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Abstract The exact solutions of coupled scalar, elec-
tromagnetic and gravitational field equations have been
obtained in the framework of Einstein-dilaton gravity the-
ory which is coupled to the Born–Infeld nonlinear electro-
dynamics. The solutions show that Einstein–Born–Infeld-
dilaton gravity theory admits three novel classes of nonlin-
early charged black hole solutions with the non-flat and non-
AdS asymptotic behavior. Some of the solutions, in addi-
tion to the naked singularity, extreme and two-horizon black
holes, produce one- and multi-horizon black holes too. The
electric charge, mass and other thermodynamic quantities of
the black holes have been calculated and it has been proved
that they satisfy the standard form of the thermodynami-
cal first law. The black hole local stability has been inves-
tigated by use of the canonical ensemble method. Noting the
black hole heat capacity the points of type-one and type-two
phase transitions and the locally stable black holes have been
identified exactly. By use of the thermodynamic geometry,
and noting the divergent points of the thermodynamic met-
ric proposed by HEPM, it has been shown that the results of
this method are consistent with those of canonical ensemble
method. Global stability and Hawking–Page phase transi-
tion points have been studied by use of the grand canonical
ensemble method and regarding the Gibbs free energy of the
black holes. By calculating the Gibbs free energies, we char-
acterized the ranges of horizon radii in which the black holes
remain globally stable or prefer the radiation phase.

1 Introduction

Einstein-dilaton theory, as an alternative gravity theory, is
related to the scalar-tensor theory via conformal transforma-
tions [1–5]. The scalar-tensor gravity theory is a modified
gravity theory which, despite the original Einstein theory,
explains the accelerated expansion of Universe, successfully
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[6–9]. The scalar-tensor theory of gravity itself is originated
from the fact that the low energy limit of superstring theory
covers the Einstein theory which is coupled to a scalar field
[10]. Nowadays, despite the original no-hair conjecture, it is
well-known that the spacetime geometry is affected by the
scalar field and, in the presence of scalar field, the asymptotic
behavior of the spacetime is no longer flat or AdS [11–13].
Finding of the exact black hole solutions in the Einstein-
dilaton theory has been the subject of many interesting papers
in three- four- and higher-dimensional spacetimes [14–17].
Although, this theory has been studied extensively, it seems
that there are many unknown issues to be studied yet.

It is a common believe that black holes, as the more inter-
esting prediction of Einstein’s gravity theory, are thermody-
namic systems with the well-defined thermodynamic quan-
tities. Findings of Hawking et. al., as the more outstand-
ing achievements of geometrical physics, showed that black
holes posses a temperature, which is related to their surface
gravity, and a pure geometrical entropy which is propor-
tional to the horizon surface area [18–20]. Thermodynamic
properties and, in particular, thermodynamic stability of the
black holes is an interesting subject area which has attracted
much attentions. This issue can be investigated from different
approaches such as canonical and grand canonical ensem-
bles, thermodynamic geometry and Hessian matrix . In the
canonical ensemble method, thermal stability of the black
holes is analyzed regarding the signature of the black hole
heat capacity. Global stability of the black holes is studied
based on the signature of Gibbs free energy. Thermodynamic
geometry is a method based on which one can extract some
information about phase transition points. In this method, by
use of the Ricci scalar of a proposed thermodynamic met-
ric one is able to determine the location of the phase tran-
sition points. The divergent points of Ricci scalar are the
horizon radius of those black holes which experience type-
one or type-two phase transition. Stability of the black holes
is already studied by use of Hessian matrix. Positivity of
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determinant of this matrix guaranties stability of black holes
[21–31].

In addition, study of P–V criticality and consideration of
black hole quantum thermal fluctuations are other interesting
issues in the context of black hole thermodynamics. The criti-
cal behavior of the black holes can be studied in the usual and
extended phase spaces [32–36]. Also, the impacts of thermal
fluctuations on the black hole thermodynamics have been
studied extensively [37–43].

Although, singularities of Maxwell’s electrodynamics are
removed by use of quantum electrodynamics techniques, but
they are exist yet in classical electrodynamics. In addition
to the appearance of infinite field and self-energies, viola-
tion of conformal symmetry, in three and higher-dimensional
spacetimes, is the other failure of Maxwell’s classical electro-
dynamics [31]. The idea of nonlinear electromagnetic theory
was initially proposed for solving the problems of Maxwell’s
electrodynamics. Among the alternative proposed nonlinear
electromagnetic models, the Born–Infeld, logarithmic, expo-
nential, quadratically-extended and power-Maxwell theories
have been studied extensively in the context of geometri-
cal physics by obtaining the exact black hole solutions in
the alternative models of modified gravity theory [44–54].
Lagrangian of the alternative models of nonlinear electrody-
namics are functions of Maxwell’s Lagrangian. By expand-
ing them one can show that they include higher powers of
Maxwell Lagrangian. In the case of weak electromagnetic
fields higher powers are negligible and Maxwell (or lin-
ear) electrodynamics is recovered. In this regards, nonlinear
theory of electrodynamics is considered as the extension of
Maxwell’s theory to the case of very strong electromagnetic
fields [48,55,56].

The exact black hole solutions of the Einstein–Maxwell-
dilaton gravity theory have been obtained and their thermody-
namic properties have been studied in ref. [13]. The exponen-
tial and logarithmic charged dilaton black holes have been
studied in refs. [47,50]. Also, three-dimensional Einstein–
Born–Infeld-dilaton black holes have been studied in ref.
[45]. Now, we extend this study to the four-dimensional
spacetimes by considering the Born–Infeld nonlinear electro-
dynamics instead of Maxwell’s linear electrodynamics. We
believe that consideration of this theory can help to under-
stand the properties of Einstein-dilaton gravity in the pres-
ence of nonlinear electromagnetic theory.

The main goal of the present work is to obtain the novel
exact black hole solutions in the Einstein-dilaton gravity the-
ory which is coupled to the Born–Infeld nonlinear electro-
dynamics, and to investigate their thermodynamic proper-
ties, and especially to perform a detail analysis of local and
global stability of the black holes. Thus, we have organized
the paper as follows: The explicit form of the field equations
and their exact solutions have been obtained in Sect. 2. It
has been shown that the solutions of the scalar field equation

can be obtained as the liner combination of two Liouville-
type potentials. Also, three classes of new black holes have
been introduced as the exact solutions of the gravitational
field equations. They recover the corresponding solutions
in the Einstein–Maxwell-dilaton gravity theory, when the
nonlinearity parameter is chosen very large. In Sect. 3, the
thermodynamic and conserved quantities have been calcu-
lated, and it has been shown that they satisfy the first law of
black hole thermodynamics. Also, it has been shown that the
extreme, physical and unphysical black holes, in order, with
zero, negative and positive temperatures can occur. Section
4 is devoted to study of the local stability or thermodynamic
phase transition of the black holes. Making use of the canon-
ical ensemble method and regarding the signature of black
hole heat capacity, the type-one and type-two phase transi-
tion points as well as the ranges at which black holes are
locally stable have been identified. In Sect. 5 the local stabil-
ity of the black holes has already been studied by use of the
thermodynamic geometry. It has been fund that the results of
canonical ensemble and geometrical approaches are identi-
cal if the HEPM thermodynamic metric is utilized. In Sect.
6, global stability or Hawking–Page phase transition points
have been studied based on the grand canonical ensemble
method. By calculating the Gibbs free energy of the black
holes we have determined the horizon radius of the black
holes which undergo Hawking–Page phase transition. Also,
we characterized the horizon radii of those black holes which
are globally stable or are in the radiation phase. Section 7 is
devoted to summarizing and discussing the results.

2 The action and field equations

We start with the proper action of the four-dimensional
Einstein-dilaton gravity theory in the presence of the non-
linear electrodynamics. It can be written as [13,14]

I = 1

16π

∫ √−g
[R − V (φ) − 2gμν∂μφ∂νφ + L(F, φ)

]
d4x .

(2.1)

Here, R is the Ricci scalar, φ is a scalar field coupled to itself
via the functional form V (φ). The term L(F , φ) denotes
the scalar coupled electromagnetic Lagrangian density. The
Maxwell invariant F is defined as F = FαβFαβ , and Fαβ

is the Faraday tensor which in terms of the electromagnetic
potential Aα is defined as Fαβ = ∂αAβ − ∂β Aα . Here, we
are interested on the Born–Infeld nonlinear electrodynamics.
Therefore, we have [57]

L(F , φ) = 4a2e2αφ
(

1 − √
1 + Y

)
, with Y = F

2a2 e
−4αφ.

(2.2)
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It can be expanded in the following form

L(F , φ) = −Fe−2αφ + F2

8a2 e
−6αφ

− F3

32a4 e
−10αφ + 5F4

512a6 e
−14αφ + O

(
1

a8

)
.

(2.3)

Noting Eq. (2.3), one can argue that in the limiting case a →
∞, the Born–Infeld electromagnetic Lagrangian reduces to
L(F , φ) = −Fe−2αφ , which is noting but the coupled
scalar-electromagnetic Lagrangian density in the Einstein–
Maxwell-dilaton gravity theory [13]. Thus it is expected
that our solutions recover those of Einstein–Maxwell-dilaton
gravity theory in the limit a → ∞. A worth mentioning
point is that if the electromagnetic fields are weak enough
the higher powers of F are negligible and Lagrangian of the
nonlinear electrodynamics reduces to that of Maxwell (or
linear) one.

Variation of the action (2.1), with respect to different
fields, leads to the following field equations

∇μ

(
e−2αφFμν

√
1 + Y

)
= 0, with φ = φ(r), (2.4)

4�φ(r) = dV (φ)

dφ
− 8αa2

(
1 − 1√

1 + Y

)
e2αφ, (2.5)

Rμν − 1

2
gμνV (φ) = 2∇μφ∇νφ

−2a2
(

1 − 1√
1 + Y

)
gμνe

2αφ + FμρF
ρ

ν√
1 + Y

e−2αφ,

(2.6)

for the electromagnetic, scalar and gravitational fields,
respectively.

We solve the above field equations in a four-dimensional
spherically symmetric geometry with the following line ele-
ment [13,47,50]

ds2 = −W (r)dt2 + 1

W (r)
dr2 +r2H2(r)(dθ2 +sin2 θdϕ2).

(2.7)

The metric function W (r) and the dimensionless function
H(r) are two unknown functions to be determined. H(r) can
be considered as the impacts of dilaton field on the spcetime
geometry. In the case H(r) = 1 the line element (2.7) reduces
to the well-known metric of the Einstein-� gravity theory.

By use of the line element (2.7), for the t t , rr and θθ(ϕϕ)

components of the gravitational field equation (2.6), we have

Ctt = W ′′(r) + 2

[
1

r
+ H ′(r)

H(r)

]
W ′(r)

+V (φ) − 4a2e2αφ
(

1 − √
1 + Y

)
= 0, (2.8)

Crr = Ctt + 4

[
H ′′(r)
H(r)

+ 2

r

H ′(r)
H(r)

+ φ′2(r)
]
W (r) = 0,

(2.9)

Cθθ = Cϕϕ = 2

[
1

r
+ H ′(r)

H(r)

]
W ′(r)

+2

[
H ′′(r)
H(r)

+ 1

r2 + 4H ′(r)
r H(r)

+ H ′2(r)
H2(r)

]
W (r)

+V (φ) + 4a2e2αφ

(
1√

1 + Y
− 1

)
− 2

r2H2(r)
= 0.

(2.10)

Noting Eqs. (2.8) and (2.9), we have

H ′′(r)
H(r)

+ 2

r

H ′(r)
H(r)

+ φ′2(r) = 0. (2.11)

Now, we can use an exponential solutions of the form H(r) =
eαφ in Eq. (2.11), and show that φ = φ(r) satisfies the fol-
lowing differential equation [45]

αφ′′ + (1 + α2)φ′2 + 2α

r
φ′ = 0. (2.12)

The solution of (2.12) is easily written in terms of a positive
constant b as

φ(r) = α

1 + α2 ln

(
b

r

)
. (2.13)

The scalar field equation (2.5) can be written in the following
explicit form

4α

(1 + α2)r

[
W ′(r) + (1 − 2γ )

W (r)

r

]

+dV (φ)

dφ
− 8αa2

[
1 − 1√

1 + Y

]
e2αφ = 0. (2.14)

It must be noted that the only nonvanishing component of
electromagnetic field is Ftr . Assuming as a function of r , we
have F = −2(Ftr (r))2.

Making use of these solutions together with Eqs. (2.4) and
(2.7), one can show that Ftr = A′

t (r), satisfies the following
equation

∂r

(
r2H2(r)

Ftr e−2αφ

√
1 + Y

)
= 0, (2.15)

which can be solved in terms of the constant coefficient q, as

Ftr = q

r2

(
1 + q2e−4αφ

a2r4

)− 1
2

, (2.16)
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which can be expanded as

Ftr = q

r2

[
1 − q2e−4αφ

2a2r4 + O
(

1

a4

)]
. (2.17)

Equation (2.17) shows that for large values of the nonlinearity
parameter a, Ftr reduces to its corresponding value in the
Einstein–Maxwell-dilaton gravity theory [13].

Noting the θθ (ϕϕ) component of the gravitational field
equation (2.10) together with the scalar field equation (2.14),
after some algebraic calculations, we have

dV (φ)

dφ
− 2αV (φ) + 4α

r2

( r
b

)2γ = 0, (2.18)

where, γ = α2(1 + α2)−1. Now, the solution to Eq. (2.18)
can be written in the following form

V (φ) =

⎧⎪⎨
⎪⎩

2
(
� − 2

b2 φ
)
e2φ, α = 1,

2�e2αφ + 2�0e
2α0 φ, α �= 1,

(2.19)

where

�0 = α2

b2(α2 − 1)
, α0 = 1

α
.

Note that, in the absence of the dilaton field (e.i. φ = 0 or
equivalently α = 0) we have V (φ = 0) = 2� and the action
(2.1) reduces to the action of Einstein–Maxwell gravity with
cosmological constant � = −3−2 [15,16]. It is understood
from Eq. (2.19) that the dilatonic potential can be written as
the linear combination of two Liouville-type potentials.

Making use of Eq. (2.19) into Eq. (2.10), after some
manipulations, we obtained the metric function W (r) as

W (r)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− m
r1−2γ + 1+α2

1−α2

( r
b

)2γ − �b2(1+α2)2

3−α2

( r
b

)2−2γ

+ 2a2b4γ (1+α2)
b

( r
b

)2γ−1
Υ (r), α �= 1,

√
3, (a)

−mr
1
2 − 2

( r
b

) 3
2 − 4�b2

( r
b

) 1
2 ln

( r
L

)
+8a2b2

( r
b

) 1
2 Υ3(r), α = √

3, (b)
−m + 2r

b

[
2 − �b2 + ln

( r
b

)]
+4a2bΥ1(r), α = 1, (c)

(2.20)

where, m is an integration constant related to the black hole
mass, L is a dimensional parameter and

Υ (r) = r3−4γ

3 − 4γ
−
∫

dr

r4γ−2

√
1 + B2

r4−4γ

= 1 + α2

3 − α2 r
3−4γ

×
{

1 − 2F1

[
α2 − 3

4
,−1

2
,
α2 + 1

4
; −B2

r4−4γ

]}
, (2.21)

Υ1(r) = r −
∫ √

1 + A2

r2 dr = r − r

√
1 + A2

r2

−A ln
( r
L

)
+ A ln

⎛
⎝1 +

√
1 + A2

r2

⎞
⎠ , (2.22)

Υ3(r) = ln r −
∫

dr

r

√
1 + A2

rb

= 2

√
1 + A2

rb
− ln

⎡
⎣2

⎛
⎝1 +

√
1 + A2

rb

⎞
⎠+ A2

rb

⎤
⎦ ,

(2.23)

where, A = q
ab and B = q

ab2αγ .
Now, the metric function (2.20) can be rewritten in the

following form

W (r)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−m
r1−2γ + 1+α2

1−α2

( r
b

)2γ + �b2(1+α2)2

α2−3

( r
b

)2−2γ

+ q2(1+α2)

b2

( b
r

)2−2γ − q4(1+α2)

4a2b6(5−4γ )

( b
r

)6−6γ

+O
(

1
a4

)
, α �= 1,

√
3, (a)

−mr
1
2 − 2

( r
b

) 3
2 − 4�b2

( r
b

) 1
2 ln

( r
L

)+ 4q2

b2

( b
r

) 1
2

− q4

2a2b6

( b
r

) 3
2 + O

(
1
a4

)
, α = √

3, (b)

−m + 2r
b

[
2 − �b2 + ln

( b
r

)]
+ 2q2

b2

( b
r

)− q4

6a2b6

( b
r

)3 + O
(

1
a4

)
, α = 1, (c)

(2.24)

up to the first order corrections arisen from the application of
nonlinear electrodynamics. It is clear that in the limits a →
∞ the solutions are compatible with the results of ref. [13].
Also, it must be noted that in the absence of dilaton field (i.e.
α = 0), when the limit a → ∞ is taken, the metric function
(2.20) reduces to that of Reissner–Nordström-A(dS).

The plots of metric function (2.20) versus r , in terms of
different dilatonic parameters, are shown in Figs. 1, 2 and
3. They show that one-horizon, two-horizon, multi-horizon,
extreme, and naked singularity black holes can occur if the
parameters are chosen, properly. Also, the plots indicate the
impacts of different values of dilaton parameter α, nonlin-
earity parameter a, and black hole mass M .

Now, we consider the curvature singularities through con-
sideration of the Ricci and Kretschmann scalars. It is a matter
of calculation to show that the Ricci and Kretschmann scalars
are finite for finite values of the radial coordinate r . Also, it
is easily shown that

lim
r−→∞R = 0, and lim

r−→0
R = ∞, (2.25)

lim
r−→∞RμνρλRμνρλ = 0, and lim

r−→0
RμνρλRμνρλ = ∞.

(2.26)
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Therefore, there is an essential (not coordinate) singularity
located at r = 0. Appearance of the singularities in the Ricci
and Kretschmann scalars together with existence of black
hole horizons are in favor of the solutions to be interpreted as
black holes. Also, the asymptotic behavior of the solutions is
neither flat nor A(dS). It means that the asymptotic behavior
of the space times is affected by the coupled scalar field. As
mentioned before, the direct impact of the scalar field, on
the spacetime geometry, is given by the function H(r) in Eq.
(2.7).

3 The first law of black hole thermodynamics

Now, we investigate the thermodynamic properties of the
four-dimensional nonlinearly charged dilatonic black hole
solutions, obtained in the previous section. The aim of this
section is to seek for satisfaction of the first law of black hole
thermodynamics. For this purpose we need to calculate the
conserved and thermodynamic quantities of the black holes.

The black hole temperature T , associated with the black
hole horizon, can be obtained by use of the concept of surface

gravity κ . Noting the relation κ =
√

− 1
2

(∇μχν

)
(∇μχν) and

taking χμ = (−1, 0, 0, 0), after some algebraic calculations,
one can show that

T = κ

2π

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2πb

[
1+α2

2(1−α2)

( r+
b

)2γ−1 − �b2
(
1+α2

)
2

( r+
b

)1−2γ

+a2b2
(
1 + α2

) ( r+
b

)1−2γ
(

1 −
√

1 + B2

r4−4γ
+

)]
,

α �= 1,
√

3, (a)

1
2πb

( r+
b

) 1
2
[
−1 − 2�b2

(
b
r+

)

+4a2b2
(

b
r+

) (
1 −

√
1 + A2

br+

)]
, α = √

3, (b)

1
2πb

[
1 − �b2 + ln

(
b
r+

)
+ 2a2b2

(
1 −

√
1 + A2

r2+

)]
,

α = 1, (c),

(3.1)

Here, r+ is the outer black hole horizon radius which can be
determined as the largest real root(s) of equation W (r+) = 0.
By expanding the last terms, and taking the limit a → ∞,
it is easily shown that Eq. (3.1) is consistent with its corre-
sponding quantity in the Einstein–Maxwell-dilaton gravity
theory.

It must be noted that the extreme black holes (i.e. black
holes with zero temperature) can occur provided that the
black hole charge and size are fixed such that T (r+ =
rext , q = qext ) = 0, or equivalently

1

1 − α2

(r+
b

)4γ−2 − �b2 + 2a2b2

(
1 −

√
1 + B2

r4−4γ
+

)
= 0,

α �= 1,
√

3, (3.2)

1 + 2�b2
(

b

r+

)
− 4a2b2

(
b

r+

)⎛
⎝1 −

√
1 + A2

br+

⎞
⎠ = 0,

α = √
3, (3.3)

1 − �b2 + ln

(
b

r+

)
+ 2a2b2

(
1 −

√
1 + A2

r2+

)
= 0,

α = 1. (3.4)

The nonlinear equations (3.2), (3.3) and (3.4) cannot be
solved analytically. Thus, we use the plots for obtaining the
roots. The plots of Figs. 4 and 5 show that for the black holes
with α < 1 these equations have only one real root labeled
by r+ = rext , and the physical black holes, having positive
temperature, are those with r+ > rext . Otherwise the black
holes have negative temperature and are not physically rea-
sonable, which we call unphysical black holes throughout
the paper. For the black holes with α ≥ 1 Eqs. (3.2)–(3.4)
have two real roots which we label by r1 ext and r2 ext , and
suppose that r1 ext < r2 ext . The physical black holes occur
only in the range r1 ext < r+ < r2 ext .

The black hole entropy, as a pure geometrical quantity, is
obtained by use of the well-known entropy-area law. It can
be written as

S = A

4
= πr2+ (H(r+))2 = πr2+

(
b

r+

)2γ

, (3.5)

which is compatible with that of Reissner–Nordström-A(dS)
black holes in the absence of dilaton field (i.e. α = 0 = γ ).
The electric potential �, measured with respect to a reference
point at a large distance from the horizon, is defined by the
following standard relation [14,15,52]

U (r+) = Aμχμ|reference − Aμχμ|r=r+ , (3.6)

where, At is the temporal component of the electromagnetic
four-potential, and χμ is the null generator of the horizon.

Noting Eq. (2.16) and making use of the relation Ftr =
A′
t (r), one is able to calculate the temporal component of the

electromagnetic four-potential. That is

At (r) = −
∫

q

r2

(
1 + q2e−4αφ

a2r4

)− 1
2

dr = q

r
2F1

[
α2 + 1

4
,−1

2
,
α2 + 5

4
;− q2

a2r4

( r
b

)4γ
]

(3.7)

Note that the constant of integration is chosen equal to zero.
For large values of the nonlinearity parameter a, one can
expand the above relation and show that
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Fig. 1 W (r) versus r for � = −3, b = 1, Eq. (2.20-a). Left: α < 1, a = 1, Q = 1, M = 1.5 and α =
0.63 (black), 0.702 (blue), 0.76 (red). Middle: α < 1, α = 0.7, Q = 1, M = 1.5 and a = 0.8 (black), 1.01 (blue), 1.4 (red).
Right: a = 0.5, Q = 1.2, M = 2 and α = 1.216 (black), 1.2179 (brown), 1.22 (blue), 1.223 (red), 1.2252
(green)

Fig. 2 W (r) versus r for � = −3, Q = 1.75, b = 1, L = 0.8, α = √
3, Eq. (2.20b). Left:

M = 2.5 and a = 0.9 (black), 1.075 (blue), 1.23 (red), 1.34 (green), 1.44 (brown). Right: a = 1.4 and M =
2.45 (black), 2.6 (blue), 2.8 (red), 3 (green), 3.15 (brown)

Fig. 3 W (r) versus r for � = −3, Q = 1, b = 1, α = 1, Eq. (2.20c). Left: M = 3 and a = 1 (black), 1.37 (blue), 1.7 (red). Right: a = 1
and M = 2.4 (black), 2.66 (blue), 3 (red)
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At (r) = q

r

[
1 − (α2 + 1)q2

2(α2 + 5)a2r4 ×
(r+
b

)4γ + O
(

1

a4

)]
.

(3.8)

This relation show that At (r) vanishes for large values of
r (i.e. r → ∞), and this is a physically reasonable prop-
erty. Also, At (r) reduces to its corresponding value in the
Einstein–Maxwell-dilaton gravity, in the limiting case a →
∞. Now, by substituting (3.7) into (3.6), we obtain the elec-
tric potential U (r+), on the black hole horizon as

U (r+) = q

r+
2F1

[
α2 + 1

4
,−1

2
,
α2 + 5

4
;− q2

a2r4+

(r+
b

)4γ
]

.

(3.9)

The black hole electric charge, as a conserved quantity, can
be obtained by calculating the flux of the electric field at
infinity (i.e. r → ∞). For this purpose we must use the
Gauss’s electric law. It yields Q = q [13,47,50].

The asymptotic behavior of our solutions is not flat or AdS.
Thus, for obtaining the black hole mass we use the method of
refs. [58,59]. As a matter of calculation one is able to show
that [13,45]

m = 2M(1 + α2)b−2γ . (3.10)

Note that the integration constant m is obtained by use of
the condition W (r+) = 0. In the absence of dilaton field the
Eq. (3.10) reduces to m = 2M which is just the mass of
Reissner–Nordström-A(dS) black holes.

Here, we check the first law of thermodynamics for the
quantities obtained in this subsection. At first we obtain the
mass as a function of the extensive quantities S and Q. That
is

M(r+(S), Q)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r+
2

[
1

1−α2 + �b2(1+α2)

α2−3

( r+
b

)2−4γ + 2a2

r+ b4γ Υ (r = r+)
]
,

α �= 1,
√

3, (a),
−b
4

[ r+
b + 2�b2 ln

( r+
L

)− 4a2b2Υ3(r = r+)
]
,

α = √
3, (b),

r+
2

[
2 − �b2 + ln

(
b
r+

)
+ 2a2b2

r+ Υ1(r = r+)
]
,

α = 1, (c).

(3.11)

where, Eqs. (2.20), (3.5) and (3.10) have been used. By treat-
ing Q and S as the thermodynamical extensive variables one
can show that

U (r+) =
(

∂M

∂Q

)
S
,

T (r+) =
(

∂M

∂S

)
Q

, for all allowed values of α. (3.12)

Thus, we have

dM = TdS +UdQ, for all allowed values of α. (3.13)

It confirms the validity of the thermodynamical first law in
its standard form. Therefore, the first law of black hole ther-
modynamics is valid for all the new black holes introduced
here.

4 Local stability in the canonical ensemble

At this stage we explore the thermal stability or thermody-
namic phase transition of the new AdS black holes identi-
fied here. It is well-known that the type-one and type-two
phase transition points and the ranges at which the black
holes remain stable can be extracted regarding the signa-
ture of the black hole heat capacity. In the canonical ensem-
ble method the black hole heat capacity, with the black hole
charge as a constant, can be calculated via the following rela-
tion [13,31,53,60]

CQ = T

(
∂S

∂T

)
Q

= T

MSS
, with MSS =

(
∂2M

∂S2

)
Q

. (4.1)

Noting Eq. (IV.1), the numerator of the black hole heat capac-
ity is just the black hole temperature which is presented in
Eq. (3.1). Thus, we need to calculate the denominator. It can
be calculated by use of Eqs. (3.11) and (3.12). Now, we pro-
ceed to analysis the thermal stability or thermodynamic phase
transitions for all of the new black hole solutions, separately.

4.1 The black holes with α �= 1,
√

3

Making use of the above mentioned equations, after some
algebraic calculations, one is able to show that the denom-
inator of the black hole heat capacity takes the following
form

MSS = −(1 + α2)

8π2b2r+

{(
b

r+

)2−4γ

+ b2(1 − α2)

×
[
� − 2a2

(
1 −

√
1 + B2

r4−4δ+

)]

−
4q2

(
b
r+

)4−4γ

b2
√

1 + B2

r4−4δ+

⎫⎪⎪⎬
⎪⎪⎭

. (4.2)

It is well-known that the real roots of equation MSS = 0
are the locations of type-two phase transition points. Evi-
dently, these points cannot be determined analytically. Thus,
In order to determine the points of type-one and type-two
phase transitions and to characterize the ranges at which the
black holes are stable, we have plotted CQ and T versus r+ in
Figs.4 for α < 1 and α > 1 cases, separately. The plots show
that, in the case α < 1, there is only one point of type-one
phase transition located at r+ = rext . These black holes with
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Fig. 4 T (dashed) and CQ(continues) versus r+ for � = −3, b = 1, Eqs. (3.1) and (4.1). Left: α < 1, 4T and CQ : Q = 2, a = 1.22 and
α = 0.6 (black), 0.7 (blue). Middle: α < 1, 4T and CQ : Q = 2, α = 0.75 and a = 1 (black), 1.5 (blue). Right: α > 1, 10T and 0.5CQ :
Q = 1, b = 1, a = 1 and α = 1.3 (black), 1.45 (blue)

the horizon radius equal to rext undergo type-one phase tran-
sition at the vanishing point of the black hole heat capacity,
which is just the horizon radius of the extreme black holes.
They are locally stable provided that the horizon radii are in
the range r+ > rext (Fig. 4 left and middle). For the black
holes with α > 1 there are two points of type-one phase tran-
sition which coincide with the radii of extreme black holes
(i.e. r1ext and r2ext with r1ext < r2ext ). There is one points of
type-two phase transition, which is labeled by r∞. The black
holes with horizon radii in the interval r1ext < r+ < r∞ are
locally stable (Fig. 4 right).

4.2 The black holes with α = 1 and α = √
3

As a matter of calculation, one is able to show that the denom-
inator of the black hole heat capacity is given by the following
equation

MSS

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2π2b3

{
2b3

r+

[
� − 2a2

(
1 −

√
1 + A2

r+b

)]

+ 4q2

b2

√
1+ A2

r+b

(
b
r+

)2 − 1

}
, α = √

3, (a),

1
2π2b2r+

⎛
⎝ 2q2

r2+
√

1+ A2

r2+

− 1

⎞
⎠ , α = 1, (b).

(4.3)

It is necessary to obtain the real roots of equations MSS = 0
and CQ = 0, for analyzing the thermal stability or thermo-
dynamic phase transition of the black holes. As the equations
are nonlinear, we use the plots for determining the real roots.
The plots of T and CQ , versus r+, are given In Fig. 5 for
the α = 1 and α = √

3 cases. The plots show that, for both
classes of black holes, There two points of type-one phase
transition, named as r+ = r1ext and r+ = r2ext which are the
simultaneous vanishing points of T and CQ . There is only
one type-two phase transition point located at the divergent
point of the heat capacity labeled by r+ = r∞. Both classes

of black holes are locally stable if their horizon radii are in
the interval

5 Thermodynamic geometry

Thermodynamic geometry is an interesting method for study-
ing the thermodynamic stability, by use of which we can find
the positions of the thermodynamic phase transition points.
The thermodynamic phase transition points are identified
as the divergent points of the thermodynamic Ricci scalar.
Indeed, the information about thermodynamic phase transi-
tions is extracted from Ricci scalar of a thermodynamic met-
ric. Among the various proposed thermodynamic metrics, the
Weinhold, Ruppeiner and Quevedo thermodynamic metrics
have attracted more attention [61–66]. Recently, it has been
demonstrated that the phase transition points of these metrics
are not compatible with those of canonical ensemble method.
The research group of Hendi, Panahiyan, Eslam Panah and
Momennia (HPEM) have proposed a new thermodynamic
metric which is written in the following form [27,29,30,67]

ds2 = SMS

M3
QQ

(
−MSSdS

2 + MQQdQ
2
)

. (5.1)

The black hole mass M is a function of black hole charge and
entropy, and the indices Q and S indicate the quantities with
respect to which derivatives are taken. Making use of this
thermodynamic metric, one can calculate the related Ricci
scalar and show that its denominator takes the following form
[28]

Den.[R] = 2S3M3
SM

2
SS . (5.2)

In order to find the divergent points of the Ricci scalar, as the
points of thermodynamic phase transitions, and to compare
the results with the results of canonical ensemble method, we
have plotted R and CQ versus S together, in Figs. 6 and 7.
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Fig. 5 T (dashed) and CQ(continues) versus r+ for � = −3, Eqs. (3.1) and (IV.1). Left: 100T, α = √
3, Q = 2, b = 1, a = 2(black), 5 (blue).

Right: 200T, α = 1, a = 2, b = 0.75, Q = 2 (black), 3 (blue)

The plots show that: (i) For α < 1 the Ricci scalar has only
one divergent point which coincides with the vanishing point
of the black hole heat capacity, and indicates the location of
the only type-one phase transition point (Fig. 6 left).

(ii) For α ≥ 1 there are three points at which the ther-
modynamic Ricci scalar diverges. Two of them are located
just on the vanishing points of heat capacity and indicate the
points of type-one phase transition. The third one coincides
with the divergent point of heat capacity and shows the type-
two phase transition point (Figs. 6 right and 7). Therefore,
by applying the HPEM metric, the results of thermodynamic
geometry is fully compatible with those of canonical ensem-
ble method.

6 Global stability in the grand canonical ensemble

The global stability of the black holes can be investigated
with the help of Gibbs free energy of the black holes. It is
well-known that the black holes are globally stable provided
that their Gibbs free energy is positive. The real roots of
G(r+) = 0 are the locations of Hawking–Page phase tran-
sition points. The black holes with negative free energy are
in the radiative phase [24,25]. Therefore, in order to analyze
the global stability and to characterize the Hawking–Page
phase transition points, it is necessary to calculate the Gibbs
free energy of the new black holes. The Gibbs free energy is
defined through the following relation [26,68]

G(r+) = M(r+) − S(r+)T (r+) − QU (r+). (6.1)

Regarding Eqs. (3.1), (3.5), (3.9) and (3.11), as a matter of
calculation, one can show that

G(r+)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r+
4

[
1 − 2a2b2(1 + α2)

(
b
r+

)4γ−2
(

1 −
√

1 + B2

r4−4δ+

)

+ 4a2b4γ

r+ Υ (r+)

+�b2(1−α4)

3−α2

(
b
r+

)4γ−2
]

− QU (r+), α �= 1,
√

3, (a),

r+
4

{
1 + 2�b3

r+
[
2 − ln

( r+
L

)]− 8a2b3

r+

(
1 −

√
1 + A2

r+b

)

+ 4a2b3

r+ Υ3(r+)
}

− QU (r+), α = √
3, (b),

r+
2

[
1 − 2a2b2

(
1 −

√
1 + A2

r2+

)
+ 2a2b2

r+ Υ1(r+)

]

−QU (r+), α = 1, (c).

(6.2)

Since, it is difficult to find the real roots of equation G(r+) =
0 analytically, we plot the Gibbs free energy versus r+. The
plots are shown in Figs. 8 and 9 by considering the cases
α �= 1,

√
3 (with α < 1 and α > 1) and α = 1 and α = √

3,
separately.

Noting Fig. 8 one can argue that, in the case α < 1 (Left
panel), the Gibbs free energy vanishes at a point, say at
r+ = r0, it is a point of Hawking–Page phase transition.
The physical black holes with the horizon radii in the range
rext < r+ < r0 are globally stable. Those with horizon radii
greater than r0 are in the radiative phase. In the case α > 1,
Fig. 8-right show that there is no point of Hawking–Page
phase transition. The black holes with horizon radii in the
interval r1ext < r+ < r2ext are globally stable.

The plots of Fig. 9-left show that the Gibbs free energy
vanishes at the points r+ = r1 and r+ = r2, and physi-
cal black holes with the horizon radius equal to r2, undergo
Hawking–Page phase transition. The black holes with the
horizon radii in the range r1ext < r+ < r2 prefer the
radiative phase. Those with the horizon radii in the inter-
val r2 < r+ < r2ext are globally stable. The right panel of
Fig. 9 shows that for the physical black holes the Gibbs free
energy has two vanishing points too. The black holes with
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Fig. 6 R (red) and CQ (black) versus S for � = −3, b = 1, Q = 2. Left: R and 2CQ , α < 1, α = 0.75, a = 2. Right: 0.2R and 2CQ , α > 1,
α = 1.5, a = 1.
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Fig. 7 R (red) and CQ (black) versus S for � = −3, b = 1, a = 2. Left: 0.1R and CQ , α = √
3, Q = 2. Right: 300R and 0.1CQ , α =

1, Q = 4
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Fig. 8 G(r+) and T (r+) versus r+ for � = −3, Q = 1, Eqs. (3.1) and (5.2). Left: 2T (dashed) and G (continues), a = 1, b = 1.5, α =
0.65 (black), 0.8 (blue). Right: 30T (dashed) and G (continues), a = 1.5, b = 1, α = 1.3 (black), 1.4 (blue)

the horizon radii in the range r1 < r+ < r2 are in the radia-
tion phase. They undergo Hawking–Page phase transition at
the points r+ = r1 and r+ = r2. The physical black holes
with the horizon radii in the ranges r1ext < r+ < r1 and
r2 < r+ < r2ext are globally stable.

7 Conclusion

Making use of the suitable four-dimensional action in which
Einstein’s original action, in addition to a scalar dilatonic
field, is coupled to the Lagrangian of Born–Infeld nonlin-
ear electrodynamics. Variation of this action, with respect
to various fields, leads to the coupled scalar, electromag-
netic and gravitational field equations. We obtained the exact
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Fig. 9 6T (dashed) and G (continues) versus r+ for � = −3, L = 0.8, Eqs. (3.1) and (5.2). Left: α = √
3, Q = 1.5, b = 1, a =

0.8 (black), 1 (blue). Right: α = 1, a = 2, b = 0.7, Q = 1 (black), 1.22 (blue)

solutions in a static and spherically symmetric geometry.
Existence of the event horizons and the singularities in cur-
vature scalars confirms that the solutions are black holes.
Three classes of novel Einstein–Born–Infeld-dilaton black
holes have been introduced, with the non-flat and non-Ads
asymptotic behavior. Also, the solutions can produce multi-
horizon, two-horizon, one-horizon, extreme and naked sin-
gularity black holes provided that the parameters are chosen,
suitably (Figs. 1, 2, 3). It must be noted that the black holes
with α = 1 and α = √

3, as well as the multi-horizon black
holes have been introduced here for the first time.

We calculated the black hole conserved and thermody-
namic quantities such as mass, electric charge, temperature,
entropy and electric potential, by use of the geometric and
thermodynamic methods. Through a Smarr-type mass for-
mula, we obtained the black hole mass as a function of black
hole charge and entropy, as the extensive thermodynamic
parameters. The calculations show that these quantities sat-
isfy the first law of black hole thermodynamics in its stan-
dard form (Eq. 3.13). Also, we identified the black holes
with zero temperature, named as extreme black holes, phys-
ically reasonable black holes, having positive temperature,
and unphysical black holes with negative temperature (Figs.
4 and 5). The behavior of black hole temperature and heat
capacity for the cases α ≥ 1, which have been forgotten in
all the previous works, are slightly different.

Thermodynamic local stability or phase transition of the
new Einstein–Born–Infeld-dilaton black holes have been
studied making use of the canonical ensemble method. The
black hole heat capacity of the black holes have been cal-
culated. Noting the signature of black hole heat capacity,
the points of type-one and type-two phase transitions, and
the ranges at which the physically reasonable black holes
remain locally stable have been characterized, exactly. Ther-
mal stability of the black holes has been investigated by
applying the concept of geometrical thermodynamics too.

In this approach, the phase transition points are identified
noting the divergent points of the Ricci scalar of a thermody-
namic metric. We showed that the results of this method are
fully consistent with those of canonical ensemble method if
HEPM thermodynamic metric is used (Figs. 6 and 7).

Global stability of the black holes has been investigated by
use of the grand canonical ensemble and regarding the Gibbs
free energies. By analyzing the Gibbs free energy of the black
holes, the horizon radius of the black holes which experience
Hawking–Page phase transition as well as the ranges for the
horizon radii at which the black holes are globally stable or
are in the radiative phase have been identified (Figs. 8 and
9).

Study of the P–V criticality and impacts of the quantum
thermal fluctuations as well as consideration of dynamic sta-
bility of the novel black holes introduced in this work, are
suggested for the subject of forthcoming papers.
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