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Based on the newly developed RMF-CMR theory by combining relativistic mean field (RMF) with 
complex momentum representation (CMR), we have explored the single particle resonant states, and 
their pseudospin and spin symmetries for Pb isotopes. The available energies and widths decrease 
monotonously with the increasing mass number in accompany with clear shell structure including the 
appearance of magic number N = 184. The extracted pseudospin and spin splittings become smaller for 
the neutron-richer nuclei. The extent of the splittings depends on the quantum numbers and position of 
the states lying in mean field. Good pseudospin and spin symmetries are expected in the neutron-rich 
nuclei and the states with lower orbital momentum and lying near the continuum threshold. Especially, 
it is found that both lower (upper) components of the every pseudospin (spin) doublet look similar for 
not only bound states but also resonant states, which confirms the presence of the pseudospin (spin) 
symmetry although the corresponding energy splitting is slightly large.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is well known that the spin and pseudospin symmetries play 
important role at nuclear structure [1–4]. The breaking of spin 
symmetry between the doublets marked by the quantum num-
bers (n, l, j = l ± 1/2) has clarified the existence of magic num-
bers [5,6]. The quasi-degenerate states with the quantum numbers 
(n, l, j = l + 1/2) and (n − 1, l + 2, j = l + 3/2) regarded as pseu-
dospin doublets (ñ = n, ̃l = l + 1, ̃j = l̃ ± 1/2) [7–9] have explained 
numerous nuclear phenomena, such as identical bands [10,11], 
pseudospin partner bands [12,13], shape coexistence in the 78Ni 
region [14], and so on.

Since the success of pseudospin symmetry (PSS) in explaining 
various nuclear phenomena, much effort is devoted to explore the 
origin of this symmetry. Based on the relativistic mean field the-
ory (RMF), Ginocchio has made a substantial progress [15], and 
pointed out that this symmetry is a relativistic symmetry, which 
arises from an approximate equality in magnitude of the scalar S
and vector V potentials, but opposite sign. When V + S = 0, this 
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symmetry is exact. Meng et al. extended the condition to a general 
case V + S = const in the pseudospin symmetry limit [16]. To clar-
ify the relativistic origin of PSS, the SU(2) algebra was established 
for the Dirac Hamiltonian [17], just like that of spin symmetry [18]. 
In the (pseudo)spin symmetry limit, the Dirac Hamiltonian with 
special potentials was shown to possess U(3) symmetry [19] and 
chiral symmetry [20,21]. The supersymmetric description of the 
Dirac Hamiltonian was presented in Refs. [22,23]. The nonpertur-
bation nature of PSS was recognized in Refs. [24,25].

Despite these researches, the origin of pseudospin symmetry 
has not been fully understood. In Refs. [26,27], we have applied 
the similarity renormalization group (SRG) to transform the Dirac 
Hamiltonian into a diagonal form. Based on the diagonal Dirac 
Hamiltonian, the quality of pseudospin approximation is shown 
to be related to the competition between the spin-orbit coupling 
and dynamical effect [28–30]. In combination with supersymmet-
ric quantum mechanics and perturbation theory, this Hamiltonian 
has been used to investigate the nonperturbation nature of PSS [31,
32], and the isospin asymmetry of PSS [33]. More researches on 
the PSS can be found in these reviews [1,2] and references therein. 
Recent progresses include spin and pseudospin symmetries in the 
single-� spectrum [34], temperature effects on nuclear pseudospin 
symmetry in the Dirac-Hartree-Bogoliubov formalism [35], spin 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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symmetry in the Dirac sea derived from the bare nucleon-nucleon 
interaction [4]. An extension and optimization of SRG for expan-
sion of Dirac Hamiltonian is discussed in Ref. [36].

These investigations on the pseudospin symmetry focus mainly 
on the single particle spectrum of bound states in stable nuclei. In 
recent years, the nuclei far from the stability line have received ad-
ditional attention for appearance of many exotic phenomena [37]. 
One of the most interesting phenomena is the disappearance of 
traditional magic numbers and occurrence of new magic num-
bers, where the spin and pseudospin symmetries play important 
role [38,39]. Considering that the change of magic numbers occurs 
in the weakly bound nuclei, and is very related to the level struc-
ture of resonant states [40], it is necessary to explore the resonant 
states. At present, several methods have been developed for res-
onant states, such as R-matrix method [41], S-matrix theory [42], 
Jost function approach [43,44], the analytical continuation of the 
coupling constant method [45–48], Green’s function method [49,
50], the complex scaling method [51–53], and the complex-scaled 
Green’s function method [54–58]. In comparison with these meth-
ods, the complex momentum representation (CMR) holds many 
advantages including that the bound states and resonant states can 
be treated on an equal footing, and narrow resonances and broad 
resonances can be obtained simultaneously. More advantages can 
be found in Refs. [59,60].

Due to the advantages of CMR, we have combined the CMR 
with RMF [59], and established the RMF-CMR theory. The RMF-
CMR theory is able to describe self-consistently nuclear bound 
states and resonant states in the relativistic framework. In this pa-
per, we apply the RMF-CMR theory to explore the single particle 
resonant states and check the corresponding pseudospin symmetry 
in comparison with the bound states for Pb isotopes. Considering 
the spin symmetry, which play important at nuclear shell struc-
ture, holds the same origin as the pseudospin symmetry [28,59], 
we have also checked the spin symmetry for the available bound 
and resonant states in Pb isotopes. In Sec. 2, we sketch the theo-
retical formalism. The numerical details and results are presented 
in Sec. 3. A summary is given in Sec. 4.

2. Formalism

In order to investigate the (pseudo)spin symmetry in resonant 
states, we introduce the theoretical formalism of the RMF-CMR 
theory. In the RMF theory [61–63], nucleons are described as Dirac 
particles interacting via the exchange of various mesons (σ , ωμ , 
and ρμ), and photons, the Lagrangian density of the model can be 
written as

L = ψ̄
(
iγμ∂μ − M

)
ψ + 1

2
∂μσ∂μσ − U (σ ) − 1

4
	μν	μν

+1

2
m2

ωωμωμ − 1

4
�Rμν �Rμν + 1

2
m2

ρ �ρμ �ρμ − 1

4
Fμν F μν

−ψ̄
(

gσ σ + gωγμωμ + gργμ �τ �ρμ + eγμ Aμ
)
ψ, (1)

where M is nucleon mass and ψ is Dirac spinor. mσ , mω , and 
mρ are the masses of the respective mesons. The coupling con-
stants are gσ , gω , and gρ , respectively. Aμ is the photon field. 
The non-linear couplings of the scalar meson (σ ) read U (σ ) =
1
2 m2

σ σ 2 + 1
3 g2σ

3 + 1
4 g3σ

4. Based on the Lagrange density, the Dirac 
equation is written as[�α · �p + β (m + S) + V

]
ψi = εiψi, (2)

for nucleons with the scalar and vector potentials{
S
(�r) = gσ σ

(�r) ,

V
(�r) = g ω0

(�r) + g τ ρ0
(�r) + e A0

(�r) .
(3)
ω ρ 3
In order to obtain the solutions of bound states and resonant 
states, the equation (2) is transformed into momentum represen-
tation∫

d�k′ 〈�k∣∣∣ H
∣∣∣�k′〉ψ (�k′) = εψ

(�k
)

, (4)

where H = �α · �p + β
(
m + S

(�r)) + V
(�r). For spherical nuclei, the 

momentum wavefunction ψ
(�k

)
can be assumed as

ψ
(�k

)
=

(
f (k)φl jm j (	k)

g(k)φl̃ jm j
(	k)

)
, (5)

so the Dirac equation for a spherical system becomes{
M f (k) − kg(k) + ∫

k′2dk′V+
(
k,k′) f (k′) = ε f (k),

−kf (k) − Mg(k) + ∫
k′2dk′V _

(
k,k′) g(k′) = εg(k),

(6)

with

V+
(
k,k′) = 2

π

∫
r2dr [V (r) + S (r)] jl

(
k′r

)
jl (kr) , (7)

V−
(
k,k′) = 2

π

∫
r2dr [V (r) − S (r)] jl̃

(
k′r

)
jl̃ (kr) . (8)

By solving the above equations in complex momentum space, 
the bound and resonant states are obtained simultaneously. The 
details can be seen in Ref. [59]. The upper and lower components 
of wavefunctions in coordinate representation can be calculated by 
the following formulas⎧⎨
⎩

f (r) = il
√

2
π

∫
k2dkjl (kr) f (k),

g(r) = il̃
√

2
π

∫
k2dkjl̃ (kr) g(k).

(9)

3. Result and discussion

With the formalism presented above, we explore the single par-
ticle resonant states and their pseudospin and spin symmetries for 
Pb isotopes. The calculated energies for resonant states are dis-
played in Fig. 1 with several bound levels for comparison. With 
the increasing of mass number from A = 190 to 220, the reso-
nance energies decrease monotonically. This trend is in accordance 
with that of bound states near the continuum threshold, but dif-
fers from that of the deeply bound states. Similar to the bound 
levels, there appear several large energy gaps in the resonant lev-
els including the traditional magic number N = 184. Several new 
energy gaps in N = 224 and N = 250 expect to be confirmed in 
experiment. With the development towards the neutron rich nu-
clei, there appear the level crossings near the zero energy surface, 
which is helpful to understand the evolution from the bound states 
to the resonant states.

The available widths of resonant states are displayed in Fig. 2. 
With the increasing of mass number, the widths decrease mono-
tonically. Widths for broader resonant states, such as these states 
2i11/2, 2i13/2, 3 f5/2, and 3 f7/2, decrease rapidly than those for 
narrower resonant states. Similar to the energies, there appear sev-
eral gaps among the widths, as seen the gap between the levels 
2i11/2 and 3 f5/2, and that between the levels 3 f7/2 and 1k15/2. 
This knowledge on widths is useful to understand the exotic phe-
nomena in nuclei because it reflects the stability of resonant states.

Based on these available energies and widths, we explore the 
pseudospin and spin symmetries in resonant states. In Refs. [64,
50], the pseudospin symmetry in resonant states has been investi-
gated by solving the Dirac equation with Woods-Saxon type poten-
tial by ACCC approach [64] and Green’s function method [50]. The 
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Fig. 1. The neutron single particle energies as a function of mass number in Pb 
isotopes. The labels of single particle states are marked in the right side and that of 
the five states near the continuum threshold are marked above of these levels with 
the corresponding colors.

Fig. 2. The same as Fig. 1, but for the resonance widths.

parameters of Woods-Saxon potential are determined by fitting the 
mean field from the RMF calculations for 208Pb. Considering that 
the RMF theory is appropriate to not only stable nuclei but also 
exotic nuclei, and CMR method is effective for not only narrow res-
onances but also broad resonances, the RMF-CMR theory should be 
more reliable for the exploration of resonant states and relativistic 
symmetries in real nuclei.

The energy and width splittings between the doublets near the 
continuum threshold and their evolutions to mass number are pre-
sented in Fig. 3 for the eight pseudospin doublets 3p̃, 2d̃, 2 f̃ , 2g̃ , 
1g̃ , 1h̃, 1ĩ, and 1 j̃. Over the Pb isotopes considered here, 2g̃ , 1ĩ, 
and 1 j̃ are resonant pseudospin doublets, and 2d̃, 1g̃ , 1h̃ are bound 
pseudospin doublets, while 3p̃, 2 f̃ evolve from resonant states to 
bound states with the increasing of mass number.

For every resonant pseudospin doublet except for these states 
very close to the zero energy surface, the energy of the pseudospin 
Fig. 3. The energy and width splittings of pseudospin doublets in Pb isotopes. The 
filled and opened labels respectively denote the resonant and bound states.

unaligned state is smaller than that of the pseudospin aligned 
state, i.e., En,l, j=l+1/2 < En−1,l+2, j=l+3/2, which is opposite to that 
of the bound states. With the increasing of mass number, the pseu-
dospin energy splittings for resonant states become small, while 
those for bound states become large. A good pseudospin symmetry 
for resonant states is expected in the neutron-rich nuclei. For the 
pseudospin doublets very close to the zero energy surface, such 
as the doublets (4s1/2, 3d3/2) and (3d5/2, 2g7/2), the pseudospin 
energy splitting is very small and insensitive to isospin. Namely, 
the pseudospin symmetry is better for these doublets closer to the 
zero energy surface.

For the resonant pseudospin doublets with the same radial 
quantum number n, the pseudospin energy splittings are smaller 
for the doublets with lower angular momentum. For example, the 
energy splitting between the pseudospin doublet (2h11/2, 1 j13/2) 
is a half smaller than that of the doublet (2i13/2, 1k15/2). The re-
sult is opposite to that of the bound pseudospin doublets, as seen 
that the energy splitting between the pseudospin doublet (2 f7/2, 
1h9/2) is 2 MeV larger than that of the doublet (2g9/2, 1i11/2). For 
the pseudospin doublets with the same orbital angular momen-
tum l̃, the pseudospin energy splitting is different for the doublets 
with different radial quantum number n. For example, the pseu-
dospin energy splitting between the bound doublet (2 f7/2, 1h9/2) 
is greater than zero, while that between the resonant doublet 
(3 f7/2, 2h9/2) is smaller than zero.

Different from the energy splittings, the pseudospin width split-
tings decrease monotonously with the increasing mass number. For 
every pseudospin doublet, the width of pseudospin unaligned state 
is larger than that of pseudospin aligned states, i.e., �n,l, j=l+1/2 >

�n−1,l+2, j=l+3/2. It indicates that the pseudospin aligned state is 
more stable than the corresponding pseudospin unaligned state. 
For the pseudospin doublets with the same radial quantum num-
ber n, the width splittings between the pseudospin doublets with 
higher orbital angular quantum are larger than that with lower 
orbital angular quantum, which is in accordance with the pseu-
dospin energy splittings. These indicate the quality of pseudospin 
symmetry is correlated with the quantum numbers of single par-
ticle states, isospin, and position of the states lying in the mean 
field. A good pseudospin symmetry is inclined to these states with 
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Fig. 4. The same as Fig. 3, but for the spin doublets. The filled and opened labels 
respectively denote the resonant and bound states.

lower orbital momentum and lying near the continuum threshold. 
The conclusion is in agreement with that obtained in Refs. [64,50].

For comparison, we have also investigated the spin symme-
try in resonant states. The energy and width splittings between 
the spin doublets are shown respectively in the upper and lower 
panels in Fig. 4. For every spin doublet, the energy of the spin 
unaligned state with the quantum numbers (n, l, j = l − 1/2) are 
larger than that of the spin aligned state with the quantum num-
bers (n, l, j = l + 1/2). With the increasing of mass number, the 
spin energy splitting decreases with a few exceptions. For the reso-
nant spin doublets with the same radial quantum number, such as 
these doublets (2h9/2, 2h11/2) and (2i11/2, 2i13/2), the spin energy 
splittings decrease with the increasing orbital angular momentum, 
which is opposite to that of the bound states as seen in these 
doublets (1 f5/2, 1 f7/2) and (1i11/2, 1i13/2). Moreover, the energy 
splittings between the resonant spin doublets are relatively small 
in comparison with that of the bound states with the (3d3/2, 3d5/2) 
exception, which is very close to the zero energy surface.

Similar to the energy, the width of the spin unaligned state 
with the quantum numbers (n, l, j = l − 1/2) is larger than that of 
the spin aligned state with the quantum numbers (n, l, j = l +1/2), 
which is similar to that of pseudospin doublet. The width splittings 
decrease with the increasing of mass number with a bit excep-
tion like the doublet (3 f5/2, 3 f7/2) in 204Pb. For the resonant spin 
doublets with the same radial quantum number, for examples the 
doublets (2h9/2, 2h11/2) and (2i11/2, 2i13/2), the width splittings 
increases with the increasing orbital angular momentum. These in-
dicate the quality of spin symmetry is also related to the quantum 
numbers of single-particle states, isospin, and position of the state 
lying in mean field. A good spin symmetry is expected in these 
doublets with lower orbital angular momentum and lying near the 
zero energy surface.

The previous result show, except for these states very close to 
the zero energy surface, that the energy (width) splittings between 
the pseudospin doublets are considerably large for all the available 
resonant states. Similar case also appears in the spin doublets. To 
find out whether there are the pseudospin and spin symmetries in 
these resonant states, it is necessary to compare the wave func-
tions of these doublets.
Fig. 5. Real parts of the upper components of Dirac spinors for the resonant pseu-
dospin doublet (2h11/2, 1 j13/2) in 190Pb, 200Pb, 210Pb, and 220Pb.

Fig. 6. The same as Fig. 5, but for the lower component of Dirac spinors.

Real parts of the upper components of Dirac spinors for the 
pseudospin doublet (2h11/2, 1 j13/2) are plotted in Fig. 5. The upper 
component of the state 2h11/2 is different from that of the state 
(1 j13/2) for all the Pb isotopes considered here. Nevertheless, the 
number of radial nodes satisfies the relation n(κ < 0) = n(κ > 0) +
1 within the region of r < 15 fm, which means the existence of 
pseudospin symmetry, as indicated in Refs. [3,65] for the bound 
pseudospin doublets.

As the pseudo-orbital angular momentum is this orbital angu-
lar momentum of the lower component of Dirac spinors [15], the 
two lower components of pseudospin doublet are identical in the 
exact pseudospin symmetry limit. Hence, to judge the existence of 
pseudospin symmetry, it is necessary to compare the similarity of 
the lower components of pseudospin doublet. For this reason, we 
have plotted the lower components of Dirac spinors for the dou-
blet (2h11/2, 1 j13/2) in Fig. 6, where the negligible imaginary parts 
are omitted. In addition to the difference in magnitude, the two 
lower components look very similar, which confirms the existence 
of pseudospin symmetry in the resonant doublets.

For comparison, we have also plotted the wave function of the 
pseudospin doublet for bound states. The upper components of 
Dirac spinors for the doublet (2g9/2, 1i11/2) are shown in Fig. 7. 
Similar to the resonant pseudospin doublet (2h11/2, 1 j13/2), there 



X.-X. Shi et al. / Physics Letters B 801 (2020) 135174 5
Fig. 7. The upper components of Dirac spinors f (r) for the bound pseudospin dou-
blet (2g9/2, 1i11/2) in 190Pb, 200Pb, 210Pb, and 220Pb.

Fig. 8. The same as Fig. 7, but for the lower component of Dirac spinors g(r).

are significant difference in the two upper components of Dirac 
spinors. But the radial-node number satisfies the same relation 
n(κ < 0) = n(κ > 0) + 1 within the region of r < 15 fm, which 
means the existence of pseudospin symmetry, as indicated in 
Refs. [3,65]. Because the (2g9/2, 1i11/2) are bound states, the spa-
tial convergence of wave functions is very well, the relation of 
radial node number is better satisfied. These mean that the upper 
components of wave functions meet the condition of pseudospin 
symmetry in resonant states as well as bound states.

Considering that the similarity of the lower components of 
Dirac spinors is a direct criterion of pseudospin symmetry, we 
compare the lower components of Dirac spinors for the bound 
pseudospin doublets (2g9/2, 1i11/2), which are plotted in Fig. 8. 
Compared with the resonant doublets (2h11/2, 1 j13/2), the lower 
components of Dirac spinors (2g9/2, 1i11/2) are more similar, 
which indicates that the pseudospin symmetry in the bound dou-
blet (2g9/2, 1i11/2) is better than that in the resonant doublet 
(2h11/2, 1 j13/2). The conclusion is supported by the single particle 
levels, the energy splitting between the doublet (2g9/2, 1i11/2) is 
almost a half of that of the doublet (2h11/2, 1 j13/2), which can be 
seen in Fig. 3 over the Pb isotopes considered here. These indicate 
there are good pseudospin symmetry in resonant states and bound 
states although their energy splittings are quite large. Compared 
Fig. 9. Real part of the upper components of Dirac spinors f (r) for the resonant 
spin doublet (2h9/2, 2h11/2) in 190Pb, 200Pb, 210Pb, and 220Pb.

Fig. 10. The same as Fig. 9, but for the lower component of Dirac spinor g(r).

with resonant states, the wave functions of bound states satisfy 
better the pseudospin symmetry.

Similar to the pseudospin symmetry, the energy (width) split-
tings between the spin doublets are rather large for all the avail-
able resonant states except for those very close to the zero energy 
surface. To clarify whether there is a spin symmetry in these reso-
nant states, it is necessary to compare the wave functions of these 
spin doublets.

As the upper components of Dirac spinors for every spin dou-
blet are identical in the spin symmetry limit, to check the similar-
ity of the upper components is helpful to understand the quality 
of spin symmetry. The upper components of the Dirac spinors for 
the doublet (2h9/2, 2h11/2) are shown in Fig. 9. Although there 
are large difference in magnitude, the two upper components look 
similar. Namely, the spin symmetry is reserved for all the Pb iso-
topes considered here.

Compared with the upper components, the difference between 
the two lower components is considerably significant, as seen in 
Fig. 10 for the doublet (2h9/2, 2h11/2). But, their radial node num-
ber meets the relation n(κ > 0) = n(κ < 0) + 1, which means the 
existence of spin symmetry.

For comparison, we have also plotted the wave functions for 
the bound spin doublet. The upper components of the spin dou-
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Fig. 11. The upper components of Dirac spinors f (r) for the bound spin doublet 
(2g7/2, 2g9/2) in 190Pb, 200Pb, 210Pb, and 220Pb.

Fig. 12. The same as Fig. 11, but for the lower components of Dirac spinor g(r). 
To show clearly the relation of radial node number, an inset is added in the fourth 
subfigure.

blet (2g7/2, 2g9/2) are shown in Fig. 11. From the figure, it can be 
seen that the two upper components are very similar. From the 
point of view of wave functions, the two states hold good spin 
symmetry although their energy splitting is considerately large. 
In comparison with the resonant spin doublet (2h9/2, 2h11/2), the 
spin symmetry in the bound spin doublet (2g7/2, 2g9/2) is better.

Similar to the resonant states, the lower components of bound 
states between the spin doublets are also different, as seen in 
Fig. 12 for the spin doublet (2g7/2, 2g9/2). The detailed observa-
tion shows their radial node number satisfies the same relation as 
that of the resonant spin doublet (to see the inset in the forth sub-
figure in Fig. 12), which supports the spin symmetry in the lower 
components of Dirac spinors for bound states.

In conclusion, although there are large pseudospin and spin en-
ergy splittings, the wave functions of these doublets satisfy well 
the conditions of the corresponding pseudospin and spin symme-
tries regardless of bound or resonant states, which confirms the 
inference in Ref. [50].
4. Summary

The level structure of single particle resonant states is one 
of the important characteristics reflecting nuclear shell structure 
especially for exotic nuclei. We apply the RMF-CMR theory to 
explore the single particle resonant states and their pseudospin 
and spin symmetries for Pb isotopes. The available energies and 
widths of resonant states decrease monotonically with the increas-
ing mass number in accompanying with clear shell structure in-
cluding the appearance of the traditional magic number N = 184. 
The extracted pseudospin and spin splittings are correlated with 
the quantum numbers of single particle states and position of the 
states lying in mean field. For the pseudospin doublets with the 
same radial quantum number, the energy splittings decrease with 
the increasing orbital angular momentum. The same case also ap-
pears in the spin doublets. However for the width, the evolution 
of spin splitting to the orbital angular momentum is opposite to 
that of pseudospin splitting. The pseudospin and spin symmetries 
are also related to the isospin, the energy and width splittings be-
tween the pseudospin (spin) doublets decrease with the increasing 
neutron number in Pb isotopes. Compared with the bound states, 
the pseudospin (spin) energy splittings of resonant states are rela-
tively large (small). Good pseudospin and spin symmetries appear 
in these states very close to the zero energy surface.

Although the pseudospin and spin energy splittings are a bit 
large for these states far slightly from the zero energy surface, the 
wave functions satisfy the corresponding symmetries. For every 
pseudospin doublet, the lower components of Dirac spinors look 
very similar, and the upper components of Dirac spinors satisfy the 
radial node relation n(κ < 0) = n(κ > 0) + 1. These indicate there 
is pseudospin symmetry. Compared with bound states, the pseu-
dospin symmetry in resonant states is relatively worse. For every 
spin doublet, the upper components of Dirac spinors are similar, 
and the lower components of Dirac spinors satisfy the radial node 
relation n(κ > 0) = n(κ < 0) + 1. These mean there is spin symme-
try. In comparison with the resonant states, the spin symmetry in 
the bound states is better.

In conclusion, the available single particle resonant levels in 
Pb isotopes appear clear shell structure. Although the energy and 
width splittings between the pseudospin (spin) doublets are rela-
tively large, the symmetries are reserved well in their wave func-
tions. The quality of pseudospin (spin) symmetry is correlated with 
the quantum numbers of single-particle states, isospin, and posi-
tion of the states lying in mean field. Good pseudospin and spin 
symmetries are expected in the neutron-rich nuclei and these dou-
blets with lower orbital angular momentum and lying near the 
zero energy surface.
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