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Reported here are transverse single-spin asymmetries (AN) in the production of charged hadrons as a
function of transverse momentum (pT) and Feynman-x (xF) in polarized p↑ þ p, p↑ þ Al, and p↑ þ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The measurements have been performed at forward and backward rapidity
(1.4 < jηj < 2.4) over the range of 1.5 GeV=c < pT < 7.0 GeV=c and 0.04 < jxFj < 0.2. A nonzero
asymmetry is observed for positively charged hadrons at forward rapidity (xF > 0) in p↑ þ p collisions,
whereas the p↑ þ Al and p↑ þ Au results show smaller asymmetries. This finding provides new
opportunities to investigate the origin of transverse single-spin asymmetries and a tool to study nuclear
effects in pþ A collisions.

DOI: 10.1103/PhysRevD.108.072016

I. INTRODUCTION

An understanding of transverse single-spin asymmetries
(TSSAs) in transversely polarized proton-proton collisions
(p↑ þ p) is crucial for disentangling the spin structure
of the proton and parton dynamics within the proton.
The analyzing power AN is defined as the left-right
asymmetry of the produced hadrons with respect to the
spin direction of the polarized proton where the polariza-
tion direction is perpendicular to the beam direction. Since
the 1970s, significant TSSAs in hadron (h) production
(p↑ þ p → hþ X) have been measured at large Feynman-
x (xF ¼ 2pL=

ffiffiffi
s

p
) for a wide range of collision energies up

to 500 GeV [1–13]. Two approaches have been proposed to
account for these large asymmetries. First, the transverse-
momentum dependent (TMD) approach is based on TMD

parton distribution and fragmentation functions. It requires
two scales, a hard-scattering energy scaleQ and a soft scale
kT describing the transverse momentum of partons in the
proton or of hadrons relative to the parent parton in
hadronization process, with kT ≪ Q. In this framework,
the possible origins of the asymmetry are the Sivers [14,15]
and Collins [16] mechanisms. The Sivers mechanism
describes the initial-state correlation between the spin of
the transversely polarized proton and the parton transverse
momentum, while in the final state the Collins mechanism
introduces a correlation between the transverse spin of the
fragmenting quark and transverse momentum of the final
state hadron. The Collins mechanism convolves with the
quark transversity distribution, which describes the quark
transverse polarization inside a transversely polarized
proton. Secondly, in the other framework, the collinear
twist-3 factorization is applicable for observables with one
large scale Q, which is usually represented by the particle
transverse momentum pT in reactions such as p↑ þ p →
hþ X. In this framework, the asymmetry arises from a
twist-3 multiparton correlation function and a twist-3
fragmentation function. Twist-3 multiparton correlation
functions represent a spin dependence of the transverse
motion of the parton inside a polarized proton [17–25].
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Twist-3 fragmentation functions denote parton fragmenta-
tion effects during the formation of the final state hadrons.
Recent calculations of the twist-3 contribution from parton
fragmentation are shown to be important to describe the
Relativistic Heavy Ion Collider (RHIC) results [26–28].
Also, a recent phenomenological study using both TMD
and collinear twist-3 approaches demonstrates that TSSAs
in Semi-Inclusive Deep Inelastic Scattering (SIDIS), Drell-
Yan, eþe− annihilation, and proton-proton collisions have a
common origin [29].
Recently, an exploration of the interplay of spin physics

and small-x physics through the measurement of TSSAs in
transversely polarized proton-nucleus collisions (p↑ þ A)
has attracted attention, where x is the momentum fraction
of a proton carried by the parton. In pþ A collisions, the
properties of small-x gluons inside nuclei can be probed by
measuring hadron production in the proton-going direction.
The gluon density in the small-x region of the target nuclei
is expected to increase significantly and it may be described
by the color-glass-condensate (CGC) formalism [30].
The framework introduces a characteristic saturation scale
Qs which describes the color-charge density fluctuations,
where QsA ∝ A1=3 for the target nucleus. In p↑ þ A
collisions, measuring TSSAs can be used as a probe for
the saturation scale in the nucleus [31]. In addition, TSSAs
in the forward region from p↑ þ A collisions help to
disentangle differing mechanisms and clarify the origin
of the TSSA. Previous calculations of TSSAs incorporating
gluon saturation at small-x suggest that TSSAs in p↑ þ A
may or may not be A-dependent, depending on the
mechanisms involved [31–36]. On the experimental side,
the AN of positively charged hadrons at 0.1 < xF < 0.2
in PHENIX [37] and π0 results at 0.2 < xF < 0.7 in STAR
in p↑ þ p and p↑ þ A collisions have been reported

recently [38]. It should be noted that the kinematic region
of themeasurements presented here is outside of the expected
CGC range, but considerations on the A-dependence of the
various contributions might still be relevant.
This paper reports on measurements in 2015 of the

transverse single-spin asymmetry for the production of
charged hadrons (h�) over the range of 1.5 GeV=c < pT <
7.0 GeV=c and 0.04 < jxFj < 0.2 at forward and backward
rapidity (1.4 < jηj < 2.4) from transversely polarized
proton-proton (p↑ þ p), proton-aluminum (p↑ þ Al), and
proton-gold (p↑ þ Au) collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
Section II describes the experimental setup in PHENIX
and the polarized beams at RHIC. The details of the
analysis procedure are presented in Sec. III, and the result
are shown in Sec. IV with discussions in Sec. Vand finally,
the summary in Sec. VI.

II. EXPERIMENTAL SETUP

A. The PHENIX experiment

The PHENIX detector [39] is equipped with central arms
at midrapidity, and muon arms at backward and forward
rapidity. The muon arms cover the pseudorapidity range
1.2 < η < 2.4 (north arm) and −2.2 < η < −1.2 (south
arm) and the full azimuthal angle (Δϕ ¼ 2π) [40]. The side
view of the PHENIX detector including muon arms during
the 2015 run is shown in Fig. 1. Muons and hadrons from
the interaction region pass through a hadron absorber
of 7.5 nuclear interaction lengths (λI). Surviving muons
and hadrons reach a muon tracker (MuTr) composed of
three stations of cathode-strip readout tracking chambers
mounted inside conical-shaped muon magnets. The
momentum of a charged particle is measured with the
MuTr. The muon identifier (MuID) behind the MuTr is

FIG. 1. Side view of the PHENIX detector in 2015.
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composed of five layers (labeled from Gap0 to Gap4) of
proportional tube planes combined with an absorber plane
(≈1λI), respectively. The MuID provides identification of
hadrons and muons by measuring penetration depth.
Muons of momentum larger than 3 GeV=c penetrate all
layers while charged hadrons are mostly stopped at the
intermediate layers (Gap2 and Gap3) [41].
The beam-beam counters (BBC) are located at

z ¼ �144 cm from the interaction point and cover the
pseudorapidity range 3.1 < jηj < 3.9 and full azimuthal
angle [42]. Each BBC comprises 64 quartz Čerenkov
counters. The BBC detects charged particles and provides
z-vertex position with a resolution of ≈2 cm in pþ p
collisions. The BBC is also used to categorize events with
energy deposition in terms of centrality for collisions with
ion beam. In the case of p↑ þ Au and p↑ þ Al collisions,
energy deposition in the A-going direction is used for
determining centrality. In addition, the BBC serves as a
luminosity monitor.
The minimum-bias trigger provided by the BBC requires

at least one hit in both directions. The BBC trigger
efficiency is 55% in p↑ þ p, 72% in p↑ þ Al, and 84%
in p↑ þ Au collisions. The MuID provides a trigger to
select events containing hadron or muon tracks by requiring
at least one MuID track reaching Gap2, Gap3, or Gap4.
For charged hadrons, events with track candidates having a
hit at the Gap2 or Gap3 but no hit at the Gap4 are selected.
The new readout electronics for the MuTr allow to trigger
events with high momentum (pT > 3 GeV=c) tracks by
requiring maximum bending at the middle plane less than
three MuTr cathode strips [43].

B. RHIC polarized beams

RHIC is the world’s first and only polarized proton
collider, located at Brookhaven National Laboratory, com-
prising two countercirculating storage rings. In each ring,
as many as 120 bunches of heavy ions or polarized protons
can be accelerated up to 100 GeV for heavy ions and
255 GeV for polarized protons. During the 2015 run period,
data from the collisions of vertically polarized protons and
ions (p↑ þ p, p↑ þ Al, and p↑ þ Au) at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
were recorded. Each beam bunch of 106 ns interval has a
separate polarization (up or down). The predetermined
polarization patterns for every eight bunches were changed
at each fill to minimize systematic effects due to time
dependence of the detector and accelerator performance.
In the p↑ þ A run, the counterclockwise direction was
selected for ion beams where the beam points towards the
south muon arm.
The average polarization of the proton beam was 58%

(clockwise beam) and 57% (counterclockwise beam) for
p↑ þ p collisions, 58% for p↑ þ Al collisions, and 61% for
p↑ þ Au collisions with 3% relative uncertainty from the
polarization normalization [44].

III. DATA ANALYSIS

A. Dataset

The integrated luminosity of the data in this analysis is
37 pb−1 from p↑þp, 593 nb−1 from p↑þAl, and 112 nb−1

from p↑ þ Au collisions. The data was recorded using the
hadron trigger in combination with the BBC trigger.
The hadron trigger selected high-momentum tracks when
the last MuID gap for a track pass through is MuID Gap2 or
Gap3, with the bending at the middle plane of MuTr being
less than three cathode strips [43].

B. Charged hadron selection

Among the reconstructed tracks stopped at MuID Gap2
or Gap3 are low-momentum muons from light hadron
decays. From full GEANT4 simulation studies, such back-
ground is significantly suppressed (< 5%) after applying a
cut pz > 3.5 GeV=c [45]. The additional track quality cuts
are listed in Table I with numerical values shown for Gap3
tracks at 1.25 < pT < 1.5 GeV=c. The distance and angu-
lar difference between the extrapolated MuTr track and the
MuID track at the first MuID plane’s z position are called
DG0 and DDG0. The distance between the interaction
point and a projected position of a MuID track at z ¼ 0

is rref . The number of hits in a MuTr track and χ2 per degree
of freedom (χ2MuTr=ndf) are also included in the track
quality cut. The quality cuts are pT dependent except for
the number of hits in a MuTr track and χ2MuTr=ndf. The
polar scattering angle of a track inside the absorber scaled
by the momentum is p · ðθMuTr − θvtxÞ. θvtx is the polar
angle at the collision vertex with the momentum vector at
the vertex, obtained by a track fit from the MuTr and MuID
to the primary vertex. θMuTr is the polar angle at the MuTr
Station 1 of the reconstructed track using the MuTr so that
the p · ðθMuTr − θvtxÞ corresponds to the polar scattering
angle of a track inside the absorber scaled by the momen-
tum. Cuts applied to p · ðθMuTr − θvtxÞ and χ2 at zvtx are
effective for rejecting muons decayed inside the absorber.
An estimation of the particle composition in the mea-

sured charged hadron sample was developed in [41,46].
Based on PYTHIA [47] and HIJING [48] event generators.
Charged hadron spectra measured at midrapidity in pþ p
and dþ Au at RHIC [49–51] were extrapolated to the
PHENIX muon arm rapidity (1.2 < η < 2.4) for pþ p,

TABLE I. Track selection cuts for tracks stopped at MuID Gap3
for a pT bin 1.25 < pT < 1.5 GeV=c.

DG0 < 29 cm (south), 18.5 cm (north)
DDG0 < 12 deg.
rref < 140 cm (south), 159 cm (north)
Number of hits in MuTr > 10, χ2MuTr=ndf < 20
p · ðθMuTr − θvtxÞ < 0.35 rad · GeV=c
χ2 of track projection to zvtx < 8.5
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pþ Al, and pþ Au collisions. According to a GEANT4 [52]
detector simulation (release 10.0.p02), the initial particle
composition is modified due to interaction with the detector
material including the front absorber. The reconstructed
charged hadrons are mostly K� and π� where others (p,
p̄) are less than 10%. The estimated K=π ratios at the
collision vertex and reconstructed ratios from the simulation
are shown in Fig. 2 for pþ p collisions and Fig. 3 for pþ A
collisions. In both pþ p and pþ A collisions, the recon-
structed K− are more suppressed than Kþ by the front
absorber material due to its larger cross section with protons
[53]. Momentum smearing also changes the shape of the
ratios. Among the GEANT4 physics lists [54], the default used
is the QGSP-BERT, which to simulate hadronic interactions
applies the quark-gluon string model for high-energy and the
Bertini cascade model for low-energy hadrons. To estimate
possible variations, the FTFP-BERTand QGSP-BIC physics
lists are used where the FTF model uses the FRITIOF
description of string excitation and fragmentation and BIC
uses the binary cascade model. The variations from the
different physics lists in the GEANT4 simulation are shown in
Figs. 2 and 3 as bands on the reconstructed K=π ratios.

C. Determination of the TSSA

The unbinned maximum-likelihood method was used to
extract the TSSA (AN) in this study. It was established in
the previous study which used the same detectors
[37,55,56]. The method is robust even for low-statistics
data compared to binned approaches. The extended log-
likelihood logL is defined as

logL ¼
X
i

logð1þ P · AN sinðϕpol − ϕi
hÞÞ þ constant;

ð1Þ

where P is the proton beam polarization and ϕi
h is the

azimuthal angle of the ith hadron with respect to the
incoming polarized-proton-beam direction. The ϕpol is
the azimuthal angle for the beam polarization direction,
which takes the values of þ π

2
= − π

2
for ↑=↓ polarized beam

bunches in 2015. The AN is chosen to be the value which
maximizes logL. The statistical uncertainty of the log-
likelihood estimator is calculated from the second deriva-
tive of L with respect to AN ,

σ2ðANÞ ¼
�
−
∂
2L

∂A2
N

�−1
: ð2Þ

In pþ p collisions, both beams were polarized. The ANs
were measured separately for each beam and turned out to
be consistent with each other. They were averaged for the
final asymmetry.
The AN is checked with the azimuthal-fitting method

used in previous analyses [12,37,55,56] based on the
polarization formula [57]:

ANðϕÞ ¼
σ↑ðϕÞ − σ↓ðϕÞ
σ↑ðϕÞ þ σ↓ðϕÞ ¼

1

P
·
N↑ðϕÞ − R · N↓ðϕÞ
N↑ðϕÞ þ R · N↓ðϕÞ ; ð3Þ

where ANðϕÞ indicates the simple-count-based transverse
single-spin asymmetry calculated for each of 16 azimuthal
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FIG. 2. Estimation of K=π ratios at the collision vertex
(Generation) and K=π ratios for reconstructed muon arm tracks
in in the GEANT4 simulation (Reconstruction) for pþ p colli-
sions. The variations from the different physics list in the GEANT4
simulation are shown as the bands on the reconstructed K=π
ratios. According to the simulation, the reconstructed particle
composition is modified compared to the generated one due to
interaction with the detector material.
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FIG. 3. Estimation of K=π ratios at the collision vertex
(Generation) and K=π ratios for reconstructed muon arm tracks
in in the GEANT4 simulation (Reconstruction) for pþ A colli-
sions. The variations from the different physics lists in the
GEANT4 simulation are shown as the bands on the reconstructed
K=π ratios. According to the simulation, the reconstructed
particle composition is modified compared to the generated
one due to interaction with the detector material.
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ϕ-bins; σ↑, σ↓ represent cross sections; and N↑, N↓ are
yields for each polarization of spin up (↑) or down (↓).
R ¼ L↑=L↓ is the ratio of luminosities (relative luminosity)
between bunches with spin up and spin down where the
luminosity is determined by sampled counts from mini-
mum-bias triggers for the corresponding spin orientation.
The AN in this method is calculated from the fit of ANðϕÞ
distributions using a function AN · sinðϕpol↑ − ϕÞ where
ϕpol↑ ¼ π=2 indicates the azimuthal direction of upward
polarized bunches. The difference of the AN’s for this
method and the maximum-likelihood method is conserva-
tively included in the systematic uncertainty.
The interactions between particles and material prior to

being detected by the MuTr, and the finite resolution for
momentum and azimuthal angle ϕ, may result in a
kinematic smearing effect for the AN results. The full
GEANT4 simulation is used to correct this effect. The effect
from ϕ smearing was found to be negligible.
The momentum smearing is represented in Fig. 4, where

the generated xF distribution for reconstructed xF bin is
shown. The momentum smearing effect is corrected by
resolving a set of linear equations which connect AN
for reconstructed xF (pT) bins (Areco

N ) and AN for true
(generated) xF (pT) bins (Atrue

N ),

Areco;m
N ¼

X
i

fi→m · Atrue;i
N ; ð4Þ

where Atrue;i
N represents AN for the ith true momentum (xF,

pT) bin and Areco;m
N is AN for the reconstructed momentum

in the mth momentum bin. fi→m is the fraction of charged
hadrons reconstructed in the mth momentum bin from the
ith true (generated) momentum bin in the simulation. Areco

N
is measured including an underflow and overflow bin for
0.035 < xF < 0.3 and 1.25 GeV=c < pT < 15 GeV=c,

and then Atrue
N is calculated for 0.04 < xF < 0.2 and

1.5 GeV=c < pT < 7 GeV=c. The difference between
Areco
N and Atrue

N was found to be small, and was conserva-
tively included in systematic uncertainties. The variation of
AN due to muon contribution is minimal (< 0.0005) and
not included in the systematic uncertainty.

IV. RESULTS

A. Results in proton-proton collisions

The TSSAs in the production of charged hadrons at
1.2 < jηj < 2.4 in transversely-polarized proton-proton
collisions (p↑ þ p) are shown in Fig. 5 as a function of
pT and in Fig. 6 as a function of xF. The results are listed in
Tables II–V. In the tables, δAstat

N is the statistical uncertainty,
and δAsyst

N is the total systematic uncertainty. The system-
atic uncertainty is obtained from the quadratic sum of two
components (δAmethod

N and δAsmear
N ). As explained in the

previous section, δAmethod
N is the difference between the two

methods of determining AN , while δAsmear
N is the difference

caused by the momentum migration correction (Eq. (4).
Three different physics lists are tested in the correction and
the variation among them is negligible.
On the panel (a) of Fig. 5, AN at backward rapidity

(xF < 0) for charged hadrons is consistent with zero within
uncertainty. On the panel (b), AN at forward rapidity
(xF > 0) is positive for positively charged hadrons.
Positive asymmetry is also shown in the xF-binned result
in Fig. 6. AN for positively charged hadrons at xF > 0
shows an increasing trend with respect to xF. The result for
negatively charged hadrons shows some indication of
negative AN around xF > 0.07.
The previous results at RHIC energies with larger jxFj

and jηj than this measurement showed positive AN for πþ,

0.05 0.1 0.15 0.2

FReconstructed x

0.05

0.1

0.15

0.2

0.25

0.3
F

G
en

er
at

ed
 x

1�10

1

10

210

310

FIG. 4. The distribution of generated xF for reconstructed xF
bins from GEANT4 simulation in pþ p collisions.
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FIG. 5. AN of charged hadrons from p↑ þ p collisions as a
function of pT in the (a) backward (xF < 0,) and (b) forward
(xF > 0) regions. Vertical bars (boxes) represent statistical (sys-
tematic) uncertainties. Points are shifted by pT ¼þ0.2GeV=c for
negatively charged hadrons. A scale uncertainty from the polari-
zation (3%) is not included.
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K� and negative AN for π− at xF > 0 [7,9]. In this
measurement, the result for hþ is comparable with AN
for πþ, Kþ. AN for hþ is increasing as a function of xF at
xF > 0 and is consistent with zero at xF < 0. π− and K− in
the previous measurements showed the opposite sign of AN
at forward rapidity. Therefore, one may expect the AN for
h− has been partially canceled and this can explain the
smaller size of AN for h− at xF > 0 in Fig. 6. This is
also confirmed in twist-3 model calculations shown in
Fig. 6. The dotted bands in Fig. 6 are obtained from K=π
ratios in the simulation combined with theoretical AN for
charged pions and kaons from twist-3 calculation for
xF > 0.15 [28], which describes previous RHIC results
at forward rapidity [7,9]. In addition, the effect of the K=π
production ratio variation is tested for a relative �30%
variation and the width of the band shows the possible
variation of AN mixture for hþ and h−. The variation of the
K=π production ratio from different GEANT4 physics lists
shown in Fig. 2 is much smaller than the relative�30% that
was considered.

B. Results in proton-nucleus collisions

The AN results of charged hadrons in proton-nucleus
collisions (p↑ þ Al and p↑ þ Au) are shown in Figs. 7–9
with p↑ þ p results and listed in Tables VI–IX for p↑ þ Al
and Tables X–XIII for p↑ þ Au. Results at xF < 0 in all
collision systems (p↑ þ p, p↑ þ A) are close to zero; the
combined AN are within 1.5σ from zero where σ is total
uncertainty. Results for negatively charged hadrons from
p↑ þ Al and p↑ þ Au collisions shown in Figs. 7 and 9 are
also close to zero in terms of the total uncertainty; the
combined AN are within 1.2σ from zero. In contrast, AN in
p↑ þ p collisions shows some indication of a negative
asymmetry at pT < 3.5 GeV=c on panel (b) (xF > 0) of

Fig. 7 and at 0.07 < xF < 0.10 on panel (a) of Fig. 9.
However, the difference of AN between p↑ þ Au and p↑ þ
p is not significant to state any modification of jAN j in
p↑ þ Au compared to p↑ þ p results.
The AN for positively charged hadrons at xF > 0 in p↑ þ

Au collisions is consistent with zero while the results for
p↑ þ p represents a positive asymmetry on panel (b) in
Fig. 8 and on panel (b) in Fig. 9. The p↑ þ Al results for hþ
at xF > 0 show some indication of a positive asymmetry,
which is smaller than in p↑ þ p collisions.
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FIG. 7. AN of negatively charged hadrons from p↑ þ p,
p↑ þ Al, and p↑ þ Au collisions as a function of pT in the
(a) backward (xF < 0) and (b) forward (xF > 0) regions. Vertical
bars (boxes) represent statistical (systematic) uncertainties.
Points are shifted by pT ¼ þ0.02 ðþ0.04Þ GeV=c for p↑ þ Al
(p↑ þ Au) results. A scale uncertainty from the polarization (3%)
is not included.
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FIG. 8. AN of positively charged hadrons from p↑ þ p,
p↑ þ Al, and p↑ þ Au collisions as a function of pT in the
(a) backward (xF < 0) and (b) forward (xF > 0) regions. Vertical
bars (boxes) represent statistical (systematic) uncertainties. Points
are shifted by pT ¼ þ0.02 ðþ0.04Þ GeV=c for p↑ þ Al
(p↑ þ Au) results. A scale uncertainty from the polarization
(3%) is not included.
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FIG. 6. AN of charged hadrons from p↑ þ p collisions as a
function of xF, where xF > 0 is along the direction of the polarized
proton. Vertical bars (boxes) represent statistical (systematic)
uncertainties. Points are shifted by xF ¼ þ0.003 for negatively
charged hadrons. Dotted bands represent twist-3 model calcula-
tions [28] by varying the K=π ratio by �30% of the central value.
A scale uncertainty from the polarization (3%) is not included.
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V. DISCUSSION

The results for the production of positively charged
hadrons (hþ) in p↑ þ p collisions agree with a trend with
other RHIC data where AN for πþ and Kþ is positive and
increasing with respect to xF in the forward region (xF > 0)
[7,9]. The results for AN for negatively charged hadrons
(h−) range from slightly negative to zero at xF > 0; this
may be caused by cancellation between positive asymmetry
for K− and negative asymmetry for π− shown in RHIC data
at larger xF [7,9]. These agree with the trend of the
theoretical calculation at xF > 0.15 [28]. In all collision
systems, AN at backward rapidity (xF < 0) is close to zero
asymmetry in terms of the total uncertainty, which also has
been shown in previous RHIC measurements in p↑ þ p
collisions [8,9,11]. The AN of positively charged hadrons at
0.1 < xF < 0.2 in p↑ þ Al and p↑ þ Au is smaller than in
p↑ þ p. However, the total uncertainty of p↑ þ Al results
is too large to provide clear separation from p↑ þ p or
p↑ þ Au results while p↑ þ Au shows nuclear dependence.

Recent calculations using collinear factorization on
polarized proton (p↑) and the CGC framework on nuclear
target (A) [33] predicted that the AN of inclusive hadrons at
forward rapidity in p↑ þ A collisions has two contributions
where one is A-independent and the other is A−1=3-
dependent [35,36,58,59]. However, the A−1=3-dependent
term is dominant for pT less than Qs and A-independent
term is dominant for higher pT. In the kinematics of
this measurement according to a recent calculation [59],
QAu

s ≈ 0.9 GeV whereas our measurements correspond to
hpTi ≈ 2.9 GeV=c at 0.1 < xF < 0.2. An approach using
lensing mechanism predicts that AN decreases as the
atomic number of the target (A) increases for kT below
or near Qs [60]. A recent STAR result of π0 in the more
forward region at 2.6 < η < 4.0, pT > 1.5 GeV=c, and
0.2 < xF < 0.7 in p↑ þ p and p↑ þ Au collisions shows a
smaller A-dependence [38] than what is observed here.
Given that our measurement and that from STAR used
different kinematic ranges and hadron species, further
detailed studies of various observables within a wide
kinematic range will be informative on the origin of AN
and its interplay with small-x phenomena.

VI. SUMMARY

Reported here are the transverse single-spin asymmetry
(AN) of positively and negatively charged hadrons (h�)
in forward and backward rapidity (1.4 < jηj < 2.4) over
the range of 1.5 GeV=c < pT < 7.0 GeV=c and 0.04 <
jxFj < 0.2 from transversely polarized proton-proton
(p↑ þ p) and proton-nucleus (p↑ þ A) collisions. The
results at xF < 0 are close to zero at all systems. In
xF > 0, negative charged hadron results show small to
zero AN in p↑ þ p collisions and nearly zero AN in p↑ þ A
collisions. AN for positively charged hadrons increases to
positive values as xF increases in p↑ þ p collisions, but
p↑ þ Au results show suppression of AN at 0.1 < xF < 0.2
compared to the p↑ þ p result. The results will aid in
understanding of the origin of AN and offer a tool to
investigate nuclear effects and phenomena in small x.
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APPENDIX: DATA TABLES

Tables II–V list the TSSAs in the production of charged
hadrons at 1.2 < jηj < 2.4 in transversely-polarized

proton-proton collisions (p↑ þ p) that are shown in
Fig. 5 as a function of pT and in Fig. 6 as a function
of xF. See further details in Sec. III A. Tables VI–IX for
p↑ þ Al and Tables X–XIII for p↑ þ Au. list the AN results
of charged hadrons in proton-nucleus collisions (p↑ þ Al
and p↑ þ Au) that are shown in Figs. 7–9 with p↑ þ p
results. See further details in Sec. III ‘B.

TABLE II. Data table of AN for negatively charged hadron (h−)
in transversely-polarized pþ p collisions as a function of pT .

pTðGeV=cÞ AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

Forward (xF > 0)
(1.50, 2.50) −0.008 �0.004 �0.003 �0.001 �0.003
(2.50, 3.50) −0.016 �0.008 �0.006 �0.001 �0.006
(3.50, 7.00) 0.005 �0.014 �0.002 �0.002 �0.002

Backward (xF < 0)
(1.50, 2.50) 0.008 �0.004 �0.005 �0.000 �0.005
(2.50, 3.50) −0.010 �0.008 �0.006 �0.001 �0.006
(3.50, 7.00) 0.018 �0.014 �0.008 �0.001 �0.008

TABLE III. Data table of AN for positively charged hadron (hþ)
in transversely-polarized pþ p collisions as a function of pT .

pTðGeV=cÞ AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

Forward (xF > 0)
(1.50, 2.50) 0.002 �0.002 �0.003 �0.000 �0.003
(2.50, 3.50) 0.038 �0.005 �0.010 �0.001 �0.010
(3.50, 7.00) 0.027 �0.010 �0.002 �0.001 �0.002

Backward (xF < 0)
(1.50, 2.50) 0.003 �0.002 �0.001 �0.001 �0.001
(2.50, 3.50) −0.008 �0.005 �0.004 �0.001 �0.004
(3.50, 7.00) 0.012 �0.010 �0.005 �0.001 �0.004

TABLE IV. Data table of AN for negatively charged hadron (h−)
in transversely-polarized pþ p collisions as a function of xF.

xF AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

ð−0.200;−0.130Þ 0.010 �0.011 �0.004 �0.003 �0.002
ð−0.130;−0.100Þ 0.002 �0.008 �0.001 �0.001 �0.000
ð−0.100;−0.070Þ 0.001 �0.004 �0.000 �0.000 �0.000
ð−0.070;−0.050Þ −0.002 �0.003 �0.001 �0.000 �0.001
ð−0.050;−0.040Þ 0.003 �0.006 �0.002 �0.001 �0.002
(0.040, 0.050) −0.002 �0.006 �0.001 �0.000 �0.001
(0.050, 0.070) −0.004 �0.003 �0.001 �0.000 �0.001
(0.070, 0.100) −0.015 �0.004 �0.004 �0.001 �0.004
(0.100, 0.130) −0.009 �0.007 �0.002 �0.000 �0.001
(0.130, 0.200) −0.008 �0.011 �0.002 �0.001 �0.001

TABLE V. Data table of AN for positively charged hadron (hþ)
in transversely-polarized pþ p collisions as a function of xF.

xF AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

ð−0.200;−0.130Þ −0.004 �0.007 �0.002 �0.002 �0.000
ð−0.130;−0.100Þ −0.001 �0.005 �0.000 �0.000 �0.000
ð−0.100;−0.070Þ 0.003 �0.003 �0.001 �0.000 �0.000
ð−0.070;−0.050Þ 0.003 �0.002 �0.001 �0.001 �0.000
ð−0.050;−0.040Þ −0.001 �0.004 �0.001 �0.000 �0.001
(0.040, 0.050) 0.000 �0.004 �0.002 �0.001 �0.002
(0.050, 0.070) 0.005 �0.002 �0.001 �0.000 �0.001
(0.070, 0.100) 0.007 �0.003 �0.002 �0.000 �0.002
(0.100, 0.130) 0.025 �0.005 �0.001 �0.001 �0.000
(0.130, 0.200) 0.045 �0.007 �0.002 �0.001 �0.002

TABLE VI. Data table of AN for negatively charged hadron
(h−) in transversely-polarized pþ Al collisions as a function
of pT .

pTðGeV=cÞ AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

Forward (xF > 0)
(1.50, 2.50) −0.006 �0.009 �0.001 �0.001 �0.001
(2.50, 3.50) −0.009 �0.017 �0.003 �0.002 �0.002
(3.50, 7.00) −0.005 �0.032 �0.006 �0.002 �0.005

Backward (xF < 0)
(1.50, 2.50) −0.005 �0.009 �0.006 �0.001 �0.006
(2.50, 3.50) 0.003 �0.019 �0.004 �0.004 �0.002
(3.50, 7.00) 0.013 �0.037 �0.007 �0.002 �0.007
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TABLE VII. Data table of AN for positively charged
hadron (hþ) in transversely-polarized pþ Al collisions as a
function of pT .

pTðGeV=cÞ AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

Forward (xF > 0)
(1.50, 2.50) 0.004 �0.006 �0.002 �0.002 �0.000
(2.50, 3.50) 0.024 �0.011 �0.006 �0.001 �0.006
(3.50, 7.00) 0.029 �0.022 �0.002 �0.001 �0.002

Backward (xF < 0)
(1.50, 2.50) −0.014 �0.007 �0.005 �0.001 �0.005
(2.50, 3.50) −0.010 �0.014 �0.002 �0.001 �0.002
(3.50, 7.00) 0.052 �0.028 �0.021 �0.004 �0.020

TABLE VIII. Data table of AN for negatively charged
hadron (h−) in transversely-polarized pþ Al collisions as a
function of xF.

xF AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

ð−0.200;−0.130Þ 0.029 �0.040 �0.009 �0.000 �0.009
ð−0.130;−0.100Þ 0.044 �0.026 �0.013 �0.006 �0.011
ð−0.100;−0.070Þ −0.002 �0.013 �0.004 �0.001 �0.004
ð−0.070;−0.050Þ −0.005 �0.009 �0.003 �0.001 �0.003
ð−0.050;−0.040Þ 0.009 �0.014 �0.004 �0.000 �0.004
(0.040, 0.050) 0.000 �0.021 �0.004 �0.003 �0.003
(0.050, 0.070) −0.010 �0.009 �0.005 �0.002 �0.004
(0.070, 0.100) −0.008 �0.009 �0.003 �0.000 �0.003
(0.100, 0.130) −0.017 �0.015 �0.007 �0.002 �0.007
(0.130, 0.200) 0.022 �0.020 �0.003 �0.000 �0.003

TABLE IX. Data table of AN for positively charged hadron (hþ)
in transversely-polarized pþ Al collisions as a function of xF.

xF AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

ð−0.200;−0.130Þ 0.074 �0.030 �0.018 �0.005 �0.017
ð−0.130;−0.100Þ −0.033 �0.020 �0.014 �0.004 �0.014
ð−0.100;−0.070Þ −0.001 �0.009 �0.001 �0.001 �0.001
ð−0.070;−0.050Þ −0.014 �0.007 �0.005 �0.001 �0.005
ð−0.050;−0.040Þ 0.002 �0.011 �0.005 �0.002 �0.005
(0.040, 0.050) 0.030 �0.014 �0.014 �0.001 �0.014
(0.050, 0.070) −0.004 �0.006 �0.005 �0.001 �0.004
(0.070, 0.100) 0.006 �0.006 �0.001 �0.001 �0.000
(0.100, 0.130) 0.010 �0.010 �0.001 �0.001 �0.001
(0.130, 0.200) 0.021 �0.014 �0.001 �0.001 �0.000

TABLE XI. Data table of AN for positively charged hadron (hþ)
in transversely-polarized pþ Au collisions as a function of pT .

pTðGeV=cÞ AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

Forward (xF > 0)
(1.50, 2.50) 0.010 �0.005 �0.006 �0.000 �0.006
(2.50, 3.50) −0.005 �0.008 �0.005 �0.001 �0.005
(3.50, 7.00) 0.020 �0.016 �0.008 �0.001 �0.008

Backward (xF < 0)
(1.50, 2.50) 0.005 �0.005 �0.002 �0.000 �0.002
(2.50, 3.50) −0.001 �0.009 �0.001 �0.001 �0.001
(3.50, 7.00) −0.016 �0.019 �0.006 �0.001 �0.006

TABLE XII. Data table of AN for negatively charged
hadron (h−) in transversely-polarized pþ Au collisions as a
function of xF.

xF AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

ð−0.200;−0.130Þ −0.013 �0.027 �0.007 �0.000 �0.007
ð−0.130;−0.100Þ 0.012 �0.018 �0.003 �0.000 �0.003
ð−0.100;−0.070Þ 0.001 �0.009 �0.001 �0.000 �0.001
ð−0.070;−0.050Þ −0.007 �0.006 �0.004 �0.001 �0.003
ð−0.050;−0.040Þ −0.002 �0.009 �0.001 �0.000 �0.001
(0.040, 0.050) −0.018 �0.018 �0.009 �0.001 �0.009
(0.050, 0.070) −0.007 �0.008 �0.002 �0.001 �0.002
(0.070, 0.100) −0.002 �0.007 �0.000 �0.000 �0.000
(0.100, 0.130) −0.001 �0.011 �0.001 �0.000 �0.000
(0.130, 0.200) −0.005 �0.015 �0.002 �0.002 �0.000

TABLE X. Data table of AN for negatively charged hadron (h−)
in transversely-polarized pþ Au collisions as a function of pT .

pTðGeV=cÞ AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

Forward (xF > 0)
(1.50, 2.50) −0.014 �0.007 �0.008 �0.000 �0.008
(2.50, 3.50) 0.000 �0.013 �0.003 �0.000 �0.003
(3.50, 7.00) 0.012 �0.023 �0.009 �0.005 �0.007

(Table continued)

TABLE X. (Continued)

pTðGeV=cÞ AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

Backward (xF < 0)
(1.50, 2.50) 0.002 �0.006 �0.003 �0.001 �0.002
(2.50, 3.50) −0.006 �0.013 �0.003 �0.001 �0.003
(3.50, 7.00) 0.003 �0.024 �0.001 �0.000 �0.001

TABLE XIII. Data table of AN for positively charged hadron
(hþ) in transversely-polarized pþ Au collisions as a function
of xF.

xF AN δAstat
N δAsyst

N δAmethod
N δAsmear

N

ð−0.200;−0.130Þ −0.010 �0.020 �0.003 �0.000 �0.003
ð−0.130;−0.100Þ 0.016 �0.013 �0.004 �0.000 �0.004
ð−0.100;−0.070Þ 0.008 �0.006 �0.001 �0.000 �0.001
ð−0.070;−0.050Þ −0.004 �0.005 �0.002 �0.000 �0.002
ð−0.050;−0.040Þ 0.000 �0.007 �0.001 �0.000 �0.001
(0.040, 0.050) 0.009 �0.012 �0.005 �0.000 �0.004
(0.050, 0.070) −0.002 �0.005 �0.002 �0.000 �0.002
(0.070, 0.100) 0.007 �0.004 �0.002 �0.000 �0.002
(0.100, 0.130) −0.008 �0.008 �0.004 �0.001 �0.004
(0.130, 0.200) 0.017 �0.010 �0.004 �0.001 �0.004
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