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Radiative effects in semi-inclusive hadron leptoproduction of unpolarized particles are calculated within
the leading order approximation. The contributions of the infrared-free sum of the effects of real and virtual
photon emission as well as the contribution of the exclusive radiative tail are considered. It is demonstrated
how the obtained formulas in the leading log approximation can be obtained using the standard approach of
the leading log approximation as well as from the exact expressions for the radiative correction of the
lowest order. The method of the electron structure function is used to calculate the higher order corrections.
The results are analytically compared to the results obtained by other groups. Numeric illustrations are
given in the kinematics of the modern experiments at Jefferson Laboratory.
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I. INTRODUCTION

Modern experiments on semi-inclusive deep inelastic in
ep-scattering (SIDIS) provide information about the multi-
dimensional structure of the nucleon that is not accessible in
inclusive DIS. Current and planned experiments in several
laboratories, such as JLab, BNL, and CERN have precision
that necessitates consideration and implementation of radi-
ative corrections (RC). The main contribution to RC in
SIDIS comes from the emission of real photons by the initial
and final electrons. The radiated photon is not detected in
the detector by the design of SIDIS measurements; there-
fore, the observed cross sections have to be integrated with
respect to the phase space of the radiated photons. The
integration in the soft photon region (i.e., when the photon
energy is small) cannot be completed because of the infrared
divergence that cancels in the sum with the contributions of
loop diagrams (e.g., the vertex function in the lowest order).
A special procedure of covariant extraction and cancellation
of the infrared divergence developed by Bardin and
Shumeiko [1] is usually applied. An attractive property
of the approach is the lack of simplifying assumptions that

make the obtained formulas nonexact and dependent on
artificial parameters, such as Δ, minimal photon energy in
the Mo and Tsai formalism [2]. An additional contribution
to RC is the radiative tail from the exclusive peak (or
exclusive radiative tail) that is characterized by the radiated
photon and a single hadron in the unobserved hadronic
state. This process contributes to RC to SIDIS when the
invariant mass of the radiated photon and unobserved
hadron equals the mass of the unobserved hadronic state
in the base SIDIS process. The complete set of Feynman
diagrams that are needed to be considered to calculate the
lowest order RC is shown in Fig. 1.
The original formalism for RC in SIDIS in the simple

quark-parton model was suggested in [3,4], which was
later implemented in POLRAD 2.0 as a patch SIRAD [5].
The formulas allowed for calculating RC for the three-
dimensional SIDIS cross section averaged over polar angle
and transverse momentum of the final hadron. The formal-
ism was then generalized in [6] to allow the calculation for
the five-dimensional SIDIS cross section in the scattering of
unpolarized particles. The exclusive radiative tail was first
shown calculated (to the best of our knowledge) in [7].
The general calculation of RC for polarized particles was

recently performed in [8], and the code for numeric
calculation of RC to the SIDIS cross section of electron
scattering arbitrary polarized particles was created. This
calculation provides the so-called exact computation of RC.
By “exactly” calculated RC we understand the estimation
of the lowest order RC contribution with any predetermined
accuracy. The structure of the dependence on the electron
mass in the RC cross section is
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σRC ¼ Alm þ BþOðm2=Q2Þ; ð1Þ

where lm ¼ logðQ2=m2Þ and A and B do not depend on the
electron mass m. If only A is kept in the formulas for RC,
this is the leading log approximation that evaluates the
contributions of photons radiated collinearly to the initial or
final electrons. If both contributions are kept (i.e., contained
A and B), this is the calculation with the next-to-leading
accuracy, practically equivalent to the exact calculation.
The leading log approximation for the calculation of RC

was first suggested in QCD by Dokshitzer [9], Gribov-
Lipatov [10], and Altarelli-Parisi [11]. How the approxima-
tion can be applied for the lepton current was demonstrated
by De Rújula, Petronzio, and Savoy-Navarro [12]. The
QCD-based approach was adapted for real photon emission
at the first order OðαlmÞ by Blümlein [13], second order
OððαlmÞ2Þ by Kripfganz, Mohring, and Spiesberger [14],
third order OððαlmÞ3Þ by Skrzypek [15], and second order

subleading term Oðα2lmÞ and fifth order OððαlmÞ5Þ by
Blümlein and Kawamura in [16] and [17], respectively.
On the other side the leading log formulas can also be

extracted from the exact formulas. Traditionally, such a
calculation represents a reasonable step in obtaining the
formulas for RC [e.g., exact [18] and leading log [19]
formulas for the RC to deep virtual Compton scattering
cross section] because the obtained formulas are compact
and provide an actually leading contribution of RC to the
cross section.
At last, a complete resummation of the leading log terms

in all orders with respect to α has been performed by
Kuraev and Fadin in their seminal work [20]. In collabo-
ration with Merenkov they showed how subleading terms in
all order of α have to be accounted for in their resummation
scheme [21]. Such a scheme was applied for polarized
DIS [22,23] and for initial state QED radiation aspects in
data analyses of future eþe− colliders [24].
Thus, three approaches to extract the leading log con-

tributions for the SIDIS cross section (i.e., to calculate A)
include the following: (i) extract the poles that correspond to
radiation collinear to initial and final electrons, integrate
over angles, and find the factorized form traditional for
leading log calculations; (ii) use our exact formulas, collect
all terms that result in a leading log after integration over
photon angles, combine them into the final expression; and
(iii) use the method of the electron structure functions [22].
All these approaches are applied and discussed in our paper.
Recently, a new factorized approach to SIDIS was sug-
gested which treats QED and QCD radiation equally [25].
The approach is similar to the methods of electron structure
functions, and the results obtained provide analytical
comparison with our formulas.
We introduce the set of kinematical variables and

calculate the Born cross section in Sec. II. The calculations
of RC using the three approaches are presented in Sec. III.
Both SIDIS RC and the contribution of the exclusive
radiative tail are studied in the leading and next-to-leading
approximations. Numeric estimates in the kinematical
conditions of modern experiments at JLab are presented
in Sec. V. The leading, next-to-leading, as well as higher
order corrections obtained using the electron structure
functions are numerically compared. Section VI contains
discussion of the obtained results, computational tricks, role
of the results in data analyses of SIDIS experiments, and
comparison with the results obtained in [25].

II. BORN CROSS SECTION

The SIDIS process

lðk1Þ þ nðpÞ → lðk2Þ þ hðphÞ þ xðpxÞ ð2Þ

(k21 ¼ k22 ¼ m2, p2 ¼ M2, p2
h ¼ m2

h) is traditionally
described by the set of kinematical variables

(b)(a)

(d)(c)

(f)(e)

FIG. 1. Feynman graphs (a)–(d) for the contributions to the
lowest order RC from semi-inclusive processes and (e) and (f) for
the exclusive radiative tail.
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x¼−
q2

2qp
; y¼ qp

k1p
; z¼php

pq
; t¼ðq−phÞ2; ϕh:

ð3Þ

Here q ¼ k1 − k2, ϕh is the angle between ðk1;k2Þ and
ðq;phÞ planes.
In most analyses the transverse momentum of the

detected hadron pt or its square is used instead of t.
Their relationship is presented below in Eq. (6). Formally,
the pt is the orthogonal part of the three-vector ph with
respect to q in the lab frame.
The set of additional quantities are used to describe the

Born cross section. So, the invariants dependent on lepton
momenta are identical to those used in DIS:

S¼ 2pk1; Q2 ¼ −q2; X ¼ 2pk2; Sx ¼ S−X;

λS ¼ S2 − 4m2M2; λX ¼ X2 − 4m2M2;

Sp ¼ SþX; λY ¼ S2x þ 4M2Q2;

λ1 ¼Q2ðSX −M2Q2Þ−m2λY;

W2 ¼ ðpþ qÞ2 ¼ Sx −Q2 þM2; ð4Þ

whereas involvement of the detected hadron generates a set
of new invariants:

V1;2 ¼ 2k1;2ph; Vþ ¼ 1

2
ðV1 þ V2Þ;

V− ¼ 1

2
ðV1 − V2Þ ¼

1

2
ðm2

h −Q2 − tÞ;
S0 ¼ 2k1ðpþ q − phÞ ¼ S −Q2 − V1;

X0 ¼ 2k2ðpþ q − phÞ ¼ X þQ2 − V2;

p2
x ¼ ðpþ q − phÞ2 ¼ M2 þ tþ ð1 − zÞSx;
λ0S ¼ S02 − 4m2p2

x; λ0X ¼ X02 − 4m2p2
x: ð5Þ

Noninvariant variables, such as the energy ph0, longi-
tudinal pl, and transverse pt (kt) three-momenta of the
detected hadron (the incoming or scattering lepton) with
respect to the virtual photon direction, in the target rest
frame are expressed in terms of the above invariants:

ph0 ¼
zSx
2M

;

pl ¼
zS2x − 4M2V−

2M
ffiffiffiffiffi
λY

p ¼ zS2x þ 2M2ðtþQ2 −m2
hÞ

2M
ffiffiffiffiffi
λY

p ;

pt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
h0 − p2

l −m2
h

q
;

kt ¼
ffiffiffiffiffi
λ1
λY

s
: ð6Þ

As a result the quantities V1;2 can be written through
cosϕh and other variables defined in Eqs. (3)–(6) as

V1 ¼ ph0
S
M

−
plðSSx þ 2M2Q2Þ

M
ffiffiffiffiffi
λY

p − 2ptkt cosϕh;

V2 ¼ ph0
X
M

−
plðXSx − 2M2Q2Þ

M
ffiffiffiffiffi
λY

p − 2ptkt cosϕh: ð7Þ

From the other side

cosϕh ¼
SpSxðzQ2 þ V−Þ − λYVþ

2pt
ffiffiffiffiffiffiffiffiffi
λYλ1

p : ð8Þ

The lowest order QED (Born) contribution to SIDIS is
presented by the Feynman graph in Fig. 2. The cross
section for this process reads

dσB ¼ ð4παÞ2
2SQ4

Wμνðq; p; phÞLμν
B dΓB; ð9Þ

where the phase space is parametrized as

dΓB ¼ ð2πÞ4 d3k2
ð2πÞ32k20

d3ph

ð2πÞ32ph0

¼ 1

4ð2πÞ
Sxdxdy

2

Sxdzdp2
t dϕh

4Mpl
: ð10Þ

The leptonic tensor can be presented as

Lμν
B ¼ 1

2
Tr½ðk̂2 þmÞγμðk̂1 þmÞγν�

¼ 2kμ1k
ν
2 þ 2kμ2k

ν
1 −Q2gμν: ð11Þ

According to [8] the hadronic tensor can be written in the
covariant form

Wμνðq; p; phÞ ¼
X4
i¼1

wi
μνðq; p; phÞHi

¼ −g⊥μνH1 þ p⊥
μ p⊥

ν H2 þ p⊥
hμp

⊥
hνH3

þ ðp⊥
μ p⊥

hν þ p⊥
hμp

⊥
ν ÞH4: ð12Þ

FIG. 2. Feynman graph for the lowest order SIDIS.
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Here g⊥μν ¼ gμν − qμqν=q2, for any four-vector a⊥μ ¼ aμþ
aqqμ=Q2.
Finally, we find the Born contribution in the form

σBðS;Q2; x; z; pt; cosϕhÞ

≡ dσB
dxdydzdp2

t dϕh

¼ πα2S2x
4MQ4plS

X4
i¼1

θBi ðS; x; y; z; pt; cosϕhÞ

×HiðQ2; x; z; ptÞ; ð13Þ

where θBi ¼ Lμν
B wi

μν=2,

θB1 ¼ Q2;

θB2 ¼ ðSX −M2Q2Þ=2;
θB3 ¼ ðV1V2 −m2

hQ
2Þ=2;

θB4 ¼ ðSV2 þ XV1 − zQ2SxÞ=2: ð14Þ

The generalized structure functions can be expressed in
terms of another set of the structure functions [26] FUU;T ,
FUU;L, F

cosϕh
UU , and Fcos 2ϕh

UU :

H1 ¼ C1½FUU;T − Fcos 2ϕh
UU �;

H2 ¼
4C1

λ2Yp
2
t

h
λYp2

t Q2FUU;L þ λ23S
2
xðFcos 2ϕh

UU þ FUU;TÞ − λ2λYðFUU;T − Fcos 2ϕh
UU Þ þ 2Sxλ3ptQ

ffiffiffiffiffi
λY

p
Fcosϕh
UU

i
;

H3 ¼
2C1

p2
t
Fcos 2ϕh
UU ;

H4 ¼ −
2C1

λYp2
t
½2λ3SxFcos 2ϕh

UU þ ptQ
ffiffiffiffiffi
λY

p
Fcosϕh
UU �; ð15Þ

where C1 ¼ 4MplðQ2 þ 2xM2Þ=Q4, λ2 ¼ V2
− þm2

hQ
2, and λ3 ¼ V− þ zQ2. The Born cross section (13) expressed in the

terms of these structure functions has a rather simple structure,

σB ¼ πα2

xQ2

y
1 − ε

�
1þ γ2

2x

�n
FUU;T þ εFUU;L þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
cosϕhF

cosϕh
UU þ ε cos 2ϕhF

cos 2ϕh
UU

o
; ð16Þ

where γ ¼ 2Mx=Q and ε is the ratio of the longitudinal and
transverse photon fluxes,

ε ¼ 1 − y − γ2y2=4
1 − yþ y2=2þ γ2y2=4

: ð17Þ

III. THREE APPROACHES FOR LEADING
LOGARITHMIC EXTRACTION

The QED RC come from three principal contributions:
loop diagrams [Figs. 1(a) and 1(b)]; emission of the
unobserved real photon in semi-inclusive [Figs. 1(c)
and 1(d)]; and exclusive [Figs. 1(e) and 1(f)] processes.
The calculation of the loop diagrams involves the pro-
cedure of subtraction of the ultraviolet divergence which is
based on the idea of the electric charge renormalization.
After that the integral over the loop momentum still
contains the infrared divergence that cancels in the sum
with the contribution of the real photon emission in a semi-
inclusive process. The contribution of the exclusive

radiative tail does not contain the infrared divergence
because of kinematical restrictions and can be calculated
separately from other contributions.
As it was mentioned in the Introduction there are three

approaches to extracting leading log contributions. In this
section we describe each of them.

A. Extraction of the collinear poles

The contribution of real photon emission

lðk1Þ þ nðpÞ → lðk2Þ þ hðphÞ þ xðpxÞ þ γðkÞ ð18Þ

(k2 ¼ 0) from the lepton leg shown in Figs. 1(a) and 1(b)
can be presented as a convolution of the leptonic tensor
with the real photon emission whose structure is well-
known:
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Lμν
R ¼ −

1

2
Tr½ðk̂2 þmÞΓμα

R ðk̂1 þmÞΓ̄ν
Rα�;

Γμα
R ¼

�
kα1
kk1

−
kα2
kk2

�
γμ −

γμk̂γα

2kk1
−
γαk̂γμ

2kk2
;

Γ̄ν
Rα ¼ γ0Γν†

Rαγ0

¼
�
k1α
kk1

−
k2α
kk2

�
γν −

γνk̂γα
2kk2

−
γαk̂γν

2kk1
; ð19Þ

and the hadronic tensor (12),

dσR ¼ ð4παÞ3
2Sðq − kÞ4 Wμνðq − k; p; phÞLμν

R dΓR; ð20Þ

where

dΓR ¼ ð2πÞ4 d3k
ð2πÞ32k0

d3k2
ð2πÞ32k20

d3ph

ð2πÞ32ph0

¼ 1

8ð2πÞ4
SSxdxdy
2
ffiffiffiffiffi
λS

p Sxdzdp2
t dϕh

4Mpl

d3k
k0

: ð21Þ

Integration over the photon angles can result in the
leading log term. For example,

Z
dΩk

kk1
¼ 1

Eγ

Z
dΩk

E1 − jk1j cos θγ
¼ 2π

Eγjk1j
log

E1 þ jk1j
E1 − jk1j

≈
2π

EγE1

log
4E2

1

m2
: ð22Þ

Similarly, integration of the terms with ðkk1Þ−2 results in

Z
dΩk

ðkk1Þ2
¼ 1

E2
γ

Z
dΩk

ðE1 − jk1j cos θγÞ2
≈

2π

E2
γE2

1

2E1

m2
: ð23Þ

Since the squared propagators appear with a factor of m2,
i.e., as m2=ðkk1Þ2 and m2=ðkk2Þ2, such terms do not result
in the leading log terms. Thus, the procedure of extraction
of the leading log term in the standard leading log
approximation [12–14,19,27] contains the following steps.
In each convolution of leptonic tensor Lμν

R with the tensor
structures wi

μν in the hadronic tensor, the electron mass can
be neglected everywhere in the numerators. Then, the terms
containing 1=kk1 and 1=kk2 have to be extracted, i.e., the
convolutions have to be presented in the form of two terms
that are historically known as s- and p-peaks

Lμν
R wi

μνðq − k; p; phÞHiðq − kÞ

¼ Gi
sðk;…ÞHiðq − kÞ

kk1

þGi
pðk;…ÞHiðq − kÞ

kk2
: ð24Þ

We note that the convolutions can have the terms with
1=ðkk1kk2) that can be decomposed as

1

kk1

1

kk2
¼ −

1

kðk1 − k2Þ
1

kk1
þ 1

kðk1 − k2Þ
1

kk2
: ð25Þ

The term kðk1 − k2Þ is regular (i.e., not equaling zero
for any peak) and can be included with a respective
Gi

s;pðk;…Þ. Since Gi
s;p are regular functions of the momen-

tum k, this momentum (as well as all kinematical variables
containing k) can be taken in the respective peaks inGi

s;p as
well as in arguments of structure functions Hi. The four
arguments of structure functions Hi come from the four
scalar products pq, pph, q2, and qph. Only the vector q has
to change if the photon is radiated q → q − k. Therefore,
we can write for (24)

Lμν
R wi

μνðq − k; p; phÞHiðq − kÞ
ðq − kÞ2

¼ Gi
sðks;…ÞHiðq − ksÞ
ðq − ksÞ2kk1

þGi
pðkp;…ÞHiðq − kpÞ

ðq − kpÞ2kk2
: ð26Þ

In the standard leading log approximation the substitutions
of the vector k in the s- and p-peaks are performed by the
introduction of dimensionless variables z1 and z2 that reflect
the remaining degree of freedom, i.e., photon energy, as
follows k → ks;p where

ks ¼ ð1 − z1Þk1; kp ¼ ðz−12 − 1Þk2 ð27Þ

for s- and p-peaks, respectively. The possibility to substitute
k in Gi

s;p is justified by the fact that the difference
Gi

sðk;…Þ −Gi
sðks;…Þ is exactly zero in the peak, and

therefore, respective integration of this difference divided by
kk1 does not result in the leading log RC.
The integration of (26) over angular variables can be

formally presented as

d3k
k0

1

k1k
¼ 2πlmdz1;

d3k
k0

1

k2k
¼ 2πlm

dz2
z22

; ð28Þ

where

lm ¼ log
Q2

m2
: ð29Þ

The above procedure can be formalized in terms of
leptonic tensor (19), which splits in two respective parts in
the leading log approximation:
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Lμν
Rs ¼

1þ z21
z1ð1 − z1Þ

1

k1k
Lμν
B ðk1 → z1k1Þ;

Lμν
Rp ¼ 1þ z22

1 − z2

1

k2k
Lμν
B ðk2 → k2=z2Þ: ð30Þ

The convolution with the hadronic tensor is

Lμν
R Wμνðq − k; p; phÞ ¼ Lμν

RsWμνðq − ks; p; phÞ
þ Lμν

RpWμνðq − kp; p; phÞ: ð31Þ

This approach has a useful geometric interpretation. We
see that the matrix element squared is calculated as the
convolution of the Born leptonic tensor with a shifted
momentum of an initial (or final) electron for s- (and p-)
peaks. This means the parametrization (27) allows one o
write collinear bremsstrahlung in terms of the Born cross
section but in a so-called shifted born condition

z1k1 þ p ¼ k2 þ ph þ px;

k1 þ p ¼ k2=z2 þ ph þ px: ð32Þ

The kinematics of the process is sketched in Fig. 3.
The momentum transfer q ¼ k1 − k2 is chosen along the
axis z, and vectors k1, k2 constitute the x, z-plane. This
fixes the coordinate system. In the leading approximation
k → ð1 − z1Þk1 or k → ð1=z2 − 1Þk2 lies entirely in the
xz-plane.
After substitution of (21), (30), and (27) into (20) and

taking into account the angular integration of the first order
poles (28), one can find that the leading order approxima-
tion of the real photon emission to s- and p-peaks can be

expressed through the Born contribution σB (13) with so-
called shifted variables in the following way:

dσins1L ¼ α

2π
lmdz1

1þ z21
1 − z1

plsS2x
plðz1S − XÞ2

× σBðz1S; z1Q2; xs; zs; pts; cosϕhsÞ;

dσinp1L ¼ α

2π
lmdz2

1þ z22
z22ð1 − z2Þ

plpS2x
plðS − X=z2Þ2

× σBðS; z−12 Q2; xp; zp; ptp; cosϕhpÞ: ð33Þ

The quantities with the subscripts s and p read:

xs ¼
z1Q2

ðz1S−XÞ ; zs ¼
zSx

ðz1S−XÞ ;

λYs ¼ ðz1S−XÞ2 þ 4z1M2Q2;

pls ¼
zSxðz1S−XÞ− 2M2ðz1V1 −V2Þ

2M
ffiffiffiffiffiffi
λYs

p ;

pts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2S2x
4M2

−p2
ls −m2

h

r
;

cosϕhs ¼
1

4z1pts
ffiffiffiffiffiffiffiffiffiffiffi
λYsλ1

p ½ðz1SþXÞð2z1zSxQ2

þ ðz1S−XÞðz1V1 −V2ÞÞ− λYsðz1V1 þV2Þ�;

xp ¼
Q2

ðz2S−XÞ ; zp ¼
zSx

ðS− z−12 XÞ ;

λYp ¼ ðS− z−12 XÞ2 þ 4z−12 M2Q2;

plp ¼
zSxðS− z−12 XÞ− 2M2ðV1 − z−12 V2Þ

2M
ffiffiffiffiffiffiffi
λYp

p ;

ptp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2S2x
4M2

−p2
lp −m2

h

r
;

cosϕhp ¼
z2

4ptp
ffiffiffiffiffiffiffiffiffiffiffi
λYpλ1

p ½ðSþ z−12 XÞð2z−12 zSxQ2

þ ðS− z−12 XÞðV1 − z−12 V2ÞÞ− λYpðV1 þ z−12 V2Þ�:
ð34Þ

The expressions (33) are infrared divergent at z1;2 → 1.
This infrared divergence is canceled in the sum with the
contribution from the vertex function presented by the
Feynman graph in Fig. 1(a).
In the leading log approximation the incorporation of

the vertex function contribution and respective cancella-
tion of the infrared divergence is implemented using the
electron splitting function, which was originally suggested
for use in QCD [9–11] and then was adapted for real
photon emission [13,14]. The splitting function is defined
through the so-called (þ)-operator,

FIG. 3. The momenta of the particles of SIDIS process (2) in
the lab frame; q and qz are the momenta of the virtual photon in
the original and shifted kinematics.
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PðzÞ ¼ 1þ z2

ð1 − zÞþ
; ð35Þ

and is used to replace the factor ð1þ z2Þ=ð1 − zÞ in the
leading log formulas. This (þ)-operator is defined as

Z1
x

dzPðzÞfðzÞ ¼
Z1
x

dz
1þ z2

1 − z
ðfðzÞ − fð1ÞÞ

− fð1Þ
Zx
0

dz
1þ z2

1 − z
: ð36Þ

The application of the splitting function to Eq. (33)
leads to

σins1L ¼ α

2π
lm

Z1
z1i

dz1Pðz1Þ
plsS2x

plðz1S − XÞ2

× σBðz1S; z1Q2; xs; zs; pts; cosϕhsÞ;

σinp1L ¼ α

2π
lm

Z1
z2i

dz2
z22

Pðz2Þ
plpS2x

plðS − X=z2Þ2

× σBðS; z−12 Q2; xp; zp; ptp; cosϕhpÞ: ð37Þ

The lowest limits of integration can be found through the
SIDIS pion threshold

z1i ¼ 1 − ðp2
x −M2

thÞ=S0;

z2i ¼
1

ð1þ ðp2
x −M2

thÞ=X0Þ : ð38Þ

Here Mth is the minimal value of the invariant mass of the undetected hadrons px for the SIDIS process, e.g.,
Mth ¼ M þmπ when the detected hadron is the pion.
The final expression for the RC in SIDIS in the leading log approximation is

σin1L ¼
�
1þ α

π
δlvacðQ2Þ

�
σBðS;Q2; x; z; pt;ϕhÞ þ σins1L þ σinp1L

¼
�
1þ α

π
δlvacðQ2Þ

�
σBðS;Q2; x; z; pt;ϕhÞ

þ α

2π
lm

Z1
0

dz1
1þ z21
1 − z1

�
θðz1 − z1iÞ

plsS2x
plS2xs

σBðz1S; z1Q2; xs; zs; pts; cosϕhsÞ − σBðS;Q2; x; z; pt; cosϕhÞ
�

þ α

2π
lm

Z1
0

dz2
1þ z22
1 − z2

�
θðz2 − z2iÞ

z22

plpS2x
plS2xp

σBðS; z−12 Q2; xp; zp; ptp; cosϕhpÞ − σBðS;Q2; x; z; pt; cosϕhÞ
�
: ð39Þ

Here we added the contribution of vacuum polarization by
electron [Fig. 1(b)] in leading approximation which is
external to the approach involving the splitting function and
has to be added separately:

δlvacðQ2Þ ¼ 2

3
lm: ð40Þ

A direct proof that the splitting function works for SIDIS is
presented in Appendix (A).
A similar calculation can be applied for extracting the

leading approximation from the exclusive radiative tail
depicted in Figs. 1(e) and 1(g):

lðk1Þ þ nðpÞ → lðk2Þ þ hðphÞ þ uðpuÞ þ γðkÞ; ð41Þ

where pu is the four-momentum of a single undetected
hadron (p2

u ¼ m2
u). This process gives the contribution to

SIDIS because the mass square of the undetected particles
ðpu þ kÞ2 can exceed the pion threshold M2

th for the rather
hard photon emission. As a result the exclusive radiative
tail does not contain infrared divergence. Moreover, since
the fifth SIDIS variable z is fixed by the energy of the
emitted photon in leading approximation photonic varia-
bles z1;2 are also fixed. The explicit expression for the
exclusive radiative tail in the leading approximation is
presented below by Eq. (88) of Sec. IV.
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B. Extraction leading log correction
from exact equations

The expression for the lowest order RC calculated
exactly in [8] is

σin ¼
�
1þ α

π
ðδVR þ δlvac þ δhvacÞ

�
σBðS;Q2; x; z; pt;ϕhÞ

þ σFR þ σAMM: ð42Þ

Two quantities, δhvac (σAMM), do not contribute to RC in the
leading approximation, since δhvac is independent of the
electron mass and σAMM is proportional to it. The expres-
sions for δVR and δlvac in the leading approximation are
presented in Eqs. (A7) and (40), respectively.
The exact expression for σFR is defined by Eq. (43) of [8]

through the integration over three photonic variables

R ¼ 2kp; τ ¼ kq=kp; ϕk; ð43Þ

where ϕk is an angle between ðk1;k2Þ and ðk;qÞ planes

σFR ¼ −
α3SS2x

32πMplλS
ffiffiffiffiffi
λY

p
Zτmax

τmin

dτ
Z2π
0

dϕk

ZRmax

0

dR

×
X4
i¼1

"X3
j¼1

HiðQ2 þ τR; x̃; z̃; p̃tÞθ0ijRj−2

ðQ2 þ τRÞ2

−
θ0i1HiðQ2; x; z; ptÞ

RQ4

#
: ð44Þ

Here the variables with tildes are defined as

x̃¼Q2þ τR
Sx−R

; z̃¼ zSx
Sx−R

;

p̃2
t ¼

z2S2x
4M2

−
ðzSxðSx−RÞ− 2M2ð2V− −μRÞÞ2
4M2ððSx−RÞ2þ 4M2ðQ2þ τRÞÞ−m2

h; ð45Þ

and have meaning of the usual SIDIS variables in the
shifted kinematics. The limits of integrations are

Rmax ¼
p2
x −M2

th

1þ τ − μ
; τmax =min ¼

Sx �
ffiffiffiffiffi
λY

p
2M2

; ð46Þ

where

μ ¼ kph

kp
¼ ph0

M
þ plð2τM2 − SxÞ

M
ffiffiffiffiffi
λY

p

− 2Mpt cosðϕh þ ϕkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτmax − τÞðτ − τminÞ

λY

s
: ð47Þ

After replacing variable R by

R0 ¼ ð1þ τ − μÞR; ð48Þ

the region of integration transforms into cuboid

ZRmax

0

dR →
Zp2
x−M2

th

0

dR0

1þ τ − μ
ð49Þ

that allows us to perform the integration over R0 as external.
The quantities θ0ij (i ¼ 1;…; 4 and j ¼ 1;…; 3) in (44)

are defined in Appendix B of [8]. They result from
convolution of the leptonic tensor (19) with hadronic
structures wi

μν. These quantities contain the terms corre-
sponding to s- and p-peaks, which are localized in (B.5)
of [8] and can be presented in our notation as

Fd ¼
R2

4kk1kk2
¼ 1

τ

�
R

2kk2
−

R
2kk1

�
;

F1þ ¼ R
2kk2

þ R
2kk1

;

F2� ¼ R2

4kk22
� R2

4kk21
; ð50Þ

with

2kik
R

¼ ai þ b cosϕk; ð51Þ

where

a1 ¼
Q2Sp þ τðSSx þ 2M2Q2Þ

λY
;

a2 ¼
Q2Sp þ τðXSx − 2M2Q2Þ

λY
;

b ¼ −
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðτmax − τÞðτ − τminÞλ1
p

λY
: ð52Þ

The integration of these terms over ϕk give (n ¼ 1, 2)

Z2π
0

dϕk

an þ b cosϕk
¼ 2πffiffiffiffiffiffi

Cn
p ;

Z2π
0

dϕk

ðan þ b cosϕkÞ2
¼ 2πan

C3=2
n

; ð53Þ

with
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C1 ¼
S2ðτ − τsÞ2 þ 4m2M2ðτ − τminÞðτmax − τÞ

λY
;

C2 ¼
X2ðτ − τpÞ2 þ 4m2M2ðτ − τminÞðτmax − τÞ

λY
: ð54Þ

Because of the smallness of the lepton mass the expres-
sions for C1;2 have a sharp peak for τ → τs ≡ −Q2=S and
τ → τp ≡Q2=X, respectively. Note the quantities τs;p can
also be obtained from τ ¼ kq=kp by the replacement
k → ks;p from (27).
The integration over τ of expressions (53) can be

performed analytically,

Zτmax

τmin

dτ
Z2π
0

dϕk

a1 þ b cosϕk
¼ 2π

ffiffiffiffiffi
λY

p
LS;

Zτmax

τmin

dτ
Z2π
0

dϕk

a2 þ b cosϕk
¼ 2π

ffiffiffiffiffi
λY

p
LX;

Zτmax

τmin

dτ
Z2π
0

dϕk

ðai þ b cosϕkÞ2
¼ 2π

ffiffiffiffiffi
λY

p
m2

; ð55Þ

with

LS ¼
1ffiffiffiffiffi
λS

p log
Sþ ffiffiffiffiffi

λS
p

S −
ffiffiffiffiffi
λS

p

¼ 1

S

�
lm þ log

S2

Q2M2

�
þO

�
m2

Q2

�
;

LX ¼ 1ffiffiffiffiffi
λX

p log
X þ ffiffiffiffiffi

λX
p

X −
ffiffiffiffiffi
λX

p

¼ 1

X

�
lm þ log

X2

Q2M2

�
þO

�
m2

Q2

�
: ð56Þ

We see that only the first order poles (1=k1k and 1=k2k)
contribute to RC in the leading approximation.
Actually, the integrand in (55) depends on τ and ϕk not

only in θ0ij but also in arguments of structure functions Hi,
the photonic propagator squared ðQ2 þ τRÞ−2, and the
factor ð1þ τ − μÞ that appeared after the substitution of
the integration variable R → R0 in Eq. (49). All these
functions are regular (i.e., equivalent to neither zero nor
infinity in the integration region). Therefore, we can make
the identical transformation for extraction of the leading
and next-to-leading terms:

Zτmax

τmin

dτ
Z2π
0

dϕk
Gðτ;ϕkÞ

a1 þ b cosϕk
¼ 2π

ffiffiffiffiffi
λY

p
LSGðτs; 0Þ þ

Zτmax

τmin

dτ
Z2π
0

dϕk
Gðτ;ϕkÞ − Gðτs; 0Þ

a1 þ b cosϕk
;

Zτmax

τmin

dτ
Z2π
0

dϕk
Gðτ;ϕkÞ

a2 þ b cosϕk
¼ 2π

ffiffiffiffiffi
λY

p
LXGðτp; 0Þ þ

Zτmax

τmin

dτ
Z2π
0

dϕk
Gðτ;ϕkÞ − GðR0; τp; 0Þ

a2 þ b cosϕk
; ð57Þ

where Gðτ;ϕkÞ is a regular function of τ and ϕk. The second
terms in the right-hand side of these transformations do not
include the leading terms and vanish in our approximation.
Following Eq. (57) the quantities θ0ij from (44) can be

decomposed as

θ0ij ¼
θsij

a1 þ b cosϕk
þ θpij
a2 þ b cosϕk

þ θrestij ; ð58Þ

where the quantities θsij and θpij contain the terms propor-
tional to 1=kk1 and 1=kk2 and are independent of the
integration variables τ and ϕk. They are obtained in the limit
m → 0, ϕk ¼ 0, and τ → τs and τ → τp for s- and p-peaks,
respectively. The quantity μ at the peaks become μ →
μs ≡ V1=S and μ → μp ≡ V1=X. The last term in Eq. (58),
θrestij , does not give the contribution to the leading
approximation.

The quantities θsij and θpij are expressed in terms of
respective Born θBi defined in Eq. (14)

θs;pij ¼ ds;pj θBi ; ð59Þ

where

ds1 ¼ −4S; ds2 ¼ 4; ds3 ¼ −
2

S
;

dp1 ¼ −4X; dp2 ¼ 4; dp3 ¼ −
2

X
: ð60Þ

Then the sums over j can be explicitly calculated:
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X3
j¼1

�
R0

1þ τs − μs

�
j−2

dsj ¼ −2
ðS0 − R0Þ2 þ S02

S0R0 ;

ð1þ τs − μsÞ
R0 ds1 ¼ −4

S0

R0 ;

X3
j¼1

�
R0

1þ τp − μp

�
j−2

dpj ¼ −2
ðX0 þ R0Þ2 þ X02

X0R0 ;

ð1þ τp − μpÞ
R0 dp1 ¼ −4

X0

R0 ; ð61Þ

where we used 1þ τs − μs ¼ S0=S and 1þ τp − μp ¼
X0=X.
Substitution of the decomposition (58) into (44) results

in the separation of σFR into two parts corresponding to
s- and p-collinear singularities. Integration over R0 can be
further replaced by z1 and z2 for these two parts using the
substitutions R0 → ð1 − z1ÞS0 and R0 → ðz−12 − 1ÞX0:

Zp2
x−M2

th

0

dR0 → S0
Z1
z1i

dz1;

Zp2
x−M2

th

0

dR0 → X0
Z1
z2i

dz2
z22

; ð62Þ

where the lowest limits of integration over variables z1;2 are
defined by Eq. (38). The expressions from the right-hand
side (rhs) of Eq. (61) are reduced as

ðS0 − R0Þ2 þ S02

S0R0 ¼ 1þ z21
1 − z1

;

ðX0 þ R0Þ2 þ X02

X0R0 ¼ 1þ z22
z2ð1 − z2Þ

: ð63Þ

The obtained equations are combined as follows resulting
in final expressions in the leading log approximation. The
substitution of Eq. (58) into (44) with dropped θrestij splits the
expression σFR into two parts that correspond to s- and
p-peaks according to the upper index in the first and second
terms of θij in the rhs of Eq. (58): σFR ¼ σFs þ σFs . Integration
over τ and ϕk is performed using (57) in which the second
terms in the rhs have to be dropped. The arguments of the
structure functionsHiðQ2 þ τR; x̃; z̃; p̃tÞ are transferred into
Hiðz1Q2; xs; zs; ptsÞ or Hiðz−12 Q2; xp; zp; ptpÞ for s- or
p-peaks, respectively, where the quantities with the sub-
scripts s and p are defined by Eq. (38). Finally, the
representation of θs;pij in the form of (59) and (60) allows
us to perform summation over j as it was shown in Eq. (61)
and to obtain the final expressions in the form

σFs ¼ α3S2x
8MplS

lm

Z1
z1i

dz1
X4
i¼1

�
1þ z21
1 − z1

Hiðz1Q2; xs; zs; ptsÞθBi
z21Q

4
− 2

θBi HiðQ2; x; z; ptÞ
ð1 − z1ÞQ4

�
;

σFp ¼ α3S2x
8MplS

lm

Z1
z2i

dz2
z22

X4
i¼1

�
1þ z22

z2ð1 − z2Þ
z22Hiðz−12 Q2; xp; zp; ptpÞθBi

Q4
− 2

θBi HiðQ2; x; z; ptÞ
ð1 − z2ÞQ4

�
: ð64Þ

Using Eq. (13) we represent the products of θBi and Hi
through the Born cross section in the shifted kinematics for
s- and p-peaks, respectively,

Hiðz1Q2; xs; zs;ptsÞθBi
z21Q

4

¼ 4M2plsS
πα2ðz1S−XÞ2 σBðz1S; z1Q

2; xs; zs;pts;cosϕhsÞ;

z22Hiðz−22 Q2; xp; zp;ptpÞθBi
Q4

¼ 4M2plpS

πα2ðS− z−12 XÞ2 σBðS; z
−1
2 Q2; xp; zp;ptp; cosϕhpÞ; ð65Þ

and obtain the expressions (A3) and, after cancellation of the
infrared divergence, (A6). Finally, the expressions in the
leading log approximation (39) can be obtained from (A6)
using the integral representation for δVR that is defined by
Eq. (A7). Indeed, the difference between (A3) and (39) is
exactly α=πδVRσB:

δVR ¼ lm
2

2
4Z1

z1i

dz1ð1þ z1Þ −
Zz1i
0

dz1
1þ z21
1 − z1

þ
Z1
z2i

dz2
2þ z2 þ z22

z2
−
Zz2i
0

dz2
1þ z21
1 − z1

#
: ð66Þ
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C. Electron structure function method

Up to now the lowest order RC to SIDIS in the leading
approximation have been considered. The second order
RC to the cross section of unpolarized inclusive DIS within
leading order were first estimated by Kripfganz, Mohring,
and Spiesberger in [14] and were generalized to polarized
DIS by our group [28]. The approach to summing up the
leading logarithmic RC of all orders over α that involves
the electron structure function was suggested by Fadin,
Merenkov, and Kuraev in [20,21]. This method was applied
for polarized inclusive DIS in [22]. The main features of
the method of the electron structure functions as well as the
detailed comparison between different approaches for the
calculation of RC to polarized inclusive DIS are presented
in [23].
The cross section of SIDIS within the method of the

electron structure functions (illustrated in Fig. 4) reads

σinhL ¼ S2x
pl

Z1
z1i

dz1Dðz1; Q2Þ
Z1
ẑ2i

dz2
z22

Dðz2; Q2Þ

× r2
�
z1
z2
Q2

�
p̂lσhardðz1S; z1z−12 Q2; x̂; ẑ; p̂t; cos ϕ̂hÞ

ðz1S − X=z2Þ2
;

ð67Þ

where z1i is defined by Eq. (38) and

ẑ2i ¼
�
1þ p2

x − ð1 − z1ÞS0 −M2
th

X − V2 þ z1Q2

�
−1
: ð68Þ

The electron structure function Dðz1;2; Q2Þ contains three
terms

D ¼ Dγ þDeþe−
N þDeþe−

S ; ð69Þ

where Dγ describes the contribution of photon radiation,
and Deþe−

N and Deþe−
S correspond to the process of the

electron pair production in nonsinglet (by the single photon
mechanism) and singlet (by the double photon mechanism)
channels, respectively [20–23]. The explicit expressions for
the components of electron structure function Dðz1;2; Q2Þ
are presented in Eqs. (5)–(7) of [22]. The coefficient r2 in
the integrand in Eq. (67) results from resummation of the
vacuum polarization by leptons (40),

rðQ2Þ¼
X∞
i¼0

�
α

2π
δlvacðQ2Þ

�
i
¼
�
1−

α

2π
δlvacðQ2Þ

�
−1
; ð70Þ

and represented in the form of the running coupling
constant.
The hard cross section, σhard, in (67) is the radiative

corrected SIDIS cross section excluding the leading log
term [22],

σhard ¼ σB þ σin − σin1L: ð71Þ

Here σin and σin1L are defined by Eqs. (42) and (39),
respectively. This cross section is generalized to all orders
of α as

σhard ¼ σB þ
X∞
i¼1

αi
Xi−1
j¼0

Cijl
j
m þO

�
m2

Q2

�
; ð72Þ

where the coefficients Cij do not depend on the electron
mass and are responsible for subleading contributions in
each order of αi. The formula (67) with σhard given by
Eq. (72) is the best approximation of RC from continuous
spectrum (i.e., excluding the exclusive radiative tail) in
SIDIS processes.
The expressions for the shifted variables in (67) represent

the extension of such variables defined by Eq. (40):

x̂ ¼ z1Q2

z1z2S − X
; ẑ ¼ zSx

z1S − z−12 X
;

λ̂Y ¼ ðz1S − z−12 XÞ2 þ 4z1z−12 M2Q2;

p̂l ¼
zSxðz1S − z−12 XÞ − 2M2ðz1V1 − z−12 V2Þ

2M
ffiffiffiffiffi
λ̂Y

q ;

p̂2
t ¼

z2S2x
4M2

− p̂2
l −m2

h;

cos ϕ̂h ¼
z2

4z1p̂t

ffiffiffiffiffiffiffiffiffi
λ̂Yλ1

q ��
z1Sþ X

z2

��
2
z1
z2
zSxQ̂

2

þ
�
z1S −

X
z2

��
z1V1 −

V2

z2

��

− λ̂Y

�
z1V1 þ

V2

z2

��
: ð73Þ

FIG. 4. The cross section in the methods of the electron
structure functions.
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We note that the expression for the cross section in
the leading log approximation in Eq. (39) is reproduced
from (67) by keeping the first order (nontrivial) terms in
series over α of the electron structure function [29], rðQ2Þ,
and σhard:

Dðz;Q2Þ → δð1 − zÞ þ α

2π
lmPðzÞ;

rðQ2Þ → 1þ α

π
δlvacðQ2Þ;

σhard → σB: ð74Þ

IV. APPLYING LEADING LOG RESULT
TO EXCLUSIVE RADIATIVE TAIL

The exact contribution calculated in [8] reads

σexR ¼ −
α3SS2x

28π4MplλS
ffiffiffiffiffi
λY

p
Zτmax

τmin

dτ
Z2π
0

dϕk

×
X4
i¼1

X3
j¼1

Hex
i ðQ2 þ τRex; W̃2

ex; t̃exÞθ0ijRj−2
ex

ð1þ τ − μÞðQ2 þ τRexÞ2
; ð75Þ

where

Rex ¼
p2
x −m2

u

1þ τ − μ
; W̃2

ex ¼ W2 − ð1þ τRexÞ;

t̃ex ¼ tþ Rexðμ − τÞ: ð76Þ

The leading log terms can be extracted from θ0ij using
methods of Sec. III B. For these analyses it is necessary to
keep in mind that only angular integrations, i.e., over τ and
ϕk, have to be performed for the exclusive tail. However, in
the present section we will use results of Eqs. (37) and (67).
Similar to SIDIS the Born cross section of the exclusive

process,

lðk1Þ þ nðpÞ → lðk2Þ þ hðphÞ þ uðpuÞ ð77Þ

(p2
u ¼ m2

u), can be presented in the form of convolution
leptonic and hadronic tensors (9)

dσexB ¼ ð4παÞ2
2SQ4

Wex
μνðq; p; phÞLμν

B dΓex
B : ð78Þ

Lμν
B was defined earlier by Eq. (11), whereas

Wex
μνðq; p; phÞ ¼

X4
i¼1

wi
μνðq; p; phÞHex

i ð79Þ

and the quantities wi
μν have the same structure as in (12). As

it was presented in Appendix A of [7], the exclusive
structure functions Hex

i can be expressed through the

standard set of the twofold cross sections dσL=dΩ,
dσT=dΩ, dσLT=dΩ, and dσTT=dΩ.
The phase space can be expressed through dΓB (10) as

dΓex
B ¼ dΓB

d3pu

ð2πÞ32pu0
δ4ðpþ k1 − k2 − ph − puÞ: ð80Þ

As a result

dσexB
dxdydzdp2

t dϕh
¼ 1

ð2πÞ3 δ
 ffiffiffiffiffi

λY
p

pl

M
þW2 þm2

h −m2
u

−
zSxðSx þ 2M2Þ

2M2

!
πα2S2x

4MQ4plS

X4
i¼1

θBi H
ex
i

¼ δðz0 − zÞσ̄exB ðS;Q2; x;p2
t ; cosϕhÞ; ð81Þ

where

z0 ¼
2Mð ffiffiffiffiffi

λY
p

pl þMðW2 þm2
h −m2

uÞÞ
SxðSx þ 2M2Þ : ð82Þ

Here and below the symbol σ̄ex is used to denote the
fourfold cross section of exclusive processes, and the
original symbol σex is kept to represent the fivefold
contribution of exclusive processes to RC to the SIDIS
cross section.
After tensor convolution and integration over z using the

δ-function, the Born cross section of the exclusive process
reads

σ̄exB ðS;Q2; x; pt; cosϕhÞ≡ dσexB
dxdydp2

t dϕh

¼ α2MSx
16π2Q4SplðSx þ 2M2Þ

×
X4
i¼1

Hex
i ðQ2;W2; tÞθBi : ð83Þ

Here for the exclusive process

p2
t ¼ p2

h0 − p2
l −m2

h;

pl ¼
SxðW2 þm2

h −m2
uÞ − 2V−ðSx þ 2M2Þ

2M
ffiffiffiffiffi
λY

p ;

ph0 ¼
W2 þm2

h −m2
u − 2V−

2M
: ð84Þ

The general leading log formulas are given by expres-
sions (37). These formulas are applicable for the contri-
bution of the exclusive radiative tail to the SIDIS process in
which the fivefold cross section (81) has to be used for σB
in (37). However, the cross section (81) contains the
δ-function because of the fixed mass of the unobserved
hadronic state. This δ-function is used to integrate over z1
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or z2, so the final expressions do not contain the integration as in (39) and expressed in terms of the fourfold born cross
section of exclusive process (83). We demonstrate the derivation of the leading log formulas for the exclusive radiative tail
by obtaining the formulas for the cross section (81) in s- and p-peaks (i.e., in the shifted kinematics) and analytic integration
using the δ-function.
The phase space in the shifted kinematics for s- and p-peaks is

dΓexs
B ¼ dΓs

B
d3pu

ð2πÞ32pu0
δ4ðpþ z1k1 − k2 − ph − puÞ

¼ 1

ð2πÞ3 dΓ
s
BδðM2 þm2

h −m2
u − zSx þ z1S0 þ V2 − XÞ;

dΓexp
B ¼ dΓp

B
d3pu

ð2πÞ32pu0
δ4ðpþ k1 − k2=z2 − ph − puÞ

¼ 1

ð2πÞ3 dΓ
s
BδðM2 þm2

h −m2
u − zSx þ S − V1 − X=z2Þ; ð85Þ

where dΓs;p
B are the phase spaces for SIDIS Born processes in the shifted kinematics.

As a result

dσexsB

dxsdysdzsdp2
tsdϕhs

¼ 1

ð2πÞ3 δðM
2 þm2

h −m2
u − zSx þ z1S0 þ V2 − XÞ πα

2ðz1S − XÞ2
4z31MQ4plsS

X4
i¼1

θBisH
ex
is ;

dσexpB

dxpdypdzpdp2
tpdϕhp

¼ 1

ð2πÞ3 δðM
2 þm2

h −m2
u − zSx þ S − V1 − X=z2Þ

πα2z2ðS − X=z2Þ2
4MQ4plxS

X4
i¼1

θBipH
ex
ip: ð86Þ

After the substitution of (86) into Eq. (37) taking
into account that for the exclusive process M2

th incoming
into (38) is equal to the undetected hadron mass square m2

u
after integration over z1;2, we can obtain that

σex1L ¼ σexs1L þ σexp1L ; ð87Þ

where

σexs1L ¼ α

2π
lm

1þ z21e
1 − z1e

plse

pl

S2x
S0

�
1

z1eS − X
þ 1

2M2

�
× σ̄exB ðz1eS; z1eQ2; xse; ptse; cosϕhseÞ;

σexp1L ¼ α

2π
lm

1þ z22e
1 − z2e

plpe

pl

S2x
X0

�
1

S − X=z2e
þ 1

2M2

�
× σ̄exB ðS;Q2=z2e; xpe; ptpe; cosϕhpeÞ; ð88Þ

and the quantities z1;2e are defined using Eq. (38) as

z1;2e ¼ z1;2iðM2
th → m2

uÞ: ð89Þ

The variables with the indexes se (pe) are calculated from
Eq. (34) using the following replacements: (i) z1 → z1e

and z → ðM2 þm2
h −m2

u þ z1eS0 þ V2 − XÞ=Sx for σexs1L ,
and (ii) z2 → z2e and z → ðM2 þm2

h −m2
u þ X0=z2eþ

S − V1Þ=Sx for σexp1L .
The generalization on the high orders is performed

similarly to (67). This formula is applicable to the case
of the exclusive radiative tail; however, again, the σhard
in (67) has to be presented through the product of the
fourfold cross section and respective δ-function. This
δ-function is then used to integrate over one of two
integration variables z1 or z2:

dΓ̂ex
B ¼ dΓ̂B

d3pu

ð2πÞ32pu0
δ4ðpþ z1k1 − k2=z2 − ph − puÞ

¼ 1

ð2πÞ3 dΓ̂BδðM2 þm2
h −m2

u − zSx

− z1z−12 Q2 þ z1ðS − V1Þ þ z−12 ðV2 − XÞÞ: ð90Þ

We can use (67) with M2
th ¼ m2

u. As a result,
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σexhL ¼ S2x
pl

Z1
z1e

dz1Dðz1;Q2Þ
Z1
ẑ2e

dz2
z22

Dðz2;Q2Þ

× r2
�
z1
z2
Q2

�
p̂l

�
1

z1S− X=z2
þ 1

2M2

�
δðM2 þm2

h

−m2
u − zSx − z1z−12 Q2 þ z1ðS− V1Þ þ z−12 ðV2 − XÞÞ

× σ̄exB

�
z1S;

z1
z2
Q2; x̂; p̂t; cos ϕ̂h

�
; ð91Þ

and the shifted quantities are defined by Eq. (73).
Because of the functional relationship between z1 and z2

induced by the δ-function, the integration area in (91) is the
solid curve shown in Fig. 5. The integrand has two sharp
peaks in the areas when z1 and z2 are cclose to 1 which
come from the functions Dðz1; Q2Þ and Dðz2; Q2Þ and are
interpreted as s- and p-peaks, respectively. There are two
ways to remove the δ-function in (91) performing inte-
gration over either z1 or z2; however, it is natural to split
the integration region by the point C with coordinates
(zm,zm) (crossing the integration area and the line z1 ¼ z2;
Fig. 5), thus isolating s- and p-peak peaks in separate
contributions,

zm ¼ 1

2ðS − V1Þ
½Sx þm2

u − p2
x − 2V−

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

x − Sx −m2
u þ 2V−Þ2 þ 4ðS − V1ÞðX − V2Þ

q
�:

ð92Þ

The result of this integration is

σexhL ¼ S2x
pl

Z1
zm

�
dz1

Dðz1; Q2ÞDðẑ2; Q2Þ
X − V2 þ z1Q2

r2
�
z1
ẑ2
Q2

�
p̂l2

�
1

z1S − X=ẑ2
þ 1

2M2

�

× σ̄exhard

�
z1S;

z1
ẑ2
Q2; x̂2; p̂t2; cos ϕ̂h2

�
þ dz2

z22

Dðẑ1; Q2ÞDðz2; Q2Þ
S − V1 −Q2=z2

r2
�
ẑ1
z2
Q2

�

× p̂l1

�
1

ẑ1S − X=z2
þ 1

2M2

�
σ̄exhard

�
ẑ1S;

ẑ1
z2
Q2; x̂1; p̂t1; cos ϕ̂h1

��
; ð93Þ

where

ẑ2 ¼
�
1þ p2

x − ð1 − z1ÞS0 −m2
u

X − V2 þ z1Q2

�
−1
;

ẑ1 ¼ 1 −
p2
x þ ð1 − 1=z2ÞX0 −m2

u

S − V1 −Q2=z2
: ð94Þ

The shifted variables in (93) are defined by Eq. (73) with
the transformations (i) z2 → ẑ2 and z → ðM2 þm2

h −m2
u þ

z1ðS − V1Þ þ ðX − V2Þ=ẑ2Þ=Sx for the integrand over z1
in (93), and (ii) z1 → ẑ1 and z → ðM2 þm2

h −m2
u þ ẑ1

ðS − V1Þ þ ðX − V2Þ=z2Þ=Sx for the integrand over z2.
The cross section σ̄exhard in (93) is the cross section of the

exclusive process with the lowest order RC excluding the

leading log terms. The use of this cross section in (93)
instead of σexB allows one to account for subleading effects
in the RC of higher order. Formally,

σ̄exhard ¼ σ̄exB þ σ̄exRC − σ̄ex1L; ð95Þ

where σ̄exRC is the cross section of exclusive processes
with the lowest order RC that is given by Eq. (55) of [30].
We rewrote this cross section in terms of the variables that
are used in this analysis, i.e., dσ=ðdW2dQ2dΩhÞ →
dσ=ðdxdydp2

t dϕhÞ:

FIG. 5. Integration area (blue line) in the plane ðz1; z2Þ. The
quantities z1;2e and zm are defined by Eqs. (38), (89), and (92).
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σ̄exRC ¼ −
α3MSx

28π4ðSx þ 2M2ÞSQ2

Zvm
0

dv
Z

dΩk

f

×
X4
i¼1

�
θiHex

i

Q̃4ðpl − v=2M
ffiffiffiffiffi
λY

p Þ − 4FIR
θ0iH

ex0
i

Q̃4pl

�

þ α

π
ðδexVR þ δvacÞσ̄exB ; ð96Þ

where

δexVR ¼ ðlm − 1Þ log v2m
S0X0 þ

3

2
lm − 2

−
1

2
log2

S0

X0 þ Li2½1 −
M2Q2

S0X0 � −
π2

6
;

vm ¼ W2 þm2
h −m2

u −
Sx þ 2M2

M
mh: ð97Þ

Similarly, the leading order terms are obtained from (58)
of [30] and have the form in terms of the variables x, y, p2

t ,
and ϕh:

σ̄ex1L ¼ α

π
δlvacðQ2Þσ̄exB ðS;Q2; x; pt; cosϕhÞ

þ αS2x
2πplS0

lm

Z1
z1m

dz1Pðz1Þ
�

1

z1S − X
þ 1

2M2

�

× plsσ̄
ex
B ðz1S; z1Q2; xs; pts; cosϕhsÞ

þ αS2x
2πplX0 lm

Z1
z2m

dz2
z22

Pðz2Þ
�

1

S − X=z2
þ 1

2M2

�

× plpσ̄
ex
B ðS;Q2=z2; xp; ptp; cosϕhpÞ; ð98Þ

where δlvacðQ2Þ is defined by Eq. (40), and the lowest limits
of integration has a form

z1m ¼ 1 − vm=S0;

z2m ¼ ð1þ vm=X0Þ−1; ð99Þ

and the splitting function PðzÞ is defined by Eqs. (35)
and (36).

V. NUMERICAL RESULTS

The main characteristics used in the RC procedure of
experimental data analysis is the RC factor defined as a
ratio of the radiative corrected cross section to the Born
contribution

δ ¼ σobs
σB

: ð100Þ

For numerical estimates we applied the parametrization of
the SIDIS structure functions in the Wandzura-Wilczek–
type approximation [31]. The exclusive structure functions
are expressed through the twofold cross sections dσL=dΩ,
dσT=dΩ, dσLT=dΩ, and dσTT=dΩ using MAID2007 para-
metrization [32]. pt-dependence of the RC factor, δ,
constructed from the Born and observed cross sections of
semi-inclusive πþ electroproduction averaged over ϕh is
presented in Fig. 6. The solid lines show the total correction,
and the dashed lines represent the correction excluding the
exclusive radiative tail. The difference between exact and
leading RC increases with growing z and pt. The ϕh-
dependence of the RC factor constructed from completely
differential cross sections are presented in Fig. 7. The RC
factor reaches its maximum value at the region near ϕh ¼
180° and small z. In certain cases the curves for the RC
factor are not smooth, e.g., for angles ϕh ¼ 160=200° and
ϕh ¼ 110=260° in the right column plots in Fig. 7. This
reflects the contributions of the exclusive radiative tail that is
not small in these kinematic regions. The RC factor can be
both higher and lower than one. The calculated (observed)
RC factor is always a trade-off between (i) the exclusive
radiative tail contribution that is always positive, (ii) the
semi-inclusive RC that can be negative because of the
contribution of the vertex function, and (iii) the vacuum
polarization contribution that is always positive. The blue
lines in Figs. 6 and 7 represent the RC factors calculated
using the exact equations (42) and (75). The red and black
curves show the RC factor in the leading log approximation
in the lowest order (39) and (87) and in all orders with
respect to α (67), (93), respectively. In all cases dashed and
solid lines show the pure semi-inclusive RC and total RC,
where the total RC additionally includes the contribution of
the exclusive radiative tails. When estimating the high order
effects we restrict our consideration only to the leading
orders terms; i.e., in (67) and (93) we put σhard ≡ σB and
σ̄exhard ≡ σ̄exB , respectively. The integrand in Eqs. (67) and
(93) contains the cross section of hard photon radiation is
the result of numeric multidimensional integration over the
kinematics of the photon, so the implementation of
Eqs. (67) and (93) to our codes for numeric evaluation
of RC would require a new level of results in the software
development and will be a subject of a separate analysis.
For purposes of numerical analysis we had to modify the

cross sections in (100) to provide a clear and well
interpreted comparison of the exact and leading log RC.
This is because the difference between the exact and leading
log RC comes not only because of the difference in exact
and leading log formulas for σin, which is one of the main
focuses of the numerical analysis, but also because of a quite
strong effect from the contribution from the vacuum
polarization induced by μ- and τ-leptons and hadrons
[see Fig. 1(b)] that are not included in the leading log
formulas. The latter contribution [denote it as δnlovacðQ2Þ] is
trivial and is not of interest for the numerical comparison, so
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we added δnlovacðQ2Þ to δlvacðQ2Þ in Eq. (39) and multiplied
the integrand in (67) on 1þ αδnlovacðz1Q2=z2Þ=π to mask its
effects on the difference between exact and leading log
formulas.

VI. DISCUSSION AND CONCLUSION

In this paper we presented the analytic expressions for
RC to the SIDIS cross section derived analytically in the
leading log approximation that have a simple analytic form
and were not explicitly presented and derived for SIDIS.
We demonstrated three distinct approaches allowing for the
derivation of the expressions based on different theoretical
and computational approaches. The ways in which the
results are derived clarify a quite complicated structure of
the exact formulas in [8] and further convince theoreticians
and experimentalists dealing with practical data analyses in
modern SIDIS measurements to use these results in data
analyses and Monte Carlo generators.
Specifically, we calculated RC in the leading log

approximation using three different approaches. First,
we applied the standard approach in the leading log
approximation [9–14,27] and calculated the RC from
scratch. In this approach the only terms contributing to
the cross section in the leading log approximation are
extracted and kept, i.e., the poles that correspond to
radiation collinear to initial and final electrons (i.e., the

terms that contain 1=kk1 and 1=kk2 and do not include the
electron mass in the numerator). Integration over the photon
angles can be performed analytically. Then, all these terms
are combined resulting in the factorized form traditional for
leading log calculations, i.e., the Born cross section in the
so-called shifted kinematics depicted in Fig. 3 for which the
three-vector of the virtual photon is shifted in the scattering
plane and the angle of this shift is determined by the photon
energy (or equivalent variable z1;2 for the photon emitted
collinear to the initial or final electron line), so there is a
remaining one-dimensional integration variable in the final
leading log formulas. This calculation resulted in an exact
expression for the term A in (1). The infrared divergence is
canceled in the usual way so the final formula (39) is
infrared-free. The second approach is based on the explicit
extraction of the leading log contribution from the exact
formulas presented in [8] by collecting all terms contributi-
ing to the RC in the leading log approximation after
integration over photon angles, and combined them into
the final expression exactly coinciding with the expression
obtained in the first approach. Third, we used the method of
the electron structure functions [20–22]. In this approach the
QED radiative corrections to the corresponding cross
sections can be written as a convolution of the two electron
structure functions corresponding to multiple real photon
emission along with the initial and final electron and the

FIG. 6. The pt-dependence of the RC factor for the cross sections of semi-inclusive πþ electroproduction averaged over ϕh with the
lepton beam energy equal to 10.65 GeV. Solid lines show the total RC factor, and dashed lines represent the RC factor calculated
excluding the exclusive radiative tail. The blue, red, and black lines show the RC factor calculated exactly, using the methods of the
leading log approximation in the lowest order in respect of α and the method of the electron structure functions, respectively.
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FIG. 7. The ϕh-dependence of the RC factor for semi-inclusive πþ electroproduction for the lepton beam energy equal to 10.65 GeV.
Solid lines show the total RC factor, and dashed lines represent the RC factor calculated excluding the exclusive radiative tail. The blue,
red, and black lines show the RC factor calculated exactly, using the methods of the leading log approximation in the lowest order in
respect of α and the method of the electron structure functions, respectively.
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Born cross section with shifted kinematics. Traditionally,
these RC include effects caused by loop corrections and soft
and hard collinear radiation of photons and eþe− pairs. This
method can be improved by including effects due to
radiation of one noncollinear photon. The corresponding
procedure results in a modification of the hard part of the
cross section, which takes the lowest order correction into
account exactly and allows going beyond the leading
approximation [23].
Recently, Liu et al. [25] proposed a QCD-like factori-

zation to take into account the QED RC to the exper-
imentally measured cross sections of both inclusive and
semi-inclusive lepton-nucleon DIS. This approach is
similar to the approach for RC calculations involving
the formalism of electron structure functions [20–23].
Since this approach is one of the three approaches we
used in this paper, the resulting formula in the leading
approximation (67) has to be comparable to Eq. (3.30)
obtained by Liu et al. [25]. We note, however, that the
comparison deserves some comments.
First, the lowest limits of integration in [25], ξmin and

ζmin, are given by Eqs. (2.24a) and (2.24b) and are identical
for both inclusive and semi-inclusive RC. The expressions
for ξmin and ζmin are calculated ignoring the restriction of the
photon phase space by the pion threshold. The formulas for
the lower limits of integrations z1m and z2m are given by
Eq. (11) (and subsequent formula) of [22] for the inclusive
case and Eqs. (38) and (68) in the present paper. The
formulas for z1m and z2m are not identical for DIS and
SIDIS. This is expected because they can depend on x and y
for the DIS case and on all five variables (3) that describe the
kinematics of the SIDIS process. These formulas for the
inclusive case contain the term zth and reproduce ξmin and
ζmin when this term tends to zero.
We believe that the pion threshold is necessary for both

DIS and SIDIS RC to appropriately separate the contribu-
tions of the parts of the total RC with a single hadron and a
continuum of particles in the final unobserved hadronic
state. These two types of the contributions to RC require
different models of hadronic structure (e.g., DIS/SIDIS
structure functions for the continuum of unobserved par-
ticles and form factors for the elastic radiative tail or
exclusive structure functions for the exclusive radiative tail)
and different models for the phase of space of unobserved
particles (a fixed invariant mass of the final hadronic state
reduces the number of integrations over the photon kin-
ematical variables by one). Ignoring the pion threshold in
the formula for RC implies that the elastic radiative tail for
DIS RC and exclusive RC for SIDIS RC can be obtained
from the expressions for RC for the continuum of particles
by their extrapolation through the pion threshold and
applying the obtained approximate formulas for the RC
with one hadron in the final unobserved hadronic state. This
approximation is poor and is not used since the seminal
paper of Mo and Tsai [2] for the calculation of RC in DIS.

Second, the expressions for the electron structure func-
tions that are constructed and used in the formalism of the
electron structure functions [20–23] are not identical to the
lepton distribution and lepton fragmentation functions
obtained by Liu et al. [25]. The standard formula for the
electron structure functions, D, includes three terms pre-
sented by Eq. (69). The functionsDγ in the formalism of the
electron structure functions that correspond to the initial and
final state radiation are identical, but respective functions
obtained and used in [25] (they are refereed as the universal
lepton distribution and lepton fragmentation functions) are
not due to the difference in the factor under the leading log
in (2.18) and (2.20) of [25]. We note that this difference does
not affect the leading log part of the total RC. Furthermore,
the functions D presented in [25] are not complete because
they do not include the effects of collinear electron pair
production (i.e., Deþe−

N ¼ 0 and Deþe−
S ¼ 0), and the effects

of multiple photon emission are presented in the lowest
order only, i.e., the function Dγ contains only the term with
the δ-function and the first term in the sum over k in Eq. (8)
of [22].
Finally, several contributions are unavoidable when we

calculate the total RC exactly or when those in the leading
log approximation are not presented in the formulas of
Ref. [25]. These include the elastic and exclusive radiative
tails for inclusive and semi-inclusive RC (as we partly
discussed above) and the effect of vacuum polarization for
both processes.
The availability of both exact and leading log formulas

allowed us to perform a detailed comparison of RC
calculated using both approaches. We found that generally
the leading log approximation gives the main contribution in
the kinematics of modern JLab measurements. The factor
logQ2=m2 is of order 15 for JLab energies, so the leading
log approximation provides a reasonable approximation
in the broad range of kinematics. However, we also detected
the regions where the next-to-leading correction cannot be
avoided, e.g., at the region near ϕh ¼ 180° and small z. The
role of the next-to-leading terms is expected to be more
important in the case of the polarization measurement. For
asymmetries the leading log terms are (partly) factorized, so
they can have a tendency for cancellation in the numerator
(spin-dependent part of the cross section) and denominator
(unpolarized part of the cross section).
We note that formula (1) gives an idea on how to extract

the leading log results numerically using the available code
for exact RC computation. We need to obtain the results for
σ0RC calculated for an artificial value of the electron mass nm
(where n is an arbitrary value, e.g., mass nm, n ¼ 10) in
addition to the results calculated using the regular value of
m. Since both A and B are independent of the electron mass,
the value of A can be obtained as σ0RC − σRC ¼ ðlogðQ2=
n2m2Þ − logðQ2=m2ÞÞA ¼ − logðn2ÞA. This approach pro-
vides a tool allowing us to test both leading log codes and
codes that are based on the exact formulas.
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APPENDIX: TREATMENT OF THE INFRARED
DIVERGENCE

According to the Bardin-Shumeiko approach [1] the
infrared divergence in (33) has to be extracted using an
identical transformation:

dσRs;p ¼ dσRs;p − dσIRs;p þ dσIRs;p ¼ dσFs;p þ dσIRs;p; ðA1Þ

where

dσIRs ¼ α

2π2
dσB

1

ð1 − z1Þkk1
d3k
k0

;

dσIRp ¼ α

2π2
dσB

z2
ð1 − z2Þkk2

d3k
k0

: ðA2Þ

The transformation (A1) is performed in the dimensional
regularization. The terms dσFs;p obtained as the result of the
subtraction of (A2) are infrared-free, and can be further
dealt with in the regular four-dimensional space. The
methods described in Sec. III A allow one to represent
these terms in the form

σFs ¼ σRs − σIRs

¼ α

2π
lm

Z1
zm
1

dz1

�
1þ z21
1− z1

plsS2x
plðz1S−XÞ2 σBðz1S; z1Q

2; xs; zs;pts; cosϕhs

�
−

2

1− z1
σBðS;Q2; x; z;p−t; cosϕhÞÞ;

σFp ¼ σRp − σIRp

¼ α

2π
lm

Z1
zm
2

dz2
z2

�
1þ z22

z2ð1− z2Þ
plpS2x

plðS−X=z2Þ2
σBðS; z−12 Q2; xp; zp;ptp; cosϕhpÞ−

2

1− z2
σBðS;Q2; x; z;pt;cosϕhÞ

�
; ðA3Þ

where the lowest limits of integration are defined
by Eq. (38).
The remaining terms dσIRs;p are infrared divergent, so all

further manipulations with them have to be performed in
the dimensional regularization. Using the methods of
Appendix C of [8] we obtain the resulting expressions
in the leading order

σIRs þ σIRp ¼ α

π
δIRσBðS;Q2; x; z; pt; cosϕhÞ

¼ α

π

�
lm

�
2PIR þ 2 log

m
ν
þ log

ðp2
x −M2

thÞ2
S0X0

�

þ 1

2
l2m

�
σBðS;Q2; x; z; pt; cosϕhÞ: ðA4Þ

Both the infrared divergence PIR term and the term
containing the square of lm cancel in the sum with the
corresponding vertex contribution that can be obtained
from Eq. (50) of [8] in the limit m → 0:

δvert ¼ lm

�
3

2
− 2PIR − 2 log

m
ν

�
−
1

2
l2m: ðA5Þ

Summing up σFs;p defined by Eq. (A3), σIRs;p,
α=πδvertσBðS;Q2; x; z; pt; cosϕhÞ, and vacuum polarization
α=πδlvacðQ2ÞσBðS;Q2; x; z; pt; cosϕhÞ, we can find that the
radiative corrected cross section in the leading approxima-
tion reads

σin1L ¼
�
1þ α

π
ðδVR þ δlvacðQ2ÞÞ

�
σBðS;Q2; x; z; pt;ϕhÞ

þ σFs þ σFp; ðA6Þ

where

δVR ¼ δIR þ δvert ¼ lm log
ðp2

x −M2
thÞ2

S0X0 þ 3

2
lm; ðA7Þ

and δlvacðQ2Þ is defined by Eq. (40).
The expression for σin1L can be explicitly presented in

terms of the splitting function (35):
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σin1L ¼
�
1þ α

π
δlvacðQ2Þ

�
σBðS;Q2; x; z; pt;ϕhÞ þ

α

2π
lm

2
4Z1

zm
1

dz1Pðz1Þ
plsS2x

plðz1S − XÞ2 σBðz1S; z1Q
2; xs; zs; pts; cosϕhsÞ

þ
Z1
zm
2

dz2
Pðz2Þ
z22

plpS2x
plðS − X=z2Þ2

σBðS;Q2=z2; xp; zp; ptp; cosϕhpÞ
3
5: ðA8Þ

The explicit expression for σin1L is given in Eq. (39).
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