenation
contribute a single χ for all π(m)

k (e2)vj and the trace condition for e2 is thus

m/2−1∑
k=0

d
(m)
k |V

(m)
k | = χm−2 (D.4)
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For other elements in the list a similar argument also works as one simply consider link
states with progressively more closed strands connecting adjacent pair of sites when con-
structing the eigenvector of π(m)

k (ti). The trace condition for ti is

m/2−i+1∑
k=0

d
(m)
k |V

(m)
k | = χm−2i+2 (D.5)

We observe that all the trace conditions have the same form — in fact for any given m only
the t1 condition is new and the remaining m/2− 1 conditions coincide with the conditions
of the m− 1 module. This means a solution for d(m)

k automatically solves the equations of
d

(m−1)
k . Thus we conclude that d(m)

k is independent of m. As a result, we will drop the m
superscript in the remainder of this proof.

Let us reorganize the dk equations we obtained. Introducing the variable q which
satisfies χ = q+q−1 and rewriting |V(m)

k | using Lemma 7 we have an infinite set of conditions

m/2∑
k=0

dk #SYT (m/2 + k,m/2− k) = (q + q−1)m, ∀m ∈ 2Z+ (D.6)

We now claim dk = [2k+ 1] = q−2k + q−2k+2 + · · ·+ q2k solves this equation for every even
m. Plug in dk and match coefficients with the same power of q we find

n∑
k=0

#SYT (m/2 + k,m/2− k) =
?

(
m

m/2− n

)
(D.7)

Or equivalently

#SYT (m/2 + n,m/2− n) =
?

(
m

m/2− n

)
−
(

m

m/2− n− 1

)
(D.8)

which one can check by explicit computation

#SYT (m/2 + n,m/2− n) =
(

m

m/2− n

)
−
(

m

m/2− n− 1

)

= m!(2n+ 1)
(m/2 + n+ 1)!(m/2− n)!

(D.9)

To show that the matrix trace tr = ∑
k dktrk on V(m) coincides with TrTLm for all

elements in V(m), it suffices to check that eq. (B.16) is true. We have tr(π(m)(id)) = χm

by construction, and ∀h ∈ TLm−1 ⊂ TLm we have

tr(π(m)(hem−1)) = tr(π(m)(em−1h)) =
∑
k

dk tr
(
π

(m)
k (em−1h)

)
(D.10)

To evaluate this trace we must find all links states v ∈ B(m)
k such that em−1hv ∝ v. We

can classify v’s by the contraction pattern of the last two sites. We denote v1 to be the
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set such that the last two sites are connected through a closed strand and v2 to be the
remaining ones. Schematically,

, (D.11)

where we used colored block to represent arbitrary connections. It is easy to check that

, (D.12)

and thus hem−1v2 6∝ hv2 so they do not contribute to the trace. For v1, note that

. (D.13)

But this is only possible if in the diagram of h there is a path connecting the (m − 1)-th
site on the left to the (m− 1)-th site on the right, otherwise either the r.h.s. of eq. (D.13)
vanishes or it is not possible to reproduce the connection pattern of v1. Also,

(D.14)

is only possible for the same subset of h that eq. (D.13) is true for a similar reason. For such
h the contraction in the r.h.s. of eq. (D.13) produces an extra factor of χ, but is otherwise
identical to eq. (D.14). Hence we find that hv = av ↔ em−1hv = χav for some a ∈ C and
thus tr(h) = χtr(hem−1). This result naturally generalizes to all sequential inclusions of
algebras in the list TL1 ⊂ · · · ⊂ TLm−1 ⊂ TLm. Using Lemma 6 we conclude that the
trace function we constructed on V(m) is indeed the same as TrTLm .
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D.2 Proof of proposition 2

Proof. The generating function G(q, r, z) is defined as an infinite sum over diagrams

(D.15)

where the power of z counts (half) the number of elements m/2 and power of r counts (half)
the number of defects k. Each diagram is evaluated in a similar fashion as the definition
of linear functional fq in eq. (4.23) — for every closed loop in diagram assign a (positive
rather than negative) power of q to the result. Also introduce 1PI generating function
H(q, r, z) defined as the sum over all connected diagrams:

(D.16)

The form of H allows us to reorganize it as

(D.17)

or
H(q, r, z) = z(q + r)(1 + zC(q, z) + z2C2(q, z) + · · · )

= z(q + r)
1− zC(q, z)

(D.18)

G and H are related by

G(q, r, z) = 1 +H(q, r, z) +H2(q, r, z) + · · · = 1
1−H(q, r, z)

= 1− zC(q, z)
1− z(q + r)− zC(q, z)

(D.19)
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The function C(q, z) is the generating function of link states with no defects:

(D.20)

C(q, z) is also known under the name of the generating function of q-Catalan numbers.

C(q, z) = 1− z(q − 1)−
√

(1 + z(q − 1))2 − 4qz
2z (D.21)

For a derivation of C(q, z) please refer to the proof of Lemma 5.

D.3 Proof of proposition 4

Proof. Define C̃(q, z) = C(q, z)− 1. It satisfies a different quadratic equation

C̃(q, z) +
(
q + 1− 1

z

)
C̃(q, z) + q = 0 (D.22)

Consider the generating function of C̃k(q, z):

X(q, z, t) =
∞∑
k=0

C̃k(q, z)tk

=
(1
z
− q − 1

) ∞∑
k=2

C̃k−1tk − q
∞∑
k=2

C̃k−2tk + C̃(q, z)t+ 1

=
(1
z
− q − 1

)
t(X(q, z, t)− 1)− qt2X(q, z, t) + C̃(q, z)t+ 1

(D.23)

Solving for X gives

X(q, z, t) =
C̃(q, z)t+ (q + 1− 1

z )t+ 1
qt2 + (q + 1− 1

z )t+ 1

=
C(q, z)t+ (q − 1

z )t+ 1
qt2 + (q + 1− 1

z )t+ 1

(D.24)

Now we can write G(q, r, z) as

G(q, r, z) = C(q, z)X(q, z, r/q)

=
(r + q)C(q, z)− r

z

r2 + (q + 1− 1
z )r + q

(D.25)

where we have again used eq. (4.43) to swap out C2(q, z).
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