
J
H
E
P
0
2
(
2
0
2
0
)
1
2
7

Published for SISSA by Springer

Received: November 7, 2019

Accepted: January 19, 2020

Published: February 24, 2020

Exact results for an STU-model

G.L. Cardoso,a B. de Witb,c and S. Mahapatrad

aCenter for Mathematical Analysis, Geometry and Dynamical Systems,

Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa,
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resolve themselves when proceeding to the next order. Subsequently, a corresponding

topological string partition function is studied in an expansion in terms of independent

invariants of S, T and U , with coefficient functions that depend on an effective duality
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solving differential equations whose solutions have ambiguities associated with integration

constants. This determination of the topological string partition function, while interesting

in its own right, reveals new qualitative features in the result for the Wilsonian action,

which would be difficult to appreciate otherwise. It is demonstrated how eventually the
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1 Introduction

For a general N = 2 string compactification it is difficult to obtain exact expressions for

the part of the Wilsonian effective action that describes the gravitational interactions with

the vector multiplets, as well as for the topological string partition function. Often one has

to make use of partial results obtained by concentrating on the neighbourhood of special

points in the string moduli space, or from integrating the holomorphic anomaly equation for

low genus. In this paper we want to investigate whether there exists a model for which the

Wilsonian action and the topological string partition function can in principle be derived

from their duality symmetries. The model we have in mind was discovered by Sen and

Vafa when constructing dual pairs of type-II string compactifications in four space-time

dimensions with N = 2 supersymmetry [1]. These pairs were obtained by appropriate

Z2 ×Z2 orbifold constructions based on toroidally compactified type-II string theory. One

such dual pair (referred to as N=2 Example D) is described by an N = 2 supergravity

model with three vector multiplets and four hypermultiplets.

This model, which we will call the STU-model in the following, is the subject of study

in this paper. It has a type-II description based on a Calabi-Yau three-fold with vanishing

Euler number. In this description, the dilaton belongs to a hypermultiplet, and therefore

the vector moduli space does not receive quantum corrections. The exact vector moduli

space is based on an
[

SL(2)/SO(2)
]3

coset space with each factor modded out by the action

of the integer-valued subgroup Γ0(2) ⊂ SL(2;Z), defined by restricting its integer-valued
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matrix elements a, b, c, d with ad−bc = 1, by a, d ∈ 2Z+1, c ∈ 2Z and b ∈ Z. The quantum

moduli space is therefore equal to
[

Γ0(2)\ SL(2)/ SO(2)
]3
, and the vector multiplet sector is

invariant under the product of an S-, a T- and a U-duality group, Γ0(2)S×Γ0(2)T×Γ0(2)U.

The role of the group Γ0(2) followed from the determination of the one-loop gravitational

coupling that was computed explicitly by working at an orbifold point of the Calabi-Yau

three-fold [2]. This coupling is invariant under [Γ0(2)]
3 and involves the logarithm of a

modular form that will play an important role in this paper. In addition, the model is

also invariant under arbitrary permutations of the vector moduli S, T and U . We will refer

to this symmetry as triality. We stress that this is a different STU-model than the one

studied, for instance, in [3], which is a reduction of the FHSV-model and whose duality

group equals SL(2,Z)S × Γ(2)T × Γ(2)U.

In this paper we will assume that the STU-duality symmetries (triality and [Γ0(2)]
3

symmetry) remain valid at any order in perturbation theory, and we will use these sym-

metries to determine the holomorphic function [4] which encodes the part of the Wilsonian

effective action that includes interactions proportional to the square of the Weyl tensor to

fifth order in its gravitational coupling. Here it is important to stress that generically such

functions do not transform as a function under duality transformations, and they are thus

not straightforwardly invariant under the duality transformations of the moduli. Rather,

the higher-order terms that one wishes to include should be such that the action of the

electric-magnetic dualities on the field strengths and their duals will remain the same [5–8].

In the case at hand the holomorphic function will be expressed in terms of ω, the logarithm

of a (holomorphic) modular form that was identified in [2], and which depends on either

one of the three complex moduli, S, T , or U , and its multiple holomorphic derivatives.

At lowest non-trivial order duality invariance is achieved by allowing for the presence of a

term lnX0 which, strictly speaking, is not part of the Wilsonian effective action. It is not

unique, as there are non-holomorphic alternatives, and it has appeared at various stages in

the literature. The fields X0, iX0S, iX0T and iX0U are the complex scalar fields belonging

to the four off-shell vector multiplets of the underlying supergravity.

From the holomorphic function and its complex conjugate one can derive a version

of the topological string partition function of the STU-model by following the procedure

outlined in [9].1 This amounts to constructing the corresponding (real) Hesse potential

by means of a suitable Legendre transformation. The Hesse potential depends on duality

covariant moduli and it transforms as a function under general duality transformations,

which for the STU-model constitute the group Sp(8;R). Consistency therefore requires

that it is invariant under its [Γ0(2)]
3 subgroup and under triality. The full Hesse potential

is a real function, but as was demonstrated in [9], it decomposes into an infinite number

of separately invariant functions of which precisely one exhibits the characteristic features

of a topological string partition function. For instance, it is harmonic in the holomorphic

modular form ω, so that it will decompose into a sum of a function of ω and one of ω̄, but

both these functions will still depend on the moduli and on their complex conjugates. The

lack of homorphicity can be characterized in terms of a holomorphic anomaly equation,

1Actualy, the present study of this STU-model was partially motivated by the need to put the results

of [9] to a test in the context of a realistic model.
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something that is a well-known feature of the topological string [10, 11]. The holomorphic

anomaly equation was generally derived in [9] on the basis of the diagrammatic structure

in the Hesse potential. Upon including certain non-holomorphic terms for the genus-1

partition function, it was established that this anomaly equation belongs to the same class

as the one that is known for the topological string.2 By explicit calculations one can then

identify the leading terms with the low-genus topological string partition functions of the

STU-model.

Subsequently we shall attempt to derive an all-order result for this topological string

partition function. Here we follow an approach inspired by the work of [13], which enables

us to resum a subclass of non-holomorphic terms by making use of the holomorphic anomaly

equation. The result, which turns out to be qualitatively different from the result obtained

in [13], can be further generalized by making it consistent with duality. This leads to

a modified effective coupling constant u, which is duality invariant and depends on the

moduli S, T , U . As it turns out, this effective coupling constant takes its values on a

Riemann surface C.

However, this result does not yet cover the full result for the topological string, because

certain terms that have already been derived at low orders in perturbation theory, are not

contained in the resummation. These terms are separately duality invariant and the obvious

question is whether one can also extend them to all orders. As we will demonstrate, the

coefficient functions, which depend on u, of terms that are products of three identical

structures, whose arguments are equal to S, T , and U , respectively, satisfy differential

equations that will lead to integration constants. Coefficient function of terms that are

not of this type can be determined algebraically. However, the integration constants are

directly related to specific terms in the holomorphic function that has been determined

earlier. Given that the construction of this function can in principle be continued to all

orders, it seems that the dualities of the STU-model indeed determine the holomorphic

function and the corresponding topological string partition function.

This paper is organized as follows. In section 2 we introduce the main features of the

STU-model and its dualities as well as the consequences of the STU-dualities for the holo-

morphic function, whose lowest-order contribution involves the logarithm of X0. Various

features of this logarithmic term as well as alternative versions are discussed. Section 3

describes the results for the holomorphic function up to fifth order in perturbation theory,

which are obtained by imposing invariance under the dualities. We are not aware of any

possible impediment for continuing this strategy to arbitrary orders of perturbation theory,

and we will assume that this approach can in principle be continued to any given order.

Section 4 describes how to obtain the lowest-order results for a corresponding version

of the topological string partition function, as well as its holomorphic anomaly equation,

by following the method of [9]. This requires a Legendre transform, that was performed

iteratively, leading to the so-called Hesse potential that is a function of duality covariant

variables. One particular subsector takes the form of a topological string partition function

2It has been shown meanwhile that the holomorphic anomaly equation has an interpretation as an

integrability condition for the existence of a Hessian structure [12].
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and transforms as a function under duality transformations. It depends holomorphically

on the topological string coupling, with multiple covariant derivatives of the holomorphic

modular forms ω(S), ω(T ), and ω(U). However, these covariant derivatives contain non-

holomorphic connections, so that the result is not holomorphic in the moduli S, T , and U .

In section 5, we start the derivation of an all-order result for the topological string

partition function. We first present a derivation of a function that captures all the non-

holomorphic features of the topological string partition function, following an approach

inspired by the work of [13]. After covariantizing this function one may collect the remain-

ing terms into a second invariant function, whose leading terms in perturbation theory are

now known and have a systematic structure in terms of a set of duality invariants.

Section 6 is then devoted to the determination of this last function, by imposing the

holomorphic anomaly equation. Here we note that there are infinitely many different struc-

tures, as we are dealing with an infinite variety of invariants. Exploring the various terms

we find that most of them can be determined algebraically in this way, while the remaining

ones are subject to differential equations, which can be solved up to integration constants.

Nevertheless it turns out that these integration constants can still be fixed by a careful

comparison between the results for the topological string and those for the holomorphic

function that encodes the Wilsonian effective action. This is one more indication that both

the Wilsonian action and the topological string can be uniquely determined to all orders

by requiring that the dualities act consistently.

The final section 7 presents our conclusions. We enclose a brief appendix A that

contains a few useful formulae and a second appendix B in which we analyze the results in

the limit where the real parts of two of the moduli are taken to infinity. In this case there

are substantial simplifications.

2 The STU-model and its dualities

The effective action for the massless modes of the STU-model of Sen and Vafa can be

described in terms of N = 2 supergravity coupled to nv = 3 vector multiplets and nh = 4

hypermultiplets, so that the Euler characteristic χ ≡ 2(nv − nh + 1) will vanish, as is

required by the fact that the type-II description should be based on a self-mirror Calabi-

Yau manifold. At the classical level its moduli space can be written as a product of the

following special-Kähler and quaternion-Kähler spaces,

Mvector =
SL(2)

SO(2)
×

SL(2)

SO(2)
×

SL(2)

SO(2)
, Mhyper =

SO(4, 4)

SO(4)× SO(4)
. (2.1)

In what follows we will focus on the vector multiplet sector.

The off-shell effective action for the massless fields is described in terms of four vector

multiplets which contain four vector gauge fields, Wµ
0, Wµ

1, Wµ
2 and Wµ

3, as well as four

complex scalars X0, X1, X2, X3. This description is locally superconformally invariant

and therefore these fields are subject to local dilatations and phase transformations. As is

well known, the Wilsonian effective action is encoded in a holomorphic function of these

scalar fields that is homogeneous of second degree under complex scale transformations [4].
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At the classical level this function takes the form

F (X) = −
X1X2X3

X0
, (2.2)

whose corresponding supergravity action leads precisely to the special-Kähler moduli space

specified in (2.1). The isometry group of this moduli space is the direct product of three

independent SL(2) groups, and not the product of their respective Γ0(2) subgroups. How-

ever, the function F (X) will also contain terms that describe gravitational couplings of the

special-Kähler moduli, which are only invariant under the direct product of the indepen-

dent Γ0(2) groups [2]. Upon modding out the special-Kähler space in (2.1) by the action

of the integer-valued group [Γ0(2)]
3, the combined action will then be invariant under the

latter group. Moreover, the invariance under permutations of the fields X1, X2 and X3,

known as triality, is respected by the function (2.2) as well as by its modification that we

will introduce shortly.

The relevant special-Kähler moduli are conventionally denoted by S, T and U , and

defined by

S = −i
X1

X0
, T = −i

X2

X0
, U = −i

X3

X0
. (2.3)

These fields parametrize the special-Kähler target space and they are invariant under local

dilatations and phase transformations. Since we intend to remain in the off-shell formula-

tion we will retain the field X0.

Since the supergravity description contains four vector gauge fields, one belonging to

the Poincaré supergravity multiplet and one for each of the three matter multiplets, one

will also be dealing with four magnetic charges denoted by p0, p1, p2, p3, and four electric

charges denoted by q0, q1, q2, q3. These charges are carried by the underlying microscopic

degrees of freedom of the STU-model. Under S-duality they transform as follows,

p0 → d p0 + c p1 ,

p1 → a p1 + b p0 ,

p2 → d p2 − c q3 ,

p3 → d p3 − c q2 ,

q0 → a q0 − b q1 ,

q1 → d q1 − c q0 ,

q2 → a q2 − b p3 ,

q3 → a q3 − b p2 .

(2.4)

In the STU-model the charges should take their values in an eight-dimensional discrete

lattice that will only be invariant under the action of the Γ0(2)S×Γ0(2)T×Γ0(2)U duality

group, so that the parameters a, b, c, and d must be restricted accordingly. Based on the

function (2.2), the moduli fields transform under Γ0(2)S as

S →
aS − ib

d+ ic S
, T → T , U → U , X0 → (d+ ic S)X0 . (2.5)

Similar results apply to T- and U-duality transformations, which are directly obtained

upon interchanging the labels 1 ↔ 2 (or 1 ↔ 3) and correspondingly S ↔ T (or S ↔ U).

From these transformation rules it follows that the eight charges will transform according

to the (2,2,2) representation of Γ0(2)S × Γ0(2)T × Γ0(2)U.

As mentioned above, the function (2.2) will contain additional terms that break the

original [SL(2)]3 dualities to the subgroup Γ0(2)S ×Γ0(2)T ×Γ0(2)U. This must be done is
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such a way that the action of the duality subgroup on the field strengths and their duals

will be preserved. Furthermore, as was already mentioned, the Wilsonian supersymmetric

effective action for the STU-model must be encoded in a holomorphic function that is

homogeneous of degree two [4], and should be consistent with the dualities as well as with

triality. As it turns out, this puts stringent constraints on the way in which we can modify

the function (2.2). To see this we start from the following holomorphic function,

F (X,A) = −
X1X2X3

X0
+ 2iΩ(X,A) , (2.6)

where the first term describes the Lagrangian that is at most quadratic in space-time

derivatives of the vector-multiplet fields. The extra term Ω contains a holomorphic pa-

rameter A, which actually corresponds to a field. This field A is the lowest component of

the square of a tensor chiral supermultiplet, known as the Weyl multiplet. Its presence

in (2.6) will lead to higher-derivative interactions that involve among others the square

of the Weyl tensor. Supersymmetry requires the function F to be homogenous of degree

two, i.e. F (λX, λ2A) = λ2F (X,A). The Wilsonian action will therefore be based on such

a homogeneous holomorphic function.3

The duality transformations such as (2.4) are generated on the fields XI by electric-

magnetic duality and this ensures that they will also act accordingly on the electric and

magnetic charges. The Lagrangian and its underlying function F (X,A) are therefore not

invariant under the duality transformations. Rather the requirement is that the ‘periods’

(XI , FJ(X)) must transform covariantly under the dualities [4, 5], precisely as the charges

(pI , qJ) (see (2.4)). Hence the duality transformations involve the holomorphic derivatives

of F (X,A) which we list here for convenience (we refrain from indicating the dependence

on A for notational simplicity),

F0(X) =
X1X2X3

(X0)2
−

2i

X0

[

−X0 ∂

∂X0
+ S

∂

∂S
+ T

∂

∂T
+ U

∂

∂U

]

Ω ,

F1(X) = −
X2X3

X0
+

2

X0

∂Ω

∂S
,

F2(X) = −
X1X3

X0
+

2

X0

∂Ω

∂T
,

F3(X) = −
X1X2

X0
+

2

X0

∂Ω

∂U
. (2.7)

The above formulae clearly exhibit the triality symmetry, provided that Ω is triality in-

variant. The field A is not subject to the duality transformations.

To construct the duality transformations on the fields, one considers the S-dualities

acting on the charges pI and qI given in (2.4) and apply the same transformations on the

3We should point out that alternative higher-derivative couplings exist for these models, but they are

not holomorphic [14, 15]. Their behaviour under electric-magnetic duality has so far not been investigated

in much detail and they do not contribute to the Wilsonian effective action nor to the topological string

partition function.
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periods XI and FI . The fields will thus transform as follows,

X0 → X0′ = ∆SX
0 ,

X2 → X2′ = ∆SX
2 −

2 c

X0

∂Ω

∂U
,

X1 → X1′ = aX1 + bX0 ,

X3 → X3′ = ∆SX
3 −

2 c

X0

∂Ω

∂T
,

(2.8)

where a, b, c, d refer to the parameters of the S-duality transformation and ∆S(S) is de-

fined by

∆S(S) = d+ ic S . (2.9)

Observe that there exist similar quantities ∆T(T ) and ∆U(U) with parameters d and c

that belong to the T- and U-duality transformations, respectively. Furthermore we note

the convenient relations

∂S′

∂S
=

1

∆S
2
,

1

S + S̄
→

|∆S|
2

S + S̄
=

∆S
2

S + S̄
−∆S

∂∆S

∂S
. (2.10)

The results lead to the following transformations of X0, S, T and U ,

X0 → X0 ′ = ∆SX
0 ,

S → S′ =
aS − ib

∆S
,

T → T ′ = T +
2

∆S (X0)2
∂∆S

∂S

∂Ω

∂U
,

U → U ′ = U +
2

∆S (X0)2
∂∆S

∂S

∂Ω

∂T
, (2.11)

so that the S-duality transformations on X0 and S remain unchanged, while the fields T

and U will now transform non-trivially. Obviously the T- and U-duality transformations

follow from triality.

Because the STU-dualities are assumed to define symmetries of the model to all or-

ders in perturbation theory, the transformation of the derivatives (2.7) must coincide with

the results obtained by explicitly substituting the transformed values of the moduli given

by (2.11) into the expressions for FI ,

F0(X
′) = aF0(X)− b F1(X) ,

F1(X
′) = dF1(X)− c F0(X) ,

F2(X
′) = aF2(X)− bX3 ,

F3(X
′) = aF3(X)− bX2 . (2.12)

In that case the periods (XI , FJ(X)) transform covariantly under the dualities precisely

as the charges (pI , qJ), as shown in (2.4). Note again that the function F (X) itself does

not transform as a function under electric-magnetic duality, which explains the precise

form of the left-hand side of (2.12). The above equations (2.12) lead to conditions on the
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derivatives of Ω that take the following form,

(

∂Ω

∂T

)′

S

=
∂Ω

∂T
,

(

∂Ω

∂U

)′

S

=
∂Ω

∂U
,

(

∂Ω

∂S

)′

S

−∆S
2 ∂Ω

∂S
=

∂∆S

∂S

[

−∆SX
0 ∂Ω

∂X0
−

2

(X0)2
∂∆S

∂S

∂Ω

∂T

∂Ω

∂U

]

,

(

X0 ∂Ω

∂X0

)′

S

= X0 ∂Ω

∂X0
+

4

∆S (X0)2
∂∆S

∂S

∂Ω

∂T

∂Ω

∂U
. (2.13)

These equations, which are non-linear in Ω, were first derived in [6] for the more general

case where Ω is not necessarily holomorphic. Note that the prime on the quantities on

the left-hand side indicates that we have replaced all the fields by their transformed ones

specified in (2.11). Corresponding results for T- and U-duality follow directly upon applying

triality. As it turns out, the above equations are very restrictive, especially when insisting

on triality. The function Ω can then be solved by iteration in powers of A, depending on

some initial conditions. A noteworthy feature of the equations (2.13) is that they depend

non-linearly on Ω. The solution of these equations based on a power series in A seems to

be unique.

The iteration is based on the fact that Ω(X,A) must be a homogeneous function of

second degree, which can be expanded in terms of a auxiliary complex field A which scales

with weight two. Because the fields S, T, U do not scale, X0 and A are the only fields

that are subject to scale transformations. Therefore Ω can be written in a series expansion

in powers of A (X0)−2 with coefficient functions that depend on S, T, U and an overall

factor A,

Ω(X,A) = A

[

γ ln
(X0)2

A
+ ω(1)(S, T, U) +

∞
∑

n=1

(

A

(X0)2

)n

ω(n+1)(S, T, U)

]

. (2.14)

Note that we allowed for the presence of a logarithmic term, which under S-duality trans-

forms with a shift proportional to ln∆S(S), with corresponding variations under T- and

U-duality.

Let us now first concentrate on the lowest-order terms which should reproduce the

result of [2]. Under S-duality one can directly analyze the equations (2.13) in lowest order

in A. The last equation is trivially satisfied, whereas the other three equations give rise to

the following restrictions on ω(1)(S, T, U),

(

∂ω(1)

∂T

)′

S

=
∂ω(1)

∂T
,

(

∂ω(1)

∂U

)′

S

=
∂ω(1)

∂U
,

(

∂ω(1)

∂S

)′

S

= ∆S(S)
2 ∂ω

(1)

∂S
− 2γ∆S

∂∆S

∂S
. (2.15)

Upon imposing triality the combined equations show that

ω(1)(S, T, U) = ω(S) + ω(T ) + ω(U) , (2.16)
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where ω(S) must be the logarithm of a modular form which must transform as

ω(S′) = ω(S)− 2γ ln∆S(S) . (2.17)

Here we note that the transformation of the function ω(S) is in principle not fully captured

by (2.17), because the right-hand side may also include a constant imaginary shift due to

the multiplyer system of the modular form. Such a shift, if present, is harmless. The reason

is that an imaginary constant shift leads to a real constant times the imaginary part of A

in the effective action. However, the imaginary part of A encodes a Lagrangian that equals

a total derivative, which can be ignored. Beyond the lowest order we will only be dealing

with derivatives of ω(S), so that this imaginary shift is no longer relevant.

Obviously similar results hold for ω(T ) and ω(U) by triality. Upon comparing (2.17)

to the result found in [2] for the one-loop gravitational coupling in the STU-model, we

must choose ω(S) equal to

ω(S) =
1

64π
lnϑ2(S) , with γ = −

1

256π
, (2.18)

whose corresponding duality group is precisely Γ0(2).
4 We note that ϑ2(S) can be expressed

in terms of the Dedekind function as ϑ2(S) = 2 η2(2S)/η(S). Hence the choice (2.18)

restricts the STU-dualities to the Γ0(2) subgroups of the generic SL(2) duality groups, so

that the matrix elements a, b, c, d should satisfy the restrictions pointed out in section 1.

The fact that γ is different from zero is important for the iteration that will be per-

formed in the next section. In this iteration the quantity A/(X0)2 will play the role of a

coupling ‘constant’, which is invariant under local dilatations and phase transformations,

but not under the dualities. In the result of [2], the field X0 is not present, so the shift in

the variation of ω(S) has to be cancelled by some other term, such as

−2γ ln[(S + S̄)(T + T̄ )(U + Ū)]
S

−→ − 2γ ln[(S + S̄)(T + T̄ )(U + Ū)]

+ 2γ ln∆S(S) + 2γ ln ∆̄S(S̄) , (2.19)

and likewise for T- and U-duality. Obviously these variations are identical to those of

γ[ln[(X0)2/A]+h.c.]. However, within the context of the effective action the variation (2.19)

is only an approximation, because the transformations of the moduli are corrected in view

of (2.11). Furthermore it does not make sense to add a term to the effective action that

explicitly involves the moduli, whose duality transformations are actually governed by the

period vector (XI , FJ), where FJ is defined as the derivative of the full function F (X) with

respect to XJ .

The above situation is, however, not problematic, because the big moduli space that

involves the fieldX0 is still subject to local dilatations as well as U(1) gauge transformations

and there exists a gauge condition that replaces ln |X0| in terms of a non-holomorphic term

4We note that while the expression for ω(1)(S, T, U) given in (2.16) has manifest triality symmetry, the

corresponding expression given in equation (2.6) of [2] involves both lnϑ2 and lnϑ4. However, by applying

the modular transformation τ → −1/τ to lnϑ4, the expression given in [2] becomes manifestly triality

symmetric, and it agrees with the expression for ω(1)(S, T, U) given in (2.16).
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whose duality transformation agrees in leading order with (2.19). To see this we introduce

a generalized Kähler potential K, defined by

K − ln |X0|2 = − ln
[

iX̄I FI(X)− iF̄I(X̄)XI
]

, (2.20)

where the right-hand side is manifestly duality invariant and transforms under local dilata-

tions. If we now impose a gauge condition for local dilatations by constraining
[

iX̄I FI(X)−

iF̄I(X̄)XI
]

to a real constant, then ln |X0| is equal to a non-holomorphic expression whose

leading contribution coincides with (2.19),

K = − ln[(S + S̄)(T + T̄ )(U + Ū)] +O(Ω) . (2.21)

Obviously it is convenient to work with the field X0 throughout the calculations and to

postpone imposing this gauge choice until the end.5

We should add that the logarithmic term lnX0 has appeared at various stages in the

literature in the study of BPS black hole entropy. It was first discussed in [16] using the

Gopakumar-Vafa term [17, 18] when calculating black hole entropy corrections. At the

black hole horizon A/(X0)2 is inversely proportional to the square of the charges as a

result of the BPS attractor equations [19]. The factor appears in the measure of an OSV-

type integral derived in [20] for BPS black holes. The presence of this term is moreover

consistent with the result of the logarithmic corrections to black hole entropy [21]. We

refer to section 4.2.4 in [22] for further comments regarding this logarithmic term and its

possible origin.

Before moving to the next section we discuss some technical aspects regarding the

duality transformations of derivatives of ω(S) under S-duality. We list the first few multiple

derivatives,

∂ω

∂S
→ ∆S

2 ∂ω

∂S
− 2γ∆S

∂∆S

∂S
,

∂2ω

∂S2
→ ∆S

4 ∂
2ω

∂S2
+ 2∆S

3 ∂∆S

∂S

∂ω

∂S
− 2γ∆S

2

(

∂∆S

∂S

)2

,

∂3ω

∂S3
→ ∆S

6 ∂
3ω

∂S3
+ 6∆S

5 ∂∆S

∂S

∂2ω

∂S2
+ 6∆S

4

(

∂∆S

∂S

)2 ∂ω

∂S
− 4γ∆S

3

(

∂∆S

∂S

)3

,

∂4ω

∂S4
→ ∆S

8 ∂
4ω

∂S4
+ 12∆S

7 ∂∆S

∂S

∂3ω

∂S3
+ 36∆S

6

(

∂∆S

∂S

)2 ∂2ω

∂S2

+ 24∆S
5

(

∂∆S

∂S

)3 ∂ω

∂S
− 12γ∆S

4

(

∂∆S

∂S

)4

. (2.24)

5It is worth pointing out that there is another non-holomorphic quantity that depends only on the

periods that is invariant under dilatations and U(1) transformations, namely the metric

NIJ(X, X̄) ≡ 2 Im [FIJ(X)] . (2.22)

A special feature of the STU-model is that ln | detNIJ | satisfies a similar limit as K, namely

ln|detNIJ | = 2 ln[(S + S̄)(T + T̄ )(U + Ū)] +O(Ω) . (2.23)
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The presence of the derivatives on ∆(S) on the right-hand side indicates that we are not

dealing with covariant quantities. Therefore we explicitly modify the derivatives on the left-

hand side to eliminate these non-covariant variations, and denote the resulting covariant

expressions by I(2)(S), I(3)(S) and I(4)(S), which will transform as

I(n)(S) → I(n)(S′) = ∆S(S)
2n I(n)(S) . (2.25)

The explicit expressions are

I(2)(S) =
∂2ω

∂S2
+

1

2γ

(

∂ω

∂S

)2

,

I(3)(S) =
∂3ω

∂S3
+

3

γ

∂2ω

∂S2

∂ω

∂S
+

1

γ2

(

∂ω

∂S

)3

,

I(4)(S) =
∂4ω

∂S4
+

6

γ

∂3ω

∂S3

∂ω

∂S
+

3

γ

(

∂2ω

∂S2

)2

+
12

γ2
∂2ω

∂S2

(

∂ω

∂S

)2

+
3

γ3

(

∂ω

∂S

)4

. (2.26)

Because products of the I(n)(S) will also transform covariantly, the explicit expressions

I(n) with n > 3 are in principle ambiguous. For the expressions above we made sure that

the relation

I(n+1)(S) = DSI
(n)(S) , (2.27)

holds, by making a specific choice for I(4). Here DS denotes a holomorphic covariant

derivative, known as the Serre derivative (for more details, see [23]), which acts on I(n) as

DS I(n)(S) ≡

(

∂

∂S
+

n

γ

∂ω(S)

∂S

)

I(n)(S) . (2.28)

Henceforth we will assume that (2.27) will extend to all integer values of n ≥ 2, so as

to provide a unique basis for all the covariant expressions as polynomials in terms of the

I(n)(S). We note that the I(n) can be expressed in terms of linear combinations of products

of Eisenstein series of Γ0(2) [24],

I(n) =
∑

k+2l=n ,k≥0,l≥1

ak,l (Ẽ2)
k (E4)

l , (2.29)

with real positive constants ak,l. Here, E4 is a normalized Eisenstein series of weight 4 of

Γ0(2), while Ẽ2 is the modular form of weight 2 of Γ0(2) given by [23]

Ẽ2(τ) =
1

2
(3 E2(τ)− E2(τ)) = 2E2(2τ)− E2(τ) , (2.30)

where E2(τ), E2(τ) denote the normalized Eisenstein series of weight 2 of Γ0(2) and SL(2;Z),

respectively.

3 Higher-order contributions to the Wilsonian action

Having determined the lowest-order result we can now proceed and determine some higher-

order contributions in the solution of (2.13), making use of (2.11). More precisely we will
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present the solutions for ω(n)(S, T, U) for n = 2, 3, 4, 5. Before doing so we first present the

relevant expansions in terms of a parameter λ, defined as

λ =
A

(X0)2
. (3.1)

The following results then follow straightforwardly from (2.14) and (2.11),

X0 ∂Ω

∂X0
= A

[

2 γ − 2
∞
∑

n=1

λn nω(n+1)(S, T, U)

]

,

∂Ω

∂S
= A

[

∂ω(S)

∂S
+

∞
∑

n=1

λn ∂ω(n+1)(S, T, U)

∂S

]

,

T
S
→ T ′ = T +

2

∆S

∂∆S

∂S

[

λ
∂ω(U)

∂U
+

∞
∑

n=2

λn ∂ω(n)(S, T, U)

∂U

]

, (3.2)

where the last equation specifies the variation of T under S-duality. The S-duality transfor-

mation of U follows from this equation upon interchanging T ↔ U , whereas the S-duality

transformation of the fields S and X0 do not take the form of power series, as is shown

in (2.11). The transformations under T- and U-duality follow from triality.

The above expansions can now be substituted into the four equations (2.13). First we

consider the first three equations, where the third equation has been simplified by making

use of the fourth equation to remove the term proportional to (∂Ω/∂T ) (∂Ω/∂U),

(

∂ω(T )

∂T

)′

S

−
∂ω(T )

∂T
+

∞
∑

n=1

λn

[

1

∆S
2n

(

∂ω(n+1)

∂T

)′

S

−
∂ω(n+1)

∂T

]

= 0 , (3.3)

(

∂ω(U)

∂U

)′

S

−
∂ω(U)

∂U
+

∞
∑

n=1

λn

[

1

∆S
2n

(

∂ω(n+1)

∂U

)′

S

−
∂ω(n+1)

∂U

]

= 0 , (3.4)

2γ
∂ log∆S

∂S
+

1

∆S
2

(

∂ω(S)

∂S

)′

S

−
∂ω(S)

∂S
(3.5)

+
∞
∑

n=1

λn

[

1

∆S
2n+2

(

∂ω(n+1)

∂S

)′

S

−
∂ω(n+1)

∂S
−n

∂ log∆S

∂S

[

1

∆S
2n

(

ω(n+1)
)′

S
+ω(n+1)

]

]

= 0 .

The above equations should hold for arbitrary values of λ. Furthermore we remind the

reader that the expressions with a prime attached depend on the transformed fields S′,

T ′ and U ′. Upon Taylor expanding in powers of T ′ − T and U ′ − U , one will generate

additional terms proportional to powers of λ. The definition of S′ under S-duality does not

involve the parameter λ and can be effected directly (for instance, by using equations such

as (2.24)). The last equation of (2.13) is more complicated as it involves a double sum,
∞
∑

n=1

nλn

[

1

∆S
2n

(

ω(n+1)
)′

S
− ω(n+1)

]

+ 2
∂ log∆S

∂S
λ

×





∂ω(T )

∂T
+

∞
∑

p=1

λp ∂ω
(p+1)(S, T, U)

∂T









∂ω(U)

∂U
+

∞
∑

q=1

λq ∂ω
(q+1)(S, T, U)

∂U



 = 0 . (3.6)
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Note that there are additional equations associated with T- and U-duality. Those follow

immediately by applying triality to the ones specified above.

We note that the terms of order λ0 cancel by virtue of the first equation (2.24). Fur-

thermore, at order λ, one directly derives the form of ω(2) from (3.6),

ω(2)(S, T, U) =
1

γ

∂ω

∂S

∂ω

∂T

∂ω

∂U
. (3.7)

This result is consistent with triality and it satisfies all the other equations (3.3)–(3.5).6

Before continuing let us first note the systematics of the results that gradually appears

when working out all the variations. The power of γ that appear in the various terms

of ω(n) must be equal to n − k, where k is the number of functions ω that are present.

Furthermore every contributions must contain precisely n − 1 derivatives with respect to

S, n − 1 with respect to T and n − 1 with respect to U . Finally ω(n) will be multiplied

by λn−1 in the expansion (2.14). This pattern will persist in all the higher-order terms,

something that can be deduced from analyzing the original equations.

Let us now turn to the determination of the function ω(3), starting again with equa-

tion (3.6) and collecting all terms proportional to λ2. This requires to express the term

ω(2)(S′, T ′, U ′) to first order in λ, which yields

1

∆S
2
ω(2)(S′, T ′, U ′) →

2λ

γ

∂∆S

∂S

(

∂ω

∂S
− 2γ

∂∆S

∂S

)

[

∂2ω

∂T 2

(

∂ω

∂U

)2

+
∂2ω

∂U2

(

∂ω

∂T

)2
]

. (3.8)

Upon inspecting all possible terms contributing to ∆S
−2 (ω(3))′S − ω(3), one easily verifies

that the second derivatives ∂2ω/∂T 2 and ∂2ω/∂U2 appear, but there is no corresponding

variation proportional to ∂2ω/∂S2. This does not imply that triality will be violated, simply

because ∆S
−2 (ω(3))′S − ω(3) will vanish for terms that are proportional to the covariant

combination I(2)(S) defined in (2.26). Hence one can include a term I(2)(S) f(T, U) into

ω(3), where f(T, U) can be chosen such that the result for ω(3) becomes consistent with

triality. In this way one derives the result

ω(3)(S, T, U) = − 2
∂2ω

∂S2

∂2ω

∂T 2

∂2ω

∂U2
(3.9)

−
1

γ

[

(

∂ω

∂S

)2 ∂2ω

∂T 2

∂2ω

∂U2
+

∂2ω

∂S2

(

∂ω

∂T

)2 ∂2ω

∂U2
+

∂2ω

∂S2

∂2ω

∂T 2

(

∂ω

∂U

)2
]

+ a3

[

∂2ω

∂S2
+

1

2γ

(

∂ω

∂S

)2
][

∂2ω

∂T 2
+

1

2γ

(

∂ω

∂T

)2
][

∂2ω

∂U2
+

1

2γ

(

∂ω

∂U

)2
]

.

Observe that we have included also an STU-covariant term that is invariant under triality

with an undetermined coefficient a3. As it turns out this coefficient will only be determined

6The expression of ω(2)(S, T, U) is unique. We have verified that it is not possible to add to it a

covariant function g(S, T, U) that is also triality invariant. Such a function would lead to a modification of

ω(3)(S, T, U) which would be incompatible with the transformation laws (3.3)–(3.5) and (3.6). We expect

that a similar finding applies to all the higher ω(n+1)(S, T, U) with n ≥ 2.
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at the next order by requiring that ω(4) will be triality invariant. We stress once more that

derivatives of the function ω can only depend on a single variable, S, T or U . The same

conclusion holds for the other equations (3.3)–(3.5) where the extra term proportional to

a3 does not contribute either. For the first two equations this is obvious and for the third

one must make use of the fact that

(

∂I(2)(S)

∂S

)′

S

= ∆S
6

(

∂I(2)(S)

∂S
+ 4

∂ log∆S

∂S
I(2)(S)

)

. (3.10)

Let us now continue the analysis to order λ3 and consider ω(4). Following the same

steps we find the following expression for ω(4) that is required by S-duality, without insisting

on triality,

ω(4) = −
2

γ

∂ω

∂S

∂2ω

∂S2

[

∂3ω

∂T 3

∂2ω

∂U2

∂ω

∂U
+

1

2γ

∂3ω

∂T 3

(

∂ω

∂U

)3

+
1

γ

∂2ω

∂T 2

∂ω

∂T

∂2ω

∂U2

∂ω

∂U
+ T ↔ U

]

−
1

γ2

(

∂ω

∂S

)3
[

∂3ω

∂T 3

∂2ω

∂U2

∂ω

∂U
+

1

3

∂3ω

∂T 3

(

∂ω

∂U

)3

+ T ↔ U

]

−
1

γ3

(

∂ω

∂S

)3 ∂2ω

∂T 2

∂ω

∂T

∂2ω

∂U2

∂ω

∂U

+
a3
γ

[

∂2ω

∂S2

∂ω

∂S
+

1

2γ

(

∂ω

∂S

)3
][

∂2ω

∂T 2

∂ω

∂T
+

1

2γ

(

∂ω

∂T

)3
][

∂3ω

∂U3
+

1

γ

(

∂ω

∂U

)3
]

+
a3
γ

[

∂2ω

∂S2

∂ω

∂S
+

1

2γ

(

∂ω

∂S

)3
][

∂3ω

∂T 3
+

1

γ

(

∂ω

∂T

)3
][

∂2ω

∂U2

∂ω

∂U
+

1

2γ

(

∂ω

∂U

)3
]

.

(3.11)

When insisting on triality it turns out that one must choose a3 = 2. For this value of a3 it

turns out that there is a remarkable number of cancellations in ω(3), whose final expression

takes the form

ω(3) =
1

4γ3

(

∂ω

∂S

∂ω

∂T

∂ω

∂U

)2

+
1

2γ2

[

∂2ω

∂S2

(

∂ω

∂T

∂ω

∂U

)2

+
∂2ω

∂T 2

(

∂ω

∂U

∂ω

∂S

)2

+
∂2ω

∂U2

(

∂ω

∂S

∂ω

∂T

)2
]

. (3.12)

One then obtains the following result for ω(4),

ω(4) =
1

6 γ5

(

∂ω

∂S

∂ω

∂T

∂ω

∂U

)3

+
1

2 γ4

[

∂2ω

∂S2

∂ω

∂S

(

∂ω

∂T

∂ω

∂U

)3

+
∂2ω

∂T 2

∂ω

∂T

(

∂ω

∂U

∂ω

∂S

)3

+
∂2ω

∂U2

∂ω

∂U

(

∂ω

∂S

∂ω

∂T

)3
]
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+
1

γ3

[

(

∂ω

∂S

)3 ∂2ω

∂T 2

∂ω

∂T

∂2ω

∂U2

∂ω

∂U
+

(

∂ω

∂T

)3 ∂2ω

∂U2

∂ω

∂U

∂2ω

∂S2

∂ω

∂S

+

(

∂ω

∂U

)3 ∂2ω

∂S2

∂ω

∂S

∂2ω

∂T 2

∂ω

∂T

]

+
1

6γ3

[

∂3ω

∂S3

(

∂ω

∂T

∂ω

∂U

)3

+
∂3ω

∂T 3

(

∂ω

∂U

∂ω

∂S

)3

+
∂3ω

∂U3

(

∂ω

∂S

∂ω

∂T

)3
]

+ a4 γ

[

∂3ω

∂S3
+

3

γ

∂2ω

∂S2

∂ω

∂S
+

1

γ2

(

∂ω

∂S

)3
][

∂3ω

∂T 3
+

3

γ

∂2ω

∂T 2

∂ω

∂T
+

1

γ2

(

∂ω

∂T

)3
]

×

[

∂3ω

∂U3
+

3

γ

∂2ω

∂U2

∂ω

∂U
+

1

γ2

(

∂ω

∂U

)3
]

, (3.13)

where, again, we introduced a new STU-covariant term proportional to the parameter a4,

which is triality invariant. The value of a4 is again expected to be fixed by insisting on

triality in the next order.

Finally we consider the terms proportional to λ4 and concentrate on the solution for

ω(5). Based on S-duality alone and using the result for the ω(n) with n < 5, we arrange the

result into an expression symmetric under triality, and two sets of remaining terms. The

triality symmetric expression, which will constitute the final result, reads as follows (we

organise the terms in inverse powers of γ),

ω(5) =
1

2γ4

[

∂3ω

∂S3

∂ω

∂S

[

(

∂ω

∂T

)2
∂2ω

∂T 2

(

∂ω

∂U

)4

+

(

∂ω

∂U

)2
∂2ω

∂U2

(

∂ω

∂T

)4
]

+
∂3ω

∂T 3

∂ω

∂T

[

(

∂ω

∂U

)2
∂2ω

∂U2

(

∂ω

∂S

)4

+

(

∂ω

∂S

)2
∂2ω

∂S2

(

∂ω

∂U

)4
]

+
∂3ω

∂U3

∂ω

∂U

[

(

∂ω

∂S

)2
∂2ω

∂S2

(

∂ω

∂T

)4

+

(

∂ω

∂T

)2
∂2ω

∂T 2

(

∂ω

∂S

)4
]]

+
4

γ4

∂2ω

∂S2

(

∂ω

∂S

)2
∂2ω

∂T 2

(

∂ω

∂T

)2
∂2ω

∂U2

(

∂ω

∂U

)2

+
1

24 γ4

[

∂4ω

∂S4

(

∂ω

∂T

)4 (
∂ω

∂U

)4

+
∂4ω

∂T 4

(

∂ω

∂U

)4 (
∂ω

∂S

)4

+
∂4ω

∂U4

(

∂ω

∂S

)4 (
∂ω

∂T

)4
]

+
1

2γ4

[

(

∂ω

∂S

)4
[

(

∂2ω

∂T 2

)2
∂2ω

∂U2

(

∂ω

∂U

)2

+

(

∂2ω

∂U2

)2
∂2ω

∂T 2

(

∂ω

∂T

)2
]

+

(

∂ω

∂T

)4
[

(

∂2ω

∂U2

)2
∂2ω

∂S2

(

∂ω

∂S

)2

+

(

∂2ω

∂S2

)2
∂2ω

∂U2

(

∂ω

∂U

)2
]

+

(

∂ω

∂U

)4
[

(

∂2ω

∂S2

)2
∂2ω

∂T 2

(

∂ω

∂T

)2

+

(

∂2ω

∂T 2

)2
∂2ω

∂S2

(

∂ω

∂S

)2
]]
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+
1

4γ5

[

(

∂ω

∂S

)4 (
∂ω

∂T

)4
[

(

∂2ω

∂U2

)2

+
∂3ω

∂U3

∂ω

∂U

]

+

(

∂ω

∂T

)4 (
∂ω

∂U

)4
[

(

∂2ω

∂S2

)2

+
∂3ω

∂S3

∂ω

∂S

]

+

(

∂ω

∂U

)4 (
∂ω

∂S

)4
[

(

∂2ω

∂T 2

)2

+
∂3ω

∂T 3

∂ω

∂T

]]

+
2

γ5

[

∂2ω

∂S2

(

∂ω

∂S

)2 (

∂ω

∂T

)4
∂2ω

∂U2

(

∂ω

∂U

)2

+
∂2ω

∂T 2

(

∂ω

∂T

)2 (

∂ω

∂U

)4
∂2ω

∂S2

(

∂ω

∂S

)2

+
∂2ω

∂U2

(

∂ω

∂U

)2 (

∂ω

∂S

)4
∂2ω

∂T 2

(

∂ω

∂T

)2
]

+
5

8γ6

[

∂2ω

∂S2

(

∂ω

∂S

)2 (
∂ω

∂T

)4 (
∂ω

∂U

)4

+
∂2ω

∂T 2

(

∂ω

∂T

)2 (
∂ω

∂U

)4 (
∂ω

∂S

)4

+
∂2ω

∂U2

(

∂ω

∂U

)2 (
∂ω

∂S

)4 (
∂ω

∂T

)4
]

+
5

32 γ7

(

∂ω

∂S

)4 (
∂ω

∂T

)4 (
∂ω

∂U

)4

. (3.14)

In addition there are two more contributions. One takes the form

[

ω(5)
]

1
= −

1

2γ4

(

I(2)(S)
)2

[

∂2ω

∂T 2

(

∂ω

∂T

)2( ∂ω

∂U

)4

+
∂2ω

∂U2

(

∂ω

∂U

)2(∂ω

∂T

)4
]

−
1

4γ5

(

I(2)(S)
)2

(

∂ω

∂T

)4( ∂ω

∂U

)4

−
1

24 γ4
I(4)(S)

(

∂ω

∂T

)4( ∂ω

∂U

)4

, (3.15)

and is proportional to the S-covariant terms [I(2)(S)]2 and I(4)(S). These terms are not

fixed by the equation for ω(5). The other contribution contains terms that are proportional

to the undetermined constant a4 introduced in (3.13). They take the form

[

ω(5)
]

2
=

a4
γ

[

∂3ω

∂S3
+

3

γ

∂2ω

∂S2

∂ω

∂S
+

1

γ2

(

∂ω

∂S

)3
]

∂ω

∂S

×

[

∂4ω

∂T 4
+

3

γ

∂3ω

∂T 3

∂ω

∂T
+

3

γ

(

∂2ω

∂T 2

)2

+
3

γ2
∂2ω

∂T 2

(

∂ω

∂T

)2
]

×

[

∂3ω

∂U3
+

3

γ

∂2ω

∂U2

∂ω

∂U
+

1

γ2

(

∂ω

∂U

)3
]

∂ω

∂U
+ [T ↔ U ] , (3.16)

This expression is not triality invariant, and neither can it be made invariant by including

terms of the form I(4)(S) f(T, U) +
[

I(2)(S)
]2

g(T, U). Hence it follows that a4 = 0.

Therefore ω(5) is given by (3.14), up to STU-covariant terms consisting of triality

symmetric products of I(4)(S) or
[

I(2)(S)
]2
, I(4)(T ) or

[

I(2)(T )
]2
, and I(4)(U) or

[

I(2)(U)
]2
.

There are precisely four such terms, multiplied by arbitrary constants and integer powers

of γ ranging between γ−1 and γ2. Based on the experience for n ≤ 4 so far, we expect

that these undetermined terms will be fixed by proceeding with the present analysis to
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level λ5. However, in the next section we will change strategy, and at the end of section 6

we will then discover an alternative way of proving that ω(5) will precisely be given by

equation (3.14).

Hence at this point we have determined the coefficient functions ω(n) for n ≤ 5. We

are not aware of any impediment when continuing the present calculation to higher orders

and expect that the function Ω can be uniquely determined from STU-duality combined

with triality.

4 The topological string partition function

It is possible to obtain a corresponding version of the topological partition functions from

the function (2.6) that encodes the Wilsonian effective action. This relation involves a

Legendre transform and as a result the topological string will behave differently under the

duality symmetries. The transformation rules of its moduli will not be affected by the pos-

sible introduction of deformations, such as those associated with Ω. Upon performing the

Legendre transform, one obtains the so-called Hesse potential [25], which decomposes into

an infinite variety of different functions. One of these functions exhibits the characteristic

features of the topological string partition function. As a result the moduli of the topolog-

ical string are not identical to the moduli that appear in the Wilsonian action. Actually

the same phenomenon is encountered in field theory when considering the Lagrangian and

the Hamiltonian of a four-dimensional theory with abelian vector gauge fields. The dy-

namical variables that appear in the Lagrangian are different from those that appear in

the Hamiltonian, and the consequences of electric-magnetic duality will be realized in a

different way.

The Hesse potential is a real function of the moduli. As we will see, its moduli will

transform covariantly under the dualities and the transformation rules do not change be-

cause of the presence of possible deformations. Hence the Hesse potential will transform

as a function under general duality transformations, which in the model at hand consti-

tute the group Sp(8;R), and it will remain invariant under the subgroup thereof equal to

Γ0(2)S×Γ0(2)T×Γ0(2)U. As was demonstrated in [9], the Hesse potential can be obtained

from the function F (X,A) that encodes the Wilsonian action. To construct the Hesse

potential it is important that the deformation Ω is real, whereas in (2.6) it we assumed

to depend only on the holomorphic moduli. To make Ω real we will simply add its com-

plex conjugate. This change is not problematic as the holomorphic derivatives FI are not

affected, so that the results of the previous section will remain valid. When deriving the

expression for the Hesse potential, we will for the moment replace Ω by Ω(X,A)+Ω̄(X̄, Ā).

The Legendre transformation is most easily understood by first considering a conver-

sion to real special geometry, where the real fields
(

φI , χJ

)

transform under the dualities

precisely as the dual pair (XI , FJ(X,A)), where FJ(X,A) denotes the derivatives of the

function (2.6) with respect to the XJ . Hence we consider the redefinitions,

φI = 2ReXI , χJ = 2ReFJ(X,A) . (4.1)
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The Hesse potential is now obtained by a Legendre transform with respect to the imaginary

part of the XI [25],

H(φ, χ) = 4
[

ImF (X) + Ω(X,A) + Ω̄(X̄, Ā)
]

+ iχI(X
I − X̄I) , (4.2)

where F (X) is equal to the function (2.2). The Hesse potential transforms as a function

under generic Sp(8;R) dualities and is left invariant under the Γ0(2)S × Γ0(2)T × Γ0(2)U
subgroup.

The topological string partition function are conventionally written in terms of complex

moduli that transform covariantly under the dualities. Therefore we carry out a conversion

by subsequently following the inverse procedure (4.1), but to different moduli X I ,

2ReXI = φI = 2ReX I ,

2ReFI(X,A) =χI = 2ReFI(X ) , (4.3)

where on the left-hand side we have the original fields XI and the XI - derivatives of the

function (2.6), and on the right-hand side the new fields X I and the X I -derivatives of the

classical function F(X ), equal to

F(X ) = −
X 1X 2X 3

X 0
. (4.4)

This relation is motivated by the fact that both sides of these equations transform con-

sistently under the same duality transformations. Obviously the XI and X I will differ by

terms proportional to powers of Ω. The details of this construction have been described

in [9]. The next step is to express the original moduli XI in terms of the new ones, X I ; this

can be done by iteration. The results can then be substituted into the expression (4.2).

Similar evaluations have been carried out in [7, 9] for various models. However, to make

contact with the topological string partition function it is important to realize that the

Hesse potential will decompose into an infinite number of functions that are separately

invariant under the action of the duality subgroup that constitute an invariance of the

model. The general situation may be described as follows,

H =H(0) +H(1) +H(2) +
(

H
(3)
1 +H

(3)
2 + h.c.

)

+H
(3)
3 +H

(4)
1 +H

(4)
2 +H

(4)
3

+
(

H
(4)
4 +H

(4)
5 +H

(4)
6 +H

(4)
7 +H

(4)
8 +H

(4)
9 + h.c.

)

. . . . (4.5)

The leading terms of some of these functions are presented in [9]. For the STU-model of

this paper, each of these functions will be invariant under [Γ0(2)]
3 dualities.

The first function, H(0)(X , X̄ ) in (4.5) is simply the Hesse potential associated with

the classical function (4.4), which is real and non-holomorphic,

H(0)(X , X̄ ) = −i
[

X̄ IFI(X )−X IF̄I(X̄ )
]

. (4.6)

As shown in (4.5), there are infinitely many additional functions that emerge which all

depend on the extension Ω. For a general real function Ω, H(1) has been presented up to

terms of order Ω5. However, as was pointed out earlier, for the STU-model the function Ω
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is actually harmonic, so it can be written as the sum of a holomorphic function Ω and its

complex conjugate. Therefore it suffices to only give the terms proportional to A, so that

Ω will depend holomorphically on the modular forms ω,

H(1) =

[

4Ω− 4N IJ ΩIΩJ + 8ΩIJ(NΩ)I(NΩ)J

+
8

3
iFIJK(NΩ)I(NΩ)J(NΩ)K

−
4

3
i
(

FIJKL + 3iFR(IJN
RSFKL)S

)

(NΩ)I(NΩ)J(NΩ)K(NΩ)L

−
16

3
ΩIJK(NΩ)I(NΩ)J(NΩ)K

− 16iFIJKNKP ΩPQ(NΩ)I(NΩ)J(NΩ)Q

− 16 (NΩ)P ΩPQNQRΩRK (NΩ)K +O(Ω5)

]

+ h.c. . (4.7)

Here we have used the notation (NΩ)I = N IJΩJ , (N Ω̄)I = N IJΩJ̄ , with N IJ the inverse of

NIJ = 2 Im [F(X )IJ ]. Explicit expressions for both NIJ and N IJ are given in appendix A.

Note that the whole expression is now written in terms of the new moduli X I , and no

longer in terms of the original moduli.

All other functions in (4.5) are qualitatively very different fromH(1)(X , X̄ ): they do not

contain terms linear in Ω and they are not harmonic in Ω. These special features identify

the function H(1) as the unique candidate for the topological string partition function.

However, it is important to appreciate that H(1) is not holomorphic in X I in view of the

presence of the tensors N IJ . The results of the previous sections based on (2.14) imply

that the function H(1) does instead have the following form,

H(1) = 4A
[

− γ lnλ+ h(ω;λ)
]

+ h.c. , (4.8)

where the function h(ω;λ) depends on the holomorphic modular form ω and its covariant

derivatives, and on the holomorphic topological string coupling constant λ defined below.

While the modular form ω depends only on the moduli S, T, U , we will see that the covariant

derivatives involve a non-holomorphic connection, so that the function h(ω;λ) will depend

explicitly on S, T , U , and their complex conjugates. This feature is characteristic for the

topological string partition function.

Incidentally, we note that when suppressing all the non-holomorphic terms in (4.7) the

function h(ω;λ) will be holomorphic and only the holomorphic Ω will remain. In that limit

there is no longer a distinction between the old and the new moduli so that h(ω;λ) must

become equal to

h(ω;λ) −→ ω(1)(S, T, U) +
∞
∑

n=1

λn ω(n+1)(S, T, U) . (4.9)

One can use this observation to relate specific terms in (4.7) to the terms in the holomorphic

function that was evaluated in section 3. We will make use of this observation at the end

of section 6 and in appendix B.
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Let us now turn to the precise nature to the non-holomorphic terms. First of all, the

new moduli and the parameter λ are defined by

S = −i
X 1

X 0
, T = −i

X 2

X 0
, U = −i

X 3

X 0
λ =

A

(X 0)2
, (4.10)

which are similar but not identical to ones defined in previous sections. The fields and λ

transform under S-duality as

S →
aS − ib

d+ ic S
, T → T , U → U , λ →

λ

(d+ ic S)2
, (4.11)

but one should keep in mind that these fields are fundamentally different from the original

ones defined in (2.3), because their duality transformations (4.11) are exact and will not be

affected by the presence of Ω(X,A). As before, the corresponding transformations under

T- and U-duality follow from triality.

We explicitly evaluate the first few terms of the function h(ω;λ) to appreciate how

its duality invariance is realized. This follows from repeated use of the following identity,

where V and W are two arbitrary functions that depend holomorphically on X I ,

∂V

∂X I
N IJ ∂W

∂X J
=

1

(X 0)2

∑

STU

1

S + S̄

∂V

∂T

∂W

∂U

−
1

X 0

∑

STU

[

∂V

∂X 0

1

(S + S̄)(T + T̄ )

∂W

∂U
+ {V ↔ W}

]

+
2

(S + S̄)(T + T̄ )(U + Ū)

∂V

∂X 0

∂W

∂X 0
, (4.12)

where we used the explicit expression for the matrix N IJ given in (A.3) and where
∑

STU

denotes the sum over all independent permutations of {S, T, U}.

Using the explicit expressions in section 3, one then obtains the following result

for h(ω;λ),

h(ω;λ) = ω(S) + ω(T ) + ω(U) +
λ

γ
[DS ω DT ω DU ω]

+ λ2

[

1

4γ3
(DS ω)2 (DT ω)2 (DU ω)2

+
1

2γ2
[

(DS
2ω) (DT ω)2 (DU ω)2 + (DS ω)2 (DT

2ω) (DU ω)2

+(DS ω)2 (DT ω)2 (DU
2ω)

]

]

+ λ3

[

1

6γ5
(DS ω)3 (DT ω)3 (DU ω)3

+
1

2γ4
[

(DS
2ω) (DSω) (DT ω)3 (DU ω)3

+ (DS ω)3 (DT
2ω) (DT ω) (DU ω)3

+(DS ω)3 (DT ω)3 (DU
2ω) (DU ω)

]
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+
1

γ3
[

(DS ω)3 (DT
2ω) (DT ω) (DU

2ω) (DU ω)

+ (DS
2ω) (DS ω) (DT

2ω) (DT ω) (DU ω)3

+(DS
2ω) (DS ω) (DT ω)3 (DU

2ω) (DU ω)
]

+
1

6γ3
[

(DS
3ω) (DT ω)3 (DU ω)3 + (DS ω)3 (DT

3ω) (DU ω)3

+(DS ω)3 (DTω)
3 (DU

3ω)
]

]

+O(λ4) , (4.13)

where we have introduced non-holomorphic duality covariant derivatives defined such that

DS
nω → ∆S

2nDS
nω , (4.14)

which shows that the expression (4.8) is manifestly STU-duality invariant as it should.

Incidentally, the duality transformation of the functions ω may involve a constant imaginary

shift due to the multiplyer system, as discussed in section 2, which will cancel in the

variation of (4.21) below. Explicit expressions for the covariant derivatives are, for instance,

DS ω =
∂ω

∂S
−

2γ

S + S̄
, DS

2ω =
∂2ω

∂S2
+

2

(S + S̄)

∂ω

∂S
−

2γ

(S + S̄)2
, (4.15)

while for a covariant quantity Σ(S) of weight p, which transforms under S-duality according

to Σ(S) → ∆S(S)
pΣ(S), the covariant derivative equals

DS Σ(S) =

(

∂

∂S
+

p

S + S̄

)

Σ(S) . (4.16)

These results can be combined with similar expressions that involve the Serre derivative.

For instance, we note the convenient identity

I(n+1)(S) = DSI
(n)(S) +

n

γ
I(n)(S)DS ω , (4.17)

which follows from (2.27). Another useful identity is,

DS
2 ω = I(2)(S)−

1

2γ

(

DS ω
)2

. (4.18)

Let us now return to h(ω;λ) and rewrite it as follows,

h(ω;λ) = ω(S) + ω(T ) + ω(U) +
∞
∑

g=2

λg−1F (g)(S, T, U) . (4.19)

This expression defines the genus expansion of the topological string partition function with

g ≥ 2, where the F (g) depend on the functions ω(S), ω(T ) and ω(U) and their covariant
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derivatives, which depend on S, T, U and their complex conjugates. Here λ plays the role of

the topological string coupling constant. As an example we present the expression for F (2),

F (2)(S, T, U) =
λ

γ
DS ω(S) DT ω(T ) DU ω(U) , (4.20)

where we stress that the dependence on S̄, T̄ and Ū is implicit and contained in the

covariant derivatives. For higher genus g = 3, 4 the result can be read off from (4.13).

Based on (4.7), we also obtain the genus-1 partition function (which is real and harmonic),

F (1) = −γ ln |λ|2 + ω(S) + ω(T ) + ω(U) + ω̄(S̄) + ω̄(T̄ ) + ω̄(Ū) , (4.21)

where here and henceforth we choose A equal to unity.

For g ≥ 2 the partition functions satisfy a holomorphic anomaly equation of the form

∂h

∂S̄
=

2λ

(S + S̄)2
DT hDU h , (4.22)

which can be verified up to order λ4 on the basis of the results obtained so far, with similar

equations for the T̄ and Ū derivatives. Observe that the anti-holomorphic derivative with

respect to X̄ 0 vanishes, as the dependence on λ is holomorphic. The equation (4.22) was

encountered in [9] as a result of the diagrammatic structure in the Hesse potential. The

same arguments apply in this case, so that we may assume that (4.22) holds to all orders.

Note that the above results do not entirely agree with the holomorphic anomaly equa-

tion obtained in [10, 11], in particular because F (1) is harmonic and therefore not af-

fected by the anomaly. However, one can replace the term −γ ln |λ|2 by −γ lnN , where

N = | detNIJ |, since they transform identically under duality. In that case one obtains

F (1) = −γ lnN + ω(S) + ω(T ) + ω(U) + ω̄(S̄) + ω̄(T̄ ) + ω̄(Ū) . (4.23)

Equivalently, one could take the view that we have introduced an extra term equal to

−γ
[

lnN − ln |λ|2 which is duality invariant and non-harmonic. It seems obvious that this

modification will not affect the higher-order terms of h(ω;λ), because those do already

respect the duality invariance.

On the other hand, in [9] we have demonstrated how a non-harmonic term in F (1),

which transforms into harmonic variations under duality, will introduce non-harmonic

terms into the higher-genus contributions. We have therefore explicitly verified that (4.23)

will indeed induce the same non-holomorphic corrections as we have found earlier in (4.13).

5 Partial determination of the function h

Here and in the next section we will try to further determine the function h(ω;λ) that

comprises the part of the topological string partition function that depends holomorphically

on the topological string coupling constant λ. Inspired by [13], we therefore consider the

special limit where the modular forms ω are suppressed and consider the possibility of

an exact expression for the topological string partition function. The expression for the
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function h then takes the form of a power series in terms of an effective coupling constant

λ̃ defined by

λ̃ =
λ

(S + S̄)(T + T̄ )(U + Ū)
. (5.1)

Indeed, suppressing ω in (4.13) leads to

h0(λ̃) =
∑

n=2

an λ̃
n−1 = −8 γ2 λ̃− 32 γ3 λ̃2 +O(λ̃3) , (5.2)

where we appended the subscript to indicate that this is only a truncated version of the

original function h(ω;λ). Here we note that λ̃ transforms under duality with a phase,

e.g. λ̃ →
(

∆̄S/∆S

)

λ̃. However, we will eventually replace λ̃ by a modified expansion

parameter that is fully STU invariant. The main topic of this section is to determine the

exact expression for h0 and to derive an equation for the additional terms which will be

contained in another function h1.

Subsequently we substitute (5.2) into the non-linear equation (4.22). Before doing so

we first evaluate the result for DT h and ∂S̄ h upon suppressing ω,

(T + T̄ )DT h
∣

∣

∣

ω=0
= − 2γ +

∑

n=2

(n− 1) an λ̃
n−1 ,

(S + S̄)
∂h

∂S̄

∣

∣

∣

∣

ω=0

= −
∑

n=2

(n− 1) an λ̃
n−1 . (5.3)

Equation (4.22) then leads to a2 = −8 γ2 and a3 = −32 γ3 by considering the terms

proportional to λ̃ and λ̃2, respectively, which is in agreement with the values found in (5.2).

The terms in higher powers of λ̃ then yield the following equations (for n ≥ 4),

− (n− 1) an = −8γ(n− 2) an−1 + 2

n−2
∑

r=2

(r − 1)(n− r − 1) ar an−r . (5.4)

Hence all the coefficients an will be determined by these equations. It also follows that

these coefficients are real. The reader may use this equation to find a4 = −640
3 γ4, which

can also be directly verified from (4.13). We will need this result shortly.

It is now straightforward to rewrite (4.22) as

(

λ̃
∂h0

∂λ̃

)2

+

(

1

2 λ̃
− 4γ

)

λ̃
∂h0

∂λ̃
+ 4 γ2 = 0 . (5.5)

Since this equation is quadratic we may distinguish two different solutions. One of them

reproduces the weak coupling results,

dh0(λ̃)

dλ̃
=

2γ

λ̃
−

1

4 λ̃2

[

1−

√

1− 16 γ λ̃

]

. (5.6)

This ordinary differential equation has a solution

h0(λ̃) = 2γ ln 4γλ̃+
1

4 λ̃
−

√

1− 16γ λ̃

4 λ̃
− 2γ + 4γ arctanh

√

1− 16γ λ̃ , (5.7)
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whose expansion in powers of λ̃ indeed reproduces the first three terms noted before,

h0(λ̃) = −8 γ2λ̃− 32 γ3 λ̃2 −
640

3
γ4 λ̃3 − 1792 γ5 λ̃4 +O(λ̃5) . (5.8)

Observe that this result for the STU-model is qualitatively different from the result ob-

tained in [13] for general Calabi-Yau compactifications. The function h0 constitutes only

part of the function h and it is not invariant under the STU-dualities. However, it is

straightforward to extend it to a duality invariant function by replacing the definition of λ̃

according to

λ̃ −→ λ̃ = −
λ

8 γ3
DS ω(S) DT ω(T ) DU ω(U) , (5.9)

which reduces to the old definition (5.1) when ω = 0. Upon this replacement the function

h0(λ̃) is STU-duality invariant and the first few terms in its expansion are equal to

h0(λ̃) =
∑

n=2

an λ̃
n−1

=
λ

γ

[

DS ω(S) DT ω(T ) DU ω(U)
]

−
λ2

2 γ3
[

DS ω(S) DT ω(T ) DU ω(U)
]2

+
5λ3

12 γ5
[

DS ω(S) DT ω(T ) DU ω(U)
]3

−
7λ4

16 γ7
[

DS ω(S) DT ω(T ) DU ω(U)
]4

+O(λ5) , (5.10)

which is now manifestly duality invariant. Hence one can decompose h(ω;λ) as follows,

h(ω;λ) = ω(S) + ω(T ) + ω(U) + h0(λ̃) + h1(λ̃) , (5.11)

where the function h1(λ̃) should vanish in the limit ω = 0, because in that limit h0 will

already capture all the terms in h. Therefore h1 can be written in a form that is at least

linear in the covariant holomorphic functions I(n) defined in (2.26), or products thereof,

which vanish for ω = 0, times first order covariant derivatives of the functions ω. Explicit

calculations leads to the first few terms in h1,

h1(λ) =
λ2

2 γ2

[

I(2)(S) (DT ω)2 (DU ω)2+(DS ω)2 I(2)(T ) (DU ω)2+(DS ω)2 (DT ω)2 I(2)(U)
]

+
λ3

γ3

[

(DS ω)3 I(2)(T ) (DT ω) I(2)(U) (DU ω)+I(2)(S) (DS ω) I(2)(T ) (DT ω) (DU ω)3

+I(2)(S) (DS ω) (DT ω)3 I(2)(U) (DU ω)
]

−
λ3

γ4

[

I(2)(S) (DS ω) (DT ω)3 (DU ω)3+(DS ω)3 I(2)(T ) (DTω) (DU ω)3

+(DS ω)3 (DT ω)3 I(2)(U) (DU ω)
]

+
λ3

6 γ3

[

I(3)(S) (DT ω)3 (DU ω)3+(DS ω)3 I(3)(T ) (DU ω)3

+(DS ω)3 (DT ω)3 I(3)(U)
]

+O(λ4) . (5.12)
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It is advantageous to express this result again in the modified coupling constants λ̃ defined

in (5.9). Because of the invariance under dualities, the expression takes a simpler form,

h1(λ̃) = 32 γ4
(

λ̃2 + 16 γλ̃3
)

[

Ĩ(2)(S) + Ĩ(2)(T ) + Ĩ(2)(U)
]

− 512 γ6λ̃3
[

Ĩ(2)(T ) Ĩ(2)(U) + Ĩ(2)(S) Ĩ(2)(T ) + Ĩ(2)(S) Ĩ(2)(U)
]

−
256

3
γ6λ̃3

[

Ĩ(3)(S) + Ĩ(3)(T ) + Ĩ(3)(U)
]

+O(λ̃4) . (5.13)

Here we made use of the duality invariant quantities

Ĩ(n)(S) =
I(n)(S)

(DS ω)n
, (5.14)

which are no longer holomorphic because of the presence of the non-holomorphic covari-

ant derivative. Hence the function h1 can be written in terms of functions of λ̃ times

polynomials of the Ĩ(n) that are invariant under triality.

The function (5.11) must still satisfy the anomaly equation (4.22), and this implies a

non-linear differential equation for h1. To evaluate this equation we note the relations

∂λ̃

∂S̄
=

2 γ

(S + S̄)2DS ω
λ̃ ,

∂Ĩ(n)(S)

∂S̄
= −

2nγ

(S + S̄)2DS ω
Ĩ(n)(S)

DT λ̃ = DT ω

(

Ĩ(2)(T )−
1

2γ

)

λ̃ ,

DT Ĩ(n)(T ) = DT ω

(

Ĩ(n+1)(T )−
n

2γ
Ĩ(n)(T )− n Ĩ(n)(T ) Ĩ(2)(T )

)

, (5.15)

where we made use of (4.17) and (4.18). With the help of these results one derives the

equation for h1(λ̃),

λ̃
∂h1

∂λ̃
−
∑

n=2

nĨ(n)(S)
∂h1

∂Ĩ(n)(S)
= (5.16)

−16γ3λ̃
[

Ĩ(2)(T )−γ Ĩ(2)(T ) Ĩ(2)(U)+(T ↔ U)
]

−2γ λ̃
∂h0

∂λ̃

[(

1−4γλ̃
)

Ĩ(2)(T )−γ
(

1−8γλ̃
)

Ĩ(2)(T ) Ĩ(2)(U)+(T ↔ U)
]

+4γ λ̃

[(

1−
1

2γ
λ̃
∂h0

∂λ̃

(

1−2γ Ĩ(2)(T )
)

)

(

1−2γ Ĩ(2)(U)
)

+(T ↔ U)

]

λ̃
∂h1

∂λ̃

−8γ2 λ̃

[

(

1−
1

2γ
λ̃
∂h0

∂λ̃

(

1−2γ Ĩ(2)(T )
)

)

×
∑

n=2

(

Ĩ(n+1)(U)−
n

2γ
Ĩ(n)(U)−nĨ(n)(U) Ĩ(2)(U)

)

∂h1

∂Ĩ(n)(U)
+(T ↔ U)

]
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−8γ2λ̃

×

[

(

1−2γ Ĩ(2)(T )
) 1

2γ
λ̃
∂h1

∂λ̃
−
∑

m=2

(

Ĩ(m+1)(T )−
m

2γ
Ĩ(m)(T )−mĨ(m)(T ) Ĩ(2)(T )

)

∂h1

∂Ĩ(m)(T )

]

×

[

(

1−2γ Ĩ(2)(U)
) 1

2γ
λ̃
∂h1

∂λ̃
−
∑

n=2

(

Ĩ(n+1)(U)−
n

2γ
Ĩ(n)(U)−nĨ(n)(U) Ĩ(2)(U)

)

∂h1

∂Ĩ(n)(U)

]

,

where we made use of (5.5) without making use of the weak coupling solution (5.7). We

will study the function h1 in the next section.

At the end of this section we analyze the more general solution of the differential

equation (5.5). Because this equation is quadratic, there are two branches,

dh0(λ̃)

dλ̃
=

2γ

λ̃
−

1

4 λ̃2

[

1∓

√

1− 16 γ λ̃

]

, (5.17)

which correspond to the two sheets of the Riemann surface described by the following

algebraic curve in C
2,

v2 = 1− 16 γ λ̃ , (5.18)

where (λ̃, v) ∈ C
2. The first sheet is the one that contains (λ̃, v) = (0, 1), while the second

sheet is the one that contains (λ̃, v) = (0,−1). The weak coupling result derived so far is

then recovered by working in the first sheet in the vicinity of (λ̃, v) = (0, 1); the associated

ordinary differential equation (5.6) leads to the solution (5.7). Instead of working on one

or on the other sheet, we may work with a single variable u on the Riemann surface C,

which we identify with v on the first sheet, and with −v on the second sheet. In terms of

u the function h0 takes the following form,

h0(u) = 2γ

(

2 ln
u+ 1

2
−

u− 1

u+ 1

)

, (5.19)

and covers both sheets. Note that the solution h0(u) contains a logarithmic branch cut

starting at u = −1, and it vanishes at the zero-coupling point u = 1. The equation (5.16)

for h1 depends on h0 only through

λ̃
∂h0

∂λ̃
= 2γ

u− 1

u+ 1
, λ̃

∂h1

∂λ̃
=

u2 − 1

2u

∂h1
∂u

, (5.20)

where the relation between λ̃ and the duality invariant effective coupling constant u is

given by
u2 − 1

16γ
= −λ̃ =

λ

8 γ3
DSω(S)DTω(T )DUω(U) . (5.21)

We now express equation (5.16) in terms of u, and we will regard h1 as a function

of u,

u2−1

2u

∂h1

∂u
−
∑

n=2

n Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
= (5.22)

+γ2(u2−1)
[

Ĩ(2)(T )−γ Ĩ(2)(T ) Ĩ(2)(U)+(T ↔ U)
]
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−γ2 u−1

u+1

[

(

3+u2
)

Ĩ(2)(T )−2γ
(

1+u2
)

Ĩ(2)(T ) Ĩ(2)(U)+(T ↔ U)
]

−
1

4
(u2−1)

[(

1−
u−1

u+1

(

1−2γ Ĩ(2)(T )
)

)

(

1−2γ Ĩ(2)(U)
)

+(T ↔ U)

]

u2−1

2u

∂h1

∂u

+
1

2
γ(u2−1)

[

(

1−
u−1

u+1

(

1−2γ Ĩ(2)(T )
)

)

×
∑

n=2

(

Ĩ(n+1)(U)−
n

2γ
Ĩ(n)(U)−n Ĩ(n)(U) Ĩ(2)(U)

)

∂h1

∂Ĩ(n)(U)
+(T ↔ U)

]

+
1

2
γ(u2−1)

×

[

(

1−2γ Ĩ(2)(T )
) u2−1

4γ u

∂h1

∂u
−
∑

m=2

(

Ĩ(m+1)(T )−
m

2γ
Ĩ(m)(T )−m Ĩ(m)(T ) Ĩ(2)(T )

)

∂h1

∂Ĩ(m)(T )

]

×

[

(

1−2γ Ĩ(2)(U)
) u2−1

4γ u

∂h1

∂u
−
∑

n=2

(

Ĩ(n+1)(U)−
n

2γ
Ĩ(n)(U)−n Ĩ(n)(U) Ĩ(2)(U)

)

∂h1

∂Ĩ(n)(U)

]

.

In the next section we will discuss various partial solutions of this equation. Note that

we will be encountering three special values for u, namely u = 1, 0,−1. The value u = 1

corresponds to the perturbative point. The significance of the other two points is at present

not entirely clear, as for those values the above equations exhibit singularities.

6 Evaluating contributions contained in h1

In this section we will start the explicit evaluation of a variety of terms that are contained

in the function h1 by imposing the holomorphic anomaly equation. This means that we

will be studying possible solutions of the differential equation (5.22). Since the function

h1 is decomposed in terms of products of the quantities Ĩ(n) with u-dependent coefficients,

we can concentrate on specific products and study the consequences of (5.22). As it turns

out, contributions that depend on at most two of the moduli are determined by algebraic

equations. For the terms that depend on all three moduli, the situation is more complicated

since, for a subclass of these terms, one will have to solve differential equations that will

necessarily introduce integration constants.

In the last part of this section we will then use the various results of the topological

string partition function and investigate its implications for the effective Wilsonian action.

Although part of the input of the latter was taken into account when constructing the

former, it turns out that the dual approach that we follow here enables not only to demon-

strate the mutual consistency of the corresponding results, but it also enables to resolve

the ambiguities that were encountered at this stage. For instance, we will be able to fix

an integration constant associated with the differential equations that we will be trying to

solve.

Let us first start by considering the terms in h1(u) that only depend on S. In that

case we derive the following equation from (5.22),

u2 − 1

2

∂h1
∂u

−
∑

n=2

n Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
−

1

32 γ

(u2 − 1)3

u2

(

∂h1
∂u

)2

= 0 . (6.1)
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However, there is a second equation that follows by interchanging S and T in (5.22); here

we also suppress all T - and U -dependent terms, which leads to a different equation (because

the equation (5.22) is not symmetric under the interchange of S and T ),

2 γ2
(u− 1)2

u+ 1
Ĩ(2)(S)

−
u2 − 1

8u

[

3 + u2 − (u− 3)(u− 1)
(

1− 2γ Ĩ(2)(S)
)] ∂h1

∂u

+

(

γ(u− 1)−
(u2 − 1)2

8u

∂h1
∂u

)

∑

n=2

[

Ĩ(n+1)(S)−
n

2γ
Ĩ(n)(S)− n Ĩ(n)(S) Ĩ(2)(S)

]

∂h1

∂Ĩ(n)(S)

+
1

32 γ

(

1− 2γ Ĩ(2)(S)
) (u2 − 1)3

u2

(

∂h1
∂u

)2

= 0 . (6.2)

Combining this equation with (6.1), we derive an equation that depends at most linearly

on ∂h1/∂u,

γ Ĩ(2)(S)

[

2 γ
(u− 1)2

u+ 1
−

(u2 − 1)(u2 + 3)

4u

∂h1
∂u

]

+

(

γ(u− 1)−
(u2 − 1)2

8u

∂h1
∂u

)

∑

n=2

Ĩ(n+1)(S)
∂h1

∂Ĩ(n)(S)

−
1

2

(

1 + 2γ Ĩ(2)(S)
)

(

u− 1−
(u2 − 1)2

8γ u

∂h1
∂u

)

∑

n=2

n Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)

−
(

1− 2γ Ĩ(2)(S)
)

∑

n=2

n Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
= 0 . (6.3)

From the above equation one can then straightforwardly derive the contributions to h1 that

are linearly proportional to Ĩ(n)(S). The resulting expression, which also satisfies (6.1),

takes the form,

h1(u)
∣

∣

∣

linear
=

∑

m=2

cm(u)
[

Ĩ(m)(S) + Ĩ(m)(T ) + Ĩ(m)(U)
]

, (6.4)

with

cm(u) =
(2γ)m

m!

(

u− 1

u+ 1

)m

. (6.5)

Note that we included the T - and U -dependent terms in (6.4) to make the result manifestly

invariant under triality.

Encouraged by this result, we proceed to determine the coefficient functions of the

terms in h1 equal to Ĩ(m)(S) Ĩ(n)(S) as well as Ĩ(m)(S) Ĩ(n)(T ),

h1(u)
∣

∣

∣

quadratic
=

∑

m,n=2

dm,n(u)
[

Ĩ(m)(S) Ĩ(n)(S) + Ĩ(m)(T ) Ĩ(n)(T ) + Ĩ(m)(U) Ĩ(n)(U)
]

(6.6)

+ em,n(u)
[

Ĩ(m)(S) Ĩ(n)(T ) + Ĩ(m)(T ) Ĩ(n)(U) + Ĩ(m)(U) Ĩ(n)(S)
]

,
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where we included the terms related by triality. Obviously dm,n(u) and em,n(u) are sym-

metric in (m,n). The contributions (6.6) will be determined from (5.22), which leads to

three different equations. The first one is equal to

u2 − 1

2

∂h1
∂u

−
1

32 γ

(u2 − 1)3

u2

(

∂h1
∂u

)2
(

1− 2γ Ĩ(2)(T )
)

−
∑

n=2

n Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
+ γ (u− 1)(u− 3)

u2 − 1

4u

∂h1
∂u

Ĩ(2)(T )

+
1

2γ

[

γ(u− 1)−
(u2 − 1)2

8u

∂h1
∂u

]

(

1 + 2γ Ĩ(2)(T )
)

∑

n=2

n Ĩ(n)(T )
∂h1

∂Ĩ(n)(T )

−

[

γ(u− 1)−
(u2 − 1)2

8u

∂h1
∂u

]

∑

n=2

Ĩ(n+1)(T )
∂h1

∂Ĩ(n)(T )
= 0 , (6.7)

where we have retained all the terms depending on S and T with the exception of a term

linear in Ĩ(2)(T ). A second equation follows from exchanging S ↔ T in (5.22), suppressing

all the U -dependent term. This will lead to equation (6.7) with S and T interchanged.

Finally the third equation follows from interchanging S and U in (5.22), and subsequently

suppressing all terms that depend on U ; this equation is symmetric in S and T ,

(u2−1)

2

∂h1

∂u
−2γ3 (u−1)3

u+1
Ĩ(2)(S) Ĩ(2)(T ) (6.8)

+γ
u2−1

4u

[

(u−3)(u−1)
(

Ĩ(2)(S)+Ĩ(2)(T )
)

−4γ(u−1)2 Ĩ(2)(S) Ĩ(2)(T )
] ∂h1

∂u

−γ(u−1)
∑

n=2

[[

(

1+γ(u−1) Ĩ(2)(S)
)

Ĩ(n+1)(T )
∂h1

∂Ĩ(n)(T )
+(S ↔ T )

]

−
1

2γ

[

(

1+γ(u−1) Ĩ(2)(S)
) (

1+2γ Ĩ(2)(T )
)

n Ĩ(n)(T )
∂h1

∂Ĩ(n)(T )
+(S ↔ T )

]]

−
1

32 γ

(u2−1)3

u2

(

∂h1

∂u

)2
(

1−2γ Ĩ(2)(S)
) (

1−2γ Ĩ(2)(T )
)

+
(u2−1)2

8u

∂h1

∂u

∑

n=2

[[

(

1−2γ Ĩ(2)(S)
)

Ĩ(n+1)(T )
∂h1

∂Ĩ(n)(T )
+(S ↔ T )

]

−
1

2γ

[

(

1−2γ Ĩ(2)(S)
) (

1+2γ Ĩ(2)(T )
)

n Ĩ(n)(T )
∂h1

∂Ĩ(n)(T )
+(S ↔ T )

]]

−
1

2
γ(u2−1)

∑

m,n=2

[

Ĩ(m+1)(S)
∂h1

∂Ĩ(m)(S)
Ĩ(n+1)(T )

∂h1

∂Ĩ(n)(T )

−
1

2γ

[

(

1+2γ Ĩ(2)(T )
)

Ĩ(m+1)(S)
∂h1

∂Ĩ(m)(S)
n Ĩ(n)(T )

∂h1

∂Ĩ(n)(T )
+(S ↔ T )

]

+
1

4γ2

(

1+2γ Ĩ(2)(S)
) (

1+2γ Ĩ(2)(T )
)

m Ĩ(m)(S)
∂h1

∂Ĩ(m)(S)
n Ĩ(n)(T )

∂h1

∂Ĩ(n)(T )

]

= 0 .

Here we have dropped one term linear in
(

Ĩ(2)(S) + Ĩ(2)(T )
)

, since we are interested in

determining the quadratic terms in (6.6).
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When considering only terms of second order in the Ĩ(n), the equation (6.7) simplifies to

u2 − 1

2

∂h1
∂u

−
1

32 γ

(u2 − 1)3

u2

(

∂h1
∂u

)2

−
∑

n=2

[

n

[

Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
−

1

2
(u− 1)Ĩ(n)(T )

∂h1

∂Ĩ(n)(T )

]

+ γ(u− 1)Ĩ(n+1)(T )
∂h1

∂Ĩ(n)(T )

]

= −γ (u− 1)(u− 3)
u2 − 1

4u

∂h1
∂u

Ĩ(2)(T )

+
(u2 − 1)2

16γ u

∂h1
∂u

∑

n=2

[

n Ĩ(n)(T )− 2γ Ĩ(n+1)(T )
] ∂h1

∂Ĩ(n)(T )

− γ(u− 1)Ĩ(2)(T )
∑

n=2

n Ĩ(n)(T )
∂h1

∂Ĩ(n)(T )
. (6.9)

The terms on the right-hand side of this equation yield all the terms quadratic in Ĩ(n) and

are determined by (6.4).

Also equation (6.8) can be simplified by suppressing all terms that manifestly lead to

third and higher orders in Ĩ(n),

(u2 − 1)

2

∂h1
∂u

−
1

32 γ

(u2 − 1)3

u2

(

∂h1
∂u

)2

+
1

2
(u− 1)

∑

n=2

n

[

Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
+ Ĩ(n)(T )

∂h1

∂Ĩ(n)(T )

]

− γ(u− 1)
∑

n=2

[

Ĩ(n+1)(S)
∂h1

∂Ĩ(n)(S)
+ Ĩ(n+1)(T )

∂h1

∂Ĩ(n)(T )

]

= 2γ3
(u− 1)3

u+ 1
Ĩ(2)(S) Ĩ(2)(T )

− γ
u2 − 1

4u

[

(u− 3)(u− 1)
(

Ĩ(2)(S) + Ĩ(2)(T )
)] ∂h1

∂u

+ γ(u− 1)
∑

n=2

[[

γ(u− 1) Ĩ(2)(S) Ĩ(n+1)(T )
∂h1

∂Ĩ(n)(T )
+ (S ↔ T )

]

−
1

2

[

(

(u− 1) Ĩ(2)(S) + 2Ĩ(2)(T )
)

n Ĩ(n)(T )
∂h1

∂Ĩ(n)(T )
+ (S ↔ T )

]]

−
(u2 − 1)2

8u

∂h1
∂u

∑

n=2

[

Ĩ(n+1)(T )
∂h1

∂Ĩ(n)(T )
−

1

2γ
n Ĩ(n)(T )

∂h1

∂Ĩ(n)(T )
+ (S ↔ T )

]

+
1

2
γ(u2 − 1)

∑

m,n=2

[

Ĩ(m+1)(S)
∂h1

∂Ĩ(m)(S)
Ĩ(n+1)(T )

∂h1

∂Ĩ(n)(T )

−
1

2γ

[

Ĩ(m+1)(S)
∂h1

∂Ĩ(m)(S)
n Ĩ(n)(T )

∂h1

∂Ĩ(n)(T )
+ (S ↔ T )

]

+
1

4γ2
m Ĩ(m)(S)

∂h1

∂Ĩ(m)(S)
n Ĩ(n)(T )

∂h1

∂Ĩ(n)(T )

]

. (6.10)
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Just as in (6.9), the terms on the right-hand side of this equation yield all the terms

quadratic in Ĩ(n) and are determined by (6.4).

Note that the first lines of (6.9) and of (6.10) are identical. Hence, by taking the differ-

ence between these two equations we obtain an equation that does not contain derivatives

of the coefficient functions dm,n(u) and em,n(u), and that relates them to the coefficient

functions cm(u) given in (6.5). By comparing terms with the same powers of Ĩ(m)(S)Ĩ(n)(S)

or Ĩ(m)(S)Ĩ(n)(T ), we determine the explicit form of the coefficient functions dm,n(u) and

em,n(u). Let us illustrate this by focussing on the first two functions d2,2(u) and e2,2(u).

For the coefficient function d2,2(u) we obtain the relation

d2,2(u) =
(u2 − 1)2

16γ u(u+ 1)
c2(u) ċ2(u)− γ

(u− 1)2(u− 3)

8u
ċ2(u)− γ

u− 1

u+ 1
c2(u) , (6.11)

where here and henceforth we will use the notation ċ(u) = dc(u)/du. Substituting (6.5),

we find

d2,2(u) = −(2γ)3
(u+ 2)

4u

(

u− 1

u+ 1

)4

. (6.12)

For the coefficient function e2,2(u) we derive the relation

e2,2(u) =
(u2 − 1)2

8γ u(u+ 1)
c2(u) ċ2(u) +

u− 1)

2γ
c2(u)

2 −
γ (u− 1)2(u− 3)

4u
ċ2(u)

− 2γ
(u− 1)2

u+ 1
c2(u) + 2 γ3

(u− 1)3

u+ 1
, (6.13)

which, upon using again (6.5), yields

e2,2(u) =
(2 γ)3

u

(

u− 1

u+ 1

)3

. (6.14)

It can be verified that these expressions for d2,2(u) and e2,2(u) also solve (6.7).

Proceeding in this manner, we obtain the following expressions for the coefficient func-

tions (with m,n ≥ 2),

dm,n(u) = −
(2γ)m+n−1

(m−1)! (n−1)!

[

1

m(m+1)
+

1

n(n+1)
−
(m+n−2)!

(m+n)!
+

1

2u

](

u−1

u+1

)m+n

,

em,n(u) =
(2γ)m+n−1

(m−1)! (n−1)!

1

u

(

u−1

u+1

)m+n−1

. (6.15)

Note that these functions exhibit singularities at u = 0 and u = −1.

It is remarkable that the coefficient functions dm,n(u) and em,n(u) are determined by

algebraic means, while we started from a differential equation. This is related to the fact

that the equation (5.22) that we are trying to solve, is not symmetric under the interchange

of the moduli. To be more precise, when considering the coefficient function belonging to

a given product of powers of the symmetric combinations
[

Ĩ(n)(S) Ĩ(n)(T ) Ĩ(n)(U)
]

, the

derivative terms cannot be removed and one has to solve a differential equation, which

will lead to integration constants. However, when considering structures that are less
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symmetric, one can eliminate the u-derivatives on h1 by anti-symmetrizing in two of the

moduli and find suitable algebraic equations.

We will demonstrate that differential equations cannot altogether be avoided by dis-

cussing two examples, whose results are needed at the end of this section when we will

try to match the results of this section to the explicit expression obtained in section 3 for

the holomorphic function that encodes the Wilsonian action. The first example concerns

a coefficient function denoted by p(u), that can be determined algebraically. It appears in

h1 as

h1(u) = p(u)
[

(Ĩ(2)(S))2
(

Ĩ(2)(T ) + Ĩ(2)(U)
)

+ (Ĩ(2)(T ))2
(

Ĩ(2)(U) + Ĩ(2)(S)
)

+ (Ĩ(2)(U))2
(

Ĩ(2)(S) + Ĩ(2)(T )
)]

+ · · · .

(6.16)

Proceeding as before, we consider (5.22) and subtract from it the same equation with S

and T interchanged. The difference between these two equations gives rise to an algebraic

equation for p(u),

p(u) =
γ(u− 1)2(u− 3)

4u

[

ḋ2,2 − ė2,2

]

− 2γ
(u− 1)

(u+ 1)
e2,2 −

u− 1

4

(

u2 − 1

2u
ċ2

)2

+
(u− 1)2(u+ 1)

8γ u

[

−c2

(

ḋ2,2 − ė2,2

)

+ 2d2,2 ċ2 + 2 γ c2 ċ2

]

. (6.17)

It is easy to see that p(u) is proportional to (u− 1)4. The leading contributions originate

from the terms ė2,2(u) and e2,2(u) in the first line. They lead to

p(u) =
1

2
γ4 (u− 1)4 +O

(

(u− 1)5
)

. (6.18)

The second example, which does not lead to an algebraic equation, concerns the fol-

lowing terms,

h1(u) = c2(u)
[

Ĩ(2)(S) + Ĩ(2)(T ) + Ĩ(2)(U)
]

+ e2,2(u)
[

Ĩ(2)(S) Ĩ(2)(T ) + Ĩ(2)(T ) Ĩ(2)(U) + Ĩ(2)(U) Ĩ(2)(S)
]

+ v2,2,2(u) Ĩ
(2)(S) Ĩ(2)(T ) Ĩ(2)(U) + · · · . (6.19)

Inserting (6.19) into (5.22) leads to the differential equation,

(u2 − 1)

2
v̇2,2,2 − 2(2− u) v2,2,2

=
(u2 − 1)2

4u

[

2γ ė2,2 − 4γ ė2,2
u− 1

u+ 1
+ 4γ2 ċ2

(

u− 1

u+ 1

)]

− 2γ e2,2 (u− 1)2

+
(u2 − 1)

2γ

[

(u2 − 1)2

16u2
(

6 ė2,2 ċ2 − 8γ (ċ2)
2
)

+
(u2 − 1)

2u
(ė2,2 c2 + 2 e2,2 ċ2 − 2γ ċ2 c2) + 2 e2,2 c2

]

. (6.20)
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Evaluating the right-hand side of this expression by using the values for c2(u) and e2,2(u)

given in (6.5) and (6.12), one obtains

−
4γ4

u4

(

u− 1

u+ 1

)4

(u2 + 1)
(

3(u2 − 1)− 16u
)

. (6.21)

The differential equation (6.20) for v2,2,2(u) is then solved by

v2,2,2(u) = 8γ4
(

u− 1

u+ 1

)2

F (u) , (6.22)

with

F (u) =
1

(u+ 1)4

[

αv −
u6 − 1− 8u(u4 + 1)− 3u2(u2 − 1)

u3

]

, (6.23)

where αv denotes an integration constant.

At this point we have determined quite a number of coefficient functions in h1(u). To

obtain the complete result for the topological string partition function, they have to be

combined with the contributions from the function h0(λ̃), which was obtained by resum-

mation and is thus known to all orders in λ̃. An interesting question is whether one can

now re-obtain the result for the holomorphic function that encodes the Wilsonian action,

and if so, whether this procedure will have implications for some of the ambiguities that

we encountered in section 3. We will now demonstrate that this is indeed the case.

As we argued in the text above (4.9), one can in principle match the results for the

topological string partition function with those for the Wilsonian action. The latter is

expressed in terms of the holomorphic functions ω(n) that, for n ≤ 5, were determined in

section 3. To do so, note that the coefficient functions of h1(u) have to be expressed in

terms λ̃, which can be achieved by first expressing the duality invariant coupling u in terms

of λ̃ by an expansion about the perturbative point u = 1,

u = 1− 8γ λ̃− 32γ2 λ̃2 +O(λ̃3) . (6.24)

After this conversion one writes λ̃ in terms of λ, the parameter used in section 2, making

use of equation (5.9), and substitutes the explicit expression for the quantities Ĩ(n). Finally

one suppresses all the (non-holomorphic) connections in the covariant derivatives Dω with

respect to the moduli, by replacing Dω with simple derivatives ∂ω. The result of this

truncation can then be compared to the functions ω(n) with n ≤ 5. The terms belonging

to ω(n) can then simply be identified because they will be proportional to λ(n−1), as follows

from the expansion (2.14). We will now briefly review the results of this analysis.

We first note that according to the procedure sketched above, the function h0 will

take the form of a power series in λ∂Sω ∂Tω ∂Uω, where λ denotes the original expansion

parameter in section 3. In equation (5.10) we have recorded the first four terms of this

expansion, where we may now drop the (non-holomorphic) connections in the covariant

derivatives. Such terms also appear in the functions ω(n) that encode the Wilsonian effective

action, but it is easy to see that the terms in ω(2)–ω(5) do not agree with the first four terms

in (5.10). Hence the contributions from h1(u) should compensate for this difference. Indeed,
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such terms are present in h1(u), and they originate from those terms in the quantities Ĩ(n)

that are proportional to a constant. For convenience we list the values of these constants

for n = 2, 3, 4, which follow directly from (2.26),

Ĩ
(2)
constant =

1

2γ
, Ĩ

(3)
constant =

1

γ2
, Ĩ

(4)
constant =

3

γ3
. (6.25)

Let us now identify the contributions from h1(u) that will contribute to terms that are

at most of fourth order in (u − 1). They consist of the terms proportional to c2(u), c3(u)

and c4(u) in (6.4), the terms proportional to d2,2(u), e2,2(u) and e2,3(u) in (6.6), and finally

the terms proportional to the coefficient functions p(u) and v2,2,2(u) that appear in (6.16)

and (6.19), respectively.

In principle all these contributions may contribute to the functions ω(2)–ω(5) deter-

mined in sections 2 and 3. Let us first concentrate on the constant part of the functions

Ĩ(n) that will combine with the terms of h0(λ̃). In that case the relevant contributions from

h1(u) will take the form,

h1(u)
∣

∣

constant
=

3

2γ
c2(u) +

3

γ2
c3(u) +

9

γ3
c4(u) +

3

4γ2
[

d2,2(u) + e2,2(u)
]

+
3

γ3
e2,3(u) +

1

8γ3
[

6 p(u) + v2,2,2(u)
]

· · · . (6.26)

From the explicit expressions of the coefficient functions one can easily determine that

only the first term proportional to c2(u) and the term proportional to v2,2,2(u) will contain

terms of second order in (u − 1), depending on the value of the integration constant αv.

Upon using (6.24) it follows that the corresponding contribution from c2(u) to h1(u) is

equal to 48 γ3λ̃2. There is also a similar contribution from h0(λ̃) which, according to (5.8),

equals −32 γ3λ̃2, so that sum of these two contributions yields 16 γ3λ̃2. Converting λ̃ to λ

by using (5.9), and suppressing the connections in the covariant derivative, one reproduces

exactly the first term in the expression for ω(3) given in (3.12). Therefore it follows that

the function F (u) must vanish for u = 1, which fixes the integration constant αv to

αv = −16 . (6.27)

With this result v2,2,2(u) reads,

v2,2,2(u) = −
8γ4

u3

(

u− 1

u+ 1

)4
(

u2 − 1− 8u
)

. (6.28)

We can now determine all terms in (6.26), so that one can evaluate all the contributions

up to order λ̃5, leading to

h1(u)
∣

∣

constant
= 48γ3 λ̃2 + 128γ4 λ̃3 + 2432γ5 λ̃4 +O

(

λ̃5
)

. (6.29)

Adding the contributions from h0(λ̃) given in (5.8), and converting λ̃ to λ as explained

above, we precisely reproduce the term (λ∂Sω ∂Tω ∂Uω)
n−1 that appears in the expressions

for ω(n) given in (3.12), (3.13) (with a4 = 0) and (3.14).
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Of course, the functions Ĩ(n) also contain non-constant terms, which contribute to

h1(u). One can verify that they precisely reproduce all the remaining terms in the expres-

sions (3.12), (3.13) (with a4 = 0) and (3.14). This was already pointed out at the end of

section 3.

7 Summary and conclusions

In this paper we studied both the holomorphic function that encodes the Wilsonian effective

action of the STU-model of [1], as well as its corresponding topological string partition

function. This was done by exploiting the exact duality symmetries of this model and its

invariance under arbitrary permutations of its three moduli, S, T , and U , which is known

as triality. The topological string partition function can be obtained from the effective

action by carrying out a Legendre transform, as was explained in [9]. Based on preliminary

calculations there was the suggestion that the effective action of this STU-model might

be exactly calculable by virtue of its high degree of symmetry. The fact that the duality

transformations act non-linearly on the function that encodes the Wilsonian action (which

itself is not invariant) was seen as another indication that the answer might even be unique.

The present paper addresses this and related questions.

A separate motivation for this work was that the connection between the effective

action and the topological string had never been worked out explicitly for a realistic model.7

Especially in the case that exact results can be obtained, one may be able to obtain valuable

insights on this issue. Here we should note that in this paper we only consider the special-

Kähler moduli that describe the vector supermultiplets.

The initial attempt to explicitly determine the Wilsonian action is described in

section 3. Because of supersymmetry the underlying holomorphic function takes the

form given in (2.6), where Ω is decomposed into an infinite set of coefficient functions

ω(n)(S, T, U), as is shown in (2.14). The exact expression in an expansion in terms of the

gravitational coupling λ = A/(X0)2 is determined by imposing the invariance under duali-

ties and triality up to ω(5). While this indicates that an exact determination is possible, it

is also clear that the strategy adopted here could not easily be continued at arbitrary high

orders. Furthermore we should stress that the results for the holomorphic function encode

a complete N = 2 supergravity action, which describes all the terms at the two-derivative

level as well as the higher-order couplings to the square of the Weyl tensor.

At this point it is advantageous to direct the attention to the topological string partition

function, using the results obtained for the effective action as input. Here one advantage

was that the topological string partition function must be invariant under duality. Another

important is that the moduli for the topological string transform covariantly and their

transformations remain the same at all orders in the genus expansion, unlike the moduli

associated with the effective action whose transformations keep changing when proceeding

to higher orders.

7Note that we are not implying that this result equals the unique expression for the topological string

partition function of this STU-model, as it is often possible to incorporate additional non-holomorphic

terms. This possibility was actually discussed in [9].
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The results given in [9] were obtained in the context of iterative expansions, so that

the explicit relation with the Wilsonian action was only spelled out for low genus. Here we

concentrate on the function h(ω;λ) that comprises the part of the topological string parti-

tion function that depends holomorphically on the topological string coupling constant. By

following a similar strategy as in the work of [13], we determine an infinite series of terms

by imposing the holomorphic anomaly equation, which can be summed. The resulting

function is denoted by h0(u), which depends on an effective duality invariant parameter

u that is defined on a Riemann surface C. The explicit form of this function is given

in equation (5.19). Unfortunately, it turns out that this result captures only part of the

topological string partition function. The reason is that there exist certain holomorphic

invariants expressed in terms of ordinary holomorphic derivatives of the modular form ω,

which are present in the topological string partition function. These invariants, denoted

by I(n), were already introduced at the end of section 2, and they are functions of either

one of the moduli S, T , or U .

There thus exists an infinite variety of invariants consisting of arbitrary products of

I(m)(S), I(n)(T ) and I(p)(U), which are multiplied by corresponding coefficient functions

that depend on u. In principle this does not imply that these functions cannot be deter-

mined exactly. In fact we have determined a number of them in section 6. Specifically, we

have determined all terms that are linear and quadratic in the invariants I(n), as well as

some of the cubic terms, and we have verified their correctness by comparing their holo-

morphic contributions to corresponding terms in the effective action. All these invariants

have been assigned to a second function that we denoted by h1(u), so that

h(ω;λ) = ω(S) + ω(T ) + ω(U) + h0(u) + h1(u) , (7.1)

where h0(u) was defined in (5.19) and various contributions to h1(u) have been determined

in section 6. While we have presented convincing evidence that also the function h1(u)

can be determined exactly, the situation regarding h1(u) remains somewhat unsatisfactory,

because we are dealing with an infinite set of coefficient functions.

An interesting observation concerns the behaviour of the coefficient functions in h1(u)

as compared to h0(u). The latter function has a logarithmic branch cut starting at u = −1

and it is vanishing at u = 1, as is shown in equation (5.19). The coefficient functions in

h1(u) also exhibit higher-order poles at u = −1 and zeroes at u = 1, but in addition they

also have poles at u = 0. So far we have not been able to give an explanation for the

presence of these new poles. We note that in the limit where we take the real part of two

of the three moduli S, T, U large, all these singularities disappear. In this interesting limit,

the form of Ω greatly simplifies, as we briefly describe in appendix B.
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A The explicit expressions for NIJ and N
IJ

We compute the matrices NIJ and N IJ for the STU-model based on (2.2). To this end,

we display various components of FIJ ,

F00 = 2iSTU , F01 = −TU , F12 = −iU . (A.1)

Then, using NIJ = 2 ImFIJ , we obtain

NIJ =











2(STU + S̄T̄ Ū) i(TU − T̄ Ū) i(US − Ū S̄) i(ST − S̄T̄ )

i(TU − T̄ Ū) 0 −(U + Ū) −(T + T̄ )

i(US − Ū S̄) −(U + Ū) 0 −(S + S̄)

i(TS − T̄ S̄) −(T + T̄ ) −(S + S̄) 0











. (A.2)

The inverse matrix N IJ reads,

N IJ = eK











2 i(S − S̄) i(T − T̄ ) i(U − Ū)

i(S − S̄) 2SS̄ −(ST + S̄T̄ ) −(US + Ū S̄)

i(T − T̄ ) −(ST + S̄T̄ ) 2T T̄ −(TU + T̄ Ū)

i(U − Ū) −(US + Ū S̄) −(TU + T̄ Ū) 2UŪ











, (A.3)

where detNIJ = −e−2K and e−K = (S + S̄)(T + T̄ )(U + Ū) = −X̄INIJX
J |X0|−2.

B The structure of Ω in the large-T and large-U limit

In sections 5 and 6 we analyzed the structure of the function h(ω;λ) that describes part

of the topological string partition function. As shown in (7.1) h(ω;λ) is written in terms

of the modular form ω and two functions h0(u) and h1(u). The function h0(u), given

in (5.19), depends on an effective, duality invariant coupling constant u defined in terms

of the topological string coupling constant (5.21), and the function h1(u) is decomposed

in terms of products of the invariants Ĩ(n) with u-dependent coefficients that are subject

to (5.22).

In this appendix we want to study h(ω;λ) in the limit where the real part of two of the

three moduli S, T, U , say ReT and ReU , are taken to be large. For ReT ≫ 1,ReU ≫ 1,

the derivatives ∂Tω(T ) and ∂Uω(U) remain finite, while higher derivatives of ω(T ) and of

ω(U) are exponentially suppressed. As follows directly from (2.26)–(2.28), this leads to

I(n)(T ) ≈
(n− 1)!

2 γn−1

(

∂ω

∂T

)n

. (B.1)
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Furthermore the (multiple) non-holomorphic derivatives of ω(T ) satisfy,

DTω(T ) ≈ ∂Tω(T ) , DT
nω(T ) ≈ 0 , (n > 1) , (B.2)

as follows from (4.15)–(4.16). As a result the quantities Ĩ(n) defined in (5.14), satisfy

Ĩ(n)(T ) ≈
(n− 1)!

2 γn−1
. (B.3)

Note that there are identical results for U , but not for S.

To determine the function h(ω;λ), we need the functions h0(u) and h1(u). While h0(u)

is explicitly known (cf. (5.19)), the function h1(u) must satisfy the non-linear differential

equation (5.22), which in the above large-moduli limit simplifies dramatically,

(u2 − 1)

2u

∂h1
∂u

−
∑

n=2

n Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
=

1

2
γ (u2 − 1)− 2γ

u− 1

u+ 1
. (B.4)

Since we are interested in h0(u) + h1(u), we consider a linear differential equation for

the sum,
∂(h0 + h1)

∂u
−

2u

u2 − 1

∑

n=2

n Ĩ(n)(S)
∂h1

∂Ĩ(n)(S)
= γ u , (B.5)

where we used that h0 does not depend on Ĩ(n)(S). Obviously h0 + h1 can be expanded

in powers of Ĩ(n)(S) and by comparing equal powers on the left- and on the right-hand

side of the above equation we derive the u-dependence of the coefficient functions, which

involve integration constants. An additional integration constant is determined by using

that h0 + h1 vanishes at u = 1. The final answer for h0 + h1 then takes the form,

h0(u) + h1(u) =
1

2
γ
(

u2 − 1
)

+
∑

m=2

αm (u2 − 1)m Ĩ(m)(S)

+
∑

m,n=2

αm,n (u
2 − 1)m+n Ĩ(m)(S) Ĩ(n)(S)

+
∑

m,n,p=2

αm,n,p (u
2 − 1)m+n+p Ĩ(m)(S) Ĩ(n)(S) Ĩ(p)(S) + · · · , (B.6)

where the coefficients αm,... are integration constants. Obviously there is a substantial

simplification in the u-dependence of (B.6) as compared to the general terms that we

found in section 6. Although in the latter case all contributions vanish at the perturbative

point u = 1, the dependence on u in section 6 is never solely expressed in powers of u2− 1.

This behaviour is really the result of the large-moduli limit, which restricts all the Ĩ(p)(T )

and Ĩ(p)(U) to constants. This induces an enormous rearrangement of terms that lead

to (B.6). As we will see, we may compare the results by matching the coefficients of an

expansion in powers of u− 1.

To illustrate this, let us consider the expressions derived in section 6 and analyze how

they contribute in the large-moduli limit to terms linear and quadratic in the Ĩ(n)(S).

From (B.6) we know that the results can be expressed in an expansion in powers of u− 1,
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where the lowest power is known. Likewise the coefficient functions that we determined

in section 6 can also be expressed as a power series in u − 1 and the lowest power should

therefore coincide with the one indicated in (B.6). We have calculated the following terms

in section 6,

∑

m=2

cm(u)
[

Ĩ(m)(S) + · · ·
]

+
∑

m,n=2

dm,n(u)
[

Ĩ(m)(S) Ĩ(n)(S) + · · ·
]

+
∑

m,n=2

em,n(u)
[

Ĩ(m)(S) Ĩ(n)(T ) + · · ·
]

+ p(u)
[

(

Ĩ(2)(S)
)2

Ĩ(2)(T ) + · · ·
]

+ v2,2,2(u)
[

Ĩ(2)(S) Ĩ(2)(T ) Ĩ(2)(U)
]

, (B.7)

where the ellipses denote the extra terms that follow from triality, while the u-dependence

of the coefficient functions is known. Note that the above terms only represent a subset of

all possible terms.

Let us first consider the terms linear in Ĩ(n)(S) that arise in the large-moduli limit

of (B.7),

[

cn(u) +
∑

m=2

en,m(u)
(m− 1)!

γm−1

]

Ĩ(n)(S) +
1

4 γ2
[2 p(u) + v2,2,2(u)] Ĩ

(2)(S) . (B.8)

By comparing powers of u − 1 it follows that the lowest power of the above expression

must be equal to (u − 1)n. However, the only term that is proportional to (u − 1)n in

the above expression is the first one equal to cn(u). Assuming that the above equation

indeed contains all the relevant terms, it follows that αn is directly related to the value of

(u− 1)−ncn(u) at the perturbative point u = 1. This yields the result,

αn =
γn

2nn!
. (B.9)

Based on (B.7) one can also analyze the terms of second order in Ĩ(m)(S) and compare

them to αm,n. Here the large-moduli limit yields,

[

d2,2(u) +
1

γ
p(u)

]

(

Ĩ(2)(S)
)2

=
(u− 1)4

8

(

Ĩ(2)(S)
)2

+O
(

(u− 1)5
)

, (B.10)

where we made use of (6.12) and (6.18). Upon comparing this with the corresponding term

in (B.6) we derive

α2,2 =
γ3

128
, (B.11)

provided that all relevant terms were included in (B.7). Using (B.7), one contribution to

the values of the αm,n for m > 2 can be read off directly from the functions dm,n(u) given

in (6.15). However, there may be further contributions to these values from terms that we
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have not computed, such as generalizations of the term proportional to p(u) in (B.7) that

involve Ĩ(m)(S) with m > 2.

From the result (B.6) one can directly obtain the large-moduli limit of the function Ω

that encodes the effective Wilsonian action by invoking (4.9). From (5.21) we have

u2 − 1 =
2λ

γ2
DSωDTωDUω ≈

2λ

γ2
∂Sω ∂Tω ∂Uω , (B.12)

where the second equation is the result of the large-moduli limit and we suppress non-

holomorphic corrections. Upon including the terms linear in ω(S) + ω(T ) + ω(U) we then

obtain the following result,

h(ω;λ) =ω(S) + ω(T ) + ω(U) +
λ

γ
∂Sω ∂Tω ∂Uω

+
∑

m=2

αm

(

2λ

γ2

)m

(∂Tω ∂Uω)
m I(n)(S)

+
∑

m,n=2

αm,n

(

2λ

γ2

)m+n

(∂Tω ∂Uω)
m+n I(m)(S) I(n)(S)

+
∑

m,n,p=2

αm,n,p

(

2λ

γ2

)m+n+p

(∂Tω ∂Uω)
m+n+p I(m)(S) I(n)(S) I(p)(S) + · · · ,

(B.13)

which is holomorphic. According to (4.9), the above expression yields an expansion in terms

of λ with coefficients that can be compared to the functions ω(n)(S, T, U) that appear in

the function Ω as defined in (2.14). We can now use the known values for α2, α3, α4 and

α2,2 to obtain the large-moduli limit of ω(n)(S, T, U) with n ≤ 5 and compare the result

with the explicit results obtained in section 3. The result takes the form

h(ω;λ) =ω(S) + ω(T ) + ω(U) +
λ

γ
∂Sω ∂Tω ∂Uω

+
λ2

2γ2
(∂Tω ∂Uω)

2 I(2)(S) +
λ3

6γ3
(∂Tω ∂Uω)

3 I(3)(S)

+
λ4

24γ4
(∂Tω ∂Uω)

4

[

I(4)(S) +
3

γ

[

I(2)(S)
]2
]

+O(λ5) . (B.14)

All these terms agree with the results that follow from the large-moduli limit applied to

the corresponding functions ω(n)(S, T, U) that were calculated in section 3.
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