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Abstract Using lattice Monte Carlo simulations of SU(3)
pure gauge theory, we determine the spatial distribution of
all components of the color fields created by a static quark
and antiquark. We identify the components of the measured
chromoelectric field transverse to the line connecting the
quark–antiquark pair with the transverse components of an
effective Coulomb-like field EC associated with the quark
sources. Subtracting EC from the total simulated chromo-
electric field E yields a non-perturbative, primarily longi-
tudinal chromoelectric field ENP, which we identify as the
confining field. This is the first time that the chromoelectric
field has been separated into perturbative and nonperturba-
tive components, creating a new tool to study the color field
distribution between a quark and an antiquark, and thus the
long distance force between them.

1 Introduction

Quantum chromodynamics (QCD), the theory of the strong
interactions describing the dynamics of quarks and gluons,
has yet to provide a theoretical explanation of the experimen-
tally established phenomenon of confinement, i.e., the con-
finement of quarks and gluons inside hadrons. Several mech-
anisms of confinement have been proposed (for a review, see
Refs. [1,2]), each with its own merits and limitations, but
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a comprehensive picture is still missing. In particular, it is
not yet clear which feature of QCD is responsible for the
area-law behavior of Wilson loops that implies a linear con-
fining potential between a static quark and antiquark at large
distances. Results from numerical simulations have shown
this linear potential for qq̄ distances � 0.5 fm, and up to
distances of about 1.4 fm in presence of dynamical quarks,
where string breaking should take place [3–5].

A wealth of numerical analyses of SU(2) and SU(3) Yang–
Mills theory [6–28] have found that the dominant color field
generated by a static quark–antiquark pair is the component
of the chromoelectric field along the line connecting the pair.
(See, in particular, the SU(2) studies of Ref. [15].) This lon-
gitudinal field results in tube-like structures (flux tubes) that
naturally give rise to a long-distance linear quark–antiquark
potential [29–32].

The aim of this paper is to measure the complete color
field distributions generating this heavy quark potential. To
do this, we first perform a series of new simulations in SU(3)
pure gauge theory, measuring all six components of the color
electric and magnetic fields on all transverse planes passing
through the line between the quarks. These simulations have
been carried out for three values of the quark–antiquark sep-
aration, and they provide maps of the chromodynamic fields
permeating the space between a quark and antiquark. (These
fields can be viewed as analogous to the electromagnetic field
permeating the space between a pair of oppositely charged
particles obtained by the solution of Maxwell’s equations.)

We find that the chromomagnetic field is everywhere much
smaller than the chromoelectric field. We then fit the mea-
sured transverse components of the chromoelectric field to
an effective Coulomb-like field generated by sources at the
positions of the quarks. A nonperturbative, mostly longitudi-
nal, chromoelectric field is then obtained by subtracting the
effective Coulomb-like field from the total chromoelectric
field, thereby isolating its confining part. To the extent that
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Fig. 1 a The connected correlator given in Eq. (1) between the plaque-
tteUP and the Wilson loop (subtraction in ρconn

W, μν not explicitly drawn).
b The longitudinal chromoelectric field Ex (xt ) relative to the position
of the static sources (represented by the white and black circles), for a
given value of the transverse distance xt

the nonperturbative field generates the measured linear term
in the long distance heavy quark potential, and the effective
Coulomb-like field generates the measured Coulomb correc-
tion to the force, we will have gained new understanding into
the development of the long distance force between a quark
and an antiquark in terms of the color fields permeating the
space between them.

2 Theoretical background and lattice observables

The field configurations generated by a static qq̄ pair can be
probed by calculating on the lattice the vacuum expectation
value of the following connected correlation function [10,11,
33,34]:

ρconn
W, μν =

〈
tr

(
WLUPL†

)〉

〈tr(W )〉 − 1

N

〈tr(UP )tr(W )〉
〈tr(W )〉 . (1)

Here UP = Uμν(x) is the plaquette in the (μ, ν) plane,
connected to the Wilson loop W by a Schwinger line L , and
N is the number of colors (see Fig. 1).

The correlation function defined in Eq. (1) measures the
field strength Fμν , since in the naive continuum limit [11]

ρconn
W, μν

a→0−→ a2g
[〈
Fμν

〉
qq̄ − 〈

Fμν

〉
0

]
, (2)

where 〈 〉qq̄ denotes the average in the presence of a static
qq̄ pair, and 〈 〉0 is the vacuum average. This relation is a
necessary consequence of the gauge-invariance of the oper-
ator defined in Eq. (1) and of its linear dependence on the
color field in the continuum limit (see Ref. [35]).

The lattice definition of the quark–antiquark field-strength
tensor Fμν is then obtained by equating the two sides of
Eq. (2) for finite lattice spacing. In the particular case when
the Wilson loop W lies in the plane with μ̂ = 4̂ and ν̂ = 1̂
(see Fig. 1a) and the plaquette UP is placed in the planes
4̂1̂, 4̂2̂, 4̂3̂, 2̂3̂, 3̂1̂, 1̂2̂, we get, respectively, the color field
components Ex , Ey , Ez , Bx , By , Bz , at the spatial point
corresponding to the position of the center of the plaquette,
up to a sign depending on the orientation of the plaquette.
Because of the symmetry of Fig. 1, the color fields take on the
same values at spatial points connected by rotations around
the axis on which the sources are located (the 1̂- or x-axis in
the given example) .

As far as the color structure of the field Fμν is concerned,
we note that the source of Fμν is the Wilson loop connected
to the plaquette in Fig. 1. The role of the Schwinger lines
entering in Eq. (1) is to realize the color parallel transport
between the source loop and the “probe” plaquette. The Wil-
son loop defines a direction in color space. The color field,
Eq. (2), that we measure points in a color direction parallel
to this direction, the color direction of the source. (There are
fluctuations of the color fields in the other color directions.
These should contribute to the width of the energy density.)

In principle, the operator in Eq. (1) could be affected by
xt -dependent renormalization effects, related to Schwinger
lines, which might contaminate the xt dependence of the
color fields. However, our data satisfy continuum scaling; as
carefully checked in Ref. [27], fields obtained in the same
physical setup, but at different values of beta, are in perfect
agreement in the range of parameters used in the present
work. This would have been impossible in the presence of
sizeable renormalization effects. The absence of such effects
is probably explained by the fact that we perform smearing
before taking measurements (see below), and smearing effec-
tively amounts to pushing the system towards the continuum,
where renormalization effects become negligible.

In Appendix A we present some further discussion about
the smearing procedure and, in particular, compare it with
the approach based on the explicit renormalization of the
operator given in (1), recently pursued in Ref. [36].

Table 1 Summary of the runs
performed in the SU(3) pure
gauge theory (measurements are
taken every 100 upgrades of the
lattice configuration)

β = 6/g2 Lattice a [fm] d [lattice] d [fm] Statistics Smearing steps

6.370 484 0.059 16 0.951(11) 5300 100

6.240 484 0.071 16 1.142(15) 21000 100

6.136 484 0.083 16 1.332(20) 84000 120
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Fig. 2 Surface and contour plots for the three components of the chro-
moelectric field at β = 6.240 and d = 1.142 fm. All plotted quantities
are in physical units

3 Lattice setup

We performed all simulations in pure gauge SU(3), with the
standard Wilson action as the lattice discretization. A sum-
mary of the runs performed is given in Table 1. The error
analysis was performed by the jackknife method over bins

(a) Bx(xt ,xl)

(b) By(xt ,xl)

(c) Bz(xt ,xl)

Fig. 3 Surface and contour plots for the three components of the chro-
momagnetic field at β = 6.240 and d = 1.142 fm. All plotted quantities
are in physical units

at different blocking levels. We set the physical scale for the
lattice spacing by using the value

√
σ = 420 MeV for the

string tension, and the parameterization [37] for a
√

σ that
gave an accurate fit in a high-statistics simulation for all β

in the range 5.6 ≤ β ≤ 6.5. The correspondences between
β and the distance d shown in Table 1 were obtained from
this parameterization. Note that the distance in lattice units
between quark and antiquark, corresponding to the size of
the Wilson loop in the connected correlator in Eq. (1), was
kept fixed to d = 16 a.
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Table 2 Values of the fit parameters Q and R0 extracted from Coulomb
fits of the transverse components of the chromoelectric field and val-
ues of the longitudinal chromoelectric fields at (d/2, 0), the midpoint
between the sources and transverse distance zero, for several val-
ues of distance d. Ex (d/2, 0) is the unsubtracted simulated field and

ENP
x (d/2, 0) is the nonperturbative chromoelectric field. For the param-

eters of the Coulomb fit we quote, along with the statistical error, a sys-
tematic uncertainty that accounts for the variability in the values of the
fit parameters extracted from all acceptable fits to Ey and Ez at different
xl values (for more details, see Appendix B)

β d [fm] Q R0 [fm] Ex (d/2, 0) [GeV2] ENP
x (d/2, 0) [GeV2]

6.370 0.951(11) 0.278(4)(43) 0.1142(16)(200) 0.360(9) 0.263(7)

6.240 1.142(15) 0.289(11)(38) 0.1367(29)(241) 0.335(11) 0.265(10)

6.136 1.332(20) 0.305(14)(81) 0.179(6)(32) 0.288(25) 0.234(25)

The connected correlator defined in Eq. (1) suffers from
large fluctuations at the scale of the lattice spacing, which
are responsible for a bad signal-to-noise ratio. To extract the
physical information carried by fluctuations at the physical
scale (and, therefore, at large distances in lattice units) we
smoothed out configurations by a smearing procedure. Our
setup consisted of (just) one step of HYP smearing [38] on
the temporal links, with smearing parameters (α1, α2, α3) =
(1.0, 0.5, 0.5), and NAPE steps of APE smearing [39] on the
spatial links, with smearing parameter αAPE = 0.25. Here
αAPE is the ratio of the weight of one staple to the weight of
the original link.

4 Numerical results

Using Monte Carlo evaluations of the expectation value of
the operator ρconn

W, μν over smeared ensembles, we have deter-
mined the six components of the color fields on all two-
dimensional planes transverse to the line joining the color
sources allowed by the lattice discretization. These measure-
ments were carried out for three values of the distance d
between the static sources, at values of β lying inside the
continuum scaling region, as determined in Ref. [27].

We found that the chromomagnetic field is everywhere
much smaller than the longitudinal chromoelectric field and
is compatible with zero within statistical errors (see Fig. 3).
As expected, the dominant component of the chromoelectric
field is longitudinal, as is seen in Fig. 2, where we plot the
components of the simulated chromoelectric field E at β =
6.240 as functions of their longitudinal displacement from
one of the quarks, xl , and their transverse distance from the
axis, xt .

While the transverse components of the chromoelectric
field are also smaller than the longitudinal component, they
are larger than the statistical errors in a region wide enough
that we can match them to the transverse components of an
effective Coulomb-like field EC (r) produced by two static
sources. For points which are not very close to the quarks, this
matching can be carried out with a single fitting parameter

Q, the effective charge of static quark and antiquark sources
determining EC (r).

To the extent that we can fit the transverse components of
the simulated field E to those of EC (r) with an appropriate
choice of Q, the nonperturbative difference ENP between the
simulated chromoelectric field E and the effective Coulomb
field EC

ENP ≡ E − EC . (3)

will be purely longitudinal. We then identify ENP as the con-
fining field of the QCD flux tube.

5 Evaluation of the effective Coulomb field of the
sources

To extract the longitudinal component of the confining field
ENP, Eq. (3), from lattice simulations, we must first determine
the effective charge of the sources, Q, by fitting the transverse
components of the simulated field to those of an effective
Coulomb field EC (r):

EC (r) = Q

(
r1

max(r1, R0)3 − r2

max(r2, R0)3

)
, (4)

r1 ≡ r − rQ, r2 ≡ r − r−Q,

where rQ and r−Q are the positions of the two static color
sources and R0 is the effective radius of the color source,
introduced to explain, at least partially, the decrease of the
field close to the sources. Due to the axial symmetry around
the line connecting the static charges,1 we may consider the
color field distributions in the xy plane without loss of gen-
erality. Then x ≡ xl , y ≡ xt .

We find that with an appropriate choice of Q the y-com-
ponent of the simulated chromoelectric field, Ey , is approxi-
mately equal to the y-component of the Coulomb field, EC

y at
distances greater than 1–2 lattice spacings from the quarks.
In making the fit we must take into account that the color
fields are probed by a plaquette, so that the measured field

1 We have explicitly checked that within statistical errors the color field
distributions respect this axial symmetry.
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Fig. 4 Surface and contour plots for the three components of the non-
perturbative chromoelectric field, ENP ≡ E − EC , at β = 6.240 and
d = 1.142 fm. All plotted quantities are in physical units

value should be assigned to the center of the plaquette. This
also means that the z-component of the field is probed at a
distance of 1/2 lattice spacing from the xy plane, where the
z-component of the Coulomb field EC

z is nonzero and can be
matched with the measured value Ez for the same value of
Q.

Fig. 5 Transverse cross sections of the nonperturbative field ENP
x (xt )

at β = 6.240, d = 1.142 fm, for several values of xl

In Table 2, we list the values of the effective charge Q
obtained from lattice measurements of Ez and Ey at three
values of d, the quark–antiquark separation. The statistical
uncertainties in the quoted Q values result from the compar-
isons among Coulomb fits of Ey and Ez at the values of xl , for
which we were able to get meaningful results for the fit. The
variability in the values of the fit parameters extracted from
all acceptable fits to Ey and Ez at different xl values was also
taken into account to assess systematic uncertainties. How-
ever, the stability of Q under a change of the fitting strategy,
its dependence upon the values of xl included in the fit and the
global assessment of the systematic uncertainties will be pre-
sented in a forthcoming extended version of this work. The
values of R0 in physical units grow with the lattice step a,
while in lattice units they show more stability. This suggests
that the effective size of a color charge in our case is mainly
explained by lattice discretization artifacts and the smearing
procedure, and is not a physical quantity. In Appendix B we
present some details about the Coulomb fit.

Evaluating the contribution of the field of the quark to
EC (r) in Eq. (4) at the position r−Q of the antiquark and
multiplying by the charge −4πQ of the antiquark yields a
Coulomb force between the quark and antiquark with coef-
ficient −4πQ2. By comparison, in the standard string pic-
ture of the color flux tube, a Coulomb correction of strength
−π/12 to the long distance linear potential (the universal
Lüscher term) arises from the long wave length transverse
fluctuations of the flux tube [40]. This Lüscher term is equal
to the Coulomb force generated by the field EC (r) (4) when
Q = 1/(4

√
3) ≈ 0.144. This is roughly 1/2 the values of Q

measured in our simulations and listed in Table 2. (We note
the Lüscher value of the Coulomb force is consistent with
the results [41–43] of lattice situations of the heavy quark
potential at distances down to ≈ 0.4 fm.) Although the con-
nection between these two descriptions of the Coulomb force
is not clear, we note that the color fields we measure point
in a single direction in color space. The fluctuating color
fields in the other color directions might affect the strength
of the effective Coulomb force between the quark and the
antiquark.
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6 Evaluation of the nonperturbative color field

Once EC has been fixed, the difference Eq. (3) between the
simulated field E and the field EC determines ENP. In this
way we obtain the nonperturbative structure of the flux tube.
To the best of our knowledge, this is the first time that a
confining part of the measured longitudinal chromoelectric
field has been extracted making use only of lattice data.

In Fig. 4 we plot the longitudinal component ENP
x of the

nonperturbative field (3) as a function of the longitudinal and
transverse displacements xl , xt at β = 6.240. As expected,
ENP
x is almost uniform along the flux tube at distances not too

close to the static color sources. This feature is better seen
in Fig. 5, where transverse sections of the field ENP

x (xl , xt ),
plotted in Fig. 4, are shown for the specified values of xl . For
these values of xl the shape of the nonperturbative longitu-
dinal field is basically constant all along the axis. Although
Figs. 2, 3, and 4 refer only to the case of β = 6.240 and
d = 1.142 fm, the scenario is similar for the other two lattice
setups listed in Table 1.

In Table 2 we also compare the values of the measured lon-
gitudinal chromoelectric field Ex with those of the nonpertur-
bative field ENP

x on the axis at the midpoint between the quark
and antiquark, for all three values of their separation d. Given
that ENP

x is almost uniform along the axis, ENP
x (xl , xt = 0)

assumes these same values at all points xl on the axis for all
distances larger than approximately 0.1 − 0.2 fm from the
quark sources.The value of ENP

x (xl , xt = 0) is closely related
to the value of the string tension (see below). In future work
we will use the distribution of color fields between a quark
and an antiquark to calculate the force between them.

7 Future work

The value of the chromoelectric field at the position of the
quarks is equal to the force on the quarks [44], i.e. , the
derivative of the heavy quark potential. However due to the
difficulty of carrying out accurate simulations of the color
field close to position of the source we cannot use our cur-
rent simulations to determine the quark–antiquark force as
a function of their separation. This is one goal of our future
work.

We plan to compare the stress tensor density distribution
calculated from our simulated color fields with the stress
tensor density simulated in Ref. [45]. This will provide a test
of our vision of the space between static color charges as
filled with lines of force of chromoelectric fields pointing in
a color direction parallel to the color direction of the source,
generating a Maxwell-like stress tensor in this color direc-
tion. Since there are fluctuations of the color fields in the
other color directions, the width of the stress tensor density

that we measure should be interpreted as the intrinsic width
of the flux tube.

We can use our simulated stress tensor to calculate the
force transmitted across the midplane and the resulting
quark–antiquark force for the values of their separations
where our simulations are carried out. These predictions can
then be tested by comparing our simulated results with a
parameterization of Wilson loop data for the long distance
heavy quark potential. To the extent that the nonperturbative
field ENP generates the long distance constant heavy quark
force ( i.e., the string tension), and that the Coulomb-like field
EC generates the 1/R2 correction to it, the force between a
quark and an antiquark can be understood in terms of the
color fields permeating the space between them.

8 Summary

In this paper we have determined the spatial distribution in
three dimensions of all components of the color fields gen-
erated by a static quark–antiquark pair. We have found that
the dominant component of the color field is the chromo-
electric one in the longitudinal direction, i.e. in the direction
along the axis connecting the two quark sources. This fea-
ture of the field distribution has been known for a long time.
However, the accuracy of our numerical results allowed us
to go far beyond this observation. First, we have found that
all the chromomagnetic components of the color field are
compatible with zero within the statistical uncertainties. Sec-
ond, the chromoelectric components of the color fields in the
directions transverse to the axis connecting the two sources,
though strongly suppressed with respect to the longitudinal
component, are sufficiently greater than the statistical uncer-
tainties that we could manage to interpolate them.

Our remarkable finding was that the transverse compo-
nents of the simulated chromoelectric field can be nicely
reproduced by a Coulomb-like field generated by two sources
with opposite charge (everywhere except in a small region
around the sources). We then subtract this Coulomb-like field
from the simulated chromoelectric field to obtain a nonper-
turbative field ENP according to Eq. (3). The dependence of
the resulting longitudinal component of ENP on the distance
xt from the axis is independent of the position xl along the
axis, except near the sources. We identify the nonperturba-
tive field found in this way from lattice simulations as the
confining field of the QCD flux tube.

9 Discussion

We stress that our separation of the chromoelectric field into
perturbative and nonperturbative components was obtained
by directly analyzing lattice data on color field distributions
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between static quark sources. To the best of our knowl-
edge this separation between perturbative and nonperturba-
tive components has not been carried out previously.

The idea of this separation is independent of the procedure
used in this paper to implement it. The separation provides
a new tool with which to probe the chromoelectric field sur-
rounding the quarks. Our approach can be straightforwardly
extended to the case of QCD with dynamical fermions with
physical masses and at nonzero temperature and baryon den-
sity.
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Appendix A: Smearing and renormalization

The typical behavior of the (unsubtracted) chromoelectric
field in the longitudinal direction with our smearing setup
is described in Fig. 6, which gives, at β = 6.240 and for
a distance d = 1.14 fm between the sources, the field Ex

measured at the midpoint between sources (xl = 8a) for
several values of the transverse distance xt . We can clearly
see that, for increasing number of the smearing steps, Ex

reaches a plateau for larger and larger values of xt , with no
sign whatsoever of degradation of the signal. The value of
the smearing step quoted in the last column of Table 1 is
such that all field components, on all transverse planes and
at all values of xt (except possibly the few largest ones) have
reached their plateaux.

Recently, a paper appeared [36] which studied the flux
tube between two static sources by means of a connected
operator similar to ours, except that the role of the Wil-
son loop is replaced by two parallel and oppositely directed
Polyakov loops. No smoothing is performed on the ensem-
ble configuration, but the renormalization properties of the
connected operator are properly taken into account. Their
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Fig. 6 Ex in lattice units versus smearing at β = 6.240, d = 1.14 fm,
measured at the midpoint between sources (xl = 8a), for several values
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Fig. 7 Ex in lattice units at several values of xt versus smearing at
β = 6.47466 and d = 8a 	 0.37 fm as in Ref. [36]

analysis of the (unsubtracted) longitudinal chromoelectric
field at the midpoint between two sources separated by dis-
tance d = 8a 	 0.37 fm gave the following values for the
“Clem parameters” [46] describing the transverse profile of
the field:

1

λ
= μ = 7.4(6), fm−1, α = 0.7(2), κ = 1.8(6). (A.1)

(See Eq. (24) of Ref. [36]).
To compare the analysis Ref. [36] with our smearing pro-

cedure, we measured the longitudinal chromoelectric field
Ex at β = 6.47466 and at a distance between the two static
sources equal to d = 8a. With the scale setting procedure
used in Ref. [36] this distance corresponds in physical units
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Fig. 8 Clem fit (see Eq. 924) of Ref. [36] to Ex in lattice units at
β = 6.47466 and d = 8a 	 0.37 fm. The values of Ex have been
measured after 100 smearing steps
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Fig. 9 The Clem μ parameter (full black circles) versus smearing at
β = 6.47466 and d = 8a 	 0.37 fm compared to the value obtained
in Ref. [36] (the red dashed line is the central value, the red full lines
delimit the error band)

to the same quark–antiquark separation d = 0.37 fm con-
sidered there. The behavior under smearing of the measured
(unsubtracted) field Ex at the midpoint between the sources
and at different values of xt is shown in Fig. 7. The qualita-
tive behavior is the same as in Fig. 6: the larger the number
of smearing steps, the greater the number of values of xt for
which Ex has reached a plateau. We use the Clem parameter-
ization to fit the transverse profiles. After 100 smearing steps,
our determination of the parameters of the Clem fit gives

1

λ
= μ = 5.73(2) fm−1, α = 0.67(1), κ = 1.65(2),

(A.2)
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ref.[36]

β=6.47466
d=8a=0.37 fm

Fig. 10 The Clem α parameter (full black circles) versus smearing at
β = 6.47466 and d = 8a 	 0.37 fm compared to the value obtained
in Ref. [36] (the red dashed line is the central value, the red full lines
delimit the error band)
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d=8a=0.37 fm

Fig. 11 The Clem κ parameter (full black circles) versus smearing at
β = 6.47466 and d = 8a 	 0.37 fm compared to the value obtained
in Ref. [36] (the red dashed line is the central value, the red full lines
delimit the error band)

The values of α and κ are in nice agreement with Ref. [36]
but the difference in the values of μ requires further inves-
tigation. In Fig. 8 the fit is compared to data: it seems to be
qualitatively very good, in spite of a χ2/dof of about 40,
probably due to the large correlation among data at different
xt , which were obtained in the same Monte Carlo simulation.

In Figs. 9, 10 and 11, we show the behavior of the param-
eters of the Clem fit versus smearing at β = 6.47466 and
d = 8a 	 0.37 fm and compare them with the correspond-
ing values as quoted in Ref. [36]. The conclusion that can
be drawn is that smearing behaves, not surprisingly, as an
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effective renormalization, driving the parameters towards the
values extracted from the renormalized field. Of course, the
different systematics in the two approaches must be carefully
studied, to improve the matching.

Appendix B: Coulomb fit

In this Appendix we give some details about the fit of the
transverse components of the chromoelectric field with the
Coulomb law given in Eq. (4). For definiteness, we concen-
trate on the case β = 6.240 and distance between the sources
equal to d = 16a 	 1.14 fm. The other cases considered in
this work were treated similarly.
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Fig. 12 Ey(xt ) a and Ez(xt ) b and in lattice units at several values of
xl at β = 6.240, d = 16a 	 1.14 fm, together with the Coulomb fit
according to Eq. (4)

Table 3 Values of the fit parameters extracted from Coulomb fits of the
Ey field component at β = 6.240 and d = 16a 	 1.14 fm

xl Q R0 [lattice units] χ2
r

0 0.308(5) 2.287(24) 4.3

1 0.312(6) 2.498(32) 4.0

2 0.301(8) 14.3

3 0.333(15) 2.8

4 0.333(24) 2.6

5 0.313(37) 2.3

6 0.305(44) 1.6

7 0.269(86) 0.9

Table 4 Values of the fit parameters extracted from Coulomb fits of the
Ez field component at β = 6.240 and d = 16a 	 1.14 fm

xl Q R0 [lattice units] χ2
r

0 0.281(16) 1.792(41) 1.6

1 0.292(21) 2.018(60) 0.9

2 0.355(25) 2.422(65) 0.6

3 0.279(26) 0.2

4 0.341(54) 0.6

5 0.397(102) 1.1

6 0.626(191) 0.6

7 0.488(432) 0.9

40 50 60 70 80 90 100 110 120 130 140 150 160
smearing steps

0

0.1

0.2
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0.4

0.5

Q

β=6.240 d=16a=1.14 fm   xl=4

Fig. 13 Q from the Coulomb fit to Ey field at β = 6.240, d = 16a 	
1.14 fm, and xl = 4a versus smearing steps

In Fig. 12 we compare the profiles of the y- and z-compo-
nents of the chromoelectric field on the transverse planes
labeled by xl = 0, . . . , 7 with fitting curves of the form
given in (4). The field components were obtained after 100
smearing steps.
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The fit parameters extracted from the Coulomb fit to Ey

and Ez on transverse planes at xl ≤ 7 are summarized in
Tables 3 and 4 . For xl = 0, 1 the point at xt = 0 has been
excluded from the fit.

In order to obtain the final values for Q (as well as for
R0), as quoted in Table 2, only Coulomb fits whose qual-
ity is higher than 10%, on datasets where the error on the
largest extracted value of the field is < 20%, have been taken
into account. Then weighted averages have been computed,
along with the corresponding statistical error and a system-
atic uncertainty to account for the variability of Q and R0

among different acceptable fits.
The behavior of the Q value so determined under smearing

is shown in Fig. 13.
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