PUBLISHED FOR SISSA BY 4) SPRINGER

pr

RECEIVED: February 7, 2024
ACCEPTED: March 25, 2024
PUBLISHED: May 2, 202}

Non-linearities in cosmological bubble wall dynamics

Stefania De Curtis®,% Luigi Delle Rose ®,”¢ Andrea Guiggiani,” Angel Gil Muyor ©?

and Giuliano Panico®?

@INFN Sezione di Firenze and Dipartimento di Fisica e Astronomia,
Universita di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy

®Dipartimento di Fisica, Universitd della Calabria,

I-8708 Arcavacata di Rende, Cosenza, Italy

¢INFN-Cosenza,

1-87036 Arcavacata di Rende, Cosenza, Italy

FAE and BIST, Universitat Autonoma de Barcelona,

08198 Bellaterra, Barcelona, Spain

E-mail: stefania.decurtis@fi.infn.it, luigi.dellerose@unical.it,
andrea.guiggiani@unifi.it, agil@ifae.es, giuliano.panico@unifi.it

ABSTRACT: A precise modelling of the dynamics of bubbles nucleated during first-order phase
transitions in the early Universe is pivotal for a quantitative determination of various cosmic
relics, including the stochastic background of gravitational waves. The equation of motion
of the bubble front is affected by the out-of-equilibrium distributions of particle species in
the plasma which, in turn, are described by the corresponding Boltzmann equations. In
this work we provide a solution to these equations by thoroughly incorporating the non-
linearities arising from the population factors. Moreover, our methodology relies on a spectral
decomposition that leverages the rotational properties of the collision integral within the
Boltzmann equations. This novel approach allows for an efficient and robust computation of
both the bubble speed and profile. We also refine our analysis by including the contributions
from the electroweak gauge bosons. We find that their impact is dominated by the infrared
modes and proves to be non-negligible, contrary to the naive expectations.
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1 Introduction

First-order phase transitions (FOPhT) in the early Universe can source a variety of cosmo-
logical signatures, such as a matter-antimatter asymmetry, dark matter remnants, primordial
black holes, magnetic fields, topological defects and, notably, stochastic backgrounds of gravi-
tational waves. The upcoming gravitational wave interferometers hold the promise to detect
such gravitational wave backgrounds, offering insights into the nature of the electroweak
symmetry (EW) breaking and propelling the pursuit of the physics beyond the Standard
Model (BSM), up to remarkably high energy scales.

During a FOPhT, bubbles of the stable vacuum are nucleated and expand in the
metastable phase, interacting with the particles in the surrounding plasma and driving them
away from their equilibrium configuration. The plasma species, in turn, back-react on the
domain wall (DW) by exerting a friction on it. The friction can be computed from the
particle distribution functions, obtained from the solutions to the corresponding Boltzmann
equations, and once fed into the equation of motion of the DW, allows one to determine
the bubble speed and profile in the steady state regime.

Given the achievements in precision cosmology and the future prospects offered by
gravitational wave interferometry, there is an urgent need for a robust modelling of the
bubble dynamics in FOPhTs. In this respect, several endeavors have led to significant
progress both on the theoretical understanding and on the development of approximation
methods for the solutions of the relevant equations governing the dynamics of DWs [1-49].



In our previous works [39, 40], we presented a fully quantitative solution to the Boltzmann
equation designed to compute the collision integrals through an iterative algorithm, without
enforcing any ansatz on the momentum dependence of the distribution functions of the
particle species in the plasma. Concurrently, we provided the first quantitative description
of the non-equilibrium effects induced by a travelling DW and we computed the speed and
the width of the DW nucleated during an EWPhT, employing a scalar singlet-augmented
SM as a benchmark scenario (already considered in ref. [50] to describe a two-step EW
FOPKT). Finally, we proved that the out-of-equilibrium dynamics has a large impact on
such parameters, particularly affecting the speed of the bubble wall.

In order to deal with the complexity of the integro-differential Boltzmann equation,
the bottleneck of which is represented by its collision integral, we exploited a spectral
decomposition of the latter [40], suitably interpreted as a Hermitian operator. This approach
significantly boosted the computational performance of the algorithm by reducing nine-
dimensional integrations into a much faster matrix multiplication. Furthermore, given that
the eigenvector decomposition can be done only once, the efficiency of our novel methodology
makes the inspection of large parameter spaces of BSM scenarios practically feasible.

In the present work, we significantly advance our understanding of the interaction
between the DW and the surrounding plasma, encompassing both theoretical insights and
the numerical implementation through the development of new efficient and fast algorithms.

The previous results for the out-of-equilibrium perturbations were obtained from a
solution of a linearized Boltzmann equation. In this paper we go beyond that approximation
and we provide a full solution to the Boltzmann equation incorporating the non-linear terms
arising from the population factor within the collision integral. These novel contributions
can be handled through suitable modifications of the iterative algorithm that was presented
in ref. [40].

As we highlighted above, a detailed modelling of the Boltzmann equation and of the
corresponding out-of-equilibrium effects is crucial for accurately describing the bubble dy-
namics during cosmological FOPhTs. However, the relevance of our analysis extends far
beyond the physics of the early Universe. Among many other applications, it is noteworthy to
highlight the characterization of equilibration processes in a hot plasma and the calculation
of transport coefficients, such as viscosities, diffusivities and electric conductivity [51-53], as
well as the study hydrodynamic models for heavy ion collisions [54—60].

In this work we also improve the spectral decomposition proposed in ref. [40] by exploiting
the rotational invariance of the kernels in the collision integral. This suggests the use of
a basis of spherical harmonics. The multipole expansion proves useful in reducing the
number of eigenfunctions required for an accurate evaluation of the collision integral, while it
enhances, at the same time, the numerical stability of the diagonalization algorithm. Besides
the computational advantages, the exploitation of the spherical harmonics provides further
theoretical insights on the structure of the Boltzmann equation. In particular, we observe
a pronounced hierarchy among different modes with increasing angular momentum, the
origin of which becomes manifest in the limit of slow bubbles. In this case, indeed, the
Boltzmann equation can be reformulated as a system of ladder equations with the source
term only contributing to the zero mode. Additionally, we obtain a semi-analytical result for



the out-of-equilibrium perturbations in the limit of large collision rates.

As another objective in this analysis, we will delve into the study of the contributions
arising from the out-of-equilibrium perturbations of the EW gauge bosons. Despite their
significance, these effects are commonly overlooked and expected to yield only a subleading
correction, due to their comparatively smaller coupling with the Higgs field than that of the
top quark. However, this naive expectation proves to be misleading mainly for two reasons.
On the one hand, the EW coupling constant is smaller than the strong coupling one and, as
such, the equilibrium among the EW gauge bosons is restored more slowly than for quarks
and gluons. A second, even more important, reason is the fact that bosonic infrared effects
result in non-negligible contributions to the friction. Indeed, we show that the impact of the
EW gauge bosons to the friction is approximately one order of magnitude larger than what
could be inferred by a naive scaling argument and mostly arises from soft modes characterized
by p < g7, with p being the momentum of the mode, g the EW gauge coupling constant and
T the temperature of the plasma. In this regime, the Boltzmann equation fails to accurately
capture the plasma properties, as it inadequately models the damping effects that govern
the dynamics of soft modes. To address these effects, we describe soft gauge bosons through
a Langevin equation. While the latter properly accounts for the damped evolution of soft
modes, it still fails to describe ultra-soft modes, p < ¢?7, for which an appropriate effective
kinetic theory is missing and which will be explored in a future work.

Finally, we comment on the robustness of our implementations and we estimate the
theoretical uncertainties stemming from various sources of approximations. These include
the details of the choice of the grid employed for the numerical evaluations, the impact of
the position-dependent mass in the collision integral, the leading-log approximation and the
previously mentioned contributions of the infrared gauge bosons.

The paper is organized as follows. In section 2 we present the spectral decomposition of
the Boltzmann equation in terms of a basis of spherical harmonics. In section 3 we discuss the
full solution of the Boltzmann equation beyond the linear approximation. As an application
of the new methodology, we compute the speed of a bubble wall in a first-order EWPhT,
realized in a scenario in which the Higgs sector is extended by an additional real scalar singlet.
In section 4 we comment on several sources of theoretical uncertainty and estimate their
impact. Finally, we give our conclusions in section 5.

2 Multipole expansion

As a first step towards the study of the full Boltzmann equation, we develop a refined and
numerically efficient procedure to compute the collision integral at the linearized level. In a
previous paper [40], we showed how the collision integral can be reinterpreted as a Hermitian
operator acting on the distribution perturbation ¢ f, thus allowing one to exploit functional
spectral methods to find an efficient representation suitable for numerical evaluation. Here we
improve the decomposition strategy, leveraging on the rotational symmetry that characterizes
the local interactions entering in the collision processes.

The symmetry ensures the conservation of angular momentum and allows one to de-
compose the perturbations on the basis of spherical harmonics. This procedure provides a
partial diagonalization of the collision operator, guaranteeing smaller numerical instabilities.



Moreover, it can be used to reduce the number of decomposition eigenvectors needed to reach
an adequate numerical precision, thus improving the speed of the numerical evaluations.

In addition to the computational benefits, the angular multipole decomposition can also
be used to gain a better theoretical understanding of the Boltzmann equation. As we will
show, the study of the decomposition reveals that a marked hierarchy is present among
modes with increasing angular momentum. This is true for the collision operator eigenmodes,
as well as for the perturbation decomposition. The origin of the hierarchy can be easily
understood in the limit of slowly-moving DWs, in which case the Boltzmann equation can be
rewritten as a ladder of equations which couple contiguous angular modes, while the source
term only contributes to the zero mode equation.

Further insight on the Boltzmann equation can be obtained considering the large collision
rate limit. In this regime one can obtain semi-analytical expressions for the perturbation,
and explain how the spatial dependence of the perturbation modes is related to the shape
of the Higgs DW.

2.1 The linearized Boltzmann equation

In this section we establish our notation by briefly reviewing the structure of the linearized
Boltzmann equation which controls the out-of-equilibrium perturbations of the fields in the
hot plasma. We refer the reader to refs. [39, 40] for further details on our notation and on
the way in which the collision term can be manipulated.

We assume that the DW can be (locally) well approximated by a planar wall in a
steady state regime and we orient the reference frame in such a way that the wall moves
along the z direction. Denoting by 0 f the perturbation around equilibrium, the linearized
Boltzmann equation takes the form

ﬁ[é.ﬂ = (pzaz - W@?z) 5f = pzS - é[éf] ) (2'1)
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where L is the Liouville operator, m(z) is the mass of the particle while
to the derivative along z. We denote by S = —L[f,]/p. the source term generated by the
action of the Liouville operator on the local equilibrium distribution function f,

1

Fo= @@ @) £1°

(2.2)

where f =T71, 7p is the Lorentz gamma factor, and v,(z) is the velocity profile of the plasma
measured in the wall reference frame. Finally C[6f] is the linearized collision operator.
Considering only 2 <+ 2 processes, the linearized collision operator takes the following form
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(2.3)
where the sum is performed over all the relevant scattering processes. The squared amplitudes
|M;|?, for the processes involving the top quark and the massive EW gauge boson, are
reported in table 1. The linearized population factor P[§f] is given by

PI5£] = folp) fulk) (L = £u(0))(1 = o) S 2L (2.4)
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where the F in the sum is for incoming and outgoing particles respectively, N, represents the
degrees of freedom of the incoming particle with momentum p, k is the momentum of the
second incoming particle, while p’ and k' are the momenta of the particles in the final state.
The + sign in front of the equilibrium distribution f; is for bosons, while the — is for fermions.

As done in ref. [39], we denote with the ‘bracket’ (§ f) the terms arising from the linearized
collision operator in which the perturbation depends on one of the integration variables,
while the term proportional to Q arises from the terms in which the perturbation depends
on p and is not integrated over.

The terminal velocity of the DW results from the balance of the two main forces that
govern the bubble dynamics: the driving force proportional to the potential energy difference
between the broken and the symmetric phase, and the friction exerted by particles in the
plasma surrounding the bubble hitting the wall. The latter term is related to the out-of-
equilibrium perturbations sourced by the DW motion. The friction measured in the wall
reference frame is

F(z) = 9 da W@%(Pa z), (2.5)

with N;, m; and J f; being the number of degrees of freedom, the mass and the perturbations
around equilibrium of a particle species i, respectively.

2.2 Multipole expansion of the Boltzmann equation

The bracket (0f) is the most challenging term to deal with in the linearized Boltzmann
equation both from a numerical and theoretical point of view. Without suitable manipulations,
the evaluation of the bracket is highly time-consuming. One strategy that boosts the
computational performance is to perform analytically the integrations that do not depend on
the unknown perturbations ¢ f;, as we showed in ref. [39]. For this purpose, it is convenient
to evaluate the collision integral in the local plasma reference frame where the Dirac delta,
the amplitudes and the population factor depend only on rotationally invariant quantities.
The bracket can be rewritten as

d*k _ _ O0f(k,z
50) = | i (IRl Akl cos 50 o) ) (2.6
where barred quantities are computed in the plasma reference frame, 9;512 denotes the relative
angle between the momentum p and k, while the kernel I is the result of the integration
over the six variables the perturbation 0 f does not depend on.

The rotational invariance of the bracket terms suggests the use of a decomposition on
spherical harmonics, which corresponds to a simple expansion of the kernel I on the Legendre
polynomial basis P;(cos 925,;). Different multipoles are not mixed by the bracket terms, thus
allowing for a straightforward integration over the azimuthal angular variable.

As we will discuss in the following, the multipole decomposition proves useful from different
viewpoints. On the one hand, it can be exploited to reduce the number of integrations involved
in the computation of the bracket to just one, with a significant improvement in performance
of the numerical algorithms. On the other hand, it provides some theoretical insight on the
structure of the Boltzmann equation, allowing one to identify a hierarchy of modes and to
obtain a semi-analytical solution in the large collision rate limit.



2.2.1 Collision operator decomposition

We begin by analyzing the multipole expansion of the Boltzmann equation starting from the
collision operator. As we mentioned before, as a consequence of the rotational invariance of
the kernel K, we can decompose the latter by using the Legendre polynomials P;(cos 6):

2l+1

K(BIpl, B, cos) = >

=0

Gi(B1pl, BIk|) Pi(cos b) . (2.7)

The integral on the k variables in the bracket term in eq. (2.6) can be more conveniently
performed using spherical coordinates, namely {|k|, 0, ¢z}, where 0; identifies the angle
between the momentum k and the Z axis in the plasma reference frame. Since the system
is symmetric under rotations around the direction of the DW propagation, i.e. the 2 axis,
the unknown perturbation 0 f does not depend on the azimuthal angle ¢. As a consequence,
this integration involves only the kernel K and can be performed just once. Rewriting p
and k in spherical coordinates, one gets the relation cos 9;515 = cos 0 cos 0, + sin 0 sin 0, cos ¢,
where ¢ = ¢; — ¢p, from which it follows that

27
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Using this result we can explicitly compute the integral of the kernel over the azimuthal angle:
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which shows that the kernel IC is block diagonal in the basis of the Legendre polynomials.
Decomposing the perturbation §f on the same basis

5(.2) = 3 2 L[l 2) Plcos ) (210)
=0

allows one to trivially perform the integration in cos; in eq. (2.6) by exploiting the orthogo-
nality of the Legendre polynomials. The final result is

(5f) = ZQZT“O, {‘ﬂ Pi(cos ), (2.11)
=0 0
where we defined
— [ Dk Gi(BIpl. BIK) 9([KI). (2.12)

with the integration measure Dk = fo(|k|)|k|d|k|.

Due to particle exchange symmetry, the functions G;(8|p|, 8|k|) are symmetric under the
exchange p <+ k. As a consequence, the operators O; are Hermitian and can be diagonalized on
an orthonormal basis of eigenfunctions {¢;;}. Expanding on this basis, the functions G; read

Gi(BIp|, Blk|) = Z Ai GLi(BIPI) GLa(Blk]) (2.13)
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Figure 1. Comparison of the first six Legendre blocks in the multipole decomposition of the
annihilation kernel (left plot) and scattering kernel (right plot) for the top quark.

where {);;} are the eigenvalues, and eq. (2.9) becomes

[ a0 K(81p1, 51Kl cosb5) =2 37 3" M2 G (BIB GBI Pileos b, Pi(eos 6y).
L (2.14)
To study the behavior of the various modes in the kernel decomposition, it is worth
analyzing separately the multipole expansion of the annihilation and scattering kernels, C 4
and g, since their structure is very different. The expressions of the two kernels are
1 A3k d®p’
" 8N,(27)5 ) 2E,2E

Ka IMal?(L £ fo(p' D)L= fo([K])d (0 +k —p' — &)
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where M 4 g are the annihilation and scattering amplitudes respectively. We plot the functions

Ks (M2 fo(Ik) (1 £ fo(IK'])e 6% (p+ k — p/ — &)

g;“ S in figure 1, where we set, for simplicity, 5|k| = 1, and we consider only the processes
involving top quarks. Similar results hold for the whole range of momenta and for the
W bosons.

The strong hierarchy in the Legendre modes of the annihilation kernel, evident in the
left plot in figure 1, indicates that just the first few terms in the multipole expansions are
sufficient to provide an accurate reconstruction of the whole kernel. Each block also presents
a smooth behaviour across the whole momentum range, with a fast growth at small momenta
and a slow logarithmic one for large values of |p|.

The scattering kernel, instead, has a more complex structure, as the right-hand panel of
figure 1 shows. It presents a peak in the forward scattering kinematic region, p = k, where we
find a milder hierarchy between the different Legendre blocks. Away from the peak, instead,
we recover a hierarchical structure similar to the annihilation kernel case.

The decomposition of the kernel in eq. (2.14) proves extremely helpful in simplifying the
computation of the bracket (§f). Once the eigenvectors (;; are determined, the remaining
integral becomes trivial due to the orthogonality property. The final expression for the
bracket is

(57 =~ 3 3 M 614(2) GBI Pileos ). (2.16)
[




where ¢ ;(z) is the projection of the [-th Legendre mode of the perturbation on the eigenstate
basis of the kernel G;, namely

(k| 2)
follk))

To complete the study of the multipole decomposition of the collision operator, we also

6ui(2) = [ DRG(BIK) = (217)

need to discuss how the term proportional to @ decomposes along the basis of the spherical
harmonics. In the plasma reference frame we find

folE) _pE) =241 *
(50 = APV E5 S =5 Bl ) Plcost). (2.18)

2.2.2 Liouville operator decomposition

Q(E)

Differently from the collision operator, the Liouville operator is not spherically symmetric,
but is only invariant under rotations around the DW velocity direction, z. As a consequence,
its action on the perturbation ¢f is not diagonal in the multipole expansion and mixes
different modes. Nevertheless, as we will show in the following, the multipole expansion
can be used to extract some interesting features of the Liouville term, especially in the
limit of small DW velocity.

To be consistent with the decomposition of the collision operator, we rewrite the Liouville
operator in the plasma reference frame

L[6f] = v(|p| cos 05 + v E)0,6 f —

(m2)’E 0 1—cos?0; O
2 E 0p8\p| Ip|  Ocosb; of, (2.19)

where barred quantities are computed in the plasma reference frame. Let us now analyze the

decomposition of the various terms that appear in the above equation. The term proportional

to the z derivative gives'
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The term containing the derivative with respect to |p| corresponds to
9 p| [

cosbly——0f = — (I+1) _wl 1+Hl=—_ 1] Py(cosbp) . (2.21)
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Finally the term proportional to the derivative in cosfj is
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The expressions in egs. (2.20), (2.21) and (2.22) have a relatively simple structure and
only mix contiguous Legendre modes, whose indices differ at most by 1. However, this is not
true for the Liouville operator in eq. (2.19), since the ratio between the energy in the plasma

Tn all the equations, terms containing ¥_; must be dropped.



frame and in the wall frame, E/E, which multiplies the terms in eqs. (2.21) and (2.22), is
direction dependent and corresponds to an infinite series in cos 8.

The structure of the multipole decomposition of the Liouville term can be significantly
simplified in the limit of small DW velocities. In this limit, as shown numerically in
refs. [39, 40], the perturbations grow linearly with v,,. This behavior is approximately valid
also for intermediate velocities of the order of the sound speed in the plasma, namely for
vw S s ~ 1/4/3. In the regimes we are interested in for the steady states of the DW, it is thus
justified to expand the Boltzmann equation in a series in v,, and retain only the leading terms.

For slowly moving walls, the temperature and plasma velocity gradients are small and,
as a result, we can neglect their contribution to the source term § in the Boltzmann equation
and set T'(z) = Ty, and vp(2) = vy, with T}, the nucleation temperature. The perturbations
are thus sourced only by the interactions with the DW, namely by S, which scales like v,, for
small speeds, consistently with the linear growth of the perturbations.

We now derive the expanded form of the Liouville operator. The leading term in the
expansion of eq. (2.20) is obtained by setting v, — 1 and dropping the last contribution
that contains a factor vy, thus giving

o0

>+ 1)0:thi1 +10:90 1| Pilcosbp) + O() . (2.23)
=0

([Pl cos b5 + vp E)D:0 f =

w‘@

The expressions in egs. (2.21) and (2.22) are already of order v,,. When we insert them back
into eq. (2.19) we can neglect subleading terms in the prefactor E/E, thus setting E/E — 1.

The terms involving the derivative with respect to z, eq. (2.23), and the one with respect
to |p|, eq. (2.21), have the same structure. They can be combined introducing a derivative,
d., along the particle flow paths defined by the equation

I m2/
pld:|p| = ! 2) : (2.24)
which corresponds to the curves with
E? = |p|* + m(2)? = const. (2.25)

Putting together the various terms, we finally find the expanded form of the Liouville operator:

o0

Lof] = %Z [\13|<(l + 1) dathy 1+ ldatpy 1)
=0
_ (1273'((5 +2)(1+ )t — 11— 1)hy_1) | Pi(cos 0) + O(v2) . (2.26)

An interesting feature is the fact that only contiguous multipole modes are coupled, i.e. modes
whose [ differ by +1. The coupling of the whole tower of modes, which is present in the
complete Liouville operator, is due to higher-order terms in the v,, expansion, as can be
easily checked by expanding the factor E/E in series of v,,.

Another interesting feature of the small-v,, Boltzmann equation is the fact that the
source term contributes only to the [ = 0 mode:

m2y &2
.S = —vwf(’)(E)( 1 ) ZP()(COS 05) + O(v2). (2.27)
1=0
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Figure 2. Comparison of the first six Legendre modes of the solution to the Boltzmann equation for
the benchmark point BP1. The plots on the upper row show the modes as functions of the momentum
p at fixed position z/Lj = 1,0, —1, while the ones on the lower row show the dependence on z at fixed
momentum p/7T,, = 0.1, 1, 10.

Since the collision operator is diagonal in the multipole basis, the whole Boltzmann equation
splits into a ladder of equations whose structure in the multipole indices is quite simple.
Projecting on each multipole mode, we find the following set of equations

2\/
Pl [(l + 1)d g + lCZzl/Jlfl} - (;Tf)? [(l + D)1+ 2) 1 — U1 — 1)@/;1,1] - Qf? (20 + 1)y
2\/
= —Uwf(l)mz)%z + 271 fo(20 + 1)O; Ef,l] . (2.28)
0

The ladder structure of the expanded Boltzmann equation and the fact that the source
contributes only to the | = 0 multipole suggest that a hierarchy could be present among the
1y modes of the perturbation decomposition. The numerical results confirm this expectation.
In figures 2 and 3 we plot the multipole decomposition of the perturbation for the top quark
for two benchmark configurations of a singlet-extended Higgs sector (the parameters defining
the two benchmarks are listed in table 2). These benchmarks were studied in ref. [40] and
will be analyzed further in sections 3 and 4.

One interesting property highlighted by the plots is the fact that the hierarchy is more
pronounced for small values of the momentum and it is significantly milder for larger values.
The | = 0 mode is always dominant, in particular in the whole region around the DW, namely
—2 < z/Lp < 3 with Lj, being the Higgs wall width, where the perturbations are larger.

Another noticeable feature is related to the shape of the modes as a function of z. It can
be easily checked that the I-th mode has a shape that closely resembles the ({4 1)-th derivative
of the Higgs mass function, namely () ~ 0571(m?). The similarity gets stronger for small
momentum and slowly moving walls. As we will show in the following, the hierarchy of

,10,
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Figure 3. Comparison of the first six Legendre modes of the solution to the Boltzmann equation for
the benchmark point BP2.

modes and the shape of the perturbations are controlled by the collision operator and become
particularly sharp in the regime in which thermalization through collisions is more efficient.

2.2.3 The large collision rate limit

As a last point in our analytic analysis of the Boltzmann equation, we study the large
collision rate limit. To make the equation tractable, we consider slowly moving walls and we
adopt a modified form of the BGK approximation [61] modelling the effect of the bracket
contributions through a modification of the Q term. The BGK approximation produces
some quantitative changes in the solution of the Boltzmann equation, but preserves its main
qualitative features. It was indeed found in ref. [39] that keeping only the contributions
of the Q term, while neglecting the bracket contributions, was sufficient to obtain a fair
approximation of the full solution.
Within the above approximations eq. (2.28) becomes

— _ 2\/
|15’ [(l + 1)dz’¢l+1 + ldzd)l—l} - (;Tp? [(l + 1)(l + 2)1/11+1 - l(l — 1)2[)1_1}
O 2/
- Q{O (20 + 1)ih = —vw fo () dor - (2.29)
fo 2

The large collision rate regime corresponds to the limit in which the derivative term in
the above equation can be neglected. This is realized when

PS5
LOfo

The above condition has a straightforward physical interpretation. It corresponds to the

<1. (2.30)

L
L

requirement that the mean free path ¢ is much smaller than the width of the bubble wall L,
namely ¢ < L. As one can expect, the mean free path is shorter when collisions are efficient

— 11 —



and in the limit in which particles have small momenta. Thus the large collision rate limit
corresponds to the situation in which the plasma is close to the hydrodynamic regime.

It is possible to show that in the large collision rate limit a hierarchy among the multipole
modes is present. This is in agreement with the numerical results shown in figures 2 and 3,
where a strong hierarchy between the modes is present at small momenta. Assuming that
a hierarchy is present, eq. (2.29) can be simplified as

(m?)' Qfo
2/p f
The | = 0 mode can be obtained in closed form:

5 (m?)'
2LOfy

The higher modes can instead be expressed in terms of the derivatives of the 1y mode. Since
the factor (f})2/ 8) fo depends only on the energy E, its flow derivative d, vanishes. The d,
derivative of v thus acts only on the (m?)’ factor as a standard derivative. It is not hard

(1= 1)1 —

‘I_)NJ,zwlfl +

o m?)
(20 + 1)th = —v fo =001 (2.31)

Yo(Ipl, &) = vu(f5)? (2.32)

to show that the solution for a generic mode ; is given by

_ 1 fo o I! VU fo I+1, 2
~ |2p| <L@f0> AT L) ). (2.33)

The expression of the i modes clearly explains the origin of the hierarchy shown in
figures 2 and 3. Close to the hydrodynamic regime, namely when the mean free path is
small, the mode 1/ is suppressed by a factor (¢//L)! and its z-profile is given by the (I + 1)-th
derivative of m?.

We stress that eq. (2.33) is valid only in the large collision rate limit. Away from the
hydrodynamic regime the expressions we found provide a poor solution to the Boltzmann
equation since it is no longer justified to neglect the derivative terms. In addition, the hierarchy
becomes milder and, as a result, the mixing between higher order terms becomes important.

3 Full solution of the Boltzmann equation

One of the main goals of this work is to determine the full solution of the Boltzmann equation
taking into account the effects of the non-linear terms in the out-of-equilibrium distributions
that appear in the collision integral. As we will show in the following, such solution can be
determined numerically via a suitable modification of the iterative algorithm that we developed
in refs. [39, 40]. The non-linear contributions arising from the collision operator turn out to
have a structure analogous to the bracket terms and can be handled with similar techniques.

As an application, we then reconsider the determination of the terminal velocity for a DW
nucleated during a first-order EW transition. We focus on the set-up considered in ref. [40],
where the analysis was performed on a model in which the SM Higgs sector is extended with
an additional scalar singlet. In this case a two-step EW phase transition can be obtained,
whose second step, in which the Higgs acquires a VEV, can be strongly first order.

In this section will also reproduce the numerical results of ref. [40], evaluating the impact
of the non-linear terms in the collision integral, as well as the stability and the performance
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Wt —m3,)? WlE-m2)? " (t—m})?

Table 1. Squared amplitudes for the scattering processes relevant for the top quark and the W boson,
in the leading-log approximation [39]. In the tq — tq process we summed over all massless quarks
and antiquarks. mg, mg, m; and my denote the thermal masses of the gluon, quarks, leptons and W
bosons, respectively.

improvements of the multipole expansion method. As we will see, the multipole decomposition
approach allows us to significantly reduce the number of eigenmodes needed to accurately
reproduce the collision operator and, at the same time, improves the numerical stability
of the diagonalization algorithm.

As a second goal, we will include the contributions coming from the out-of-equilibrium
perturbations of the massive EW gauge bosons. These effects are often neglected with the
main motivation that gauge bosons are expected to provide a subleading contribution since
their coupling with the Higgs field is smaller than the one of the top quark. This expectation,
as pointed out in ref. [8], is however not true since bosonic IR effects lead to enhanced
out-of-equilibrium contributions to the friction, whose size is not far from the top quark one.

To compute the gauge boson contribution to the friction we make some simplifying
assumptions. We first assume that W and Z bosons have the same distribution function,
hence we can treat them as a single particle species that we denote as W bosons. Next, we
assume that cross interactions between the top quark and the W bosons are negligible.? In
such a way we do not need to distinguish between top quarks with different helicities and
the Boltzmann equations describing the perturbations of the two particle species become
independent, greatly simplifying our problem.

Under these assumptions, the numerical computation of the perturbation of the W bosons
is straightforward. We can apply the same iterative solving strategy, using for the collision
operator the squared amplitudes involving the W bosons reported in table 1.

2This is a good approximation, since the main interactions involving the top are the ones with the gluons,
while the main W interactions are the ones with the light SM fermions.
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3.1 Non-linear terms in the collision integrals

The non-linear terms that appear in the collision integral arise from the expansion of the
population factor P[f] as a series in the out-of-equilibrium perturbations 4 f:

Plfl = f)f(R) A £ f()A £ f(K)) = f)F ()L £ f(p) A+ f(R)), (3.1)

where f = f, + §f is the full distribution for a given particle species.

In general, terms up to fourth order in 0 f are present. In our specific case, however, the
structure of the non-linear terms drastically simplifies thanks to the assumption that the
light species are in local equilibrium and that we consider only the leading 2 — 2 processes
involving the top and the W bosons (see table 1). Within these approximations, the collision
integral gives rise only to quadratic terms in J f, whose explicit forms for the annihilation
and scattering processes are given by

o 5(p.2) 6f(h 2)
PalY= ")) 73D

> _ 5f(pa Z) 5f(p/7 Z)
Pslll =510y 7o)

As can be seen from the above expressions, one of the §f factors always depends on the

(L £ fo([p' D) (L £ folIK'D) fo(Ip])? folk])* (e PHID — 1),

(3.2)
FoD) (1 £ folK el o ol fo 1P (P — 2.

momentum p and does not appear under the integral sign, giving rise to a simple multiplicative
factor in the collision integral. We can therefore reduce the quadratic terms to a structure
completely analogous to the one of the linear contributions and rewrite them in terms of
linear integral operators.

It is easy to see that the integrals of the quadratic pieces can be rewritten in terms
of the same kernels K4 s we introduced for the linear terms. The full expression of the
collision operator is simply given by

) =-0tssw.2) — 1. (o) + fgﬁ@mAiwmm, (3.3)
where
31 _ _ Tl z
(502 = [ 5 S A (BIPL IRl con ) o K)ol o 480 — )P, »
&k - _ . 5f '
(81D = [ S s A1pl. AL cos ) ol R ol P — ﬁM)im?

The 4+ and — signs in front of the scattering term (df)s correspond to the W boson and
top collision integrals respectively.

For the numerical evaluation, the additional brackets (df)4 and (0f)s can be handled
analogously to (0f) and expanded in angular momentum multipoles. Also in this case,

rotational invariance implies that (§f)4 and (§f)s are diagonal in the multipole expansion.?

3Clearly, if we consider the full quadratic terms, including the prefactor § f(p)/f,(p), the multipole expansion
couples different modes. For the numerical evaluation, however, we find more convenient to expand only the
bracket term, and perform the sum over the modes before multiplying by the prefactor.
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Comparing the structure of the quadratic terms with the linear ones we can get some
insight on the relative importance of the various contributions. For a simple assessment we
can use the rough estimates fo(|p|) ~ fo(|k|) ~ e PPl ~ e Al which are valid in a large
region of the momentum space. It follows that the quadratic annihilation bracket has a
size comparable to the linear one, (§f)a ~ (6f)a. Therefore the quadratic annihilation
terms are suppressed with respect to the linear ones by df(p)/f.(p) ~ 0f(p)/fo(p), which
agrees with the naive expectation.

For the scattering terms the situation is different. The quadratic bracket turns out to
have an additional suppression of order fo(p) ~ e~ Pl which is related to the fact that the
perturbations always involve an initial- and a final-state particle. The overall suppression of
the quadratic scattering terms is therefore f,(p) x 6 f(p)/fu(p). This is significantly smaller
than the naive expectation, especially in the high-energy tails.

The numerical analysis confirms the above estimates for the annihilation contributions.
On the other hand, it shows a mild additional accidental suppression of the quadratic
scattering terms in the region Sp < 1. The additional suppression is more pronounced for
the top collision integral than for the W boson one. We postpone a more detailed study of
the effects of quadratic terms to section 3.4, where a comparison of the full solution with
the one of the linearized Boltzmann equation will be presented.

3.2 Numerical implementation

As discussed in section 2, for the computation of the brackets we use a decomposition of
the perturbations on the basis of the spherical harmonic, which discretizes the dependence
on the angular variables. The numerical implementation of the spectral decomposition of
the kernel functions requires an additional decomposition of the Legendre modes along the
momentum variable. A simple choice is to discretize the momentum space on a lattice of M
points and obtain the functional space through a suitable interpolation, similarly to what we
did in our previous work [40]. In such a way, the operators O; are represented by a set of
Hermitian matrices U; which can be diagonalized to obtain the spectral decomposition. For
that, we compute the elements of the matrices on an orthonormal basis of functions {e,,}
that vanish everywhere on the grid but on the point |p|,.

We used a lattice of points, the distance of which increases linearly with the momentum, in
such a way to populate more densely the small |p| region. This choice allows us to reconstruct
two of the most complex features of the kernel. The peak in the forward scattering region,
the width of which scales as the momentum |p|, and the fast growth of the annihilation

kernel in the small momentum region.*

For our numerical analysis we considered the modes up to I = 10 in the multipole
expansion and we chose a grid with M = 100 (with the restriction |p|/7" < 20). In this
way each of the 11 matrices U; has dimension 100 x 100. This implementation offers a
good compromise between a good accuracy in the reconstruction of the kernel and a fast
computation of the bracket term.

“Since the functions G;(|p|, [k|) vanish for |p| = 0 or |k| = 0, the point |p| = 0 is omitted from the lattice.
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Figure 4. Relative size of the eigenvalues of the kernel matrices U; for [ = 0, 1, 2, 3, 4, 5, with
M =100 for the annihilation (left panel) and scattering (right plot) kernel for the top quark. For the
annihilation kernel only very few eigenvalues have a size 2 10*3|)\6470|, while for the scattering kernel a
large fraction of them (the first ~ 90 eigenvalues for each block) has a size 2 10735 .

We show in figure 4 the relative size of the annihilation (left panel) and scattering (right
panel) kernel eigenvalues for the top quark up to the multipole [ = 5. A similar behaviour is
found for the higher modes in the multipole expansion and for the W boson case.

The spectrum of the annihilation kernel reveals a strong hierarchy among the eigenvalues.
The size of the largest eigenvalues for each multipole decreases with [, so that only the first
few modes give a non-negligible contribution, in accordance with the behavior we showed in
figure 1. Taking only the first [ = 3 blocks indeed allows one to reconstruct the annihilation
kernel with an accuracy of order 1 — 2%. Moreover the eigenvalues in each block also present
marked hierarchy. In the block [ = 0 all the eigenvalues but the first four are suppressed
by a 10~ factor and the suppression is even stronger for higher modes. As a consequence,
in order to reconstruct the annihilation kernel with high accuracy (of order 1%), just a few
eigenvectors belonging to the lowest modes are sufficient.

The scattering kernel is instead much more difficult to reproduce. As the right panel in
figure 4 shows, almost no hierarchy is present among different multipole modes. For each
block, differently from the annihilation case, we find that after a relatively fast decrease, the
size of the eigenvalues tends to decrease slowly, so that a large fraction of them has a size
> 10*3|)\g70\. As a consequence, by taking the blocks up to [ = 10, in order to reconstruct
the kernel with an overall accuracy of order 2 — 4%, almost all eigenvectors must be taken
into account. Including in the sum only the first 80 eigenvectors from each block the typical
reconstruction error is 5—10%, which increases above 10% taking only the first 70 eigenvectors.

We mention that significantly larger relative reconstruction errors are present in regions
where the kernel is highly suppressed (such as for configurations in which p is small while
k is large, or vice versa), or, especially for large momenta, around the peak. These regions,
however have a limited impact on the computation of the collision integral, as found in
the analysis we carried out in ref. [40].

When we consider the total kernel I we obtain reconstruction errors similar to the
scattering case, because the latter dominates over the annihilation processes. In fact we find
|Aé0\ ~ 10*2\)\&0]. The set-up we chose, using the modes [ < 10 and a grid with M = 100
points, allows us to reconstruct the full kernel with an overall 2 — 4% accuracy. Increasing the
number of blocks in the multipole expansion increases the accuracy. Taking the multipoles up
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to [ =21 a 1 — 2% accuracy can be achieved by considering all the eigenvectors of each block.

It must be stressed that the error on the reconstruction of the kernel is somewhat larger
than the one on the bracket terms, because the hierarchy in the perturbation modes provides a
suppression of the higher terms in the multipole expansion. We find that our set-up with { < 10
and M = 100 is sufficient to reproduce the bracket terms at the ~ 1% accuracy. This means
that O(10?) total eigenvectors are sufficient to obtain a good reconstruction of the bracket
term in the collision integral. This number must be compared with the O(5-103) eigenvectors
that were needed with a naive lattice discretization (both in |p| and cos8j) in ref. [40] to
achieve a similar precision in the evaluation. Due to the smaller number of eigenvectors
needed for the computation, the multipole expansion helps in further enhancing the speed
of numerical evaluation. The computational time needed to evaluate the collision operator
is now significantly smaller than the one required to invert the Liouville operator. We also
mention that the multipole expansion allows for a better stability of the numerical evaluation
of the bracket. In fact, the splitting of the kernel in smaller matrices, reduces the numerical
issues due to the presence of highly hierarchical eigenvalues in the diagonalization procedure.

Because the method is very fast, we were able to use a larger grid on which we numerically
compute the perturbations, with respect to the one used in ref. [39]. We computed the
perturbations on a 50 x 300 x 200 grid in the variables {p, ,p., 2z} and we enlarged the range
of z to z/Ly € [—20, 20] without modifying the grid in p, and p, .

3.3 Results

We apply the multipole decomposition described above to the study of the EWPhT in the
Zs-symmetric scalar singlet extension of the SM. This model features a FOPhT with a
the two-step behavior, in which the Z-symmetry breaking precedes the EW one. The
zero-temperature scalar potential of the model is given by

Ans

Vool ) = 20 (02 =)+ 2 (2 —ud)” 4 s

2 h%s? 3.5
: : 2, (35)
where vy is the Higgs VEV at the EW minimum, A, is the Higgs self coupling, while A;,
wg, and Ap, describe the singlet self-coupling, its VEV when the EW symmetry is exact,
and the portal coupling with the Higgs, respectively. The parameter wy can be traded for

the physical mass of the singlet using the relation
1
m? = —Awi + 5)\;131)3. (3.6)

The full potential we use in the analysis includes also the one-loop corrections at zero
temperature (we use a cut-off regularization scheme to regularize the UV divergences) and
the finite-temperature corrections (see ref. [62] for further details).

To determine a solution of the equation of motion of the scalar fields we use the following
ansatz on the field profiles:

h(z) = % (1 + tanh <;h>) ,
s(z) = % (1 — tanh <;S + 53)) ,
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| ms (GeV) | s | As || T (GeV) | To (GeV) | T4 (GeV) | T- (GeV)

I
129.9 132.5 130.1 129.9

BP1| 1038 |0.72] 1
BP2 80.0 0.76 | 1 95.5 102.8 96.7 95.5
| Y | Ss | LT, | LT,
BP1 | 0.28 [0.39] (0.57) | 0.78 [0.79] (0.75) | 9.2 [9.7] (8.1) | 7.4 [7.7] (6.7)
BP2 | 0.41 [0.47] (0.61) | 0.81 [0.81] (0.81) | 5.1 [5.2] (4.7) | 4.2 [4.3] (4.1)

Table 2. Nucleation and critical temperatures, temperatures in front and behind the DW and
terminal values of the parameters v, ds, Ly, Ls for two benchmark points. The numbers in round
parentheses correspond to the results obtained neglecting the out-of-equilibrium perturbations, the
numbers in square brackets correspond to the results obtained by including only the top quark
out-of-equilibrium perturbations.

where h_ and sy correspond to the VEVs of the Higgs field inside the DW and of the singlet
in front of the DW, respectively. The VEVs are obtained by minimizing the finite-temperature
effective potential. The ansatz depends on three additional parameters: the wall thicknesses
of the Higgs and of the scalar singlet (Lj and Lg), and the displacement between the Higgs
and the singlet field walls (05). These parameters are determined by solving the equations
of motion of the scalar fields (see refs. [30, 40, 63] for the details).

We determined the properties of the DW and its terminal velocity for the two benchmark
configurations characterized by the model parameters specified in table 2. These benchmarks
correspond to the ones considered also in our previous work [40].

We obtain the results with three different approximation levels. First we considered only
the contribution to the friction coming from local equilibrium effects (i.e. the contributions
coming from the gluon and light quark plasma), obtaining the results shown in round
parentheses in table 2. As a second step we included the out-of-equilibrium contributions due
to the top quark (results in square brackets). Finally, we determined the full result including
also the out-of-equilibrium effects coming from the W bosons.

The first two approximation levels were already considered in ref. [40] (although only
considering the linearized form of the Boltzmann equation), and our new results are compatible
with the old ones. The inclusion of the out-of-equilibrium top contributions determines large
corrections to the terminal velocity of the DW, which decreases by ~ 25%, while they have
a milder impact on the width and displacement of the DW.

The inclusion of the out-of-equilibrium effects from W bosons provides additional sizeable
corrections to the velocity of the DW. For the first benchmark a ~ 30% reduction of the DW
velocity is found with respect to the results including only the top quark effects, while for the
second benchmark the reduction is ~ 13%. Milder effects are found on the widths of the DW,
which are modified by 2 — 4%, while the displacement is basically unaffected.

In the left plots in figure 5 we show the total pressure acting on the DW as a function of
the DW velocity for the two benchmark points. The middle and right plots, instead, show the
temperature and velocity profiles as a function of z/Ly. The plots of the friction show that
the W boson contributions amount to 30 — 50% of the top contribution. Analogously to the
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Figure 5. Total pressure as a function of the bubble speed, temperature and velocity profiles as
function of z/Lj, for the two benchmark models reported in table 2 (BP1 on the upper row, BP2 on
the lower row). The greed solid lines are obtained by neglecting the out-of-equilibrium perturbations,
red solid lines are obtained by including only the top quark contributions while the black solid lines
correspond to the complete computation with the inclusion of the gauge bosons.

out-of-equilibrium contributions of the top quark, the W boson ones grow linearly with the
DW speed, with mild deviation from the linear behavior only for values of the speed v,, = 0.8.

On the contrary, the impact of the W boson on the temperature and velocity profiles
of the plasma is much milder. The main deviations from the equilibrium contributions are
induced by the top quark effects, which, close to the DW, modify also the qualitative behavior
of the profiles. The W boson corrections, instead, induce small corrections, but do not modify
the qualitative behavior of the profiles. The most relevant feature of the temperature profiles
is the presence of a dip inside the DW in the case of the BP1. Such effect arises from the
energy and momentum exchange between the equilibrium and out-of-equilibrium components
of the plasma. In fact the 73 and 733 entries of the out-of-equilibrium stress-energy tensor
present a peak exactly where the valley is located.

We finally point out that the W boson contribution to the friction is significantly larger
than the size expected by naive scaling. Since the perturbations are mainly sourced by
(m?)’, using eq. (2.5) one naively expects that for a particle species 4, the out-of-equilibrium
contribution to the friction should scale as the fourth power of the mass: F; ~ Nimf. If this
was the case, the impact of W bosons would be ~ 30 times smaller then the top quark one
and hence negligible. The numerical result shows instead that the W boson contribution
is roughly one order of magnitude larger than expected.

The origin of such a discrepancy is related to the IR behaviour of the W bosons. The
presence of a zero Matsubara mode in the bosonic energy spectrum allows for the presence of
states with soft momentum in the plasma. Differently from fermions, the majority of the
boson population in the plasma is soft, with important consequences on the non-equilibrium
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Figure 6. Comparison of the solution of the full Boltzmann equation (black solid lines) and its
linearized version (red solid lines) as function of p, for the top quark (upper row) and W bosons
(bottom row) perturbations. The plots on the left cover the region of the peak inside the bubble
(z=1,p, /T ~ 1, p1 /T, < 2), while the ones on the right show the region of the peak outside the

~

bubble (z =0, p./Tn ~ —1, p1 /T, < 2).

~

properties of the system. In particular, this spoils the naive scaling of the friction, which
remains valid only in the hard region p/T 2 1.

Because the friction arising from the W bosons is dominated by the soft region, the
Boltzmann equation is no longer the appropriate effective kinetic theory to fully describe the
out-of-equilibrium perturbations. Of course it can be used to model the hard momentum
region, but, since most of the friction arises from soft modes, a different effective description
must be used. We will provide more details on this issue in section 4.2.

3.4 Comparison with the solution of the linearized equation

To assess the impact of the quadratic terms in the collision integral, we compare the solution
of the full Boltzmann equation we computed before, with the one obtained from the linearized
equation. We focus on the benchmark point 2, which is characterized by a larger terminal
velocity of the DW and larger values of the out-of-equilibrium perturbations.

The largest deviation from equilibrium are localized in two peak regions. The first one is
inside the true vacuum bubble, just behind the DW (z/L ~ 1), and corresponds to the region
p2/Tn ~ 1 and p, /T,, < 2. The second peak is outside the bubble, z/L ~ 0, and corresponds
to the region p, /T,, ~ —1 and p, /T;, < 2. These two regions provide the main contributions to

~

the out-of-equilibrium friction acting on the DW. As can be seen from figure 6, the quadratic
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terms in the Boltzmann equation have a very small impact in the peak region. Although
df/f ~ 0.2 —0.4 for the top quark, the corrections are almost negligible. Similar results are
found for the W boson distribution. This behavior is due to the accidental suppression of the
quadratic scattering corrections for p/T,, < 1, which we discussed in section 3.1.

Somewhat larger corrections are found in the high-momentum tails of the distributions.
In this case the annihilation contributions to the collision integral become more relevant, thus
the additional suppression of the quadratic scattering terms plays a minor role. Nevertheless
in the vast majority of the momentum configuration the corrections due to the quadratic
terms are at most at the few% level.

Non-negligible corrections are found only far away from the DW in some specific very
high-momentum regions. For instance, order one deviations with respect to the solution
of the linearized equation are present for z/L ~ —5 for p, /T,, ~ 10. In all these regions,
however, the out-of-equilibrium distributions are extremely suppressed, thus the impact of
the corrections on the integrated friction is completely negligible.

For the benchmark point 1, even milder corrections are found, due to the fact that 6 f/f
reaches significantly smaller values (§f/f < 0.1 for the top quark). Although not relevant
for our analysis, we also verified that the corrections due to the non-linear terms are small
for DW velocities larger than the sound speed. For instance, for v, < 0.9 the corrections

~

in the peak regions are < 1%.

~

4 Estimate of theoretical uncertainties

The computation of the bubble wall terminal velocity, as we discussed in the previous
sections, relies on a set of approximations and theoretical simplifications. Their impact on the
determination of the friction acting on the DW and, subsequently, on the terminal velocity
needs to be carefully examined to assess the validity of the numerical results.

Regarding collisions in the plasma, in this work we have only taken into account the
impact of the out-of-equilibrium distributions for the external particles involved in the
annihilation and scattering processes. However, the out-of-equilibrium dynamics is also
relevant for the screening effects [64] and can give rise to instabilities in the plasma [65]. In
our analysis we have neglected the latter non-linear effects as we expect they provide only
a limited impact on the bubble wall velocity.

In the previous section, we showed that the linearization approximation typically used
in solving the Boltzmann equation has only a minor impact on the determination of the
solution for the massive species. We thus expect this to remain true also when non-linear
terms coming from the out-of-equilibrium fluctuations of the light plasma species are taken
into account. Further uncertainties come from the numerical procedure we used, in particular
the decomposition of the collision operator and the choice of a grid for solving the equations.
As we saw in the previous section, these sources of error can be easily kept under control
within our approach, and their error can be reduced to negligible levels (below 1%).

In the following we will try to estimate some additional sources of uncertainty. One of
them affects the way in which we compute the collision operator. To simplify the computation
we neglected the masses of the particles in the equilibrium distributions used in the collision
integral. This approximation can in principle modify the interaction rates on the DW and
inside the bubble.
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As a second aspect, we will reconsider the behavior of IR W bosons and their contribution
to the friction. For this purpose we will adopt a different description of the soft modes,
modelled through a Langevin equation, which can take into account damping effects not
included in the Boltzmann equation [8].

We also mention that, to simplify the computation, we retained in the annihilation and
scattering amplitudes only the leading-log contributions. The impact of this simplification
has been estimated in ref. [66] (see also ref. [51]), where corrections of order few% to the
friction were found. An additional approximation, the impact of which has been already
estimated in the literature [51], amounts to include only 2 — 2 processes in the collision
integral providing a ~ 10% difference with respect to the case where also 1 <+ 2 processes
are considered. For simplicity we have also neglected next-to-leading order processes, whose
effects have been studied in ref. [67]. They could in principle be implemented in our set-up,
although the computation is rather involved.

4.1 Mass in the collision integrals

The first issue we investigate is the impact of the massless approximation, which is vastly
used in the literature to simplify the collision operator by removing its position dependence.
This approximation is well justified for hard particles with |p| > m, but can significantly
modify the local equilibrium distributions of the soft modes with |p| < m. Focusing on the
top and W boson contributions, these effects can become relevant on the DW and in the
broken EW phase inside the bubble, where the Higgs VEV induces masses which are of the
same order of the typical momentum |p| ~ T.

The main impact of the particle masses in the collision operator is expected to come from
the population factors, which depend on the local equilibrium distributions of the particle
species. The impact on the event kinematics and on the amplitudes is instead expected to be
milder, since the thermal masses, which are included in the amplitudes, already provide a
damping of the IR effects. The mass effects in the population factors can be easily taken
into account through the substitution

fo(lk]) = fo(Ep), (4.1)

in the equilibrium distribution function. This replacement must be used in the computation
of the O term and of the brackets.

We first analyze the modifications in the out-of-equilibrium distribution of the top
quark. The restoration of the mass has a different impact depending on the process under
consideration. Annihilation processes become less efficient. Because fo(E;) < fo(|k|), the
population of the top quark is smaller, hence damping the reaction efficiency. On the other
hand the collision rate of scattering processes increases. A smaller population of top quark in
fact increases the size of the factor (1 — fy) multiplying the scattering kernel. The physical
justification is that a smaller “repulsion”, caused by the Pauli’s principle, is present hence
favouring the top quark scattering.

The competition of these two effects induces a small impact on the non-equilibrium
top quark dynamics. Comparing the Q term with the one we obtained in the massless
approximation we find a mild increase of order 2% in the region where p ~ m. Somewhat
larger effects, of order 5%, are found in the bracket terms. We also evaluated the impact
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Figure 7. Plot of the friction integrand as a function of p/T,, at different values of z for the two
benchmark points (BP1 on the left and BP2 on the right).

on the friction exerted by the top quarks on the DW. The inclusion of the masses in the
collision operator determines a reduction of the integrated friction of order 2%, confirming
that the massless approximation for the top quark is well justified.

In the W boson case the impact of the mass is somewhat larger (~ 5%) due to the fact that
the final state population factor is also reduced by a non-vanishing mass. However, this effect
is important in the region p < myy, where the Boltzmann equation can no longer be applied.
In the hard region, instead, where W bosons can still be described using the Boltzmann
equation, the inclusion of the mass is expected to be negligible and W bosons can still be
treated as massless particles. We conclude that the massless approximation provides a good
framework for the study of the non-equilibrium dynamics of the plasma during the EWPhT.

4.2 IR gauge bosons

Finally we focus on the contribution to the friction coming from the soft W boson modes. As
pointed out in ref. [8], the Boltzmann equation is not a good effective kinetic theory to describe
the dynamics of semi-hard and soft gauge bosons in the plasma, i.e. modes with p < g7, but
provides a reliable characterization of the hard modes with p = T'. The main reason is that
the Boltzmann equation does not capture screening and damping effects which dominate the
dynamics of soft modes. The failure to describe soft modes is particularly worrisome, because
such modes induce a substantial contribution to friction arising from W bosons.

Before we discuss a possible alternative description of the soft bosonic modes, we analyze
in some detail the impact of the IR region on the friction within the framework of the
Boltzmann equation. The contribution to the friction is given by

() = NQW /(d\ﬁ! [p[* Omiy (2)

or)? B, 0z Yow (IPl; 2) (4.2)

where 1o denotes the [ = 0 mode in the multipole decomposition of the W boson out-of-
equilibrium distribution d f. The integrand in the above equation can be inspected to quantify
the impact on the friction of different kinematic regions. In figure 7 we show the plot of the
integrand for different choices of the position z and for the two benchmark points BP1 (left
plot) and BP2 (right plot) defined in table 2. A clear feature that we infer from figure 7 is
that the main contribution to the friction arises from the IR region (p < ¢T'). This confirms
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that the Boltzmann equation cannot be used to describe the dynamics of W bosons and a
different effective kinetic theory must be employed to assess the impact of such a species.

We now consider an alternative framework to describe the dynamics of soft gauge bosons.
This issue has been analyzed in refs. [68-70] to determine baryon number violation, further
discussed in refs. [71-75], and applied in ref. [8] to compute the W boson contribution to
the friction acting on a DW.

The key element that is missing in the Boltzmann equation is the fact that the time
evolution of the IR modes is overdamped because of the Landau damping and of the screening
effects that dominate the dynamics of such modes. To take into account these effects one
can describe the time evolution of the distribution function f in the plasma reference frame
through a Langevin equation, namely

Wm%ﬁ B
8 dt

—(p* +miy (W) f +£(1), (4.3)

where m p is the Debye mass of the gauge bosons (which in the SM is m%, = 11g%VT 2/6), while
myy is the mass induced by EW symmetry breaking my = gh/2. The term £(t) corresponds
to a white-Gaussian noise that models the interaction between soft and hard modes.

The Langevin equation in eq. (4.3) correctly describes the soft gauge boson dynamics for
momenta p < g7, but, as we will see later on, still fails to describe ultra-soft modes with
p < g?T. We can use eq. (4.3) to compute the friction arising from the soft modes following
the strategy outlined in ref. [8]. As a first step we split the distribution function in an
equilibrium and an out-of-equilibrium part f = fo+ df. Next we average over the noise to get

mm3, dfo

_ 12
5 a ~ E (4.4)

where we also neglected the derivative of the perturbation. The above equation can be
straightforwardly solved to obtain the expression for the perturbation 4 f:

2
TMHYwVw

@ dmlz/v
16pE3T '

dz dh

of = fo(1+ fo) (4.5)

This expression can be used to compute the integrated friction P,,; which is given by’

IMmALT 11—z
- D / de 4.6
out YwVw 397Ly Jo - x ( )
where the integration variable is z = h/h_. Notice that z = 0 corresponds to z = —oo

while x = 1 corresponds to z = oo.

The above expression is IR divergent. The IR divergence stems from the ultra-soft
particles (p < ¢?T) in the symmetric phase with vanishing mass and signalizes the breakdown
of the effective kinetic theory we used. This is the limitation that we mentioned at the
beginning of our analysis. In the derivation of the Langevin equation it is assumed that the
W bosons can be treated as classical fields given the large occupation number of the soft
region. When quantum effects become relevant, as for the ultra-soft particles, the effective

SDifferently from ref. [8] we set Ny = 9.
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kinetic theory breaks down since the particle wavelength is comparable with the width of the
wall A ~ L. To remove the IR divergence we set a cut-off z1g in the integration in eq. (4.6),
as done in ref. [8], which amounts to neglect the contribution of ultra-soft particles in the
symmetric phase. Since we can express the condition A < L as

mW(h)Lh > 1, (4.7)

the IR cut-off xg is

1

4.8
o (4.8)

TIR =
where with myy_ we denoted the mass of gauge bosons in the broken phase, namely myy_ =
mw(z = +00).

The integrated friction computed using eq. (4.6) is smaller than the one obtained from
the solution of the Boltzmann equation. Comparing with this case, the Langevin equation
predicts that the W bosons provide a friction 2 times smaller for the benchmark point BP1
and 6 times smaller for BP2. In addition, using eq. (4.6) we find that W bosons contribute
to the 20% and 5% of the total friction for BP1 and BP2 respectively. These results however
are affected by an intrinsic uncertainty. The pressure in eq. (4.6) is very sensitive to the
exact value of z1g in eq. (4.8) since halving the value of the cut-off doubles the integrated
friction. This corresponds to a large theoretical error on the friction. Assuming a 100%
relative uncertainty on the exact value of the integrated friction arising from W bosons
we can then estimate a relative error on the real value of the out-of-equilibrium friction as
20 — 30% for the first benchmark point and a 5 — 10% for the second one. This translates
to a large uncertainty on the final value of the terminal velocity that can be refined only
by an improved characterization of the IR plasma dynamics.

Providing such an improved theory is a difficult challenge. On the one hand it would
require to improve our description of the IR dynamics of hot gauge theories which is still not
completely understood. On the other hand, for the case of the EWPhT, such an improved
theory should also account for the quantum corrections using the Schwinger-Keldysh-Kadanoft-
Baym formalism which is far more complicated than the Boltzmann equation.

5 Conclusions

In this work we presented a new methodology for the determination of the full solution
of the Boltzmann equation in the presence of a DW. The study is extremely relevant
for the computation of the speed and the width of bubbles nucleated during a FOPhT in
the early Universe. In particular, the bubble speed controls both the size and the shape
of the stochastic background of gravitational waves produced in a FOPhT and, as such,
determines the observability of the signal at current and future interferometers. The paper
presents a comprehensive study, discussing the theoretical background and outlining a reliable
computational strategy for accurately determining the parameters mentioned above. With
respect to the existing literature, we made significant strides in several directions.

We went beyond the usual linear approximation of the Boltzmann equation by including
non-linearities in the out-of-equilibrium distribution functions. We showed that the impact
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of such corrections is under control in the benchmark scenarios explored in the paper (about
1% at the peak of the perturbations and a few % at the tails), which suggests that the use of
a linearized Boltzmann equation in the context of cosmological FOPhTs is acceptable.

We exploited the rotational invariance of the kernels in the collision integral enabling
the use of a spectral decomposition on a basis of spherical harmonics. This proves to be
crucial for both the efficiency and the numerical stability of the algorithm. Indeed, we found
that retaining only up to [ = 10 multipoles is sufficient to achieve a precision of ~ 2 — 4%
in the evaluation of the kernels, which corresponds to ~ 1% uncertainty in the collision
integral. The reconstruction precision can be systematically improved by simply enlarging
the decomposition basis. Furthermore, the multipole expansion provides a way to gain more
insights on the structure of the Boltzmann equation showing, for instance, the presence
of a clear hierarchy in the modes and allowing for a semi-analytical solution in the range
characterized by large collision rates.

We included the contributions of the EW gauge bosons which were often overlooked
in previous studies. We showed, instead, that such contributions, dominated by the soft
modes in the distribution functions, are numerically relevant and give rise to corrections to
the friction of approximately ~ 30 — 50% with respect to those of the top-quark, about an
order of magnitude larger than what naively expected by simple scaling arguments. This
amounts to a reduction of the bubble speed of ~ 10 — 30%, as found in the two benchmark
points studied here. As the Boltzmann equation fails to fully account for the dynamics of
soft modes, we also employed a Langevin equation to describe the regime defined by p < ¢gT'
. It is worth mentioning that the applicability of the latter does not extend to ultra-soft
modes for which a satisfactory effective kinetic theory is currently absent. We defer this
investigation to a future work.

Lastly, we estimated the impact of different sources of theoretical uncertainties. In
particular, we found that neglecting the space-dependent mass term in the collision integral,
which greatly simplifies the evaluation of brackets, amounts to ~ 2% effects on the friction.
Due to the ultra-soft modes in the gauge boson distributions, the integrated friction is affected
by an IR divergence in the symmetric phase. The impact of the IR cut-off is the largest
source of theoretical uncertainty and amounts to ~ 5 — 30% to the out-of-equilibrium friction.
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