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Abstract We study lepton flavour universality violation in
SM boson decays in low-scale seesaw models of neutrino
mass generation, also addressing other electroweak precision
observables. We compute the electroweak next-to-leading
order corrections, which turn out to be important – notably in
the case of the invisible decay width of the Z boson, for which
the corrections can be as large as the current experimental
uncertainty. As a well-motivated illustrative study case, we
choose a realisation of the Inverse Seesaw mechanism, and
discuss the complementary role of lepton flavour conserv-
ing, lepton flavour violating and precision observables, both
in constraining and in probing such models of neutrino mass
generation. Our findings suggest that invisible Z decays are
especially important, potentially at the origin of the most
stringent constraints for certain regimes of the Inverse See-
saw (while complying with charge lepton flavour violation
and other electroweak precision tests). We also discuss the
probing power of the considered observables in view of the
expected improvement in experimental precision at FCC-ee.

1 Introduction

In addition to their role in well-motivated mechanisms of
neutrino mass generation (for instance the type-I seesaw
mechanism [1–5] and its variants), heavy neutral leptons
(HNL) can be at the source of an extensive array of new
phenomena, which are forbidden (or strongly suppressed) in
the Standard Model (SM) of particle physics. These phenom-
ena include lepton number violating (LNV) processes such as
(semi-)leptonic tau and meson decays, charged lepton flavour
violating (cLFV) transitions (including radiative and three-
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body decays, Z and Higgs bosons decays, as well as rare
phenomena in the presence of matter, such as neutrinoless
muon-electron conversion), among others (see e.g. [6–30],
and references therein); several of the latter processes also
reflect the possible Majorana nature of the extended neu-
tral lepton sector. Such heavy Majorana fermions are also
expected to have a significant impact concerning electroweak
(EW) precision observables, and also lead to striking sig-
natures at colliders (be it at the LHC, or at future lepton
colliders). All the above new phenomena are rooted in the
non-negligible mixings of the heavy Majorana states with
the light active neutrinos, which in turn are responsible for
modifying flavour mixings in the lepton sector. In addition,
new leptonic CP violating phases (Dirac and Majorana) can
in principle be present, leading to CP violating effects which
range from an explanation of the baryon asymmetry of the
Universe via leptogenesis, to contributions to an extensive
array of observables.

An accidental symmetry of the SM, lepton flavour uni-
versality (LFU) is conserved in all its gauge interactions,
and is only broken by the charged lepton’s masses (due to
the non-universal interactions with the Higgs field). Once
neutrino oscillation data is minimally incorporated by con-
sidering massive active neutrinos, and once left-handed lep-
tonic mixings are encoded in the so-called Pontecorvo–
Maki–Nakagawa–Sakata matrix (UPMNS), LFU is naturally
violated in charged current leptonic interactions; neverthe-
less, LFU violation (LFUV) remains a direct consequence of
having non-vanishing and non-degenerate masses for both
charged and neutral leptons.

The role of heavy neutral leptons in the violation of LFU
has been explored, in particular in what concerns light meson
decays, as for example upon comparison of the decay widths
P → �αν (with P denoting the decaying meson) to distinct
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charged lepton flavour final states [31,32], (semi-)leptonic
tau-lepton decays and W -boson decays at tree-level, see for
instance [33–35], and references therein. Most of the above
mentioned studies considered only tree-level decays in which
the new heavy states played a virtual role via modifications
of the leptonic mixing matrix: the usual UPMNS is no longer
unitary, but rather a sub-block of an enlarged unitary mixing
matrix. In addition, and if sufficiently light, the new neutral
states could also be produced on-shell from the gauge boson
decays, and thus induce further contributions (see, for exam-
ple [36,37]). However, and other than tree-level effects, the
new heavy Majorana fermions can also open the door to the
mediation of higher order processes, contributing to loop-
level transitions. In the present work we investigate to which
extent these SM extensions by heavy sterile fermion states
can be at the source of deviations from LFU in W, Z and
Higgs boson decays – beyond what is expected due to non-
degenerate charged lepton masses–, computing all relevant
one-loop contributions to the decay widths without any sim-
plifying approximations.1

Addressing the violation of LFU in SM extensions via
heavy neutral leptons is also of particular interest in view of
the expected experimental developments, be it at the LHC,
or especially in view of the excellent sensitivity prospects of
future lepton colliders, as the FCC-ee: concerning the preci-
sion of electroweak measurements, the improvements might
be up to 2 orders of magnitude in the reduction of the rela-
tive uncertainty [38]. Thus, comparing (flavour-conserving)
boson decays to different sets of lepton final states, as is the
case of Z → �α�α, or H → �α�α, will allow probing devi-
ations from the SM expectation, and in turn hint towards
the presence of new physics (NP) in the lepton sector. Fur-
thermore, taking into account higher-order corrections in the
computation of the theoretical predictions is crucial to match
the experimental increase in precision, especially concerning
new physics contributions to electroweak precision observ-
ables (as the invisible width of the Z boson).

In our work we consider beyond the SM (BSM) frame-
works in which heavy sterile fermions are an intrinsic part of
minimal, well-motivated mechanisms of neutrino mass gen-
eration, focusing in particular on the Inverse Seesaw (ISS)
mechanism [14,39,40]. In its different phenomenologically
viable realisations [41], the ISS offers a natural explanation
to the smallness of light neutrino masses, relying on approx-
imate lepton number conservation. In what follows, and for
simplicity, we will always consider the so-called ISS(3,3)
realisation in which two sets of three sterile fermions are
added to the SM content.

1 We have computed the higher-order contributions to the decay widths
both in Feynman–’t Hooft and unitary gauges for consistency and val-
idation of our results.

As we will argue, certain LFUV observables and �(Z →
inv.) can be powerful complementary probes to cLFV observ-
ables, which do still play a very important role. The pres-
ence of the new heavy sterile states can be at the origin of
sizeable deviations from the SM expectation, be it in Z or
Higgs decays. As will be manifest in the numerical analysis,
the inclusion of higher-order corrections to the contributions
of the heavy states can induce deviations in �(Z → inv.)
up to ∼ 5 MeV from the tree-level result; in view of the
current experimental precision (and its expected improve-
ment, both at the high-luminosity phase of the LHC, and a
future FCC-ee), one-loop corrections must therefore be taken
into account to critically assess the viability of this class of
SM extensions. LFUV probes in Z boson decays (including
invisible modes) are thus poised to offer powerful comple-
mentary information to other indirect searches for NP in the
lepton sector (in particular electroweak precision observables
(EWPO) such as the oblique parameters), probing regimes
which would otherwise lie beyond the reach of cLFV probes.

The manuscript is organised as follows: after discussing
the underlying approach to the higher order computations
in Sect. 2, in Sects. 3–5 we present and compute the most
relevant observables and quantities in what concerns LFU
violation in the decays of W, Higgs and Z bosons, respec-
tively. Further relevant decays and EWPOs are discussed in
Sect. 6. We then carry out a thorough numerical analysis in
Sect. 7, and discuss the impact of our findings as comple-
mentary to other searches for NP in Sect. 8. We summarise
our main points in the Conclusions. The appendices include
(among others) details of the renormalisation procedure, the
expressions for the form factors which are used throughout
this work, as well as a description of the model under study
and the most relevant constraints on the latter.

2 New contributions to SM boson decays from heavy
neutral leptons: beyond leading order

While in the context of the SM charged current interactions
are diagonal in flavour space (and so remaining up to all
orders), once neutrinos acquire a mass, flavour is violated, as
parametrised via the 3 × 3 UPMNS leptonic mixing matrix.
Should there be new (mass-induced) mixings involving addi-
tional neutral leptons – as is the case of several models of neu-
trino mass generation – the lepton mixing matrix is enlarged:
for nS additional sterile neutrino states, a new rectangular
3×(3+nS) reflects the extended mixings between the active
and the new heavier states, with its 3 × 3 sub-block (former
UPMNS) no longer being unitary.

Working in the physical (mass) basis, with α = e, μ, τ

denoting the flavour of the charged lepton, and i = 1, . . . , nS
the neutral fermion mass eigenstate (including the light,
mostly active, neutrinos, and additional heavier states whose
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number depends on the SM extension being considered), the
relevant terms in the lepton charged current Lagrangian are
given by:

LW± = − gw√
2
W−

μ

∑

α=e,μ,τ

3+nS∑

j=1

Uα j �̄α γ μ PL ν j + H.c.,

(1)

with PL ,R = (1∓γ5)/2, and gw the weak coupling constant;
U refers to the (3+nS)× (3+nS) unitary matrix which now
parametrises the mixings in the lepton sector. Modifications
are also present in Higgs and Z leptonic interactions; the
corresponding Lagrangian terms are now given by

Lν
Z0 = − gw

4 cos θw

Zμ

3+nS∑

i, j=1

ν̄i γ
μ

(
PLCi j − PRC

∗
i j

)
ν j ,

L�
Z0 = − gw

2 cos θw

Zμ

∑

α=e,μ,τ

�̄α γ μ (CV − CAγ5) �α,

LH0 = − gw

4MW
H

3+nS∑

i, j=1

ν̄i
[
Ci j

(
PLmi + PRm j

)

+C∗
i j

(
PRmi + PLm j

)]
ν j , (2)

with cos2 θw = M2
W /M2

Z . The SM vector and axial-vector
currents (interaction of Z bosons with charged leptons) have
been written in terms of the CV and CA coefficients, respec-
tively given by CV = − 1

2 +2 sin2 θw and CA = − 1
2 . Finally

Ci j are defined as:

Ci j =
∑

ρ=e,μ,τ

U†
iρ Uρ j . (3)

In the above, Greek indices again denote the flavour of the
charged leptons, while i, j = 1, . . . , 3+nS correspond to the
physical (massive) neutrino states. It is convenient to intro-
duce the parameter η (which allows to evaluate the deviations
of the UPMNS from its standard form as a unitary matrix),
defined as [42]

UPMNS → ŨPMNS = (1 − η)UPMNS. (4)

Due to the (tree-level) non-conservation of lepton flavours,
lepton flavour universality will also be violated by charged
and neutral current interactions. Moreover, the new (Majo-
rana) states open the door to higher order corrections to
the interaction vertices: W±�ανi , Z�α�α, and H�α�α, α =
e, μ, τ. In our study – and as subsequently discussed in
the phenomenological analysis – higher order effects in the
decays of both Z and Higgs bosons are of particular rele-
vance; for completeness, we extend the study of the one-loop
contributions to W decays.2

2 We nevertheless verified that the HNL-mediated one-loop contribu-
tions to W -boson decays are indeed negligible (thus confirming the

A thorough evaluation of the higher order contributions
requires a full renormalisation of the involved parameters
(masses, mixings and couplings) and of the fields. In our
study we employ the “on-shell” renormalisation scheme to
cancel ultraviolet (UV)-divergences via counterterms; fol-
lowing [44], we choose the set of input parameters to be
renormalised as

MW , MZ , MH , m�α , mνi , e, Uαi . (5)

The renormalisation of the Ci j matrix (defined in Eq. (3)),
follows directly from the renormalisation of U (and from
associated unitarity relations), see Appendix A. The coun-
terterms for the renormalisation of the parameters are defined
as

e0 = (1 + δZe)e, (6)

M2
W,0 = M2

W + δM2
W , (7)

M2
Z ,0 = M2

Z + δM2
Z , (8)

M2
H,0 = M2

H + δM2
H , (9)

m�α,0 = m�α + δm�α , (10)

mνi ,0 = mνi + δmνi , (11)

Uαi,0 = Uαi + δUαi , (12)

in which the “0” subscript denotes the bare (unrenormalised)
parameters. In the on-shell scheme, the weak mixing angle
is a derived quantity given by

sin2 θw = 1 − M2
W

M2
Z

, (13)

which is computed using the renormalised gauge boson
masses. We further renormalise the involved boson and
fermion fields

W, Z , H, �α, νi . (14)

The (multiplicative) boson and fermion field renormalisation
constants are expanded up to one-loop order as follows (the
fermion field renormalisation constants are now given by
matrices, owing to the lepton mixing):

W±
0 = Z1/2

W W± =
(

1 + 1

2
δZW

)
W±, (15)

(
Z0

A0

)
=

(
1 + 1

2 δZZZ
1
2 δZZ A

1
2 δZAZ 1 + 1

2δZAA

) (
Z
A

)
, (16)

H0 =
(

1 + 1

2
δZH

)
H, (17)

�Lα,0 =
(

δαβ + 1

2
δZ�,L

αβ

)
�Lβ , (18)

�Rα,0 =
(

δαβ + 1

2
δZ�,R

αβ

)
�Rβ , (19)

results of a previous study [43], but now including all possible contri-
butions).
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νL
i,0 =

(
δi j + 1

2
δZν,L

i j

)
νL
j . (20)

Note in addition that the bare and renormalised Majo-
rana neutrino fields do still fulfil the Majorana condition,
νL
i,0 = (νR

i,0)
C and νL

i = (νR
i )C ; the renormalisation con-

stants of the right-handed fields are thus simply given by
δZν,R

i j = (δZν,L
i j )∗. In the presence of heavy neutral leptons,

all of the above listed renormalisation constants (except that
of the photon and the Z -photon mixing terms) receive new
contributions, in addition to the usual SM ones.

The renormalised Lagrangian (including the countert-
erms) gives rise to counter-diagrams that absorb the UV-
divergences of the one-loop amplitudes. In the subsequent
sections, we will provide the distinct counter-diagrams rel-
evant to the leptonic charged and neutral current interac-
tions. Further details on the renormalisation procedure (con-
stants, boson and fermion self-energies) can be found in
Appendix A.

3 LFU violation in W± boson decays

We begin by discussing leptonic charged interactions,W�βν f ,

which – and as noticed before – receive several new contri-
butions as a consequence of the presence of the new heavy
(Majorana) states: the distinct contributions are displayed in
Fig. 1 (in unitary gauge). Notice that while a subset of dia-
grams is in essence “SM-like” (the last two types of diagrams
in the second row of Fig. 1), most of the new processes reflect
the presence of the new massive neutral leptons. Moreover,
certain contributions exist if and only if the neutral leptons are
of Majorana nature, as the corresponding interactions lead to
a violation of total lepton number. This is for example the
case of the first diagram on the top-most row (which can lead
to W�βν f and W�β ν̄ f ).

3

The general decomposition of the W�ν vertex can be writ-
ten as

ūβ(pβ) �
μ
W�βν f

(q) v f (p f ) =
∑

X=L ,R

ūβ(pβ)

×
[
FX
S qμ PX + FX

V γ μ PX + FX
T σμν qν PX

]
v f (p f ),

(21)

with q = pα + p f the momentum of the W boson and
σμν = i

2 [γ μ, γ ν]; FL ,R
S,V,T are scalar, vector and tensor form

factors. For on-shell W decays, the scalar amplitudes do not

3 Notice that the W�βν f decay cannot be exploited to unveil the source
of lepton number violation due to the associated light neutrino mass
suppression; however, it might lead to relevant vertex corrections in the
case of off-shell W decays into heavy neutrinos.

contribute (their contribution vanishes due to the Ward iden-
tity), and the decay width can be approximately cast as

�(W → �βν f ) � �tree + �tree−loop + �brems, (22)

in which �tree is the tree-level contribution, �tree−loop denotes
the interference term between tree-level and 1-loop diagrams,
and �brems corresponds to the bremsstrahlung corrections,
which are required to cancel the infrared (IR) divergences
arising from the presence of virtual photons in the loop dia-
gram (f) of Fig. 1. Further details regarding the form factors
for leptonic W decays have been collected in Appendix B.
The tree-level contribution to the W decay rate is given by

�tree = λ1/2(MW ,mβ,m f )

16π M3
W

1

3M2
W

×
{

2M4
W − M2

W (m2
f + m2

β) − (m2
f − m2

β)2
}

× |FL ,tree
V |2, (23)

where λ(a, b, c) = (a2 − b2 − c2)2 − 4b2c2 is the Källén-
function and the tree-level contribution is simply given by
FL ,tree
V = −gw/

√
2Uβ f . The interference term can be writ-

ten in terms of the above form factors as

�tree−loop = λ1/2(MW ,mβ,m f )

16π M3
W

1

3M2
W

× 2Re

[ (
2M4

W − M2
W (m2

f + m2
β) − (m2

f − m2
β)2

)
FL
V

(
FL ,tree
V

)∗ + 6M2
W m f mβ FR

V

(
FL ,tree
V

)∗

− 3iM2
W mβ(m2

β − m2
f − M2

W )FL
T

(
FL ,tree
V

)∗

− 3iM2
W m f (m

2
f − m2

β − M2
W )FR

T

(
FL ,tree
V

)∗ ]
. (24)

(Notice that the terms involving FL ,R
T and FR

V lead to sub-
dominant contributions.) Finally the bremsstrahlung correc-
tions, which originate from photonic processes with charged
external particles (to one-loop order, only single photon radi-
ation needs to be considered) can be found in [44], noticing
that the charged current vertex has to be accordingly modified
– as done throughout the present analysis.

Upon renormalisation, and for on-shell W bosons, the
W�ν vertex exhibits the following divergence:

divW�βν f = − g3

16π2 4
√

2 ε M2
W

×
{ ∑

i

Ci f Uβi m
2
i +Uβ f m

2
β+Uβ f M

2
Z+10Uβ f M

2
W

}
,

(25)
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Fig. 1 Relevant one-loop diagrams contributing to W decays in unitary gauge (notice that diagram (a) violates total lepton number). The diagram
labels (a)–(g) correspond to the superscripts of the form factors listed in Appendix B

which will be cancelled owing to renormalisation (which
includes renormalising the matrix U , sw and the electromag-
netic coupling, e, as discussed in the previous section). For
this purpose we include all the SM counterterms, and recom-
pute the fermionic ones in the present BSM framework. Thus,
adapting the SM W�ν vertex renormalisation [44] by taking
into account renormalisation of the leptonic mixing matrix
U [45], the counterterm for W decays is given in Eq. (26),

W−
μ

�−
β

ν̄ f

= − i
gw√

2
γμ

×
{
Uβ f

(
1 − δsw

sw
+ δZe + 1

2
δZW

)
+ δUβ f

+ 1

2

(∑

α

δZ�,L†
βα Uα f +

∑

i

Uβi δZ
ν,L
i f

)}
PL . (26)

After the above (formal) considerations, we now proceed
to discuss the phenomenological implications: to address
deviations from universality, we will consider the following
ratios of decay widths

RW
αβ = �(W → �αν)

�(W → �βν)
, with α �= β = e, μ, τ. (27)

In SM extensions via heavy neutral leptons, it has been
shown [36] that (at tree-level) RW

αβ displays the following
dependency on the deviations from unitarity of the PMNS
matrix,

RW
αβ ∼ [

1 − 2(ηαα − ηββ)
]
RW

αβ |SM. (28)

The BSM predictions should thus be compared with the SM
expectation, which have been computed including correc-
tions at one-loop level4 in [46], and with the subsequent
measurements at LEP [47],

RW
τe|SM = 0.9993, RW

τe|LEP = 1.063 ± 0.027, (29)

RW
τμ|SM = 0.9993, RW

τμ|LEP = 1.070 ± 0.026, (30)

RW
μe|SM = 0.9999, RW

μe|LEP = 0.993 ± 0.019. (31)

Recently a more precise measurement has been performed
by ATLAS [48], exhibiting a very good agreement with
the SM prediction; likewise, CMS has also published new
results [49], also in good agreement with the SM (in partic-
ular concerning W → τν decays).

4 Higgs decays to dimuons and ditaus

Searches for lepton flavour universality violation in Higgs
decays are also promising probes of new physics in the lep-
ton sector, especially in view of the expected developments at
current and future colliders: in the coming future, the LHC
Run 3 is expected to offer a 4.5% increase in energy and
50% increase in the collision rate combined with luminosity
levelling [50], and thus a potential (and more precise) mea-
surement of the flavour conserving H → μμ, ττ widths.

4 Notice that these results were obtained for MH ∼ 100 GeV.
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Deviations from universality can be studied through the
measurement of the ratio

RH
αβ = �(H → �α�α)

�(H → �β�β)
, α = μ, and β = τ. (32)

Within the SM, the RH
μτ ratio is a theoretically very clean

observable; at leading order, it reflects that in the lepton
sector only the charged lepton Yukawa couplings (i.e., the
charged lepton masses) are responsible for the breaking of
LFU, RH

αβ |SM ≈ O(m2
α/m2

β).

Concerning the individual decay widths, and at lowest
order, one finds [51]

�(H → �α�α) = GF MH

4
√

2π
m3

α

(
1 − 4m2

α

M2
H

)3/2

×
(

1 + δ
�α

QED + δ
�α

weak + δ
�α

HNL

)
, (33)

with the SM-like corrections (i.e. from quantum electrody-
namics (QED), and weak interactions) given by

δ
�α

QED = 3 α

2π

(
3

2
− log

M2
H

m2
α

)
, (34)

δ
�α

weak = GF

8π2
√

2

[
7m2

t + M2
W

(
−5 + 3 log c2

w

s2
w

)

−M2
Z

6(1 − 8s2
w + 16s4

w) − 1

2

]
. (35)

As discussed in [51], the weak corrections do cancel out in the
RH

αβ ratio; non-universal corrections, which were neglected
in the above, are considerably smaller than phase-space fac-
tors and QED corrections included in δ

�α

QED. Carrying out
an expansion of the remaining terms up to leading order in
m2

α/M2
H , the SM prediction for RH

αβ can thus be written as

RH
αβ |SM ≈ m2

α

m2
β

(
1 + 6

m2
β − m2

α

M2
H

− 3αe

2π
log

m2
β

m2
α

)
. (36)

The presence of the additional heavy states with non-
negligible mixings to the light neutrinos can lead to devi-
ations from the above SM prediction for RH

αβ. A first
(naïve) estimation of possible LFUV NP contributions can
be obtained by considering the leading order interference
between the SM contribution and the one-loop contribution
from the presence of the heavy sterile states. In particular, the
latter corrections, δ

�α

HNL – corresponding to the interference
term between tree- and loop-levels – can be cast as

δ
�α

HNL,int =
[
GF MH

4
√

2π
m3

α

(
1 − 4m2

α

M2
H

)3/2 ]−1 1

16πMH

×
√

1−4m2
α

M2
H

×2Re

[
−2m2

α

(
F tree)∗

(FL+FR)

+(M2
H − 2m2

α)
(
F tree)∗

(FL + FR)

]
, (37)

where F tree = −gwmα/2MW is the tree-level Higgs-lepton
coupling and the 1-loop form factors FL/R = F (a)

L/R + F (b)
L/R

(arising from the new diagrams involving the HNL, see
Fig. 15) are given in Appendix C. The renormalised vertex
is presented in Eq. (38),

H

�α

�β

= − i
gw

2MW
(CH

L ,αβ PL + CH
R,αβ PR) .

(38)

In the above, we have introduced the quantities CH
L ,R, which

are defined as

CH
L ,αβ = δαβmα

(
1−δsw

sw
+δZe+δmα

mα

−δMW

MW
+1

2
δZH

)

+1

2

(
mα δZ�,L†

αβ + δZ�,R†
αβ mβ

)
,

CH
R,αβ = δαβmα

(
1−δsw

sw
+δZe+δmα

mα

−δMW

MW
+1

2
δZH

)

+1

2

(
mα δZ�,R†

αβ + δZ�,L†
αβ mβ

)
. (39)

5 LFU violation in Z decays RZ
αβ

The presence of the (heavy) sterile fermion states can also
be at the source of new contributions to the individual decay
widths of Z bosons, and potentially contribute to an effective
violation of lepton flavour universality of Z -boson couplings.
As done for the Higgs decays, it is convenient to consider the
following ratios of decay widths

RZ
αβ = �(Z → �+

α �−
α )

�(Z → �+
β �−

β )
, with α �= β = e, μ, τ, (40)

which allow cancelling QED corrections in the theoretical
predictions. At 2-loop accuracy, one has the following SM
predictions for the RZ

αβ ratios [52]

RZ
μe|SM = �(Z → μ+μ−)SM

�(Z → e+e−)SM = 1,

RZ
τμ|SM = �(Z → τ+τ−)SM

�(Z → μ+μ−)SM = 0.9977,

RZ
τe|SM = �(Z → τ+τ−)SM

�(Z → e+e−)SM = 0.9977, (41)
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(with negligible associated uncertainties); the corresponding
experimental values [53] are

�(Z → μ+μ−)exp

�(Z → e+e−)exp = 1.0001 ± 0.0024,

�(Z → τ+τ−)exp

�(Z → μ+μ−)exp = 1.0010 ± 0.0026,

�(Z → τ+τ−)exp

�(Z → e+e−)exp = 1.0020 ± 0.0032. (42)

In what concerns the NP contributions, we estimate the mod-
ified individual partial widths as

�(Z → �+�−) � �SMfull + �SMtree−nS , (43)

where �SMfull is given at 2-loop accuracy in [52]. In our
numerical evaluation we implement the parametrisation for-
mula for �SMfull given in [52] and add the HNL contributions
at 1-loop; �SMtree−nS is the interference term between the SM
tree-level contribution and the 1-loop diagrams reflecting the
contributions from the sterile neutrinos,

�SMtree−nS =
√
M2

Z − (2mα)2

16πM2
Z

× 1

3
2Re

[
− 4

(
FV
L

)∗
(F tree

L − 2F tree
R )m2

α

− 4
(
FV
R

)∗
(−2F tree

L + F tree
R )m2

α

+ [2
(
FV
L

)∗
F tree
L + 2

(
FV
R

)∗
F tree
R

+ 3i
((

FT
L

)∗ +
(
FT
R

)∗)
(F tree

L + F tree
R )mα]q2

+2m2
αq

2

M2
Z

((
FV
L

)∗ −
(
FV
R

)∗)
(F tree

L −F tree
R )

]
.

(44)

The tree-level form factors are defined as F tree
L/R = −gw/

(2cw)(CV ±CA). (In the above, we have verified that terms
involving FT

L ,R lead to subdominant contributions.) Typi-
cally, in SM extensions via heavy sterile states, the domi-
nant contributions in general arise from the diagram with
two neutral leptons in the loop (diagram (a) in Fig. 16).

The renormalisation of the Z�� vertex is given in Eq. (45):

Zμ

�α

�β

= − i
gw

cw

γμ (CZ�
L ,αβ PL − CZ�

R,αβ PR) ,

(45)

where the coefficients CZ�
L ,R are defined as

CZ�
L ,αβ = gZL

[
δαβ

(
1 + δgZL

gZL
+ 1

2
δZZZ

)

+1

2

(
δZ�,L

αβ + δZ�,L†
αβ

)]
− δαβ

1

2
Q� δZAZ ,

CZ�
R,αβ = gZR

[
δαβ

(
1 + δgZR

gZR
+ 1

2
δZZZ

)

+1

2

(
δZ�,R

αβ + δZ�,R†
αβ

)]
− δαβ

1

2
Q� δZAZ . (46)

In the above equation, the right- and left-handed Z couplings
to the charged leptons are

gZR = −Q� s
2
w, gZL = T 3

� − Q� s
2
w, (47)

with T 3
� and Q� respectively denoting the weak isospin and

electric charge. Details on the different couplings and wave
functions can again be found in Appendix A, while the form
factors are further discussed in Appendix C.

6 Impact on EW precision observables: invisible Z
width and further constraints

The presence of heavy neutral fermions will also contribute at
one-loop level to several EW (precision) observables includ-
ing, among others, the oblique parameters, and the invisible
Z width. Following the PDG [53] definition of the oblique
parameters S, T,U, the SM contributions to the latter vanish
by construction; any deviation from 0 is thus a clear indi-
cation of NP contributions to the electroweak gauge boson
self-energies. The oblique parameters are defined as [43,53–
55]

αe S = 4s2
w c2

w

M2
Z

[
�̂N

Z Z (0) + �̂N
γ γ (M2

Z )

−c2
w − s2

w

cw sw
�̂N

Zγ (M2
Z )

]
, (48)

αe T = �̂N
Z Z (0)

M2
Z

− �̂N
WW (0)

M2
W

, (49)

αe U = 4s2
w c2

w

[
1

c2
w

�̂N
WW (0)

M2
W

− �̂N
Z Z (0)

M2
Z

+ s2
w

c2
w

�̂N
γ γ (M2

Z )

M2
Z

−2
sw
cw

�̂N
Zγ (M2

Z )

M2
Z

]
, (50)

in which the various �̂N denote the HNL contributions to
the renormalised boson self-energies. Notice that the heavy
neutral lepton contributions to the unrenormalised �γγ and
�Zγ are vanishing, contrary to the renormalised ones. The
definition of the renormalised self-energies in the on-shell
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scheme can be found in [43,44], while the explicit expres-
sions for the HNL contributions to the unrenormalised boson
self-energies are given in Appendix A. We further emphasise
here that only the contributions to the T parameter will be of
phenomenological relevance, since contributions to S and U
are strongly suppressed.

In the present study, we will emphasise the role of the
invisible Z width, in particular the impact of the new higher
order contributions (for an extensive discussion on these con-
straints on SM extensions via sterile fermions, see [43]). The
relevant form factors for the invisible Z decay width are also
detailed in Appendix C. The renormalisation of the Znanb
vertex is given by

Zμ

na

n̄b

= − i
2gw

4cw

γμ (CZν
L ,ab PL − CZν

R,ab PR) ,

(51)

where the coefficients CZ
L ,R read

CZν
L ,ab = Cab

(
s2
w − c2

w

c2
w

δsw
sw

+ δZe + 1

2
δZZZ

)
+ δCab

+ 1

2

( ∑

x

δZν,L†
ax Cxb +

∑

y

Cay δZν,L
yb

)
,

CZν
R,ab = C∗

ab

(
s2
w − c2

w

c2
w

δsw
sw

+ δZe + 1

2
δZZZ

)
+ δC∗

ab

+ 1

2

( ∑

x

δZν,R†
ax C∗

xb +
∑

y

C∗
ay δZν,R

yb

)
, (52)

with the Cab coefficients as defined in Eq. (3). The 1-loop
invisible Z width is then given by

�(Z → inv.) =
Nmax∑

a,b

(
1 − 1

2
δab

)
λ1/2(MZ ,ma,mb)

48πM5
Z

�full,

(53)

Nmax being the heaviest neutrino kinematically allowed. The
full invisible width is the sum of the tree-level width and
the interference between tree- and loop-level contributions
mediated by the new states in the present model �full =
�tree + �tree−nS . In terms of the form factors, the widths
�tree and �tree−nS can be written as5

�tree =
(

2M4
Z − M2

Z (m2
b + m2

a) − (m2
b − m2

a)
2
)

× (|F tree
L |2 + |F tree

R |2)

5 Notice that for identical final states, the “cross-lined” diagrams - with
na ↔ nb - have to be taken into account.

+ 6M2
Z ma mb (F tree

L

(
F tree
R

)∗ + F tree
R

(
F tree
L

)∗ )
,

(54)

�tree−nS = 2Re

[ (
2M4

Z − M2
Z (m2

b + m2
a) − (m2

b − m2
a)

2
)

×
(
FV
L

(
F tree
L

)∗ + FV
R

(
F tree
R

)∗ )

+6M2
Z ma mb

(
FV
L

(
F tree
R

)∗ + FV
R

(
F tree
L

)∗)

− 3iM2
Z ma(m

2
a − m2

b − M2
Z )

×
(
FT
L

(
F tree
L

)∗ + FT
R

(
F tree
R

)∗ )
− 3iM2

Z mb

×
(
m2
b − m2

a − M2
Z )(FT

R

(
F tree
L

)∗ + FT
L

(
F tree
R

)∗ )]
.

(55)

In the above, the tree-level couplings are given by F tree
L =

−2gw/(4cw)Cab and F tree
R = 2gw/(4cw)C∗

ab. Notice that
terms involving the tensor form factors FT

L/R are subdomi-
nant.

A more phenomenological approach allows revealing the
important deviations from the SM expectations which are
induced from the departure from unitarity of the would-be
PMNS matrix; this can be inferred from the tree-level expres-
sion for the invisible width (see [36])

�(Z → inv.) = GF M3
Z

∑
i, j |(Ũ † Ũ )i j |2

12
√

2 π

� Gμ M3
Z

12
√

2 π

(
3 − (Tr(η) + 3ηττ )

)
, (56)

in which the parameter η has been defined in Eq. (4) andGμ is
the Fermi constant as measured in muon decays, introduced
in Appendix D.

As expected, the one-loop diagrams can create further
tensions with the SM, due to the sizeable contributions
induced by numerous exchanges, especially those including
two heavy virtual states (see diagrams (a) in Fig. 17). In view
of the expected improvements in the associated experimental
precision, these higher order terms will play a relevant role
in assessing the viability of SM extensions via HNL, as is
the case of the ISS.

7 Phenomenological analysis: the Inverse Seesaw

After having discussed the formal aspects of the contributions
of the (heavy) sterile states regarding the leptonic interaction
vertices, we now proceed to illustrate the effects of the HNL
in a well-motivated UV-complete NP model, which natu-
rally incorporates them: the Inverse Seesaw mechanism of
neutrino mass generation, which can be realised at compara-
tively low scales. In this section we thus present the results of
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our phenomenological analysis of the ISS(3,3), a realisation
in which 3 right-handed neutrinos and 3 other sterile states
are added to the SM content (see Appendix D for a detailed
presentation of the model). We focus on several LFUV and
EW precision observables, being particularly interested in
regimes for which the (in general very constraining) bounds
from cLFV observables are superseded by the flavour con-
serving probes.

7.1 Exploring the ISS(3,3) parameter space

Despite the different parametrisations of the ISS(3,3) which
are available in the literature, and which have been exten-
sively used to study its parameter space, a first exploration
showed that the latter were not well-suited for our purposes.
On the one hand, the “standard” Casas–Ibarra parametrisa-
tion [56] can scale exponentially if complex angles in the
arbitrary orthogonal matrix are considered, thus quickly lead-
ing to regimes of non-perturbative Yukawa couplings. More-
over, one does not have control over flavour-violating cou-
plings, such that regimes in which one has large flavour
non-universality but small flavour-violation correspond to
an extreme fine-tuning of the Casas–Ibarra parameters. On
the other hand, while the “μX”-parametrisation [25] solves
some of these problems, only certain benchmark points were
considered, as to maximise flavour violation in a certain
“direction”. Therefore, we have considered a more general
formulation of the “μX”-parametrisation of [25] and [57],
which despite its simplicity, efficiently allows to fully explore
flavour non-universal regimes, while retaining control over
flavour-violating configurations. We thus cast

μX = MT
R m(−1)

D U∗
PMNS

× diag(mν1 ,mν2 ,mν3)U
†
PMNS (mT

D)(−1) MR, (57)

with

mD = v YD = diag(y1, y2, y3)V M†
R, (58)

and in which V is an arbitrary (special-) unitary matrix, MR

is an arbitrary complex matrix (which for simplicity, and
without loss of generality, is assumed to be diagonal and
real),UPMNS is the (3×3)-PMNS matrix andmνi are the light
(active) neutrino masses. From the above it is clear that YD

must be invertible, and so this parametrisation isonlyvalid for
(3, n) realisations of the ISS; thus, at least 3 heavy states must
be present.6 Recalling the definition of the parameter η (see
Eq. (4)), one can readily verify that the above parametrisation
allows to access regimes for which η will be approximately
diagonal:

6 The parametrisation of Eqs. (57, 58) can be likely generalised to
more general ISS configurations, however we did not explore further
possibilities, as our analysis was focused on the (3,3) realisation.

η � 1

2
m∗

D

(
M−1

R

)† (
M−1

R

)
mT

D = 1

2
diag(y2

1 , y2
2 , y2

3 );
(59)

in particular, for mass-degenerate heavy states, flavour vio-
lation is absent by construction. Furthermore, the unitary
matrix V in Eq. (58) controls the off-diagonal terms in the
“active-sterile” mixing matrix. At leading order in the per-
turbative diagonalisation of the full mass-matrix, and under
the assumption of a symmetric block-matrix MR, one has

U3×6 � 1√
2

(
im∗

D (M†
R)−1, m∗

D (M†
R)−1

)
. (60)

Again, for a real symmetric (or even diagonal) MR, and upon
inserting the parametrisation of mD given in Eq. (58), it is
evident that the only off-diagonal structure appearing in the
“active-sterile” mixing matrix is entirely controlled by V. In
particular, one then finds

U3×6 � 1√
2

(
i diag(y1, y2, y3)V∗, diag(y1, y2, y3)V∗) .

(61)

If one now chooses an Euler-parametrisation of V (analo-
gously to the PMNS-matrix), as

V = R23 R13 R12, (62)

the “directions” of charged lepton flavour violating transi-
tions are controlled by the size of the mixing angles appear-
ing in the rotations Ri j , such that for instance the angle in
R12 controls the size of μ−e cLFV transitions. The approach
offered by the parametrisation of Eqs. (57, 58) does allow to
efficiently access and explore regimes with very distinctive
features, both cLFV- and LFUV-wise.

Before presenting the results of the numerical study, we
describe the scanning procedure, as well as the different steps
of the analysis.
As seen from Eqs. (57, 58), the input parameters are the
unitary matrix V, the heavy sterile masses MR, the diagonal
Yukawa couplings, and finally, the active neutrino data (i.e.,
the light state masses, their ordering, as well as the PMNS
matrix angles). We thus vary the input parameters as follows:

• matrix V – 3 angles and 9 phases in the range (−π, π);
• diagonal entries of MR – taken in the range (0.5, 20) TeV

(logarithmically varied), no hierarchy is assumed;
• lightest neutrino mass – m0 in the range [10−10, 10−3]

eV (logarithmically varied);
• PMNS angles and active mass splittings fixed to their

best fit values (always for a normal ordering of the light
neutrino spectrum), with PMNS phases sampled in the
range (−π, π) [58];

• diagonal Yukawa couplings (y1, y2, y3) taken in the
range (10−3, 100) – as a logarithmic prior –, no hierarchy
assumed.
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Table 1 Experimental values and SM predictions for several LFUV and EW observables discussed in the phenomenological analysis. All uncer-
tainties are given at 68% C.L., while for the SM predictions of the universality ratios, the parametric uncertainties are negligible

Observable Exp. measurement SM prediction

Rμe(W → �ν) 0.993 ± 0.019 (LEP [47]) 0.9999 [46]

1.002 ± 0.006 (PDG [53])

Rτe(W → �ν) 1.062 ± 0.027 (LEP [47]) 0.9993 [46]

1.015 ± 0.020 (PDG [53])

Rτμ(W → �ν) 1.070 ± 0.026 (LEP [47]) 0.9993 [46]

1.002 ± 0.020 (PDG [53])

Rμe(Z → ��) 1.0001 ± 0.0024 (PDG [53]) 1.0 [52]

Rτe(Z → ��) 1.0020 ± 0.0032 (PDG [53]) 0.9977 [52]

Rτμ(Z → ��) 1.0010 ± 0.0026 (PDG [53]) 0.9977 [52]

�(Z → e+e−) 83.91 ± 0.12 MeV (LEP [59]) 83.965 ± 0.016 MeV [52]

�(Z → μ+μ−) 83.99 ± 0.18 MeV (LEP [59]) 83.965 ± 0.016 MeV [52]

�(Z → τ+τ−) 84.08 ± 0.22 MeV (LEP [59]) 83.775 ± 0.016 MeV [52]

�(Z → inv.) 499.0 ± 1.5 MeV (PDG [53]) 501.45 ± 0.05 MeV [52]

BR(H → τ+τ−) 0.06+0.008
−0.007 (PDG [53]) 0.0624 ± 0.0035 [60]

BR(H → μ+μ−) (2.6 ± 1.3) × 10−4 (PDG [53]) (2.17 ± 0.13) × 10−4 [60]

Rμe(τ → �νν) 0.9762 ± 0.0028 (PDG [53]) 0.972559 ± 0.00005 [61]

The analysis then proceeds as follows. All input param-
eters are randomly generated in the chosen ranges, ensur-
ing perturbativity of all the entries of the Yukawa couplings
(|Y D

i j | ≤ √
4π). As detailed in Appendix D, numerous theo-

retical and phenomenological constraints are then enforced.
Firstly, perturbative unitarity constraints are applied to the
heavy neutrino spectrum: as a first estimate, the width of
each Ni (i.e. �Ni ) is computed at tree-level from the lead-
ing decay channels, Ni → W�, Ni → ZN j , Ni → HN j ;
regimes violating �Ni ≤ 1

2mNi are thus excluded. Compat-
ibility with numerous flavour observables is subsequently
imposed, in particular concerning the cLFV leptonic decays
μ → eγ, μ → eee, μ − e conversion, τ → μγ, τ → eγ,

τ → μμμ, and τ → eee. Likewise, the bounds from numer-
ous flavour-universality observables are imposed, including
�rK , �rπ (defined in Appendix D), and universality in tau-
lepton decays. A first estimate (at tree-level) of the invisible
Z width and of lepton flavour universality violation in W
decays are also carried out, and regimes leading to violation
of the latter bounds at the 3σ level are excluded.

Once this first set of constraints is applied, we compute the
loop-corrections to �(Z → inv.) and the LFU ratios of the
W -decay modes (which are affected by the presence of the
HNL already at tree-level), as well as the loop-corrections to
the neutral boson decays H → �� and Z → ��.

A detailed description of (current) bounds relevant for the
discussion can be found in Table 1.

The FCC collaboration estimates that, due to an increase
in statistics by five orders of magnitude with respect to LEP, it
is likely that uncertainties be reduced by at least one order (in

some cases even more than two orders) of magnitude [38,62].
In what regards these future sensitivities for the observables
under consideration, in this work we assume a more mod-
est improvement, and conservatively take a reduction of the
uncertainties by a factor 4. In the following discussion, the
intervals corresponding to the future sensitivities are estab-
lished by fixing the central value7 of the future measurements
to the current averages, and scaling their uncertainties accord-
ingly (i.e., dividing the 1σ uncertainty by 4). This leads us
to

Rτe(Z → ��)|FCC � 1.0020 ± 0.0008 (63)

Rτμ(Z → ��)|FCC � 1.0010 ± 0.0007 (64)

�(Z → τ+τ−)|FCC � 84.08 ± 0.06 MeV (65)

�(Z → inv.)|FCC � 499.0 ± 0.38 MeV, (66)

in which we have also assumed that the uncertainty of the
indirect determination of the invisible Z width will also
improve by a factor 4.

Before we proceed with the discussion of the observables,
let us briefly notice that throughout the investigated param-
eter space (as indirectly accessed via the parametrisation of
Eqs. (57, 58)), the generated Yukawa couplings typically
range from tiny values to the imposed perturbativity cutoff.

7 Whenever the future sensitivity of FCC-ee is displayed, we consider
the intervals centred on the current experimental central value (and thus
in tension with the SM). Should future measurements exhibit better
agreement with the SM expectation, the impact on our results can be
evaluated by re-centring the FCC-ee lines around the SM value.
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Fig. 2 Contributions to RZ
τμ in the ISS(3,3): on the left panel, as a

function of the mass of the heaviest sterile state, Mmax; on the right,
dependency on the largest entry of the Yukawa couplings, Ymax. For
both panels the horizontal coloured bands correspond to the experimen-

tal 1σ–3σ intervals (from darker to lighter), while the dashed horizontal
lines denote the FCC-ee future sensitivity. The red solid line denotes
the SM expectation

Likewise, and concerning the (diagonal) entries of the
matrix η (cf. Eq. (4)), one finds that the maximal obtained
values are ηmax

ee ≈ 0.004, ηmax
μμ ≈ 0.003, ηmax

ττ ≈ 0.01 while
in agreement with all the imposed constraints8 (following the
above discussion, all off-diagonal entries ηαβ are compatible
with zero, ηmax

αβ � 10−19, for α �= β).

7.2 Numerical results

We begin the discussion of our results by considering several
observables directly related to the violation of lepton flavour
universality in Z boson decays. We then briefly comment
upon the prospects of the ISS(3,3) in what concerns LFUV
in Higgs and W decays. Upon presentation of the results, we
will often rely on the (pseudo-) parameters Mmax and Ymax,

which are respectively defined as the heaviest mass eigenstate
and the largest entry in YD (defined in Eq. (58)).

LFUV in Z decays Defined in Eq. (40), the observable RZ
τμ

compares the decay widths of the Z into pairs of tau-leptons
and muons. In Fig. 2 (left panel), we display the ISS(3,3)
contributions to RZ

τμ as a function of the mass of the heaviest
sterile state, Mmax. All points displayed comply with the dis-
tinct constraints referred to above. The coloured bands cor-
respond to the experimental 1σ, 2σ and 3σ intervals (from
darker to lighter), and the dashed horizontal lines denote

8 Notice that we are not doing a full fit including hadronic observables
(other than those specifically mentioned), nor do we include bounds
on the entries of the CKM quark mixing matrix. Should that be the
Footnote 8 continued
case, ηττ would be more constrained than the regimes here allowed
(see, for example, [37,63]). In the present study, our goal is not to infer
bounds on ηαβ, but rather to compare the constraining power of distinct
observables.

Fig. 3 Contributions to RZ
τμ in the ISS(3,3), as a function of Tr(η).

Line and colour code as in Fig. 2

the expected FCC-ee future sensitivity (assuming the cur-
rent central experimental value, and a 4-fold increase in pre-
cision). Throughout the investigated parameter space, and
for all masses considered, most of the contributions satu-
rate around the SM expectation (RZ

τμ|SM ∼ 0.9975), itself
already revealing a slight tension with the experimentally
determined ratio. However, one also encounters values of
RZ

τμ considerably smaller: this occurs typically for a heavy
spectrum around 6 TeV, and such a behaviour is associated
with regimes for which the entries (at least one) of the Yukawa
couplings are very large, close to its maximal allowed value.
This can be confirmed from inspection of the right panel of
Fig. 2, in which we present RZ

τμ vs. Ymax. As visible, the
most significant deviations with respect to the SM-like value
occur for Ymax close to the perturbativity bound.

For a lighter HNL spectrum (i.e. lower values of Mmax),

regimes leading to a strong violation of universality in Z
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Fig. 4 Contributions to the width of the Z decay into a pair of taus, �(Z → ττ) in the ISS(3,3): on the left panel, as a function of the mass of the
heaviest sterile state, Mmax; on the right, dependency on ηττ . Line and colour code as in Fig. 2
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Fig. 5 Contributions to the invisible Z width, �(Z → inv.) in the
ISS(3,3): on the left panel, as a function of the mass of the heaviest
sterile state, Mmax; on the right, dependency on the largest entry of
the Yukawa couplings, Ymax. For both panels, the tree-level (one-loop)
contributions correspond to the blue (orange) points, with the SM pre-

diction being denoted by a horizontal red line. As before, the horizontal
coloured bands correspond to the experimental 1σ–3σ intervals (from
darker to lighter), while the dashed horizontal lines denote the FCC-ee
future sensitivity

decays – in association with large values of the Yukawa
couplings – would be already in conflict with other LFUV
observables, such as R�

K or R�
π . Moreover, such regimes

would also typically lead to contributions to the invisible Z
width excluded by data (already at tree level). Larger values
of Mmax are associated with SM-like predictions, as the mix-
ings become smaller (a consequence of the intrinsic structure
of the ISS). In association with the expected improvement in
experimental sensitivity, FCC-ee is expected to probe most of
the ISS(3,3) contributions to the LFUV-sensitive observable
RZ

τμ.

A complementary way to understand the possible devi-
ations of the ISS(3,3) contributions to RZ

τμ with respect to
the SM is to consider the dependency of this observable on
η. This is displayed in Fig. 3, in which we present RZ

τμ as a
function of the trace of the matrix η. Clearly, the larger the

values of Tr(η), the stronger the deviations, with the entry
ηττ driving the deviations from zero. As can be also inferred
from the comparison of Figs. 2 and 3, the maximal values of
η occur for regimes of heavy sterile masses between 4 TeV
and 10 TeV, in association with large values of the Yukawa
couplings.

The above situation is again manifest if one individually
considers the decays of the Z into a pair of taus, �(Z →
ττ). The results are depicted in Fig. 4, in which the ISS
contributions are displayed as a function of Mmax on the left
panel, and for completeness versus the diagonal entry ηττ on
the right one. In agreement with the results encountered for
RZ

τμ, the right panel confirms that a strong departure from
lepton flavour universality is indeed associated with a large
ηττ entry, as observed on the left panel, for masses between
4 and 10 TeV.
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Fig. 6 Contributions to the invisible Z width, �(Z → inv.) in the ISS(3,3), as a function of ηττ (ημμ) on the left (right) panel. Line and colour
code as in Fig. 5

We now turn our attention to the contributions of the
ISS(3,3) to the invisible Z width. On the left (right) panel
of Fig. 5, the new contributions are displayed as a function
of Mmax (Ymax). We separately present the ISS(3,3) contri-
butions obtained from the naïve tree-level estimation (blue
points), and from the full one-loop computation (orange). As
can be seen from the left panel of Fig. 5, a first striking result
concerns the relevance of considering the full one-loop com-
putation upon evaluation of the new physics contributions to
the invisible Z width. The comparison of “stacked” blue and
orange points clearly reveals that the tree-level estimate is at
the origin of much smaller deviations of �(Z → inv.) from
the SM expectation. Notice that the difference between the
tree-level estimate and the full one-loop computation of the
width can easily lie around the few MeV level, which is com-
parable to — or even larger than — the current experimental
precision. In particular, one can observe that while relying on
a tree-level calculation all regimes are within the 3σ interval,
this is no longer the case when carrying out the full one-loop
evaluation. As can also be seen, the expected future sensi-
tivity of the FCC-ee will be instrumental in probing (and
in potentially ruling out) important regions of the ISS(3,3)
parameter space in association with the �(Z → inv.) observ-
able.

Figure 6 highlights the impact of the departure from uni-
tarity of the PMNS in the new contributions to �(Z → inv.).
The left panel displays the very clear correlation between
�(Z → inv.) and ηττ , as expected from the tree-level expres-
sion of Eq. (56), from which one had �(Z → inv.) ∝
(3 − (Tr(η) + 3ηττ )) [36]. The other diagonal entries – i.e.
ημμ and ηee both have a non-negligible impact regarding the
observed differences between tree-level vs. one-loop contri-
butions to �(Z → inv.). We illustrate the role of ημμ on the
right panel of Fig. 6. We emphasise that, contrary to the other
observables here considered, for the decay �(Z → inv.)

Fig. 7 Prospects for the leptonic Higgs decays in the ISS(3,3), nor-
malised to the SM prediction, �(H → ττ)/�(H → ττ)|SM

the HNL contributions at one-loop have a significant impact,
even for much smaller entries in η.

LFUV in H decays In view of the experimental prospects
to observe and measure leptonic Higgs decays, here we only
consider LFUV probes of the ISS(3,3) in H → ττ and H →
μμ decays, studying the new contributions which we always
normalise with respect to the SM width.

The observable �(H → ττ)/�(H → ττ)|SM, is dis-
played in Fig. 7, as a function of the mass of the heaviest ster-
ile state, Mmax. Although not displayed here, we notice that
H → μμ exhibits the same behaviour as H → ττ. Due to
the (effective) Higgs interactions with Majorana sterile states,
the impact on the decay rates becomes more pronounced as
the mass of the new mediators increases; this is visible in
Fig. 7, in which deviations ∼ 5% in the (normalised) width
are manifest for states with Mmax � 5 TeV. The (expected)
driving role of the Yukawa couplings is also visible in Fig. 8:
on its left panel one confirms that the largest deviations from
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Fig. 8 Prospects for the leptonic Higgs decays in the ISS(3,3): on the
left, dependency of �(H → ττ)/�(H → ττ)|SM on Ymax; on the
right, comparison of the rates to ditaus and dimuons (each normalised

to the SM-expected value), also as a function of Ymax. On the right
panel, the horizontal red line denotes the SM expectation for R̄H

μτ

the SM expectation are indeed associated with the regimes
of large Yukawas. In the right panel of Fig. 8 we consider the
universality ratios, for which the contributions of the heavy
ISS states are also clearly relevant.9 For convenience, here
we considered the “normalised” universality ratio, defined as

R̄H
μτ = m2

τ

m2
μ

RH
μτ , (67)

in which RH
μτ had been defined in Eq. (32).

LFUV in W → �ν decays In order to conclude the discus-
sion, we briefly discuss the contributions of the sterile states
concerning charged current decays. In Fig. 9, we illustrate
the ISS(3,3) impact on LFUV in leptonic W decays, pre-
senting RW

τμ as a function of ηττ . As can be seen, there is
a good agreement with the SM expectation (and with cur-
rent experimental measurements), which in turn renders this
LFUV-sensitive observable comparatively less powerful than
others previously discussed here. While there is indeed a
difference between the tree-level and one-loop predictions
for the individual decay widths (typically around 0.7%), the
impact of taking into account the higher order corrections
never exceeds 0.2% when ratios are considered. The observed
behaviour is also in good agreement with the (tree-level)
expectation, as given by Eq. (28) – notice that the depen-
dency on η only becomes apparent for ηττ � 10−3.

9 Notice that here we consider RH
μτ = �(H → μμ)/�(H → ττ),

while we considered the opposite ratio for Z decays: RZ
τμ = �(Z →

ττ)/�(Z → μμ). In the former case, we had a more important devia-
tion (below the SM expectation) for �(Z → ττ) than for �(Z → μμ),

while we have the opposite behaviour for Higgs decays, with stronger
deviation in �(H → μμ) than in �(H → ττ), that is why RZ

τμ (Fig. 2)
can exceed the SM value.

Fig. 9 Prospects for LFUV in W decays in the ISS(3,3): RW
τμ as a

function of ηττ . As before, the tree-level (one-loop) contributions cor-
respond to the blue (orange) points, and the horizontal coloured bands
denote to the experimental 1σ–3σ intervals (from darker to lighter)

8 Probing power: LFUV vs. cLFV

As mentioned throughout this work, in many models of
neutrino mass generation with a strong phenomenological
impact (as is the case of several low-scale realisations of the
type I seesaw, and its variants), the most stringent constraints
on the parameter space usually arise from cLFV observables,
together with certain EWPO, as is the case of the invisible Z
width. In this final section, we discuss the interplay of the for-
mer with LFU violation probes in constraining the ISS(3,3)
parameter space. Moreover, we highlight regimes for which
(flavour conserving) LFUV and EWPO turn out to play the
leading constraining roles.
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Fig. 10 Complementarity of distinct observables in constraining the ISS(3,3) parameter space: �(Z → inv.) vs. CR(μ− e, Al) (left panel) and vs.
BR(μ → 3e) (right panel). Colour code as in Fig. 5, with the additional vertical lines now referring to current cLFV bounds and future sensitivities

In Fig. 10, we compare the probing power of cLFV observ-
ables in the μ − e sector (usually responsible for some of
the most stringent constraints in SM extensions via HNL)
with that of invisible Z decays. In particular, we consider
the impact of the invisible Z decays and that of CR(μ − e,
Al)10 and BR(μ → 3e). In both cases, it is clear that the
future sensitivity to the invisible Z decays offers the possi-
bility to probe and explore regimes that are beyond the reach
of COMET/Mu2e, and especially of Mu3e (see Table 4).
Although – and as expected – the ISS(3,3) gives important
contributions to muon cLFV observables, an EW observ-
able as �(Z → inv.) allows probing regimes both associated
with sizeable cLFV contributions or truly negligible ones –
in fact as small as 10−20 (or below). It is also interesting to
emphasise that the relevance of taking into account the loop
corrections for �(Z → inv.) holds for all explored regimes
– be it those leading to approximate charged lepton flavour
conservation, or those leading to cLFV signals within future
reach. (Although not shown here, the new contributions to
μ− τ cLFV observables are comparatively small, lying only
marginally within future Belle II reach; for the latter case
LFUV observables can be of relevance.)

It is also interesting to compare LFUV and cLFV observ-
ables directly associated with (visible) leptonic Z decays.
This is done in Fig. 11, in which we present the ISS(3,3)
contributions in the plane spanned by the LFUV probe RZ

τμ

and the cLFV decay rate Z → μτ (see Table 4 for cur-
rent bounds and future sensitivities for the cLFV decays).
Interestingly, LFUV in Z decays allows probing important

10 Notice that the apparently artificial vertical cut in the right-hand side
of the left panel of Fig. 10 is due to imposing that all points be in agree-
Footnote 10 continued
ment with the current best bound on atomic μ − e conversion, which
has been obtained for Gold nuclei: CR(μ − e, Au)� 7 × 10−13 [64].

Fig. 11 Complementarity of distinct observables in constraining the
ISS(3,3) parameter space: LFUV RZ

τμ vs. BR(Z → μτ). Line and
colour code as in Fig. 2, with the additional vertical line corresponding
to the cLFV Z decay future sensitivity

regions of the parameter space, especially in comparison to
Z → μτ (both at a future FCC-ee).11

Finally, in Fig. 12, we present a combination of sev-
eral LFUV Z -observables, all depicted versus the expected
impact for the oblique T parameter. By themselves, and as of
today, the LFUV bounds are more constraining than the (indi-
rect) bounds on the oblique parameters arising from the EW
fit [53]. Although we do not include such limits in Fig. 12, the
future combined sensitivity of HL-LHC together with FCC-
ee is expected to constrain the T parameter to the permille
level [65].

11 We also computed BR(H → μτ) (as well as BR(H → eτ) and
BR(H → eμ)). According to our findings, BR(H → μτ) ∼ 10−9,

which is far beyond future FCC-ee sensitivity, expected to be 1.4×10−4.
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In summary, the results here collected offer numerous
examples of the powerful role of LFUV observables (together
with the invisible Z -decay width) in constraining impor-
tant regimes of the ISS(3,3), either for mostly (charged lep-
ton) flavour conserving regimes, or for those associated with
cLFV within future reach.

9 Conclusions

In this work we have considered the impact of heavy neutral
leptons on Z , W and Higgs bosons decays, highlighting their
role in what concerns lepton flavour universality violation,
both at tree-level and at higher order. We have focused on UV-
complete extensions of the SM model including new, heavy
sterile states, and we have also investigated the prospects for
EW precision observables such as the invisible width of the
Z boson.

We have provided detailed expressions for the differ-
ent decay widths. These are valid for – and can easily be
adapted and applied to – any phenomenological study of
UV-complete SM extensions by HNL (in association with
an enlarged leptonic mixing matrix), in particular to low-
scale type I seesaw models, and variations thereof, as is the
case of the linear seesaw and inverse seesaw. For a numeri-
cal illustration, we have focused on a realisation of the ISS
via three right-handed neutrinos and three additional sterile
states, the so-called ISS(3,3).

As extensively studied in the literature, cLFV observables
(be it current bounds or future projected sensitivities) are
usually at the origin of the most stringent constraints for such
new physics models. However, and as substantiated by our
study, this need not always be the case. Not only in regimes
associated with negligible contributions to flavour violation,
but also for cLFV within future experimental reach, LFU
violation in vector and scalar boson decays, as well as the
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Fig. 12 Complementarity of distinct observables in constraining the
ISS(3,3) parameter space: on the upper row, LFUV RZ

τμ (left) and RZ
τe

(right) vs. the oblique T parameter. Line and colour code as in Fig. 2 (the

additional vertical dashed lines denote the current 1σ and 2σ bounds
from the EW fit [53] for T ). On the lower row, �(Z → inv.), also as a
function of T . Line and colour code as in Fig. 5
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invisible width of the Z can play an important – if not the
leading – role.

In our study, we have shown that in this class of SM exten-
sion via HNL, sizeable deviations from universality expec-
tations can be found, especially in association with a signif-
icant departure from unitarity of the PMNS matrix (driven
by regimes of large Yukawa couplings) in association with
a moderately heavy sterile spectrum, between 4 and 10 TeV.
The tensions are well evidenced via several LFUV probes, in
particular RZ

τμ, as well as in Higgs decays, with departures
from the SM as large as a few percent in the latter (possi-
bly reaching, in certain cases, more than 10%). The invisible
Z width is one of the so-called EWPO that is particularly
sensitive to the presence of extensions of the SM neutral lep-
ton sector, and thus to states potentially playing a role in the
mechanism of neutrino mass generation. As discussed here,
the contributions of the heavy sterile states can induce devi-
ations from the SM of around a few MeV, even for a small
departure from unitarity of the would-be PMNS matrix.

As aforementioned, cLFV observables remain privileged
probes for low-scale seesaw realisations relying on additional
heavy sterile fermions, in particular concerning flavour vio-
lation in the μ − e sector, as a consequence of the excel-
lent future experimental prospects. Nevertheless, and as con-
firmed here, LFUV observables and �(Z → inv.) can be
powerful complementary probes to μ − e cLFV: for exam-
ple, �(Z → inv.) can complement searches for regimes
lying beyond Mu3e sensitivity. The role of LFUV probes
is all the more relevant for μ − τ sector observables, whose
improvements in what regards future experimental sensitiv-
ity are expected to be somewhat more modest (typically one
to two orders of magnitude): as shown by our study, the future
FCC-ee sensitivity to RZ

τμ allows probing regimes, in which
BR(Z → μτ) is beyond the FCC-ee reach.

In comparison with other EWPO, both RZ
τμ(e) and �(Z →

inv.) clearly offer an important complementarity concern-
ing (indirect) searches for new physics in the lepton sector,
as they would allow for a clearer interpretation of a possi-
ble future signal in the oblique parameters. In the context
of low-scale seesaw models, these LFUV observables can
become even more constraining than the oblique parameters
and cLFV bounds alone, notably in the absence of a signal in
the latter two. All the above strongly suggests that regimes
associated with large Yukawas, even if not necessarily lead-
ing to sizeable cLFV signals (or excessive deviations con-
cerning EWPO) can be further constrained by LFUV-probing
observables, as well as invisible Z decays.

Another crucial point that emerges from this study is
that taking into account higher order contributions is also
of paramount importance, as the one-loop corrections can
lead to a shift in the predicted widths that can be comparable
to – or even larger than – the (current) experimental uncer-

tainty. This is all the more important in view of the expected
breakthroughs in precision with the onset of FCC-ee.

As visible in the plots illustrating our most important
results, and as argued throughout the discussion, the impact
of the LFUV and EWPO observables is captive to the evo-
lution of the SM predictions vs. experimental measurement.
The future precision (especially with the potential advent of
the FCC-ee) will certainly improve dramatically; however,
the issue lies in whether or not the SM (theory) prediction
and central experimental value will converge, or whether the
tensions between them do remain. In the former case, several
of the here investigated LFUV observables, together with the
invisible Z width, will efficiently probe extensive regions
of the ISS parameter space (especially in association with
regimes at the source of little to no cLFV contributions); in
the latter situation, low-scale models of neutrino mass gen-
eration, as the one here considered, are excellent candidates
to account for the (persistent) tensions.

Despite its intrinsic flavour structure (associated with pro-
viding a natural, and minimal set-up for neutrino mass gen-
eration at comparatively low scales), the conclusions here
drawn in association with the ISS(3,3) realisation can be
potentially generalised to other mechanisms of neutrino mass
generation, in which the SM is extended via HNLs. Lep-
ton flavour universality probes, as well as the invisible Z
width (taking into account higher order contributions) are
of paramount importance in constraining this class of SM
extensions.
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Appendix A: Details on the renormalisation procedure

The renormalisation constants necessary for the counterterm
Lagrangian are fixed by the renormalisation conditions; in
the on-shell scheme here followed, the latter are formulated
for on-mass-shell external fields. Following [44], these are
fixed using the one-particle irreducible two-point functions,
which we summarise in the following.

Before we present the structure of the renormalisation con-
stants and the explicit results of the two-point functions, we
briefly describe our input parameter scheme. We choose the
following independent set of parameters (in addition to the
fermion masses) fixed by experimental measurements [53]:

Gμ = (1.1663787 ± 0.0000006) × 10−5, (68)

MW = (80.379 ± 0.012) GeV, (69)

MZ = (91.1876 ± 0.0021) GeV, (70)

MH = (125.1 ± 0.14) GeV. (71)

This choice of input parameters follows the recommenda-
tion of [67], and offers the advantage of being independent
of light fermion contributions in the photon self-energy func-
tion at zero momentum, thus also omitting contributions pro-
portional to the hadronic vacuum polarisation (which we will
discuss in the following).12

A.1 Renormalisation constants

Before we discuss the explicit expressions of the renormali-
sation constants necessary for the renormalisation of masses,
fermion mixings and fields, we discuss the “derived” renor-
malisation constants for the weak mixing angle and the elec-
tric charge. Due to the on-shell definition of the weak mixing
angle (see Eq. (13)), which holds to all orders in perturbation
theory, a counterterm derived from the mass renormalisation
constants of the W - and Z -boson masses must be introduced,
and is given by

δsw
sw

= −c2
w

s2
w

δcw

cw

= −1

2

c2
w

s2
w

Re

(
δM2

W

M2
W

− δM2
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M2
Z

)

= −1

2

c2
w

s2
w

Re

(
�W

T (M2
W )

M2
W

− �Z Z
T (M2

Z )

M2
Z

)
, (72)

where in the second line we have already inserted the expres-
sions for the mass renormalisation constants which will be
subsequently discussed and presented.

The renormalisation constant for the electric charge can be
derived from the three-point function correcting the photon
vertex. However, by virtue of the Ward-identity, it can also be

12 For a recent discussion concerning the impact of different input
schemes for NLO corrections to electroweak observables (in the context
of SMEFT predictions) for the FCC-ee precision era, see e.g. [66].

expressed via self-energies of the photon and of the photon-
Z -mixing term [44], resulting in

δZe = 1

2

∂�AA
T (k2)

∂k2

∣∣∣∣
k2=0

− sw
cw

�AZ
T (0)

M2
Z

. (73)

In the first term of δZe one has, in addition to the bosonic
contributions to the photon self-energy, also the contribution
of the fermion loops. Special care must be devoted to the light
quark contributions at vanishing k2 (the so-called hadronic
vacuum polarisation), which can only be calculated either
via lattice field theory methods or via data-driven approaches
from e+e− scattering data (due to the optical theorem). How-
ever, in our input scheme, αe and therefore e is a derived
quantity from Gμ and the W - and Z -boson masses. At the
tree-level the relation between the latter quantities is given
by

α
Gμ
e =

√
2 Gμ M2

W

π

(
1 − M2

W

M2
Z

)
. (74)

The determination of Gμ from the muon lifetime must be
also “loop-corrected” (see e.g. [68] and references therein).
The EW corrections at next-to-leading order (NLO) to the
Michel decay of the muon are quantified in �r (1)

�r (1) = ∂�AA
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)
,

(75)

in which αe(0)−1 = 137.035999180(10) [53] is the average
of low-energy determinations at k2 = 0, and the photon-Z -
mixing two-point function is taken from the SM calculation
(see e.g. [44] for the relevant expressions). The modified
charge renormalisation constant is then given by [68]

δZe = 1

2

∂�AA
T (k2)

∂k2
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k2=0

− sw
cw

�AZ
T (0)

M2
Z

− 1

2
�r (1). (76)

As clear from the above, there is an exact cancellation of the
contributions of the photon self-energy at vanishing momen-
tum transfer. Furthermore, the potentially sizeable finite con-
tributions from δsw/sw in weak NLO corrections also cancel
out at the amplitude level.

A.2 Boson self energies

In Fig. 13 we schematically present the neutral lepton con-
tributions to the boson self-energies.

The unrenormalised boson self-energies are defined by
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Fig. 13 Feynman diagrams of the new contributions to the W, Z and Higgs boson self-energies, in unitary gauge
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where a, b = A, Z ,W. The NP contributions to the trans-
verse part of the boson self-energies are given by (we inte-
grate in D = 4 − 2ε dimensions)
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in which we notice that the SM parts of the two point func-
tions, with the exception of light (active) neutrino terms, have
been taken from [44].

The scalar Higgs unrenormalised self energy is simply
given by

H H
k

= i H (k2) , (80)

where the neutral lepton contribution is

�H (k2) = − g2
w

16π2m2
j

{
2

(
C2
i jmim j + Ci jC

∗
i j

(
m2

i + m2
j

)

+C∗2
i j mim j

)
(DB00 + k2B1 + k2B11) + mim j

×
(
C2
i j

(
m2

i + m2
j

)
+ 4Ci jC

∗
i jmim j

+C∗2
i j

(
m2

i + m2
j

))
B0

}
, (81)

with the Passarino–Veltman functions Brs=Brs(k2,m2
j ,m

2
i ).

The wave function and mass counterterms are then given
by

δM2
W = Re �W

T (M2
W ), δZW = −Re

∂�W
T (k2)

∂k2

∣∣∣∣
k2=M2

W

,

(82)

δM2
Z = Re �Z Z

T (M2
Z ), δZZZ = −Re

∂�Z Z
T (k2)

∂k2

∣∣∣∣
k2=M2

Z

,

(83)

δM2
H = Re �H (M2

H ), δZH = −Re
∂�H (k2)

∂k2

∣∣∣∣
k2=M2

H

.

(84)

A.3 Fermion self-energies

The two-point functions of charged and neutral leptons
(which depend on the NP contributions) are presented in
Fig. 14: two diagrams are mediated by a W -boson, with an
opposite charged fermion flow, due to the Majorana nature of
the neutrinos. The unrenormalised fermion self-energy [44]
is defined as

fi f f
p

= i f i (p)

= i /p R
f i (p

2) PR + L
f i (p

2) PL

+i SR
f i (p

2) PR + i SL
f i (p

2) PL , (85)

with the corresponding charged lepton off-diagonal (�α →
�β transitions) coefficients

��L
βα(p2) = − g2

w

32π2M2
W

∑

n
UβnU∗

αn(m
2
n + (D − 2)M2

W )

× B1(p2,m2
n, M

2
W ), (86)

��R
βα(p2) = − g2

w

32π2M2
W

mαmβ

∑

n
UβnU∗

αn B1(p2,m2
n, M

2
W ),

(87)

��SL
βα (p2) = − g2

w

32π2M2
W

mβm
2
n

∑

n
UβnU∗

αn B0(p2,m2
n, M

2
W ),

(88)

��SR
βα (p2) = − g2

w

32π2M2
W

mαm
2
n

∑

n
UβnU∗

αn B0(p2,m2
n, M

2
W ).

(89)
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The associated diagonal contributions can be computed by
setting β = α. The neutrino off-diagonal self energy contri-
butions (for na → nb transitions) are

�
ν,L
ba (p2) = − g2

w

4c2
wM2

W

{∑

n

[
c2
w(Cbnmn + C∗

bnmb)

× (Cnamn + C∗
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2
H )

+[
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(
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2
wm

2
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W+C∗
nac

2
wmamn

)

+ C∗
bnc

2
wmb(Cnamn + C∗

nama)
]
B1(p
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n, M

2
Z )

]

+ 2c2
w

∑

�

(
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�aU�b + U�aU∗
�b

×
(
m2
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W

))
B1(p

2,m2
�, M

2
W )

}
, (90)

�
ν,R
ba (p2) = − g2

w

4c2
wM2

W

{∑

n

[
c2
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bnmn)
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n, M

2
H )

+[
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2
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(
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2
wmamn+C∗
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2
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2
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na(D−2)M2
W

) ]

× B1(p
2,m2

n, M
2
Z )

]
+ 2c2

w

∑

�

(
mambU�aU∗
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+m2
�U∗
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)
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W )

}
, (91)

�
ν,SL
ba (p2) = g2

w
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{
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bn

×
(
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2
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2
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nac

2
wmamn

))

× B0(p
2,m2
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2
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]
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wm

2
�

∑

�

(maU∗
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�b)B0(p
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�, M
2
W )

}
,

(92)

�
ν,SR
ba (p2) = g2

w

4c2
wM2

W

{
mn

∑
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[
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w(Cbnmn + C∗

bnmb)
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]
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2
�

∑

�

(maU�aU∗
�b+mbU∗

�aU�b)B0(p
2,m2

�, M
2
W )

}
.

(93)

The diagonal terms can easily be obtained by the appropriate
replacements. The fermion wave function renormalisation is
then finally given by

δZL
f i = 2

m2
f − m2

i

[
m2

i �
L
f i (m

2
i ) + mim f �

R
f i (m

2
i )

+m f �
SL
f i (m2

i ) + mi�
SR
f i (m2

i )
]
, (94)

δZ R
f i = 2

m2
f − m2

i

[
m2

i �
R
f i (m

2
i ) + mim f �

L
f i (m

2
i )

+m f �
SR
f i (m2

i ) + mi�
SL
f i (m2

i )
]
, (95)

for fi → f f transitions, both for Dirac and Majorana
fermions. The diagonal parts read

δZL
f f = −�L

f f (m
2
f ) + 1

2m f

[
�SL

f f (m
2
f ) − �SR

f f (m2
f )

]

−m2
f

[
∂�L

f f (m
2
f ) + ∂�R

f f (m
2
f )

]

−m f

[
∂�SL

f f (m
2
f ) + ∂�SR

f f (m2
f )

]
, (96)

δZ R
f f = −�R

f f (m
2
f ) − 1

2m f

[
�SL

f f (m
2
f ) − �SR

f f (m2
f )

]

−m2
f

[
∂�L

f f (m
2
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f f (m
2
f )

]

−m f

[
∂�SL

f f (m
2
f ) + ∂�SR

f f (m2
f )

]
. (97)

The new (enlarged) mixing matrix U also needs to be
renormalised, as well as the Ci j (in an analogous way to
what is usually done for the quark sector). One thus has

δUβ f = 1

4

e,μ,τ∑

α

[
δZ�,L

βα − δZ�,L†
βα

]Uα f

−1

4

3+ns∑

i=1

Uβi
[
δZν,L

i f − δZν,L†
i f

]
, (98)

δU∗
β f = 1

4

e,μ,τ∑

α

[
δZ�,L†

αβ − δZ�,L
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]U∗
α f

−1

4

3+ns∑
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Uβi
[
δZν,L†

f i − δZν,L
f i

]
, (99)

δCab = 1

4

3+ns∑

x=1

[
δZν,L

ax − δZν,L†
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]
Cxb

−1

4

3+ns∑

y=1

Cay
[
δZν,L

yb − δZν,L†
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]
. (100)
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Fig. 14 Feynman diagrams of the NP contributions to the charged lepton (upper line) and neutrino (second line) off-diagonal self energies, in
unitary gauge

The renormalisation of the left and right Z -charged lepton
couplings are given by

δgZR = −Q� s
2
w

[
δZe + 1

c2
w

δsw
sw

]
,

δgZL = T 3
�

[
δZe + s2

w − c2
w

c2
w

δsw
sw

]
+ δgZR . (101)

Appendix B: Form factors for W decays

The vector and tensor form factors of the W → �βν f decay
are given below

FV (a)
L = g3

w

32π2
√

2M2
W

∑

α

∑

i

Uαi U∗
α f Uβi m f mi

×
{
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βC11 − m2
f C22

+
(
−m2

β − m2
f

)
C12

−2C00 + B0(q
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i ,m
2
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}
, (102)
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√
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}
,

(103)

FT (a)
L = i
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32π2
√

2M2
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×
∑

α

∑

i

Uαi U∗
α f Uβi mi mβ m f
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}
,

(104)

FT (a)
R = i
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√

2M2
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∑
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f C12

}
, (105)

with the Passarino–Veltman functions defined as Cr,s =
Cr,s(m2

β, q2,m2
f , M

2
W ,m2

i ,m
2
α).
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(106)
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with the Passarino–Veltman functions Cr,s = Cr,s(m2
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where the Passarino–Veltman functions areCr,s = Cr,s(m2
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, (116)

FT (d)
R = i
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f
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, (117)

with the following Passarino–Veltman functions Cr,s =
Cr,s(m2

β, q2,m2
f ,m

2
i , M

2
W , M2

Z ).
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√
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(
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(
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, (118)

FV (e)
R = g3

w
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√
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, (119)
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FT (e)
L = i

g3
w

64π2
√

2M2
W
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]

+ C∗
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, (120)

FT (e)
R = i

g3
w
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√

2M2
W

∑
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−
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, (121)

with the following Passarino–Veltman functions Cr,s =
Cr,s(m2

β, q2,m2
f ,m

2
i , M

2
W , M2

H ).
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√
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{
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W
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]
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β
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[
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W
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(
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(
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}
, (122)

FV ( f ),Z
R = g3

w
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√
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−M2
Z

(
3m2

β + m2
f − 4M2

Z

)

−8(D − 2)M4
W + 2(3D − 8)M2

WM2
Z

]
C2

+
[
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[
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[
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}
,

(123)

FT ( f ),Z
L = i
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w
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√

2M2
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Z
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×
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Z

]
C0
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f
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, (124)

FT ( f ),Z
R = i
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w

32π2
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Z

[
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+
[
2m2

βM
2
Z + 4(D − 4)M4
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Z

]
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+
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βM
2
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Z
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βM
2
ZC11

}
, (125)

with the Passarino–Veltman functions defined as Cr,s =
Cr,s(m2

β, q2,m2
f ,m

2
β, M2

Z , M2
W ).

FV ( f ),γ
L = g3

w(M2
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Z )
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√
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×
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(
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W
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[
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}
, (126)
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Z )
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×
{
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}
,

(127)

FT ( f ),γ
L = −i
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Z )
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√
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Z
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×
{
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[
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]}
, (128)

FT ( f ),γ
R = −i
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Z )
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√
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Z
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×
{
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}
,

(129)

with the Passarino–Veltman functions Cr,s = Cr,s(m2
β,

q2,m2
f ,m

2
β, M2

γ , M2
W ).
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√
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2
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(
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}
,
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×
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β
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}
,

(131)

FT (g)
L = i
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W
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}
,

(132)

FT (g)
R = i

g3
w

32π2
√

2M2
W

Uβ f m
2
β m f

×
{
C0 + 2C2 + C22 − C11

}
, (133)

where the Passarino–Veltman functions are Cr,s = Cr,s(m2
β,

q2,m2
f ,m

2
β, M2

H , M2
W ).

Appendix C: Form factors for Z and Higgs leptonic
decays

In this section we collect several expressions which are rel-
evant for the computation of the NP contributions to key
observables; in particular, we detail the form factors for the
invisible Z decay width, as well as those concerning the
flavour conserving decays of the Z and Higgs bosons into
charged lepton pairs, Z , H → �α�α. All are computed in
Feynman gauge, for a UV-complete SM extension via HNL
(as in the case of the ISS used in the numerical analysis in
the main body of this study).

C.1 LFC H → �α�α form factors

Below we provide the form factors at the origin of the one-
loop corrections to the di-lepton Higgs decay, as shown in
Fig. 15.

F (a)
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α
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(
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)
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Fig. 15 Feynman diagrams contributing to LFC Higgs decays (dis-
played for simplicity in unitary gauge)

+ (D − 1)M2
WC0 + B0

]}
, (134)
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∑
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, (135)

where Crs = Crs(m2
α, q2,m2

α, M2
W ,m2

i ,m
2
j ) and B0 =

B0(q2,m2
i ,m

2
j ).
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(136)
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(137)

with Crs = Crs(m2
α, q2,m2

α,m2
i , M

2
W , M2

W ), Bα
0 =

B0(m2
α,m2

i , M
2
W ) and BW

0 = B0(q2, M2
W , M2

W ).

C.2 LFC Z → �α�α form factors

We now summarise the form factors for the flavour conserv-
ing leptonic Z decays. The two contributing diagrams are
presented in Fig. 16.
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with the Passarino–Veltman functions Crs = Crs(m2
α, q2,

m2
α, M2
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i ,m

2
j ).
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with the following Passarino–Veltman functions: Crs =
Crs(m2

α, q2,m2
α, M2

i , M2
W , M2

W ), Bq
0 = B0(q2,m2

i ,m
2
j ),

BW
0 = B0(q2,m2

W ,m2
W ), Bα

0 = B0(m2
α,m2

i ,m
2
W ) and

B j
0 = B0(m2

α,m2
W ,m2

j ).
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Fig. 16 Feynman diagrams contributing to LFC Z → �α�α decays (in
unitary gauge)

C.3 Invisible Z decays

In Fig. 17 we display the diagrams contributing to the invis-
ible Z decays, Z → nanb (with a = b or a �= b). Below
we present the vector form factors contributing to the invisi-
ble Z -decays (we do not give the associated tensor and scalar
form factors since the former are negligible and the latter van-
ish for on-shell decays); the superscript labels (a)–(f) refer
to the topologies depicted in Fig. 17.
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Fig. 17 Feynman diagrams contributing to the invisible Z decays (in unitary gauge)
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with the Passarino–Veltman functions Crs = Crs(m2
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where Crs = Crs(m2
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with the following Passarino–Veltman functions Crs =
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FV (d)
R = g3

w

16π24cwM2
W

∑

ρ

{
mambU∗

ρaUρb
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×
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ρ
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ρ
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(
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in which Crs = Crs(m2
a, q

2,m2
b,m

2
ρ, M2

W , M2
W ) and c2w =

cos 2θw.
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with Crs = Crs(m2
a, q

2,m2
b,m

2
i , M

2
Z , M2

H ).
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×
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where Crs = Crs(m2
a, q

2,m2
b,m

2
i , M

2
H , M2

Z ).

Appendix D: SM extensions via sterile fermions and neu-
trino mass generation: framework and constraints

In this section we describe the underlying framework of our
study: a well-motivated, low-scale mechanism of neutrino

mass generation (relying on a minimal SM extension via
sterile fermions).

D.1 The Inverse Seesaw

The type I seesaw (and its variants, as is the case of the
Inverse Seesaw) are among the most minimal yet successful
extensions of the SM accounting for a mechanism of neutrino
mass generation. Moreover, it allows for a “natural” (in the
sense of ’t Hooft [69]) explanation of the smallness of the
observed neutrino masses, as the latter vanish in the limit of
lepton number symmetry restoration.

In the case of the ISS, two distinct species of sterile
fermions, X and νR, are added to the SM content; the
Lagrangian encoding the mass terms for the neutral lepton
sector can generically be written as

LISS = −Y D
i j Lc

i H̃ νcR j − Mi j
R νRi X j − 1

2
μ
i j
R νcRi νRj

− 1

2
μ
i j
X Xc

i X j + H.c., (162)

in which μX and μR are the only source of lepton number
violation. After the Higgs boson acquires its vacuum expec-
tation value, v, a Dirac mass term is generated, given by
mD ≡ YDv. In the limit of vanishing μX,R, lepton number
is restored, and thus light neutrinos masses vanish. In this
sense, assuming the hierarchy of scales μX,R � mD � MR

is natural in the ’t Hooft sense [70,71]. Large deviations from
unitarity of the PMNS can still be present, even in the mass-
less neutrino limit, as η is given by

η = 1

2
m∗

D

(
M−1

R

)† (
M−1

R

)
mT

D, (163)

and thus it does not depend on μX,R . Moreover, in the limit of
approximate lepton number conservation, the term μR only
contributes to light neutrino masses through loop effects [72].
Therefore, in the following we will not consider its contribu-
tion.

Although more minimal ISS realisations exist [41], here
we will work in the (3,3) realisation, corresponding to the
addition of nR = nX = 3 generations of heavy neutral states.
The diagonalisation of the 9×9 mass matrix allows obtaining
the full neutrino spectrum. In the approximate lepton number
conserving limit in which μX � mD � MR, one can derive
an approximate expression for the masses of the light (mostly
active) neutrinos, given by

mν � mD

(
M−1

R

)T
μX M−1

R mT
D ≡ U∗

PMNS m
diag
ν U †

PMNS.

(164)

A detailed description of the relevant charged and neutral
Lagrangian terms is provided in Appendix D.2, and the asso-
ciated vertices in Appendix D.3.
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D.2 Relevant Lagrangian terms

In what follows we collect the most relevant terms in the
Lagrangian of the lepton sector (interactions with neutral
and charged gauge bosons, Higgs and Goldstone bosons).
The terms are presented in the physical lepton bases, and
reflect the Majorana nature of the neutral leptons. (Some of
the terms have been individually discussed in the main body
of the manuscript, see Eqs. (1, 2).)

LW± = − gw√
2
W−

μ

3∑

α=1

3+nS∑

j=1

Uα j �̄αγ μPLν j + H.c.,

Lν
Z0 = − gw

4 cos θw

Zμ

3+nS∑

i, j=1

ν̄iγ
μ

(
PLCi j − PRC

∗
i j

)
ν j ,

L�
Z0 = − gw

2 cos θw

Zμ

3∑

α=1

�̄αγ μ (CV − CAγ5) �α,

LH0 = − gw

4MW
H

3+nS∑

i �= j=1

ν̄i

×
[
Ci j

(
PLmi + PRm j

) + C∗
i j

(
PRmi + PLm j

)]
ν j ,

LG0 = igw

4MW
G0

3+nS∑

i, j=1

ν̄i

×
[
Ci j

(
PRm j − PLmi

) + C∗
i j

(
PRmi − PLm j

)]
ν j ,

LG± = − gw√
2MW

G−
3∑

α=1

3+nS∑

j=1

Uα j �̄α

× (
mαPL − m j PR

)
ν j + H.c. (165)

Finally, we recall that Ci j are defined as in Eq. (3):

Ci j =
3∑

ρ=1

U†
iρ Uρ j .

D.3 Feynman rules

Following the presentation of the Lagrangian terms, see
Eq. (165), we list in Table 2 the Feynman rules for the ver-
tices which were used in the computations carried out in this
manuscript. Again notice that the neutral leptons are assumed
to be of Majorana nature.

In the Z and Higgs vertices, the arrows denote the momen-
tum flow. We note here that diagrams including at least one
Znin j or Hnin j vertex have to be symmetrised (factor 2)
due to the Majorana nature of the physical neutrinos.

D.4 Constraints on HNL extensions of the SM

In the phenomenological analysis whose results are sum-
marised in Sects. 7 and 8, we have taken into account numer-
ous constraints, which were applied to the present ISS (3,3)
realisation. In addition to ensuring that such a mechanism of

Table 2 Feynman rules for W, Z and Higgs interactions (and associated Goldstone bosons) in SM extensions via Majorana sterile fermions
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Table 3 Global fit results obtained by NuFIT 5.1 [58] for neutrino mix-
ing data, without the inclusion of the atmospheric sample from Super-
Kamiokande. For normal ordering we have �m2

3� ≡ �m2
31 > 0, while

in the case of inverted ordering one finds �m2
3� ≡ �m2

32 < 0

Normal ordering Inverted ordering

sin2 θ12 0.304+0.013
−0.012 0.304+0.012

−0.012

sin2 θ23 0.573+0.018
−0.023 0.578+0.017

−0.021

sin2 θ13 0.02220+0.00068
−0.00062 0.02238+0.00064

−0.00062

�m2
21/10−5 eV 7.42+0.21

−0.20 7.42+0.21
−0.20

�m2
3�/10−3 eV 2.515+0.028

−0.028 −2.498+0.028
−0.029

neutrino mass generation does comply with neutrino oscil-
lation data, we have further imposed several experimen-
tal limits, including EW precision observables, universality
bounds from tau and meson decays, cLFV bounds, among
others. Finally, we also took into account perturbative unitar-
ity constraints for the heavy sterile states (including tree-level
decay widths of heavy N from the channels Ni → �αW,

Ni → N j Z and Ni → N j H where N j can also be light).

Oscillation data The first constrain on any SM extension
aiming at accounting for neutrino masses and mixings (in
particular via the addition of HNL) is that of reproduc-
ing the measured neutrino oscillation parameters. From the
latest NuFIT 5.1 global fit results [58], these parameters
are given in Table 3. As already stated in the main text
(see Sect. 7), we vary the light neutrino mass in the range
m0 ∈ [

10−10, 10−3
]

eV and fix oscillation data to their best-
fit values as summarised in Table 3, assuming normal order-
ing for the light neutrino spectrum, while varying the CP
phase within its range. Note that none of these assumptions
have a qualitative impact on our results nor on the constraints.

Universality bounds from tau-lepton and light meson
decays The non-unitarity of the PMNS mixing matrix
impacts several low-energy observables, which can then
place strong constraints on the active-sterile mixings. Among
them, we have the universality ratios from kaon and pion lep-
tonic decays, defined as [32,34]

�rP ≡ �
(
P+ → eν

)

�
(
P+ → μν

) − 1 (P = π, K ) , (166)

as well as τ decays (also sensitive to the modification of the
W�ν vertex), with the associated observable, Rτ , given by

Rτ ≡ � (τ → μνν)

� (τ → eνν)
. (167)

Charged lepton flavour violation There are several cLFV
transitions and decays placing strong constraints on neu-
trino mass models upon the appearance of flavour violation.
Although here we will mostly focus on LFUV (while aiming
at exploring regimes with suppressed cLFV), it is interesting

to consider the interplay between the two sets of observables
in order to discuss future prospects. Particularly relevant are
cLFV three-body decays, μ− e conversion in atoms, as well
as cLFV Z boson decays. The expressions for the cLFV
observables (in the context of SM extensions via HNL) can
be found, for instance, in [6–17,19–22,24,25,29] The current
bounds and future sensitivities are collected in Table 4.

EW precision tests The presence of the HNL leads to a
shift on the EW oblique parameters S, T and U [55] from
the SM predictions. The dominant contribution from heavy
neutrinos is found for the T parameter [43]. Even if present
bounds on T are not currently competitive to constrain the
explored parameter space, notice that prospective sensitivi-
ties of FCC-ee (improving current constraints by about two
orders of magnitude [62]) will place very strong bounds on
the size of the deviations of T from its SM expectation.

Moreover, muon decays are affected by the presence of the
heavy sterile states. Given that we use Gμ – the measurement
of the Fermi constant – as an input parameter, we must take
into account the non-unitarity effect of HNL already at tree
level. In particular, the muon decay rate is now given by

�μ = m5
μG

2
μ

192π3 = m5
μG

2
F

192π3

3∑

i, j=1

|Uμi |2|Uej |2

� m5
μG

2
F

192π3

(
1 − 2ημμ − 2ηee

)
, (168)

from which we identify Gμ ≡ GF
(
1 − ημμ − ηee

)
, assum-

ing ηαα � 1.

Perturbative unitarity We can also impose bounds on the
HNL parameter space by taking into account perturbative
unitarity constraints [88–92], which restricts the heavy states
decay width to comply with

�(Ni )

mNi

<
1

2
, for i ≥ 4. (169)

For heavy neutrinos as considered here, the main contribu-
tions to the decay rate will be given by the two-body decays
into a SM boson and a lepton. At tree level, these are given
by

� (Ni → Wlα) = g2
w

64π
|Uαi |2

λ1/2(m2
i , M

2
W ,m2

�α
)

mi

×
{

1 + m2
�α

− 2M2
W

m2
i

+ (m2
i − m2

�α
)2

m2
i M

2
W

}
,

(170)

�
(
Ni → ZN j

) = g2
w

128c2
wπ

∣∣Ci j
∣∣2 λ1/2(m2

i , M
2
Z ,m2

j )

mi
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Table 4 Current experimental
bounds and future sensitivities
on relevant cLFV observables.
The quoted limits are given at
90% C.L. (Belle II sensitivities
correspond to an integrated
luminosity of 50 ab−1)

Observable Current bound Future sensitivity

BR(μ → eγ ) < 4.2 × 10−13 (MEG [73]) 6 × 10−14 (MEG II [74])

BR(τ → eγ ) < 3.3 × 10−8 (BaBar [75]) 3 × 10−9 (Belle II [76])

BR(τ → μγ ) < 4.4 × 10−8 (BaBar [75]) 10−9 (Belle II [76])

BR(μ → 3e) < 1.0 × 10−12 (SINDRUM [77]) 10−15(−16) (Mu3e [78])

BR(τ → 3e) < 2.7 × 10−8 (Belle [79]) 5 × 10−10 (Belle II [76])

BR(τ → 3μ) < 3.3 × 10−8 (Belle [79]) 5 × 10−10 (Belle II [76])

5 × 10−11(FCC-ee [80])

BR(τ− → e−μ+μ−) < 2.7 × 10−8 (Belle [79]) 5 × 10−10 (Belle II [76])

BR(τ− → μ−e+e−) < 1.8 × 10−8 (Belle [79]) 5 × 10−10 (Belle II [76])

BR(τ− → e−μ+e−) < 1.5 × 10−8 (Belle [79]) 3 × 10−10 (Belle II [76])

BR(τ− → μ−e+μ−) < 1.7 × 10−8 (Belle [79]) 4 × 10−10 (Belle II [76])

CR(μ − e, N) < 7 × 10−13 (Au, SINDRUM [64]) 10−14 (SiC, DeeMe [81])

2.6 × 10−17 (Al, COMET [82–84])

8 × 10−17 (Al, Mu2e [85])

BR(Z → e±μ∓) < 4.2 × 10−7(ATLAS [86]) O(10−10)(FCC-ee [80])

BR(Z → e±τ∓) < 4.1 × 10−6(ATLAS [87]) O(10−10)(FCC-ee [80])

BR(Z → μ±τ∓) < 5.3 × 10−6(ATLAS [87]) O(10−10)(FCC-ee [80])

×
{

1 + m2
j − 2M2

Z

m2
i

+ (m2
i − m2

j )
2

m2
i M

2
Z

}
,

(171)

�
(
Ni → HN j

) = g2
w

128π

∣∣Ci j
∣∣2 m2

i

M2
W

λ1/2(m2
i , M

2
H ,m2

j )

mi

×
{(

1 + m2
j − M2

H

m2
i

) (
1 + m2

j

m2
i

)
+ 4

m2
j

m2
i

}
,

(172)

where λ(a, b, c) =
[
a − (

√
b − √

c)2
] [

a − (
√
b + √

c)2
]

is the Källén function.
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