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We discuss spontaneous symmetry breaking of open classical and quantum systems. When a
continuous symmetry is spontaneously broken in an open system, a gapless excitation mode
appears corresponding to the Nambu–Goldstone mode. Unlike isolated systems, the gapless
mode is not always a propagation mode, but it is a diffusion one. Using the Ward–Takahashi
identity and the effective action formalism, we establish the Nambu–Goldstone theorem in open
systems, and derive the low-energy coefficients that determine the dispersion relation of Nambu–
Goldstone modes. Using these coefficients, we classify the Nambu–Goldstone modes into four
types: type-A propagation, type-A diffusion, type-B propagation, and type-B diffusion modes.
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1. Introduction

Spontaneous symmetry breaking is one of the most important notions in modern physics. When a
continuous symmetry is spontaneously broken, a gapless mode appears called the Nambu–Goldstone
(NG) mode [1–3], which governs the low-energy behavior of the system. For example, a phonon in
a crystal, which is the NG mode associated with translational symmetry breaking, determines the
behavior of the specific heat at low temperatures, which is nothing but the Debye T 3 law.

The nature of the NG modes, such as the dispersion relations and the number of modes, is deter-
mined by symmetry and its breaking pattern. The relation between them was first shown for relativistic
systems [1–3], where the number of NG modes is equal to the number of broken symmetries or gen-
erators. It was extended to isolated systems without Lorentz symmetry [4–8], where the number of
NG modes does not coincide with the number of broken symmetries [9–11]. A typical example is a
magnon in a ferromagnet, which is the NG mode associated with spontaneous breaking of the spin
symmetry O(3) to O(2). The number of broken symmetries, dim(O(3)/O(2)), is equal to two, but
only one magnon with quadratic dispersion appears. In general, when a global internal symmetry G
is spontaneously broken into its subgroup H , the number of NG modes is expressed as [4–8]

NNG = NBS − 1

2
rank ρ, (1)

where NBS = dim(G/H ) is the number of broken symmetries, and ρβα := −〈[iQ̂β , ĵα0(x)]〉 is the
Watanabe–Brauner matrix with the Noether charge Qβ and the charge density jα0(x) of G [12]. The
NG modes are classified into two types: type-A and type-B modes. The type-B mode is characterized

© The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Funded by SCOAP3



PTEP 2020, 033A01 Y. Hidaka and Y. Minami

by nonvanishing ρβα , which implies that the two broken charge densities jβ0(x) and jα0(x) are not
canonically independent [13]. (rank ρ)/2 counts the number of canonical pairs of broken generators,
and every pair of broken charges constitutes one NG mode. Therefore, the number of type-B modes,
NB, is equal to (rank ρ)/2. The rest of the degrees of freedom, NA = NBS − rank ρ, become the
type-A modes, which have the same property as NG modes in Lorentz-invariant systems. The sum
of the number of type-A and type-B modes leads to Eq. (1). Both type-A and type-B NG modes are
propagation modes with typically linear and quadratic dispersions, respectively.

Similar to isolated systems, spontaneous symmetry breaking occurs in open systems. A well-
known example is a diffusion mode in the synchronization transition of coupled oscillators, which
describe chemical and biological oscillation phenomena [14,15]. In the synchronization transition,
U (1) phase symmetry is spontaneously broken, and the diffusion mode appears as the NG mode,
which has different dispersion from that in isolated systems.Another example is ultracold atoms in an
optical cavity [16]. In the system, a laser and its coupling to radiation fields give rise to spontaneous
emission and dissipation, where the internal energy does not conserve. Bose–Einstein condensation
and symmetry breaking can occur even in such a case, and they have been observed [16]. Furthermore,
the synchronization transition and the diffusive NG mode of ultracold atoms in the driven-dissipative
setup are discussed in Refs. [17–22]. The diffusive NG modes are characteristic of open systems.

Compared with isolated systems, the relation between the NG modes, the broken symmetries,
and the dispersion relations has not been established in open systems. A crucial difference between
isolated and open systems is the lack of ordinary conserved quantities such as the energy, momentum,
and particle number, because of the interaction with the environment. Thus, we cannot naively
apply the argument for isolated systems to that for open systems. In our previous work we studied
properties of the NG modes in open systems based on toy models [17], in which we found two types
of NG modes: diffusion and propagation modes, whose poles have ω = −iγ |k|2 and (±a − ib)|k|2,
respectively. Here, γ , a, and b are constants. In the model study, the nonvanishing Watanabe–Brauner
matrix for the open system leads to the propagation NG modes, where a similar relation to Eq. (1)
is satisfied [17]. However, it is found that the propagation modes split into two diffusion modes
by changing a model parameter in the study of time-translation breaking [23], where Eq. (1) is not
always satisfied. Therefore, we need a model-independent analysis to understand the nature of NG
modes for open classical and quantum systems. This is the purpose of the present paper.

Open classical and quantum systems can be uniformly described by the path integral formulation,
called the Martin–Siggia–Rose–Janssen–De Dominicis (MSRJD) formalism [24–27] for classical
systems, and the Keldysh formalism for quantum systems [28]. Both path integral formulations are
written in two fields. In the language of classical theories, they are called classical and response
fields. In the Keldysh formalism, they correspond to a linear combination of fields on the forward
and backward paths. These doubled fields play an important role in the symmetry of open systems.

The notion of symmetry in open systems is slightly different from that in isolated systems
[17,18,23]. In isolated systems, when there is a continuous symmetry there exists a physical Noether
charge, which we call Qα

R in this paper. “Physical” means that the Noether charge is an observable like
the energy and momentum. In contrast, in open systems the Noether theorem does not necessarily
lead to the physical conserved charge. Instead, another conserved charge, which we refer to as Qα

A,
arises in the path integral formulation. The doubled charges, Qα

R and Qα
A, relate to the fact that the

path integral is written in doubled fields. Although Qα
A itself is not a physical conserved quantity, it

plays the role of the symmetry generator. By using Qα
A, we can define the spontaneous symmetry
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breaking for open systems and derive the Ward–Takahashi identities [29,30]. As is the case in iso-
lated systems, spontaneous symmetry breaking implies the existence of gapless excitation modes.
Our previous analysis based on the Ward–Takahashi identities [17] is limited in the zero-momentum
limit. In this paper we generalize it to analysis with finite momentum, and derive the low-energy
coefficients for the inverse of the Green functions in the NG mode channel. Using these coefficients,
we classify the NG modes and discuss the relation between these modes and the broken generators.

The paper is organized as follows: In Sect. 2 we show our main result, in which we classify the NG
modes into four types and discuss their dispersion relations. We also discuss how the NG modes can
be observed in experiments. In Sect. 3, we review the path integral formulation in open classical and
quantum systems. In Sect. 4 we discuss the concept of symmetry in open systems and provide two
field-theoretical techniques that we employ to show our main result. Section 5 shows the detailed
derivation of our main result, and Sect. 6 is devoted to the summary and discussion.

Throughout this paper we use the relativistic notation in (d + 1)-dimensional spacetime with the
Minkowski metric ημν = diag(1, −1, −1, . . . , −1), although the system need not have the Lorentz
symmetry. We employ the natural units, i.e. c = � = 1, where c is the speed of light and � is the
Planck constant over 2π .

2. Main result

In this section we summarize our main results first, because the derivation is technical and compli-
cated. We show the relationship between the inverse of the retarded Green function and low-energy
coefficients that determine the dispersion relation of NG modes. Using the low-energy coefficients,
we classify the NG modes into four types: type-A propagation, type-A diffusion, type-B propagation,
and type-B diffusion modes. We also discuss how these modes can be observed in experiments.

2.1. Green functions and low-energy coefficients

We consider a (d + 1)-dimensional open system that has a continuous internal symmetry G (the
precise definition of symmetry in open systems is shown in Sect. 4.1). Suppose that the symmetry
is spontaneously broken into its subgroup H in a steady state. We assume that the steady state is
unique and stable against small perturbations. The steady state may be not only the global thermal
equilibrium but also a nonequilibrium steady state. We also assume that any spacetime symmetries
of the open system such as the time and spatial translational symmetry are not spontaneously broken,
which implies that the frequency and momentum are good quantum numbers. We are interested in
the behavior of the retarded Green functions that contain NG modes [Gπ(k)]αβ , where α and β run
from 1 to the number of broken symmetries NBS. As in the case of isolated systems, NBS is equal to
dim(G/H ). Our main result (generalization of the Nambu–Goldstone theorem) is that the inverse of
the retarded Green function can be expanded as

[G−1
π (k)]βα = Cβα − iCβα;μkμ + Cβα;νμkνkμ + · · · , (2)

with coefficients

Cβα = 0, (3)

Cβα;μ = 〈δβRjαμA (0)〉 + i
∫

dd+1x 〈(QπhβR(x)
) (Qπ jαμA (0)

)〉c, (4)

Cβα;νμ = 〈Sβα;νμ(0)〉 − i
∫

dd+1x 〈(Qπ jβνR (x)
) (Qπ jαμA (0)

)〉c (5)
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+ i
∫

dd+1x xν〈(QπhβR(x)
) (Qπ jαμA (0)

)〉c. (6)

Here, μ and ν are spacetime indices, kμ = (ω, k) are the frequency and the wave vector, and
dd+1x = dtdx. The subscript c denotes the connected part of correlation functions. Qπ is the
projection operator that removes the contribution of NG modes from the operator [the definition
of Qπ(= 1 − Pπ) is given in Eq. (110)]. The expectation values are evaluated in the path integral
formulation, Eq. (26). In this formulation there are two types of elementary fields, denoted χa

R and
χa

A, which correspond to the classical and fluctuation fields, respectively. The operators in Eqs. (4)
and (6) are related to the symmetry transformation of the action S[χa

R,χa
A]. To see this, consider

an infinitesimal local transformation of fields under G: χa
i (x) → χa

i (x) + δAχ
a
i (x) (i = R, A) with

δAχ
a
i (x) := εα(x)δαAχ

a
i (x), where εα(x) is the infinitesimal parameter depending on spacetime, and

δαAχ
a
i (x) is the infinitesimal transformation of χa

i (x). If χa
i (x) is a linear representation of G, it can be

represented as δαAχ
a
i (x) = i[Tα]a

bχ
b
i (x), where Tα is the generator of G. Since G is the symmetry, the

action is invariant under δA if εα is constant. For a spacetime-dependent εα(x), the action transforms
as

δAS = −
∫

dd+1x ∂μεα(x)j
αμ
A (x), (7)

where jαμA (x) is the Noether current. We also introduce a local transformation δR such that δRχ
a
i =

ε̄α(x)δαRχ
a
i (x), with

δαRχ
a
A(x) := δαAχ

a
R(x),

δαRχ
a
R(x) :=

{
1
4δ
α
Aχ

a
A(x) quantum system,

0 classical system.
(8)

In isolated systems, these are also symmetry transformations; however, they are not in open systems
[17,18]. Under this transformation, the action transforms as

δRS =
∫

dd+1x
[
ε̄α(x)h

α
R(x)− ∂με̄α(x)j

αμ
R (x)

]
. (9)

Since δR transformation is not the symmetry of the action, hαR(x) exists.
δ
β
RjαμA (x) and Sβα;νμ(x) in Eqs. (4) and (6) are given through the infinitesimal local transformation

of jαμA (x), which is

δRjαμA (x) = ε̄β(x)δ
β
RjαμA (x)+ ∂νε̄β(x)Sβα;νμ(x)+ · · · . (10)

The low-energy coefficients in the inverse of retarded Green functions in Eqs. (3)–(6) are expressed
as one- or two-point functions of these operators.

The ordinary Nambu–Goldstone theorem shows Cβα = 0 in Eq. (3), which is derived from the
only symmetry breaking pattern, and thus it is independent of the details of the underlying theory.
This claims that there is at least one zero mode when a continuum symmetry is spontaneously broken.
To determine the dispersion relation and the number of NG modes, we need additional data. If we
impose Lorentz invariance on the system, we find Cβα;μ = 0 and Cβα;νμ = −ηνμgβα , where gβα is
an NBS × NBS matrix with det g �= 0. In this case, det G−1

π = 0 has 2NBS solutions with ω = ±|k|.
Each pair of solutions ω = ±|k| gives one mode. Therefore, the number of NG modes is equal
to NBS, whose dispersion is linear. This is the Nambu–Goldstone theorem in relativistic systems
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[2,31]. Equations (4) and (6) give the data for general cases, not just for isolated systems without
Lorentz invariance but also for open ones. In this sense, our formulae in Eqs. (2)–(6) provide the
generalization of the Nambu–Goldstone theorem. In the next subsection we discuss the classification
of NG modes and their dispersion relations.

2.2. Classification of NG modes

It is interesting to clarify the relation between the broken symmetries, the NG modes, and their
dispersion relations in open systems. In isolated systems without Lorentz invariance, those relations
have been made clear in Refs. [4,5,7,8]. In this section we generalize the relation obtained in isolated
systems to that in open systems. The formula in isolated systems can be reproduced as a special case
of our result.

Our formulae in Eqs. (2)–(6) are quite general, so we need additional assumptions to classify NG
modes. First, we assume that det(−iωρ − ω2ḡ) �= 0 at an arbitrary small but nonzero ω, where
we define ρβα := Cβα;0 and ḡβα := −Cβα;00. This assumption means that the low-energy degrees
of freedom are contained in, at least, up to quadratic order in ω. We note that this is implicitly
assumed in the analysis of NG modes in isolated systems [7]. Second, we assume that the action of
the underlying theory satisfies the reality condition

(
S[χa

R,χa
A])∗ = −S[χa

R, −χa
A]. All the models

discussed in Sect. 3 satisfy this condition. The reality condition implies that all the coefficients Cβα;μ···
in Eq. (2) are real. This property leads to the relation that ifωk is a solution of det G−1

π (ω, k) = 0, then
−ω∗−k is also a solution. The third assumption is that G−1

π (ω, k) is invariant under k → −k, which
makes our analysis simpler. In this section we concentrate on systems that satisfy this condition. One
can generalize our analysis by relaxing the this assumption. From these three assumptions, we can
conclude that there are two types of modes, diffusion and propagation, and the poles of the retarded
Green functions have the form

ω =
{

−iγ (k) diffusion mode,

±a(k)− ib(k) propagation mode.
(11)

Here, a, b, and γ are real and positive due to the stability of the system, and they vanish at k = 0 due
to symmetry breaking. We note that the above three assumptions do not exclude the possibility of
the pole ω = 0 with finite momentum k, or equivalently the pole with a = 0, b = 0, or γ = 0. The
pole can be excluded from the assumption that the translational symmetry is not broken discussed
in Sect. 2.1. If such a pole exists, there exists a time-independent local operator. By operating the
operator to a given steady state, we can generate another steady state with a finite momentum,
which breaks the translational symmetry. This contradicts the assumption of broken translational
invariance.1

Let us now focus on the relation between the number of modes and the coefficients ρβα and ḡβα .
The number of zero modes can be evaluated from the number of solutions of det(−iωρ − ω2ḡ) =
ωNBS det(−iρ−ωḡ) = 0 with ω = 0, which is equal to NBS + (NBS − rank ρ) = 2NBS − rank ρ. As
in the case of isolated systems [7], we characterize the type-B modes by linearly independent row
vectors in ρ. ρ generally has both symmetry and antisymmetric parts. This is different from isolated
systems, where ρ is an antisymmetry matrix. The symmetric part plays the role of dissipation. The
number of type-B degrees of freedom is equal to rank ρ. This characterization is different from

1 The same argument is used in the analysis of NG modes in nonrelativistic systems [10].
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our previous work [17], in which we proposed that the type-B mode was characterized by the
antisymmetry part of ρ, and conjectured that the existence of the antisymmetric part implied the
existence of a propagation mode. However, this conjecture is not always true [23]; it depends on the
details of the underlying theory, as will be seen below. Therefore, we change the definition of type-B
modes.2

Since propagation poles are always paired with the positive and negative real parts, we count
the pair of poles as two. On the other hand, the pole of a diffusion mode is counted as one. This
observation gives the relation between rank ρ and the number of diffusion and propagation modes
as

rank ρ = NB-diffusion + 2NB-prop. (12)

As mentioned above, the number of diffusion modes depends on the details of the theory. To see this,
let us consider a simple model with

G−1
π =

(
−iκ1ω + k2 −iω

iω −iκ2ω + k2

)
, ρ =

(
κ1 1
−1 κ2

)
, (13)

and ḡβα = 0. Here, κ1 and κ2 are parameters. We choose these to be positive. Since det ρ =
κ1κ2 + 1 �= 0, rank ρ = 2, i.e. there are two solutions in det G−1

π = 0, which are given as

ω = −i(κ1 + κ2)±√4 − (κ1 − κ2)2

2(1 + κ1κ2)
|k|2. (14)

If 4 > (κ1 −κ2)
2, one propagation mode appears. On the other hand, if 4 < (κ1 −κ2)

2, two diffusion
modes appear. In both cases, Eq. (12) is, of course, satisfied; however, the diffusion or propagation
depends on the parameters.

The remaining gapless degrees of freedom describe type-A modes, whose number is (NBS−rank ρ).
Since they have ω2 terms in G−1

π , we count each degree of freedom as two, and we find that the
following relation is satisfied:

2(NBS − rank ρ) = NA-diffusion + 2NA-prop. (15)

One might think the existence of the type-A diffusion mode is unnatural. However, we cannot exclude
this possibility at this stage. For example, let us consider G−1

π = −ω2−2iζ |k|2ω+|k|4. The solutions
of G−1

π = 0 are ω = −iζ |k|2 ±√1 − ζ 2|k|2, which correspond to the type-A modes because ρ = 0.
If ζ < 1, there is one propagation mode. On the other hand, if ζ > 1 there are two diffusion modes.
These are nothing but the type-A diffusion modes in our classification. The possibility of type-A
diffusion modes is excluded by assuming an additional condition, as will be seen later.

Combining Eqs. (12) and (15), we find the general relation

NBS = NA-prop + 2NB-prop + 1

2
NA-diffusion + NB-diffusion. (16)

For isolated systems, where hβR vanishes, the transformation generated by δβR is upgraded to symmetry
whose Noether current is jβμR . In this case, the symmetric part of ρβα vanishes, and ρβα turns into

2 The type-A NG mode with ω = −i|k|2 in our previous work [17] corresponds to the type-B diffusion
mode in the new classification of this paper.
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the Watanabe–Brauner matrix: ρβα = 〈δβRjα0
A 〉 = −〈[iQ̂β

R , ĵα0
A ]〉 [12]. In isolated systems, there are

no diffusion modes, i.e. NA-diffusion = NB-diffusion = 0, so the relation reduces to the standard one:

NA-prop = NBS − rank ρ, NB-prop = 1

2
rank ρ. (17)

Furthermore, let us consider that the system is isotropic. In this case, Cαβ;ij can be expressed as
gαβδij. We assume that det g �= 0, which simplifies the dispersion relations:

ω =

⎧⎪⎪⎨
⎪⎪⎩

±aB|k|2 − ibB|k|2 type-B propagation mode,

−iγB|k|2 type-B diffusion mode,

±aA|k| − ibA|k|2 type-A propagation mode.

(18)

In this case, there is no type-A diffusion mode (see Appendix A for the proof).
In addition to gapless solutions, gapped solutions in det G−1

π (ω, k) = 0 may exist. As is in the case
of the gapless modes in Eq. (11), the gapped solutions can be classified into damping and gapped
modes, with

ω =
{

−iγG damping mode,

±aG − ibG gapped mode
(19)

at k = 0. The total number of solutions of det G−1
π (ω, 0) = 0 is equal to the degree of the polynomial

det G−1
π (ω, 0). Since det G−1

π (ω, 0) = det(−iωρ − ω2ḡ) = ωNBS det(−iρ − ωḡ), the degree is
equal to (NBS + rank ḡ). There are 2NBS − rank ρ solutions with ω = 0, so that the remaining
(rank ḡ + NBS)− (2NBS − rank ρ) = rank ḡ + rank ρ − NBS solutions correspond to gapped ones.
Therefore, we find the relation for the gapped modes to be

rank ḡ + rank ρ − NBS = 2Ngapped + Ndamping. (20)

If γG or |aG − ibG| is much smaller than the typical energy scale, these gapped modes become
the low-energy degrees of freedom. In isolated systems, these kinds of gapped modes are known
as gapped partners [4,5,32–36]. An example is a Ferrimagnet, in which ferro- and antiferro- order
parameters coexist. The Ferrimagnet has one magnon with quadratic dispersion, which is the type-B
mode, and one gapped mode.

2.3. Spectral function and experimental detection

The dispersion relation of NG modes can be experimentally observed by inelastic scattering pro-
cesses [37–39]. For example, in atomic Fermi superfluids, the NG mode is observed in the spectra
with focused Bragg scattering [37]. The differential cross section is proportional to the correlation
function, which behaves as 2Im Gπ(ω, k)/ω =: S(ω, k) at small ω [40].3 S(ω, k) will be multiplied
by an additional factor depending on the processes. From the results in the previous subsection, the

3 More precisely, the differential cross section is proportional to G12(ω, k) in 1/2 basis of the Keldysh
formalism. At low ω, G12(ω, k) reduces to 2Im Gπ (ω, k)/ω.
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Fig. 1. The left panel shows the ω–|k| dependence of S(ω, k) for a type-B diffusion mode, which has a single
peak. The right panel shows S(ω, k) for a type-B propagation mode, which has blunt pair peaks. The parameters
are chosen as γB = 1, aB = 1, and bB = 0.5.

Fig. 2. The left and right panels show the ω–|k| dependence of S(ω, k) for type-A and -B modes in an isolated
system, respectively. Both have sharp pair peaks. The parameters are chosen as aA = 1, bA = 0.5, aB = 1, and
bB = 0.5.

retarded Green functions in broken phases are written as

GB-diffusion(ω, k) = iγB

ω + iγB|k|2 ,

GB-prop(ω, k) = −1

(ω − aB|k|2 + ibB|k|2)(ω + aB|k|2 + ibB|k|2) . (21)

The corresponding spectra, SB-diffusion(ω, k) := 2Im GB-diffusion(ω, k)/ω and SB-prop(ω, k) :=
2Im GB-prop(ω, k)/ω, are

SB-diffusion(ω, k) = 2γB

ω2 + γ 2
B |k|4 , (22)

SB-prop(ω, k) = 4bB|k|2(
(ω − aB|k|2)2 + b2

B|k|4)((ω + aB|k|2)2 + b2
B|k|4) , (23)

respectively. As a comparison, we show the functional form of S = ρ(ω, k)/ω for type-A and -B
modes in isolated systems as

SA(ω, k) := 4bA|k|2(
(ω − aA|k|)2 + b2

A|k|4)((ω + aA|k|)2 + b2
A|k|4) , (24)

SB(ω, k) = 4bB|k|4(
(ω − aB|k|2)2 + b2

B|k|8)((ω + aB|k|2)2 + b2
B|k|8) , (25)

respectively.
Figures 1 and 2 illustrate the ω–|k| dependence of S(ω, k) in open and isolated systems, respec-

tively. S(ω, k) in the open system has a single peak for the type-B diffusion mode, and blunt pair
peaks for the type-B propagation mode. In contrast, S(ω, k) in the isolated system has sharp pair
peaks. Thus, S(ω, k) has significantly different behaviors depending on the open or the isolated
system.
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The type-B diffusion spectrum will be realized in a driven dissipative Bose–Einstein condensate
(BEC) [18–22]. Similarly, we expect that the type-B propagation mode in a nonequilibrium steady
state can be observed in a driven dissipative BEC with a different symmetry breaking pattern, e.g.
SO(3)× U (1) → U (1) realized in a spinor BEC [41,42].

3. Open classical and quantum systems

Here, we briefly review the path integral approach to open classical and quantum systems. Readers
who are familiar with this approach may jump to Sect. 4. As will be seen below, in both classical
and quantum systems the expectation value of an operator can be expressed as the path integral

〈O[χa
R,χa

A]〉 =
∫
ρ

Dχa
ADχa

RDCDC̄eiS[χa
R,χa

A,C,C̄]O[χa
R,χa

A]. (26)

Here, the subscript ρ denotes the contribution from the initial density operator, whose definition is
given later. S[χa

R,χa
A, C, C̄] is the action with two types of physical degrees of freedom, χa

R and χa
A,

corresponding to classical and fluctuation fields, respectively. In classical systems, χa
A is often called

the response field. In quantum systems, χa
R and χa

A are fundamental fields of the Keldysh basis in the
Keldysh path formalism [28]. C and C̄ are ghost fields, which are responsible for the conservation of
probability. The existence of the ghost term depends on the theory. In the following, we show three
examples for classical and quantum systems that can be expressed as Eq. (26).

3.1. Stochastic system

The first example is a stochastic system. The path integral formalism in this system is the MSRJD
formalism [24–27]. Let us consider a stochastic system whose dynamics is described by the Langevin
type equation:

∂tφ = −γφ − λφ3 + ξ , (27)

where ξ represents Gaussian white noise that satisfies

〈ξ(t)ξ(t′)〉ξ = κδ(t − t′). (28)

Here, κ represents the strength of the noise. The probability distribution is defined as

P[t;φR] :=
∫

dφR(tI )ρ[φR(tI )]〈δ(φR − φ(t))〉ξ , (29)

where ρ[φR(tI )] is the initial probability distribution. Since φ(t) follows Eq. (27), P[tF ;φR] can be
expressed as

P[tF ;φR] =
∫
ρ,φR

DφR det(∂t + γ + 3λφ2
R)〈δ(∂tφR + γφR + λφ3

R − ξ)〉ξ , (30)

where det(∂t + γ + 3λφ2
R) is the Jacobian associated with the transformation from (φR − φ(t)) to

(∂tφR + γφR + λφ3
R − ξ(t)). Here, we introduced the following notation:∫

ρ,φR

DφR :=
∫
φR(tF )=φR

DφRρ[φR(tI )]. (31)
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Using the Fourier representation of the delta function, we can write the probability distribution as

P[tF ;φR] =
∫
ρ,φR

DφADφR det(∂t + γ + 3λφ2
R)
〈
exp
∫ tF

tI
dt iφA(∂tφR + γφR + λφ3

R − ξ)
〉
ξ
. (32)

The average of the noise can be evaluated as

〈e−i
∫

dtφA(t)ξ(t)〉ξ = exp
{

− κ

2

∫
dtφ2

A(t)

}
, (33)

which leads to

P[tF ;φR] =
∫
ρ,φR

DφADφR det(∂t + γ + 3λφ2
R) exp

∫ tF

tI
dt
[
iφA(∂tφR + γφR + λφ3

R)− κ

2
φ2

A

]
.

(34)

The determinant can be expressed as the Fermionic path integral:

det(∂t + γ + 3λφ2
R) =

∫
DCDC̄ exp

∫
dtC̄(∂t + γ + 3λφ2

R)C. (35)

We eventually obtain the path-integral formula

P[tF ;φR] =
∫
ρ,φR

DφADφRDCDC̄eiS[φR,φA,C,C̄], (36)

with the action

S[φR,φA, C, C̄] =
∫ tF

tI
dt
[
φA(∂tφR + γφR + λφ3

R)+ i
κ

2
φ2

A

]
− i
∫ tF

tI
dtC̄(∂t + γ + 3λφ2

R)C. (37)

The expectation value of an operator O[φR,φA] is given as

〈O[φR,φA]〉 :=
∫

dφR(tF)
∫
ρ,φR

DφADφRDCDC̄eiS[φR,φA,C,C̄]O[φR,φA]

=:
∫
ρ

DφADφRDCDC̄eiS[φR,φA,C,C̄]O[φR,φA]. (38)

In the second line, we include the integral of φR(tF) at the boundary into
∫
ρ

DφR. Here, we only
considered a single variable with simple interaction and noise. Generalization to multi-component
fields is straightforward. For more detailed derivation, see Refs. [43–45].

3.2. Open quantum systems

The second example is an open quantum system. The open system can be formally constructed from
an isolated system. To see this, let us consider a quantum system coupled with an environment. The
path integral formula can be obtained by integrating the environment out [46]. The action of the total
system consists of three parts:

Stot[φ, B] = Ssys[φ] + Senv[B] + Sint[φ, B], (39)

where Ssys[φ], Senv[B], and Sint[B,φ] are the actions of the system, the environment, and the inter-
action between them, respectively. φ and B are the degrees of freedom of the system and the
environment. We assume that the initial density operator at t = tI is the direct product of those
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Fig. 3. Closed time contour in the Keldysh formalism.

of the system and the environment: ρ̂ = ρ̂sys ⊗ ρ̂env. In the path integral formalism, the expectation
value of an operator O[φ1,φ2] is given on the path shown in Fig. 3 as

〈O[φ1,φ2]〉 =
∫

Dφ1Dφ2DB1DB2ρsys[φ1(tI ),φ2(tI )]ρenv[B1(tI ), B2(tI )]

× eiStot[φ1,B1]−iStot[φ2,B2]O[φR,φA], (40)

where the indices 1 and 2 represent the label of the forward and backward paths in Fig. 3, and we
introduced the matrix elements of the density operators ρsys[φ1(tI ),φ2(tI )] := 〈φ1(tI )|ρ̂sys|φ2(tI )〉
and ρenv[B1(tI ), B2(tI )] := 〈B1(tI )|ρ̂env|B2(tI )〉. The direct product of the density operators enables
us to formally integrate the environment out. Introducing the influence functional ei�[φ1,φ2] [46]
defined as

ei�[φ1,φ2] :=
∫

DB1DB2ρenv[BI1, BI2]eiSenv[B1]−iSenv[B2]+iSint[φ1,B1]−iSint[φ2,B1], (41)

we can express the expectation value as

〈O[φ1,φ2]〉 =
∫
ρ

Dφ1Dφ2eiSeff[φ1,φ2]O[φ1,φ2], (42)

where we defined

Seff[φ1,φ2] := Ssys[φ1] − Ssys[φ2] + �[φ1,φ2], (43)

and the notation of the subscript ρ by∫
ρ

Dφ1Dφ2 :=
∫

Dφ1Dφ2ρsys[φ1(tI ),φI2(tI )]. (44)

To see the connection between Seff and the action in Eq. (37) in the MSRJD formalism, let us move
on to the Keldysh basis, which is defined as φR := (φ1 + φ2)/2 and φA := (φ1 − φ2). φR and φA

are called classical and quantum fields, respectively. Expanding the action with respect to φA, and
keeping φA up to quadratic order, we can obtain the MSRJD action. For example, we consider φ4

theory in (0 + 1) dimension, whose action is given as

Ssys[φ] =
∫

dt
[1

2
(∂tφ)

2 − 1

2
m2φ2 − u

4
φ4
]
. (45)

In the Keldysh basis, Ssys[φ1] − Ssys[φ2] is expressed as

Ssys[φ1] − Ssys[φ2] =
∫

dt
[
∂tφA∂tφR − m2φAφR − uφAφ

3
R − u

4
φRφ

3
A

]
. (46)

The functional form of �[φ1,φ2] depends on the details of the environment. For a simple case, we
assume

�[φ1,φ2] =
∫

dt
[
−νφA∂tφR + i

2
Dφ2

A

]
, (47)
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where ν and D are parameters coming from couplings to the environment. Then, the action reduces
to

Seff =
∫

dt
[
∂tφA∂tφR − νφA∂tφR − m2φAφR − uφAφ

3
R − u

4
φRφ

3
A + i

2
Dφ2

A

]
. (48)

For a classical treatment we drop φ3
A term, and neglect the ∂tφA∂tφR term for slow dynamics. Then,

we arrive at

Seff =
∫

dt
[
φA(∂tφR + γφR + λφ3

R)+ i

2
κφ2

A

]
, (49)

where we rescaled φA → −φA/ν and introduced γ = m2/ν, κ = D/ν2, and λ = u/ν. We can see
that the action in Eq. (49) is the same form as the MSR one in Eq. (37) except for the Jacobian term.

3.3. Lindblad equation

The third example is a system described by a Lindblad equation [47] (see Ref. [18] for a review of
the path integral formalism of the Lindblad equation). The Lindblad equation with a single Lindblad
operator L̂ is given as

∂t ρ̂ = −i[Ĥ , ρ̂] + γ
(

L̂ρ̂L̂† − 1

2
(L̂†L̂ρ̂ + ρ̂L̂†L̂)

)
. (50)

Here, γ is a coefficient and L̂ is a function of fields. The term proportional to γ describes the
dissipation and fluctuation effects. By construction, the trace of ρ̂ is time independent, ∂t tr ρ̂ = 0.

When the degrees of freedom is a bosonic Schrödinger field ψ̂(t, x) in (d +1) dimensions with the
commutation relation [ψ̂(t, x), ψ̂†(t, x′)] = δ(d)(x − x′), the path integral for the expectation value
of an operator O[ψi,ψ

†
i ] is given as

〈O[ψi,ψ
†
i ]〉 =

∫
ρ

DψiDψ†
i eiSO[ψi,ψ

†
i ] (51)

with the action

S =
∫

dd+1x
[
ψ

†
1 i∂tψ1 − H1 − ψ

†
2 i∂tψ2 + H2 − iγ

(
L1L†

2 − 1

2
(L†

1L1 + L†
2L2)

)]
, (52)

where Hi := 〈ψi|Ĥ |ψi〉, Li = 〈ψi|L̂|ψi〉, and L†
i = 〈ψi|L̂†|ψi〉.4 For example, if we choose the

Hamiltonian and the Lindblad operator as

Ĥ = 1

2m
∇ψ̂†∇ψ̂ , L̂ = √

2ψ̂ , (53)

the action is written in the form

S =
∫

dd+1x
[
ψ

†
1 i∂tψ1 − 1

2m
∇ψ†

1 ∇ψ1 − ψ
†
2 i∂tψ2 + 1

2m
∇ψ†

2 ∇ψ2

− iγ
(

2ψ1ψ
†
2 − (ψ

†
1ψ1 + ψ

†
2ψ2)

)]
, (54)

4 Precisely, speaking, when L̂ depends on both ψ̂ and ψ̂†, one needs to take care with the ordering of the
field in L̂†L̂, since ψ̂ and ψ̂† are not commutative.
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where m is the mass. In the Keldysh basis, it becomes

S =
∫

dd+1x
[
ψ

†
Ri(∂t − γ )ψA + ψ

†
Ai(∂t + γ )ψR − 1

2m
∇ψ†

R∇ψA − 1

2m
∇ψ†

A∇ψR + iγψ†
AψA

]
.

(55)

As we have seen in the three examples, all the systems are described by the path integral.

4. Field-theoretical technique

In this section we provide the concept of symmetry in open systems and two field-theoretical tech-
niques to derive low-energy coefficients. One is the Ward–Takahashi identity that gives the relation
between different Green functions. The other is the generating functional and effective action meth-
ods, which are often employed to prove the Nambu–Goldstone theorem in quantum field theories
(see, e.g., Ref. [31]).

4.1. Symmetry of open systems

In isolated systems, the existence of a continuous symmetry implies the existence of conserved
current. On the other hand, in open systems the energy, momentum, and particle number are generally
not conserved due to the interaction between the system and the environment. Thus, one may wonder
what symmetry of open systems means. Even in such a case, symmetry may exist [17,18]. To see the
symmetry of open systems, let us consider the concrete example with the action in Eq. (54). If γ = 0,
this system corresponds to an isolated system. In this case, the action is invariant underψ1 → eiθ1ψ1

and ψ2 → eiθ2ψ2, where θ1 and θ2 are constant. In this sense, there is the U (1)1 × U (1)2 symmetry,
whose Noether charges are

Q1 =
∫

ddxψ†
1ψ1, Q2 =

∫
ddxψ†

2ψ2, (56)

respectively. Here, we defined Q2 such that [Q̂2, ψ̂2] = +ψ̂2 in the operator formalism, whose
sign is opposite to [Q̂1, ψ̂1] = −ψ̂1. This relative sign is caused by the canonical commutation
relation, [ψ̂1(t, x), ψ̂†

1 (t, x′)] = δ(d)(x−x′) and [ψ̂2(t, x), ψ̂†
2 (t, x′)] = −δ(d)(x−x′), in the operator

formalism. This can be understood as the sign in front of the time derivative term in the Keldysh
action

∫
dd+1(ψ

†
1 i∂tψ1 − ψ

†
2 i∂tψ2). This kind of doubled symmetry is used for the construction of

an effective field theory of fluids in the Keldysh formalism [48–59]. In the Keldysh basis, these are
expressed as

QA := Q1 − Q2 =
∫

ddx(ψ†
RψA + ψ

†
AψR), (57)

QR := 1

2
(Q1 + Q2) =

∫
ddx
(
ψ

†
RψR + 1

4
ψ

†
AψA

)
. (58)

In isolated systems, these charges generate an infinitesimal transformation as

δAψA = iψA, δAψR = iψR, (59)

δRψA = iψR, δRψR = 1

4
iψA, (60)

where δiψ̂j = −i[Q̂i, ψ̂j] in the operator formalism. On the other hand, when γ �= 0 one of the
symmetries is explicitly broken. The residual symmetry is U (1)A, which is given by setting the
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parameters as θ1 = θ2. The Noether charge QA is still conserved, but QR is not, which means that
the charge in the usual sense is not conserved.

More generally, we can consider a system with continuous symmetry G. The symmetry of open
systems means that the action is invariant under the infinitesimal transformation of G,

χa
A(x) → χa

A(x)+ εαδ
α
Aχ

a
A(x), χa

R(x) → χa
R(x)+ εαδ

α
Aχ

a
R(x), (61)

where χa
A(x) and χa

R(x) are field degrees of freedom, and εα is constant. We can formally define the
transformation δαRχi(x) such that

δαRχ
a
A(x) := δαAχ

a
R(x),

δαRχ
a
R(x) :=

{
1
4δ
α
Aχ

a
A(x) quantum system,

0 classical system.
(8)

These are generalizations of Eqs. (59) and (60) [17]. In open systems, invariance of the action under
δαR depends on the theory. If the particle number is conserved, but energy is not, then the action is
invariant under the U (1)R transformation χA → eiθχR and χR → eiθχA/4, but it is not invariant
under the time translation χA(t) → χR(t +c) and χR(t) → χA(t +c)/4, where θ and c are constants.

In addition, all the previous examples in Sect. 3 satisfy the reality condition:

(
S[χa

R,χa
A])∗ = −S[χa

R, −χa
A]. (62)

In this paper we focus on theories satisfying the reality condition.

4.2. Ward–Takahashi identity

Symmetry plays an important role not only in isolated systems but also in open ones. Here, we
show the Noether current in open systems and the Ward–Takahashi identity [29,30]. Let us consider
a theory with field variablesχa

A andχa
R. Suppose the action S is invariant under G, and the infinitesimal

transformation is given asχa
i → χa

i +εαδαAχa
i , with an infinitesimal constant εα . When εα(x) depends

on the spacetime coordinate, the action transforms as

δAS = −
∫

dd+1x jαμA (x)∂μεα(x), (7)

because δAS vanishes if εα(x) is constant. The operator jαμA (x) is called the Noether current. To see
the Ward–Takahashi identity in the path integral formalism, we consider the expectation value of an
operator O[χa

i ], which is given as

〈O[χa
i ]〉 =

∫
Dχa

i eiS[χa]O[χa
i ]. (63)

Since χa
i is the integral variable, the integral is invariant under the relabeling χa

i → χ ′a
i :

〈O[χa
i ]〉 =

∫
Dχ ′a

i eiS[χ ′a]O[χ ′a
i ]. (64)
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If we chooseχ ′a
i (x) = χa

i (x)+εα(x)δαAχa
i (x), and assuming that the path-integral measure is invariant

under this transformation, Dχ ′a
i = Dχa

i , we find that

〈O[χa
i ]〉 =

∫
Dχa

i eiS[χa]+iδAS(O[χa
i ] + δAO[χa

i ])+ O(ε2)

= 〈O[χa
i ]〉 + 〈δAO[χa

i ]〉 + i〈δAS O[χa
i ]〉 + O(ε2). (65)

Here, the local transformation of O[χa
i ] is given as

δAO[χa
i ] =

∫
dd+1x εα(x)

δO[χa
i ]

δχb
j (x)

δαAχ
b
j (x). (66)

The leading-order term in εα(x) gives

〈∫
dd+1x jαμA (x)∂μεα(x)O[χa

i ]
〉
+ i〈δAO[χa

i ]〉 = 0. (67)

Differentiating Eq. (67) with respect to εα(x), we obtain

−∂μ〈jμA (x)O[χa
i ]〉 + i

〈δO[χa
i ]

δχa
i (x)

δαAδχ
a
i (x)

〉
= 0. (68)

This is the Ward–Takahashi identity, which is the conservation law in the path integral formalism.

4.3. Generating functional and effective action

In order to show the Nambu–Goldstone theorem, it is useful to introduce the generating functional.
We start with a path integral representation for the generating functional in (d + 1) spacetime
dimensions:

Z[J ] :=
〈
exp
[
i
∫

dd+1x J i
a(x)φ

a
i (x)

]〉
=
∫
ρ

Dχa
i exp

[
iS[χa

i ] + i
∫

dd+1x J i
a(x)φ

a
i (x)

]
, (69)

where the χa
i are elementary degrees of freedom in the Keldysh basis. φa

i = (φa
R,φa

A) is a set of real
scalar fields, which may be the elementary or a composite field of χa

i .5 In general, the stationary
state need not be the thermal equilibrium state, i.e. a nonequilibrium steady state is allowed in this
formalism. For the generating functional to be well defined, we assume that the stationary state is
stable against any small perturbations. We also assume a stationary state that is independent of the
choice of the initial density operator, so that we omit the subscript ρ in the following.

Connected Green functions are generated by differentiating ln Z[J ] with respect to J :

〈φa1
i1 (x1) · · ·φan

in (xn)〉c;J = 1

in

δn ln Z[J ]
δJ i1

a1(x1) · · · δJ in
an(xn)

. (70)

Here, 〈· · · 〉J denotes the expectation value in the presence of the source J i
a(x), which is defined as

〈O〉J := 1

Z[J ]
∫

Dχa
i exp

{
iS[χ ] + i

∫
dd+1x J i

a(x)φ
a
i (x)

}
O. (71)

5 When φa
R and φa

A are composite, these fields are defined by using the 1/2 basis such that φR = (φ1 +φ2)/2
and φA = φ1 − φ2, where φ1 and φ2 are polynomials of χ1 and χ2, respectively.
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The subscript c denotes the connected part of the correlation function. The Green function without
the external field is given as the limit of J i

a(x) → 0:

〈φa1
i1 (x1) · · ·φan

in (xn)〉c = lim
J→0

〈φa1
i1 (x1) · · ·φan

in (xn)〉c;J . (72)

Since the J A
a φ

a
A term in Eq. (69) is proportional to φa

A, it can be absorbed into the action as
the external force, while J R

a φ
a
R cannot. The external force does not change the conservation of the

probability, so that the partition function becomes trivial if J R = 0: Z[J R = 0, J A] = 1. This identity
leads to

〈φa1
A (x1) · · ·φan

A (xn)〉c = 1

in
δn ln Z[J ]

δJ A
a1
(x1) · · · δJ A

an
(xn)

∣∣∣∣∣
J=0

= 0. (73)

Therefore, any correlation functions contracted from only the φA vanish. In particular, 〈φa
A(x)〉 cannot

be the order parameter.
We introduce here the effective action, which is defined as

�[ϕ] := −i ln Z[J ] −
∫

dd+1x J i
a(x)ϕ

a
i (x), (74)

where ϕa
i (x) := 〈φa

i (x)〉J = −iδ ln Z[J ]/δJ i
a(x). We assume that ϕa

i (x) = 〈φa
i (x)〉J is invertible so

that the effective action is well defined. The effective action is a functional of ϕa
i (x) rather than J i

a(x),
since δ�[ϕ] = − ∫ dd+1x iδJ i

a(x)δ ln Z[J ]/δJ i
a(x)−

∫
dd+1x δJ i

a(x)ϕ
a
i (x)−

∫
dd+1x J i

a(x)δϕ
a
i (x) =

− ∫ dd+1x J i
a(x)δϕ

a
i (x), in which J i

a(x) is not an independent variable but relates to ϕa
i (x) through

ϕa
i (x) = 〈φa

i (x)〉J . The functional derivative of � with respect to ϕa
i is

δ�[ϕ]
δϕa

i (x)
= −J i

a(x). (75)

In the absence of the external field, J i
a(x) = 0, Eq. (75) gives the stationary condition of the effective

action. The second functional derivative of � is

δ2�[ϕ]
δϕb

j (x
′)δϕa

i (x)
= − δJ i

a(x)

δϕb
j (x

′)
= −

(
δϕb

j (x
′)

δJ i
a(x)

)−1

= −[D−1]ji
ba(x

′, x;ϕ). (76)

Here, we defined the two-point Green function as

−iDab
ij (x, x′;ϕ) := 〈ϕa

i (x)ϕ
b
j (x

′)〉c;J = −i
δϕb

j (x
′)

δJ i
a(x)

. (77)

To see the symmetry of the effective action, we apply the Ward–Takahashi identity in Eq. (67). By
choosing O = exp i

∫
dd+1J i

a(x)φ
a
i (x) in Eq. (67), we obtain∫

dd+1x ∂μεα(x)〈jαμA (x)〉J =
∫

dd+1x εα(x)J
i
a(x)〈δαAφa

i (x)〉J , (78)

or equivalently, ∫
dd+1x ∂μεα(x)〈jαμA (x)〉J = −

∫
dd+1x εα(x)

δ�

δϕa
i (x)

〈δαAφa
i (x)〉J , (79)

where we used Eq. (75). These equations play an essential role in the analysis of Nambu–Goldstone
modes.
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5. Spontaneous symmetry breaking and the Nambu–Goldstone theorem

In this section we nonperturbatively establish the Nambu–Goldstone theorem in open systems. We
will derive the formulae for the inverse of the retarded Green function for NG modes shown in
Eqs. (2)–(6). We consider an open system with elementary fields χa

i (x). The system has spacetime
translational invariance, and a continuous internal symmetry G. The fields transform under an infin-
itesimal transformation of G: χi → χi + εαδ

α
Aχ

a
i (x) with δαAχ

a
i (x) = i[Tα]a

bχ
b
i (x), where the Tα

are generators of G. We assume that the order parameter belongs to a set of real fields {φa
i } that

transforms under G as

φa
i (x) → φa

i (x)+ εαδ
α
Aφ

a
i (x) (80)

with δαAφ
a
i (x) := i[Tα]a

bφ
b
i (x). In other words, the φa

i belong to a linear representation of G. φa
i may

be elementary or composite. The representation of φa
i may be different from the χa

i . For technical
reasons, we assume that φa

i transforms under the local transformation:

δAφ
a
i (x) = εα(x)i[Tα]a

bφ
b
i (x). (81)

This assumption will make the derivation of our formulae simple. We assume that the continuous
symmetry G is spontaneously broken to its subgroup H . The symmetry breaking is characterized
by the nonvanishing order parameter, δαA ϕ̄

a
i := 〈δαAφa

i (x)〉. We also assume that the translational
symmetry is not broken, i.e. the order parameter is independent of time and space, which enables us
to work in momentum space.

Our procedure consists of three steps. First, we show the existence of gapless excitations. Second,
we will find the relation between the inverse of the retarded Green functions for {φa

i } and their low-
energy coefficients. In general, {φa

i } contains not only NG fields but also fields with gapped modes
that we are not interested in. Therefore, in the third step we derive the inverse of the retarded Green
functions with only NG fields by projecting out the contribution from gapped modes.

5.1. Existence of gapless excitations

The existence of gapless excitations can be shown by using the standard technique developed in
quantum field theory [31]. In the generating functional method, the order parameter is given as
δαA ϕ̄

a
i := limJ→0〈δαAφa

i (x)〉J . Taking εα(x) to be constant in Eq. (79), we obtain∫
dd+1x

δ�

δϕa
i (x)

δαAϕ
a
i (x) = 0. (82)

Differentiating Eq. (82) with respect to ϕb
j (x

′), we get∫
dd+1x [D−1]ji

ba(x
′, x;ϕ)δαAϕ

a
i (x) = −J j

a(x
′)i[Tα]a

b, (83)

where we used δαAϕ
a
i (x) = i[Tα]a

bϕ
b
i (x) and Eq. (76). Taking the limit J j

a → 0, we obtain∫
dd+1x [D−1]jR

ba(x
′ − x)δαA ϕ̄

a
R = 0, (84)

where [D−1]ji
ba(x

′ − x) := [D−1]ji
ba(x

′, x;ϕ = ϕ̄) with ϕ̄a
i := limJ→0〈φa

i (x)〉J . In momentum space,
we obtain

[D−1]AR
ba (k = 0)δαA ϕ̄

a
R = 0. (85)
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This identity represents the eigenvalue equation with the zero eigenvalue, whose eigenvectors are
δαA ϕ̄

a
R, and it implies the existence of gapless excitations. One can check that the independent number

of δαA ϕ̄
a
R equals dim(G/H ) =: NBS. In an isolated system with Lorentz symmetry, NBS is equal to

the number of gapless excitations [31]. However, this is not the case in open systems. To obtain
information on finite frequency and momentum, we need the further data shown in the following
subsections.

5.2. Low-energy coefficients

In order to obtain finite momentum information, let us go back to Eq. (79) and consider its functional
derivative with respect to ϕb

j (x
′):

δ

δϕb
j (x

′)
〈δAS〉J = −

∫
dd+1x [D−1]ji

ba(x
′, x;ϕ)δAϕ

a
i (x)− εα(x

′)J j
a(x

′)i[Tα]a
b. (86)

Here, we employed Eq. (7) on the left-hand side and defined the local transformation

δAϕ
a
i (x) := εα(x)δ

α
Aϕ

a
i (x) = εα(x)i[Tα]a

bϕ
b
i (x) (87)

to simplify the notation. This local transformation is obeyed from Eq. (81). We can also introduce
the local transformation δRϕ

a
i (x) defined as

δRϕ
a
i (x) := ε̄β(x)δ

β
Rϕ

a
i (x) = ε̄β(x)i[Tβ]a

bε
j

i ϕ
b
j (x). (88)

Here, we introduced the symbol ε j
i for the transformation defined from δαRχ

a
i (x) = ε

j
i δ
α
Aχ

a
j (x) in

Eq. (8). The bar on the ε̄α is introduced to distinguish the transformation for δA, where εα is used.
Multiplying Eq. (86) by − ∫ dd+1x′ δRϕ

b
j (x

′) and taking the J i
a(x) → 0 limit, we obtain∫

dd+1x′
∫

dd+1x ε̄β(x
′)δβR ϕ̄

b
A[D−1]AR

ba (x
′ − x)δαA ϕ̄

a
Rεα(x)

= − lim
J→0

∫
dd+1x′ δRϕ

b
j (x

′) δ

δϕb
j (x

′)
〈δAS〉J , (89)

where we interchange the left- and right-hand sides. The left-hand side represents the inverse of the
retarded Green function in the NG mode channel. We would like to express the right-hand side in
the language of symmetry. Naively, one might think that the right-hand side in Eq. (89) has the form
−〈δRδAS〉. This is not the case. In general, a transformation of fields and the expectation value are
not commutative due to fluctuations, i.e. 〈δRO〉J �= δR〈O〉J , where we define

δRO :=
∫

dd+1x ε̄α(x)
δO

δχa
i (x)

δαRχ
a
i (x), (90)

δR〈O〉J :=
∫

dd+1x δRϕ
a
i (x)

δ

δϕa
i (x)

〈O〉J . (91)

Recall that χa
i (x) is the elementary field of theory and all local operators are polynomials of χa

i . The
equality holds if O is a linear function of φa

R and φa
A. To see the explicit relation between 〈δRO〉J

and δR〈O〉J , let us consider the Ward–Takahashi identity for δRO, which leads to

〈δRO〉J = −i〈δRS O〉J − i
∫

dd+1x′ J i
a(x

′)〈δRφ
a
i (x

′)O〉J . (92)
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We note that since the action is not invariant under this transformation, i〈δRS O〉J does not vanish
even when ε̄β(x) is constant. For the trivial operator O = 1, Eq. (92) reduces to

i〈δRS〉J + i
∫

dd+1x J i
a(x)δRϕ

a
i (x) = 0. (93)

Noting that 〈Oφb
j (x)〉J = δ〈O〉J /δiJ

j
b(x)+〈φb

j (x)〉J 〈O〉J , and from Eq. (93), we can express 〈δRO〉J

as

〈δRO〉J = −i〈δRS O〉J − i
∫

dd+1x′ J i
a(x

′)ε̄α(x′)i[Tα]a
bε

j
i

( δ

δiJ j
b(x

′)
〈O〉J + 〈φb

j (x
′)〉J 〈O〉J

)

= −i〈δRS O〉c;J − i
∫

dd+1x′ J i
a(x

′)ε̄α(x′)i[Tα]a
bε

j
i

δ

δiJ j
b(x

′)
〈O〉J . (94)

The subscript c denotes the connected diagram defined as 〈O1O2〉c;J := 〈�O1�O2〉J with �O :=
O −〈O〉J . We would like to eliminate the explicit dependence of J j

b(x) in Eq. (94). For this purpose,
consider the functional derivative of Eq. (93) with respect to ϕb

j (x
′), which becomes

δ

δϕb
j (x

′)
i〈δRS〉J + i

∫
dd+1x [D−1]ji

ba(x
′, x;ϕ)δRϕ

a
i (x)+ iJ i

a(x
′)ε̄α(x′)i[Tα]a

bε
j

i = 0. (95)

Substituting this into Eq. (94), we can express 〈δRO〉J as

〈δRO〉J = −i〈δRS O〉c;J +
∫

dd+1x′ δ

δϕb
j (x

′)
i〈δRS〉J

δ

δiJ j
b(x

′)
〈O〉J

+ i
∫

dd+1x′
∫

dd+1x [D−1]ji
ba(x

′, x;ϕ)δRϕ
a
i (x)

δ

δiJ j
b(x

′)
〈O〉J . (96)

In order to obtain a more compact expression, we introduce the projection operator defined as

PφO :=
∫

dd+1x′�φb
j (x

′) δ

δϕb
j (x

′)
〈O〉J

= i
∫

dd+1x′
∫

dd+1x�φb
j (x

′)[D−1]ji
ba(x

′, x;ϕ)〈φa
i (x)O〉c;J . (97)

Here, we assumed that O does not explicitly depend on ϕ. We also introduce Qφ := 1 − Pφ , which
satisfies P2

φ = Pφ , Q2
φ = Qφ , and PφQφ = QφPφ = 0. By construction, Qφ�φ

a
i (x) = 0, that is,

the projection operator Qφ removes the linear component of�φa
i (x) from the operator. The first two

terms on the right-hand side of Eq. (96) are simply expressed as

−i〈δRS O〉c;J +
∫

dd+1x′ δ

δϕb
j (x

′)
i〈δRS〉J

δ

δiJ j
b(x

′)
〈O〉J = −i〈(QφδRS) (QφO)〉c;J . (98)

Noting that [D−1]ji
ba(x

′, x;ϕ) = δJ j
b(x

′)/δϕa
i (x), and using the chain rule, we obtain the last term of

Eq. (96) as

i
∫

dd+1x′
∫

dd+1x [D−1]ji
ba(x

′, x;ϕ)δRϕ
a
i (x)

δ

δiJ j
b(x

′)
〈O〉J =

∫
dd+1x δRϕ

a
i (x)

δ

δϕa
i (x)

〈O〉J .

(99)
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Eventually, we arrive at the expression

〈δRO〉J = δR〈O〉J − i〈(QφδRS) (QφO)〉c;J . (100)

If we choose O = δAS and take the J → 0 limit, Eq. (94) becomes

lim
J→0

∫
dd+1x′ δRϕ̄

b
j (x

′) δ

δϕb
j (x

′)
〈δAS〉J = 〈δRδAS〉 + i〈(QφδRS) (QφδAS)〉c. (101)

Substituting Eq. (101) into Eq. (89), we obtain

∫
dd+1x′

∫
dd+1x ε̄β(x

′)δβR ϕ̄
b
A[D−1]AR

ba (x
′ − x)δαA ϕ̄

a
Rεα(x)

= −〈δRδAS〉 − i〈(QφδRS) (QφδAS)〉c. (102)

This expression gives the relation between the inverse of the retarded Green function and expectation
values of operators. The indices a and b in [D−1]AR

ba (x
′ − x) include not only NG fields but also other

fields with gapped modes. Therefore, our next step is to find the inverse of the retarded Green function
consisting of only the NG fields.

5.3. NG modes and their low-energy coefficients

The dispersion relations or the positions of poles can be obtained by solving det D−1(k) = 0
in momentum space. Probability conservation ensures that [D−1]RR

ab = 0, so that det D−1(k) =
det[D−1]AR(k) det[D−1]RA(k) = 0. Here, we will find the dispersion relation for the retarded Green
function. [D−1]AR

ba (k) contains not only NG modes but also gapped modes, and they can mix. There-
fore, we need to carefully analyze the inverse of the retarded Green function [D−1]AR

ba (k). To separate
the NG modes and gapped modes, we decompose fields φa

i (x) as φa
i (x) = δαA ϕ̄

a
Rπiα(x)+M aα̃�iα̃(x).

Here, the πiα(x) represent NG fields, with�iα̃(x) the gapped fields.6 In this basis, the inverse of the
retarded Green function is expressed as

[D−1]AR
ba (k) →

(
[D−1
ππ ]βα(k) [D−1

π�]βα̃(k)
[D−1
�π ]β̃α(k) [D−1

��]β̃α̃(k)

)

=
(
δ
β
R ϕ̄

b
Aδ
α
A ϕ̄

a
R[D−1]AR

ba (k) δ
β
R ϕ̄

b
AM aα̃[D−1]AR

ba (k)

M bβ̃ δαA ϕ̄
a
R[D−1]AR

ba (k) M bβ̃M aα̃[D−1]AR
ba (k)

)
. (103)

The determinant of the inverse of the retarded Green function can be decomposed into
det[D−1]AR(k) = det [D−1

��](k) det[G−1
π ](k) with

[G−1
π (k)]βα =

[
D−1
ππ(k)− D−1

π�(k)
1

D−1
��(k)

D−1
�π(k)

]βα
. (104)

6 We note that these gapped fields do not correspond to the gapped or damping modes appearing in Eq. (19).
�iα̃(x) includes a “mass” term, i.e. det [D−1

��](0, 0) �= 0, while G−1
π does not include it. G−1

π (k) vanishes at
ω = 0 and k = 0.
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We are interested in the dispersion relation of the NG modes, which can be found as the solution of
det G−1

π (k) = 0. Our purpose now is to express [G−1
π (k)]βα by using the correlation functions of

currents. For this purpose, we rewrite Eqs. (86) and (95) at the limit J i
a(x) → 0. Noting that

lim
J→0

δ

δϕb
j (x

′)
〈O〉J =

∫
dd+1x

δiJ i
a(x)

δϕb
j (x

′)
δ

δiJ i
a(x)

〈O〉 = i
∫

dd+1x [D−1]ji
ba(x

′ − x)〈φa
i (x)O〉c,

(105)

we have the following equations:

i
∫

dd+1x [D−1]jR
ba(x

′ − x)εα(x)δ
α
A ϕ̄

a
R =

∫
dd+1x [D−1]ji

ba(x
′ − x)〈φa

i (x)δAS〉c, (106)

i
∫

dd+1x ε̄α(x)δ
α
R ϕ̄

a
A[D−1]Aj

ab(x − x′) =
∫

dd+1x 〈δRSφa
i (x)〉c[D−1]ij

ab(x − x′). (107)

To avoid complicated indices, we write Eqs. (106) and (107) in matrix form:

iD−1
�πε = D−1

�πSπ + D−1
��S�, (108)

iε̄D−1
π� = S̄πD−1

π� + S̄�D−1
��, (109)

where we define [Sπ ]jα(x) := 〈πjα(x)δAS〉, [S�]iα̃(x) := 〈�iα̃(x)δAS〉, [S̄π ]jα(x) := 〈δRSπjα(x)〉,
and [S̄�]iα̃(x) := 〈δRS�iα̃(x)〉. Here, we introduce a projection operator Pπ and Qπ = 1 − Pπ
defined as

PπO := i
∫

dd+1x′
∫

dd+1x�πjβ(x
′)[G−1

π ]ji;βα(x′ − x)〈πiα(x)O〉c. (110)

Unlike Pφ defined in Eq. (97), Pπ projects to only the NG fields. This is natural since we would like
to focus on only the NG modes. By the definition of Qφ , −i〈(QφδRS) (QφδAS)〉c is expanded as

−i〈(QφδRS) (QφδAS)〉c = −i〈δRSδAS〉c − S̄πD−1
ππSπ − S̄�D−1

�πSπ − S̄πD−1
π�S� − S̄�D−1

��S�.

(111)

Similarly, for Qπ we find that

−i〈(QπδRS) (QπδAS)〉c = −i〈δRSδAS〉c − S̄πG−1
π Sπ . (112)

The difference of these is, from Eq. (104),

i〈(QπδRS) (QπδAS)〉c − i〈(QφδRS) (QφδAS)〉c

= S̄π

[
D−1
ππ − D−1

π�

1

D−1
��

D−1
�π

]
Sπ − S̄πD−1

ππSπ − S̄�D−1
�πSπ − S̄πD−1

π�S� − S̄�D−1
��S�

= −(SπD−1
π� + S�D−1

��)
1

D−1
��

(D−1
�πSπ + D−1

��S�). (113)

Substituting Eqs. (108) and (109) into Eq. (113), we can write the difference as

i〈(QπδRS) (QπδAS)〉c − i〈(QφδRS) (QφδAS)〉c = ε̄D−1
π�

1

D−1
��

D−1
�πε. (114)
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Recall Eq. (102), which is written in the compact notation as

ε̄D−1
ππε = −〈δRδAS〉 − i〈(QφδRS) (QφδAS)〉c. (115)

Substituting Eqs. (114) and (115) into Eq. (104), we finally obtain

ε̄G−1
π ε = −〈δRδAS〉 − i〈(QπδRS) (QπδAS)〉c. (116)

This equation gives the relation between the inverse of the retarded Green function for NG fields and
the expectation value of operators.

Let us evaluate the right-hand side of Eq. (116). The first term is expressed as

〈δRδAS〉 = −
∫

dd+1x 〈δRjαμA (x)〉∂μεα(x). (117)

The local transformation of the current can be expanded as

δRjαμA (x) = ε̄β(x)δ
β
RjαμA (x)+ ∂νε̄β(x)Sβα;νμ(x)+ · · · . (10)

The first term, δβRjαμA (x), is the transformation of jαμA (x) under δαR . Sβα;μ(x) is analogous to the
Schwinger term in quantum field theory. Similarly, δRS is expanded as

δRS =
∫

dd+1x
[
ε̄α(x)h

α
R(x)− ∂με̄α(x)j

αμ
R (x)

]
. (9)

Substituting Eqs. (9), (10), and (117) into Eq. (116), we find the inverse of the retarded Green function
in momentum space as

[G−1
π (k)]βα = −ikμ〈δβRjαA(0)〉 + kνkμ〈Sβα;νμ(0)〉 − Gβα;μ

hRjA
(k)ikμ − Gβα;νμ

jRjA (k)kνkμ, · · · , (118)

with

Gβα;μ
hRjA

(k) := i
∫

dd+1x eik·x〈(QπhβR(x)
) (Qπ jαμA (0)

)〉c, (119)

Gβα;νμ
jRjA (k) := i

∫
dd+1x eik·x〈(Qπ jβνR (x)

) (Qπ jαμA (0)
)〉c. (120)

Here, · · · denotes the contribution coming from the expansion of δβRjαμA (x), which is local and can
be directly evaluated from Eq. (10). We are interested in the low-energy behavior, so that we expand
the inverse of the retarded Green function in terms of kμ:

[G−1
π (k)]βα = Cβα − iCβα;μkμ + Cβα;νμkνkμ + · · · , (121)

and the first three coefficients are then

Cβα = 0, (122)

Cβα;μ = 〈δβRjαμA (0)〉 + lim
k→0

Gβα;μ
hRjA

(k), (123)

Cβα;νμ = 〈Sβα;νμ(0)〉 − lim
k→0

Gβα;νμ
jRjA (k)− i lim

k→0

∂

∂kν
Gβα;μ

hRjA
(k), (124)
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which corresponds to Eqs. (2)–(6). These are the formulae that we would like to derive in this paper.
The important assumption of these formulae is that Eqs. (123) and (124) are nondivergent in the
limit kμ → 0. If this is not the case we need to keep the momentum dependence, which may
change the power of the momentum. The reality condition in Eq. (62) implies that all the Cα··· ;νμ of
the derivative expansion are real. If the system is isolated, 〈δβRjαμA (0)〉 vanishes because the action
is invariant under δR. In this case, Cβα;0 reduces to 〈δβRjα0

A (0)〉, which Watanabe and Murayama
obtained in the effective Lagrangian approach at zero temperature [7]. We note that Cβα;i vanishes
in isolated systems because of the stability of the system. If this is not the case, one can find a more
stable solution, where the translational symmetry is spontaneously broken.

When the symmetry is not exact but approximate, the action is not invariant under the δA

transformation. Under the local transformation, δAS has the form

δAS =
∫

dd+1x [εα(x)hαA(x)− jαμA (x)∂μεα(x)], (125)

where hαA(x) represents the explicit breaking term, which leads to the coefficient in Eq. (122) as

Cβα = −〈δβRhαA(x)〉. (126)

This term gives the Gell-Mann–Oaks–Renner relation in open systems [60]. The explicit breaking
term hαA(x) also modifies Cβα;μ and Cβα;νμ, which can be straightforwardly evaluated.

5.4. Example

Let us see how our formalism works in a simple model with SU (2)× U (1) symmetry. This model
is known to exhibit both type-A and type-B NG modes in an isolated system at finite density [9,11].
The classical version of this model in an open system is employed for the analysis of NG modes [17].
The action that we consider has the form S = S1 − S2 + S12, with

Si =
∫

dd+1x
[
(∂t − iμ)ϕ†

i (∂t + iμ)ϕi − ∇ϕ†
i ∇ϕi − λ(ϕ

†
i ϕi)

2], (127)

S12 =
∫

dd+1x [−γ ϕ†
1∂tϕ2 + γ ϕ

†
2∂tϕ1 + iκ(ϕ†

1 − ϕ
†
2)(ϕ1 − ϕ2)] (128)

in the 1/2 basis. Here, ϕi = (ϕ1
i ,ϕ2

i ) is the two-component complex scalar field. The coefficients
μ, λ, γ , and κ are the chemical potential, the coupling constant, the friction, and the fluctuation
coefficient, respectively. The dagger † represents the Hermitian conjugate. If γ and κ vanish, this
system reduces to the isolated one. It is useful to express the action in the Keldysh basis, where
ϕR := (ϕ1 + ϕ2)/2 and ϕA := ϕ1 − ϕ2, as

S =
∫

dd+1x
[
(∂t − iμ)ϕ†

R(∂t + iμ)ϕA + (∂t − iμ)ϕ†
A(∂t + iμ)ϕR − ∇ϕ†

R∇ϕA − ∇ϕ†
A∇ϕR

− 2λ
(
|ϕR|2 + |ϕA|2

4

)
(ϕ

†
RϕA + ϕ

†
AϕR)+ γ ϕ

†
R∂tϕA − γ ϕ

†
A∂tϕR + iκϕ†

AϕA

]
.

(129)

This action is invariant under an SU (2) × U (1) transformation, ϕi → ϕi + iεαTαϕi, where T 0

is the U (1) generator, and T a (a = 1, 2, 3) are the SU (2) generators satisfying the Lie algebra,
[Tα , Tβ] = if αβγ T γ , where f αβγ is the structure constant with f 0βγ = f α0γ = f αβ0 = 0, and
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f abc = εabc (the indices a, b, and c run from 1 to 3). εabc is the Levi–Civita symbol. We choose the
normalization of the generators as tr TαTβ = δαβ/2. From Eq. (7), the Noether current is given as

jα0
A = −(∂t − iμ− γ )ϕ

†
AiTαϕR + ϕ

†
AiTα(∂t + iμ)ϕR

+ ϕ
†
RiTα(∂t + iμ− γ )ϕA − (∂t − iμ)ϕ†

RiTαϕA, (130)

jαi
A = ∇ϕ†

AiTαϕR − ϕ
†
AiTα∇ϕR + ∇ϕ†

RiTαϕA − ϕ
†
RiTα∇ϕA. (131)

Let us solve this model to find the dispersion relation of NG modes within the mean field
approximation [18]. The stationary solution is obtained from

δS

δϕA
= δS

δϕ
†
A

= δS

δϕR
= δS

δϕ
†
R

= 0, (132)

which leads to |ϕR|2 = μ2/(2λ) and ϕA = 0. We parametrize the solution as ϕR = ϕ0 := (0, v/
√

2),
with v = √

μ2/λ. Note that ϕR = 0 is also a solution; it is, however, unstable against small
perturbations. The order parameter is not invariant under (T 0 − T 3)ϕ0 �= 0, T 1ϕ0 �= 0, T 2ϕ0 �= 0,
while (T 0 +T 3)ϕ0 = 0; thus the symmetry breaking pattern is SU (2)×U (1) → U (1)T 0+T 3 , whose
broken generators are T 1, T 2, and (T 0 − T 3)/2 := T 3′

.
In order to see the low-energy behavior, we expand the field around the stationary solution as7

ϕR = 1√
2
(χ1

R + iχ2
R, v + ψ1

R + iψ2
R), ϕA = 1√

2
(χ1

A + iχ2
A,ψ1

A + iψ2
A). (133)

Then the action reduces to

S =
∫

dd+1x
[
χa

A(−∂2
t − γ ∂t + ∇2)χa

R + ψa
A(−∂2

t − γ ∂t + ∇2)ψa
R + iκ

2

(
(ψa

A)
2 + (χa

A)
2)

− 2μ2ψ1
Aψ

1
R + 2μεab(χ

a
A∂tχ

b
R + ψa

A∂tψ
b
R)
]

+ · · · . (134)

Here, the indices a, b run from 1 to 2. We have dropped constant and total derivative terms. “· · · ”
denotes the nonlinear terms of the fields. εab is the antisymmetric tensor with ε12 = 1. Since ψ1 has
the mass gap, we can get rid of ψ1 to obtain the effective Lagrangian for gapless modes by using
the equations of motion:

(−∂2
t − γ ∂t + ∇2 − 2μ2)ψ1

R + 2μ∂tψ
2
R + iκψ1

A = 0,

(−∂2
t + γ ∂t + ∇2 − 2μ2)ψ1

A + 2μ∂tψ
2
A = 0. (135)

At the leading order of the derivative expansion, the solutions are

ψ1
R = 1

μ
∂tψ

2
R + iκ

2μ2ψ
1
A, ψ1

A = 1

μ
∂tψ

2
A. (136)

Substituting the solutions into the action, we find

Seff =
∫

dd+1x
[
2μεabχ

a
A∂tχ

b
R + χa

A(−∂2
t − γ ∂t + ∇2)χa

R + ψ2
A(−3∂2

t − γ ∂t + ∇2)ψ2
R

+ iκ

2

(
(χa

A)
2 + (ψ2

A)
2 + 1

μ2 (∂tψ
2
A)

2
)]

+ · · · . (137)

7 We use a slightly different normalization from that in Ref. [17].
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From this effective action, we can read the inverse of the retarded Green function:

G−1
π =

⎛
⎜⎝−ω2 + k2 − iωγ 2iμω 0

−2iμω −ω2 + k2 − iωγ 0
0 0 −3ω2 + k2 − iωγ

⎞
⎟⎠. (138)

Here, the first, second, and third components correspond to χ1, χ2, and ψ2, respectively. The
dispersion relations are obtained from det G−1

π = 0 as

ω = − i

γ
|k|2, ω = |k|2

4μ2 + γ 2 (±2μ− iγ ) (139)

at small k. Therefore, this system has one diffusion and one propagation mode.8

Let us reproduce this result by using the matching formulae of Eqs. (2)–(6). For this purpose we
need the explicit expression of δβRjμA , Sβα;νμ, jβμR , and hβR. Under the local transformation, δRϕA(x) =
ε̄α(x)iTαϕR(x) and δRϕR(x) = ε̄α(x)iTαϕA(x)/4, jαμA (x) transforms as Eq. (10) with

δ
β
Rjα0

A = −f βαγ
(
(∂t − iμ)ϕ†

RiT γ ϕR − ϕ
†
RiT γ (∂t + iμ)ϕR

+ 1

4
(∂t − iμ)ϕ†

AiT γ ϕA − 1

4
ϕ

†
AiT γ (∂t + iμ)ϕA

)

+ γ ϕ
†
R{Tβ , Tα}ϕR − 1

4
γ ϕ

†
A{Tβ , Tα}ϕA, (140)

δ
β
Rjαi

A = f βαγ
(
∇ϕ†

RiT γ ϕR − ϕ
†
RiT γ∇ϕR + 1

4
∇ϕ†

AiT γ ϕA − 1

4
ϕ

†
AiT γ∇ϕA

)
, (141)

Sβα;νμ = −ηνμ
(
ϕ

†
R{Tβ , Tα}ϕR + 1

4
ϕ

†
A{Tβ , Tα}ϕA

)
, (142)

where {Tβ , Tα} = TβTα + TαTβ . The expectation values are evaluated within the mean-field
approximation as

〈δβRjα0
A 〉 = v2

4

⎛
⎜⎝ γ 2μ 0

−2μ γ 0
0 0 γ

⎞
⎟⎠, 〈Sβα;νμ〉 = −ηνμ v2

4

⎛
⎜⎝1 0 0

0 1 0
0 0 1

⎞
⎟⎠. (143)

Here, the indices of the matrix are 1, 2, and 3′, which are the indices of the broken generators. The
transformation of the action under local δR is evaluated as Eq. (9) with

hβR = 2γ ϕ†
RiTβ∂tϕR − 1

2
γ ϕ

†
AiTβ∂tϕA + iκ(ϕ†

AiTβϕR − ϕ
†
RiTβϕA), (144)

jβ0
R = ϕ

†
RiTβ(∂t + iμ)ϕR − (∂t − iμ)ϕ†

RiTβϕR

+ 1

4
ϕ

†
AiTβ(∂t + iμ)ϕA − 1

4
(∂t − iμ)ϕ†

AiTβϕA − γ ϕ
†
RiTβϕR + 1

4
γ ϕ

†
AiTβϕA, (145)

jβi
R = ∇ϕ†

RiTβϕR − ϕ
†
RiTβ∇ϕR + 1

4
∇ϕ†

AiTβϕA − 1

4
ϕ

†
AiTβ∇ϕA. (146)

8 More precisely, there are one damping and one gapped propagation mode in addition to the NG modes.
The damping and diffusion NG modes become one propagation mode at large k , called the gapped momentum
state [61].
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The projection operator Qπ removes the NG fields from operators, so that we obtain

Qπ j3′0
A = −μvψ1

A + · · · , (147)

Qπ j3′0
R = −1

2
(2μ+ iγ )vψ1

R + · · · , (148)

Qπh3′
R = iγ v

2
∂tψ

1
R + · · · , (149)

where the “· · · ” denote higher-order derivative terms and nonlinear terms of fields. Other components
have no linear term, so do not contribute to the correlation functions in the mean field approximation.
The correlation functions that contribute to Cβα;νμ are

−i
∫

dd+1x 〈(Qπ j3′ν
R (x)

) (Qπ j3′μ
A (0)

)〉c = −iδμ0 δ
ν
0

1

2
(2μ+ iγ )μv2

∫
dd+1x 〈ψ1

R(x)ψ
1
A(0)〉c

= −iδμ0 δ
ν
0

1

2
(2μ+ iγ )μv2 lim

k→0

i

k2 − 2μ2 + iγ k0

= −δμ0 δν0
v2

4μ
(2μ+ iγ ),

(150)

and

lim
k→0

∂

∂kν

∫
dd+1x eik·x〈(Qπh3′

R (x)
) (Qπ j3′μ

A (0)
)〉c

= −δμ0
iγμv2

2
lim
k→0

∂

∂kν

∫
dd+1x eik·x〈∂tψ

1
R(x)ψ

1
A(0)〉c

= δ
μ
0

iγμv2

2
lim
k→0

∂

∂kν
iω

i

k2 − 2μ2 + iγω

= δ
μ
0 δ

ν
0

v2

4μ
iγ . (151)

Collecting these results, we eventually find the low-energy coefficients as

Cβα;μ = δ
μ
0

v2

4

⎛
⎜⎝ γ 2μ 0

−2μ γ 0
0 0 γ

⎞
⎟⎠, Cβα;νμ = v2

4

⎛
⎜⎝−ηνμ 0 0

0 −ηνμ 0
0 0 −ηνμ − 2δμ0 δ

ν
0

⎞
⎟⎠, (152)

which are consistent with Eq. (137).9

6. Summary and discussion

We have derived low-energy coefficients of the inverse of retarded Green functions for Nambu–
Goldstone modes in open systems, Eqs. (2)–(6), which provide a generalization of the Nambu–
Goldstone theorem. As is the case in isolated systems, we have classified the NG modes into type-A
and type-B modes by using the coefficient of the single time-derivative term, ρβα . These modes are
further classified into diffusion and propagation modes. The relation between broken symmetries

9 The index of α and β represents the index of broken generators, which is different from the index of fields.
α = 1, 2, and 3′ correspond to χ 2, χ 1, and ψ2, respectively.
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and the numbers of these modes are summarized in Eqs. (12), (15), and (16). In this paper we have
employed continuum models. It is straightforward to generalize our results to systems with discrete
translational symmetry, where the momentum is replaced by the Bloch momentum.

We have not taken into account hydrodynamic modes, which are expected to appear when Qα
R is

conserved. The coupling between NG and hydrodynamic modes may change low-energy behaviors.
The limit k → 0 in Eqs. (123) and (124) to obtain Eqs. (2)–(6) might not be well defined, although
our formulae in Eqs. (118)–(120) still give the correct results. In such a case, it is better to treat the
hydrodynamic modes as the dynamical degrees of freedom.

It is also fascinating to consider a spontaneous breaking of spacetime symmetries. In particular,
time-translational symmetry breaking will be interesting in the context of a “quantum time crystal”
[62]. In isolated systems, it is shown that the time-translational symmetry cannot be broken in the
ground state [63]. On the other hand, in open systems, time-translational symmetry breaking can
occur. For example, in reaction–diffusion systems, time-translational symmetry breaking is known
as synchronization phenomena, and the dynamics of phase, which corresponds to that of the NG
mode, is described by a nonlinear diffusion equation [15]. A similar situation can occur in open
quantum systems [23,64].

In the clarification of NG modes, we assumed G−1
π (ω, k) = G−1

π (ω, −k), which leads to Cβα;i

vanishing. It will be interesting to relax this condition. If there is a steady-state current that is an
order parameter, Cβα;i will be nonvanishing. In this case, a different type of NG mode, which cannot
be classified in this paper, will appear.

Another direction is to consider spontaneous symmetry breaking of higher-form symmetries [65].
Photons can be understood as the NG modes associated with the spontaneous breaking of U (1)
one-form symmetry [65]. As in the ordinary symmetry breaking, there also exists the type-B photon,
whose dispersion is quadratic [66–68]. It will be interesting to see how such a mode changes in an
open system. We leave these issues for future work.
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Appendix A. Proof of Eq. (18)

We prove here that there is no type-A diffusion mode in the following type of inverse of the retarded
Green function:

[G−1
π ]βα(ω, k) = −iωρβα − ω2ḡβα + k2gβα , (A.1)

where det g �= 0 and det(−iωρ − ω2ḡ) �= 0 at an arbitrary small ω are assumed. At k = 0 there are
(2NBS−rank ρ) solutions withω = 0 to det G−1

π (ω, 0) = 0.As discussed in Sect. 2.2, 2(NBS−rank ρ)
and rank ρ solutions correspond to type-A and -B modes, respectively. The type-B modes can be
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solved by neglecting theω2 term in G−1
π (ω, k), i.e. det(−iωρ+k2g) = 0. There are rank ρ solutions,

which behaves like ω ∼ |k|2.
Let us next find the solutions for the type-A modes. For this purpose, it is useful to choose the

basis of G−1
π such that

G−1
π =

(
−ω2ḡ1 + k2g1 −ω2ḡ2 + k2g2

−ω2ḡ3 + k2g3 −iωρ4 − ω2ḡ4 + k2g4

)
=:

(
A C
D B

)
. (A.2)

Roughly speaking, the submatrices A and B contain type-A and type-B modes; they interact through
C and D. It is useful to employ the formula det G−1

π = (det B) det(A−CB−1D) to find the dispersion
relation for type A. If CB−1D is negligible, det A = 0 gives the solutions of type A. Since A is an
(NBS − rank ρ)×(NBS − rank ρ)matrix, the number of solutions is 2(NBS − rank ρ), as we expected.
Therefore, det A = 0 contain all type-A NG modes. Since det A is a function of ω2, the solution has
the form ω = ±aA|k|2. From the stability condition, aA must be real. Therefore, no diffusion modes
appear in det A = 0. So far, we assumed that the contribution from CB−1D in det(A − CB−1D) is
negligible. Let us now check that it is correct. When ω ∼ |k|, the submatrices behave like B ∼ |k|,
and A ∼ C ∼ D ∼ |k|2. This leads to CB−1D ∼ |k|3 � |k|2 ∼ A. Therefore, the solutions are
determined from det A = 0 at a small k, and there is no type-A diffusion mode in Eq. (A.1).
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