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ABSTRACT: We study how coarse-graining procedure of an underlying UV-complete quan-
tum gravity gives rise to a connected geometry. It has been shown, quantum entangle-
ment plays a key role in the emergence of such a geometric structure, namely a smooth
Einstein-Rosen bridge. In this paper, we explore the possibility of the emergence of similar
geometric structure from classical correlation, in the AdS/CFT setup. To this end, we
consider a setup where we have two decoupled CFT Hilbert spaces, then choose a random
typical state in one of the Hilbert spaces and the same state in the other. The total state
in the fine-grained picture is of course a tensor product state, but averaging over the states
sharing the same random coefficients creates a geometric connection for simple probes.
Then, the apparent spatial wormhole causes a factorization puzzle. We argue that there
is a spatial analog of half-wormholes, which resolves the puzzle in the similar way as the
spacetime half-wormbholes.
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1 Introduction and summary

Recent studies show wormholes capture important non-perturbative aspects of gravity. For
example, in order for the semi-classical description of a black hole to be consistent with
the principle of quantum theory, we necessarily include replica wormholes into the relevant
gravitational path integrals [1, 2](see for example [3-7]). Wormholes also play a significant
role in AdS/CFT correspondence [8]. If we take a boundary with two disjoint components,
M1 UMas, then its dual bulk geometry naturally contains wormholes connecting these two
disjoint components. This apparently looks like a puzzle, because inclusion of such a bulk
wormbhole to the gravitational path integral, according to the bulk to boundary dictionary,
implies the partition function of the boundary theory is not factorized to the contributions
of each components M; and Ms. This has been well-known as the factorization prob-
lem [9]. A resolution suggested was that the presence of wormholes in the bulk leads to



an ensemble of field theories on the boundary, instead of a single field theory. This rela-
tion between wormholes in the bulk and the ensembles on the boundary was manifested in
the correspondence between two-dimensional JT gravity and random matrix theory [10],
also in a theory of topological gravity [11]. These wormholes are all Euclidean, and are
sometimes referred to as spacetime wormholes.

In this paper, we consider another averaging operation, namely averaging over some set
of states in a fized theory, and discuss its dual gravity interpretation. Such state averaging
naturally fits into the usual framework of AdS/CFT correspondence which relates a single
quantum field theory on the boundary to a theory of gravity in the bulk. Moreover,
averaging over states is a natural operation from low energy effective theory point of view,
therefore it provides an efficient framework to study quantum dynamics of black holes [12—
15]. Indeed, distinguishing two typical states requires measurement with enormously high
energy, which is impossible for low energy observers. This is one of the fundamental
principles of statistical mechanics. Parallel to this, in the bulk side, since we do not know
the microscopic details of quantum theory of gravity, we are forced to employ a coarse-
grained description which naturally leads to the aforementioned state averaging. Refer
to [16—22] for recent work in this direction.

A natural choice of such an ensemble is provided by a class of states called canonical
thermal pure quantum (TPQ) states [23, 24],

|Yg) = \/726 $22 " ny, (1.1)
where ¢, are random variables drawn from a particular distribution. Naively, we expect
such TPQ states are realized naturally via time evolution in a chaotic system. There is
a related concept such as eigenstate thermailzation hypothesis(ETH) [25-27]. We review
these ingredients in section 2 and also discuss the relation between them from time to time.

One of the aims of this paper is to elucidate the relation between averaging over states
in a fixed theory and spatial wormholes in its dual gravity description. Spatial worm-
holes constitute another class of wormholes, and they are distinguished from the spacetime
wormholes related to averaging over theories. A spacetime wormhole is a Euclidean man-
ifold that connects two Euclidean boundaries, whereas a spatial wormhole can exist in a
spacetime with a Lorentzian signature without violating causality. An example of a spa-
tial wormhole is an Einstein-Rosen bridge of a two-sided black hole, which connects two
asymptotic regions.

Emergence of Einstein-Rosen bridge from classical correlations. Our discussion
is also motivated by the relation between quantum entanglement and the geometric struc-
ture of spacetime. In the light of AdS/CFT correspondence, maximally extended AdS-
Schwarzschild blackhole which has a spatial wormhole is dual to thermofield double (TFD)
state [28-30],

prr(B) = [TEDs} (TFDs,
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where |ny r) correspond to energy eigenstates in the dual conformal field theories on the
left and right boundaries, with the Hilbert spaces Hg, Hr." This is a concrete realization
of the so-called ER=EPR proposal [31]. This proposal suggests that the entanglement in
the boundary theory is necessary to obtain a smooth spacetime connection on the gravity
side. This suggestion brings up a naive but important question: does this mean we can see
spatial wormholes only when we have quantum entanglement? This question has been also
addressed in [32, 33].

In this paper, we argue that the low energy observer sharing a copy of TPQ states
can see the illusion of spatial wormholes. To show this, we first place a TPQ state [13)
to the right Hilbert space Hpg, and its copy to the left Hilbert space Hy, so that the
total state is the product of them |¥g) = [igr) @ [¢jg) . This is a factorized state,
so there is no quantum correlation between left and right, in the fine-grained viewpoint.
For example, if we compute a two-point function between the left and the right, it gets
factorized, (Vs|OLORr|Vs) = (5| OL [¢s) (¥5| Or |17). However, if the observer can only
perform low energy experiments, the observables such as the above two-point function
must be averaged over the random variables which appear in the definition of the TPQ
states (1.1). We will show, this averaging generates the correlation between the left and the
right, which mocks up quantum entanglement, at least for certain low energy operators.
For more detail, please see section 3.1.

In the bulk point of view, the presence of the correlation between the left and the
right due to the state averaging signals the emergence of a spatial wormhole connecting
two asymptotic regions. This is analogous to the fact that averaging over theories yields a
spacetime wormhole in the bulk. Operationally, such states can be prepared by using the
local operation and classical communication (LOCC) where we cannot gain any quantum
entanglement. More precisely, this is archived by first preparing the set of random variables
{cn}, and distribute it to both the left and the right system. Thus, we can view it as a
spatial wormhole as a consequence of classical correlation in the dual field theory. We
discuss this in section 3.2.

This wormhole is a non-perturbative effect: it is not always a dominant saddle as
spacetime wormbholes in the spectral form factor [34]. Although we can compute this con-
tribution in a semi-classical way, we have to say this cannot have a macroscopic geometric
dual in the usual sense. That is, if the correlation develops a macroscopic wormhole, the
entanglement entropy should be proportional to GJ_\,I, since this entropy is given by the
cross section of the wormhole divided by 4G . However, in section 3.3, we will show that
the entanglement entropy obtained in this way is at most G&lefl/ GN even if we start from
a coarse-grained state. This indicates that the present wormhole created by the classical
correlation between the two systems and averaging over the states cannot be macroscopic.

Factorization puzzle for low energy observers and “spatial half~-wormhole”. If
a spatial wormhole exists in the bulk, a two-point function between the left and the right

'To be precise, we have to introduce |n}) = © |ng) instead of |nr), where © is a CPT-like map which
exchanges the left and right systems and reverses time. In this paper, we will be a bit sloppy about this
point as long as the difference is not important.
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Figure 1. Left: factorization problem based on spacetime wormholes. Right: a version of fac-
torization problem based on spatial wormholes discussed in this paper. Throughout this paper,
brackets (---) (without suffix) represent the average over theories, while overlines ~~ represent the
average over states.

never gets factorized, as we can find a geodesic connecting these two boundaries (see
figure 1). This is in tension with the fact that from the UV theory point of view, the total
state is tensor factorized (see section 3.4). We need to know the bulk mechanism which
archives the factorization of the two-point function.

In section 4, we show the factorization is provided by the analog of “half-wormhole”
recently discussed to obtain a gravity dual of a single boundary theory [35], see also [36—41].
To manifest the concept of half-wormhole, it is convent to introduce a copy L'R’ of the
original system LR. In this doubled system LRL'R’, there are various new wormhole con-
figurations exist, namely connecting the original system and its copy. These half-wormholes
provide a crucial role to archive the factorization of the two-point functions connecting two
boundaries, and therefore fine-grained viewpoint in gravity. We also discuss non-averaged
systems and argue that non-self-averaging contributions in a single system can be identified
with the spatial analog of half-wormhole.

In section 5, we discuss ambiguities from choice of ensembles and interpretation of our
result as generalization of bra-ket wormholes [42, 43].

Note added. While we were preparing this paper, we became aware of an interesting
paper [22] which independently discussed the similar results in section 3.1 but from a
different perspective, the quantum deviation.

2 Ensemble of states

In the next section, we will argue that averaging over states on a bipartite system H; Q@ Hg
leads to a correlation between two system, which signals the existence of spatial wormholes
connecting these two boundaries. There are several notions of averaging over states or
matrix elements that are closely related but different in detail. We would like to figure out
precisely which state averaging leads to a realistic wormhole structure in the bulk. The
purpose of this section is to review these notions and clarify the differences among them.



2.1 Canonical TPQ states

The first set of states over which we take the average is so-called (canonical) thermal pure
quantum (TPQ) states [23, 24].2 Such a state has the following form,

= ! e_gE"c n .
ij—\/m; n 1), (2.1)

where |n) stands for an energy eigenstate and § will be identified with the inverse tem-
perature in the canonical ensemble. Here the numerical coefficients ¢, follow the Gaussian
distribution. Thus when it is averaged over the distribution, we get ¢,, = 0 and

ChCn = Om s (2.2)

CrCnChCh = 5m,n5a,b + 6m,b5a,n> (2'3)

for example. In general averages of the products of ¢,s are computed by the Wick’s theorem.
The overall factor is fixed such that norm of the state is unit after the averaging,

1 -
Walba) = 7035 S e s EntBGE G (mln) = 1, (2.4)

thus the normalization is identified with the thermal partition function with the inverse
temperature 3. Also, the expectation values follow the thermal expectation values,

(B50T05) = Z(lﬁ) " e PBn (n|Oln) = (0) 5. (2.5)

In this way, we can mimic thermal expectation values from the TPQ state. However,
this does not imply that the TPQ state is effectively the thermal state. If one would like
advocate it, one should check that the fluctuation is small enough.

The upper bound on the fluctuation from the thermal expectation value can be esti-
mated as®

— 1

((31015) — TWsTOTRY ) = g5 S e ") [(nl Ol
1 7 e 2BEn | o—26Em
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If we assume that the observables are low-degree polynomials (i.e.s, their degree < m,

<

[(n|Olm)|* (2.6)

<

where m = 0(5)),% this fluctuation is exponentially suppressed as we expected since
Z(2B)/Z(B)? ~ e ©) where S is the thermal entropy. Therefore, the TPQ state can
be effectively described by the thermal state in the averaging.

2Gee also [44, 45] which compute the entanglement entropy using TPQ states. In particular, our nor-
malization of the numerical coefficients ¢,, is rather similar to them. .

3 As noted in footnote 2, our definition of the TPQ state is a little bit different from the original paper [23,
24]. Therefore, the estimation of the variance also has a small difference from their estimation.

4This type of operator is called as few-body operator. Note that the ETH is also based on a similar
assumption.



2.2 Eigenstate thermalization hypothesis

The thermalization from the averaging can also be obtained by an averaging over matrix
elements in a similar way as the averaging over states. We can impose the randomness
on the matrix elements, instead of the coefficients of the state, like the form (n|O|m) ~
Ry with the random variable R,,,, which is nicely captured by random matrix theory.
This type of structure is expected to be realized in chaotic systems, and summarized as
Eigenstate Thermalization Hypothesis (ETH) [25-27],%-6

(n|Olm) = (O(E)) 4, 0nm + e BV 2g0(E,, Bpn) Rym, (2.7)
where (O(E)),;, is the thermal expectation value and S(E) is the entropy at £ = ZntEm
The matrix R,,, is a random Hermitian matrix with zero mean and unit variance. We will
refer to averaging over the random matrix R,,, as ETH averaging. The smooth function
9go(Ey, Ep,) is of O(1) so that the off-diagonal part is suppressed by the dimension of the
Hilbert space.

The random average leads to

Rij Ry = 0510, 1, (2.8)
RinklRabRcd = Rz'ijl - RypReq + permutations. (2.9)

In other words, we can evaluate the product of the off-diagonal parts by using the Wick
theorem. This assumption is natural in our case since we now focus on the holographic
CFT (i.e., CFT dual to Einstein gravity), which is maximally chaotic system.

In a similar way as the TP(Q state, we can see the thermalization by the ETH. Let us
consider a state,

68) = ﬁZe 30 |y (2.10)
The expectation values are then,
ﬁ
(05]0)¢s) = Z 2(EntBm) (n|O|m). (2.11)

n,m

The ETH averaging for this expectation value leads to the same thermal expectation values,

@310165) = Z(lﬁ)zem (nlOln). (2.12)

5In the following, since we will consider the canonical ensemble, so the coefficients of the random matrix
would be meaningless. Nevertheless, we only use the randomness of the off-diagonal part, therefore, this
subtlety does not matter in our paper. Here we just relate the matrix element averaging to the well-known
fact in chaotic systems.

5Tn particular, the systems of our interest, holographic 2D CFTs, show the ETH-like behavior as proved
in [46-48].



The estimation of the fluctuation is similar to (2.6) in the following way,

— 1
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In the last equation, we used (n|O|n) = O(1). Therefore, the fluctuation from the thermal
state is exponentially suppressed.

It would be interesting to note that even though our state averaging and ETH aver-
aging look similar to each other, they have a small difference if we evaluate higher-point
correlators. For example, the Wick contraction of ¢y, g, ¢y Chy,y Crg Cing Cry O, 18 different
from that of Ry, m, Rnome Rnsms Rnym,. As we saw above, this difference does not appear in
the one-point functions and their variances. Therefore, it does not change the statement
about thermalization.

3 Spatial wormholes from product states

In this section, we elucidate the relation between state averaging in a chaotic theory with
a gravity dual and spatial wormholes in the bulk. To study this, we consider two dis-
joint Hilbert spaces Hj; ® Hp, then prepare a tensor product of the two identical states
W) = [¢pL) @ [¢R) on the total system. We study the correlation between two systems
R and L which emerges after taking the average over a particular set of states. The sim-
plest way to diagnose the correlation between two Hilbert spaces Hp,Hp is to compute a
two-point function (Wg|OrOp|¥s) of local operators. Since the state [¥g) on Hy ® Hr
is factorized, the two-point function gets factorized as well. This corresponds to the mea-
surement result of the observer with a fine-grained viewpoint, who knows everything about
the state |Wg). On the contrary to this, if the observer can only access limited infor-
mation, the measurement outcome is the two-point function averaged over sets of states

(¥3|OROL|¥3), because the observer can not distinguish the set of states. As we empha-
sized in the previous section, there are several notions of “averaging over states” which
are natural for low energy measurements. We will discuss the difference of the resulting
correlators based on different coarse-graining.

3.1 Correlation functions and spatial wormholes

Canonical TPQ analysis. Let us first consider the set of TPQ states given by (2.1),

* -8 *
W) = [pr) [WhR) = D e 2FntEme,dr Ing) fmpg) . (3.1)

n,m



We are interested in the following correlation function of the state,

1 _B * *
(VslOLORIV) = gy D e 2T En Bt Bc cncucy (nlOpla) (mlORlD) . (32)

n,m,a,b

Note that the operators under consideration are not arbitrary as already mentioned in
the previous section. When we discuss the holographic CFT, we assume Of and Op are
so-called light operators.

If we do not take the average, this correlation function can be written as a factorized
form,

(Ug|OLOR|Vg) = (¥r|OL|bL) (WrR|IOR|VR) (3.3)

where every contributions in the summand of (3.2) are important to have the factorized
answer. However after taking the average, we obtain the following non-factorized result,
_ Z(25)

(Us|OLOR|Yg) = (OL)5(ORr)s + Z(8) (TFD3s|OLOR|TFDyg) . (3.4)
Note that the second term is suppressed by Z(26)/Z(3)? ~ e=©(%) where S is the thermal

entropy. In other words, we eventually obtain a non-factorized contribution with order
—0(5)
e

. As mentioned around (1.2), this term can be viewed as a contribution from the
non-perturbative spatial wormhole.

If we consider a normalized combination, (¥3|OrORr|Vs)/(Vs|¥g), we also have small
negative corrections to the first and second terms in (3.4). Indeed such negative contri-
butions sometime become important to keep unitarity (see recent work [49], for example).
Since this part does not affect our main claim, we will not track the denominator for the
most part, and will come back to it in section 5.

ETH. A similar non-factorization can be found in the averaging over matrix elements.
Let us consider the following state,

1D5) = bpr) [ogr) = S e~ 2EHEn) | |mpg) (3.5)

n,m

where we assume that the energy eigenstate follows the ETH. The non-averaged expectation
value is obviously factorized as

(®5|O0LOR|®s) = (9L|OL|oL) (¢rIOR|PR), (3.6)

however, in a similar way as the state averaging, we can see the non-factorization for the
averaged expectation value,

[@5101081%5) = (O1)5 (On)s + 220 (TFDys 0L ORITFDss) . (3.7)
A

(8)?

This sub-leading part is exponentially suppressed, which can be shown by the same esti-
mation as (3.4).



Time-averaging. Here we consider another averaging, time-averaging. We will again

see that this example shows the correlation between two sides. However, the details of the

expression of the exponentially suppressed part are different from the above two examples.
Let us consider a product state composed of two states,

[U(t)) = 1rL(t) [YRE)) (3.8)

where
YL (t)) s Ze He it ) (3.9)
() = 2(8) 2 3 e 2 HretHrt ) (3.10)

where Hp =1® HT and H, = H® 1.
The two-point function has the following spectral decomposition,
(U(t)|OLOR|Y (1)) = e—g(En-i-Em (m|OL|n) oi(Bm—En)t
n,m
x 3 e SEAED (5 Opll) e~ (Br—ED!
k,l
> D(m,n,k,l)(ﬁ)ei[(EmiEn)i(EkiEl)]t (3.11)

m,n,k,l

Thus, if we integrate the correlation function over time, only the part of the spectrum {E,,}
satisfying
(B — Ep) — (Bx— E;) =0 (3.12)

contribute to the sum. Apparently this contribution fixes one of the four sums in (3.11).
However it is not obvious that there always be a set of four energy eigenvalues satisfying
the condition (3.12). For instance, it is widely believed that in generic energy spectrum of
a chaotic system, the condition is satisfied only when two of these eigenvalues agree,

Em=En Ey=E, o
(B — Ep) — (By—E) =0 { ™~ Tm Zk= 20 0 (3.13)
Ey = Ey, Eq = B,

This is known as non-resonance condition. See [50-55] and references therein for the detail.
Once the condition is used, the time averaged two-point function is given by

GrMIOLORTRD) = (O1)s On)s + 2tr (0,0n (515 28) - 1 (25)) )

Z(B)?
(3.14)
where we define the thermo mixed double(TMD) state [32, 56] as
1
p(LTRMD)(B) = > e P npng) (npngl. (3.15)

Z(P) 5

See also recent studies [33, 57-59] for holographic properties of the TMD state. Note that in
two-dimensional CFTs, we can approximate log Z ~ 3 ﬂ’ S ~ 2 2 C and F ~ 3 62 in the



thermodinamic limit. Therefore, the prefactor can be re-expressed by Z(23)/Z(8)? ~ e 15,

When we apply the ETH on the second term, we obtain

Z(28) (TFD) (T3MD) Z(28) ~ (n|Ore L |m) (n|Oge= M5 |m)
Z 67 iyt (0L0R(pl ) (28)—pip" ) (28)) ) = Z(B)? oy Z(28)
< Z(26) 2(5)

=0(e” S<E>). (3.16)

The second term is exponentially small compared to the first term.

Note that while the time-averaging also leads to the non-factorization, the sub-leading
part is different from the state averaging (or the ETH) (3.4) and (3.7). That is, the sub-
leading part depends on a choice of ensemble.

3.2 ER from classical correlations

Here we discuss how our results in the previous section can be interpreted as spatial worm-
holes and their origin as classical correlations. In the previous section, we saw that the
correlation function after averaging does not get factorized completely. These results have
the following structure,

WLr|OLOR[LR(L)) = (OL)y, (OR)y, + ¢ *D. (3.17)

In the above expression, «, D depend on the choice of averaging and stand for the non-
factorized contribution. The correlation generated in this way is small, in the sense it is
proportional to (%) where S is the thermal entropy associated to the inverse tempera-
ture [ in the state as in (3.1) or (3.5).

Through the AdS/CFT correspondence, we can interpret this result from the bulk
AdS gravity point of view. Imagine that we compute this two-point correlation function
from the gravity side through the bulk to boundary dictionary, in terms of the bulk path
integral in the weak coupling limit G — 0, and picking up the gravitational saddle points.
The leading order in Gy gives the factorized result, and it indicates that the leading bulk
saddle is disconnected and consists of two disjoint pieces. The second term in (3.17) which
gives the correlation between two systems is coming from another saddle, because it is
of order e /G~ Therefore, it is natural to interpret that this second term is related to
the regularized length of geodesic L connecting two boundaries in this new saddle, i.e.,
the second term is proportional to e~Le™®. The finiteness of L implies two boundaries
are connected in the new saddle. Said differently, the bulk geometry contains a spatial
wormhole. In particular for TPQ state, the non-perturbative piece is given by the two-
point function of the TFD state with the inverse temperature /.

We should also emphasize that different averaging procedures on the boundary lead to
diffrerent values of the non-perturbative piece, although leading order in Gy is always the
same factorized result. This indicates that different averaging in the boundary CFT leads
to different spatial wormholes in the bulk. In other words, the bulk spatial wormbhole is
highly depending on the specific averaging procedure on the boundary.

~10 -



It is also important to point out that the spatial wormholes we have been discussing
so far are created by classical correlations. This is because the state can be prepared only
by LOCCs which do not generate quantum entanglement. Let us take the TPQ state
|¥) = [¢pL) ® |[¢5R), for example. To prepare the state, we fix the set of random variables
{cn}, then sending the set to Alice and Bob living in the left CFT and the right CFT by
classical communication. Thus, correlation of the random coefficients between |¢51,) and
|Y5Rr), which was the key to see the correlation, can be achieved in this way. Obviously, we
cannot obtain the similar wormholes if we started from a product state [¢1) |¢r), where
|¥r) and |¢r) depend on independent random variables.

3.3 Entanglement entropy

Since the state discussed so far is factorized, the two systems are not entangled at all, in
the fine-grained picture. On the other hand, averaging over the coefficients {c,} generates
TFD like correlation between two systems and that generates the Einstein-Rosen bridge-
like geometry from the gravity point of view. Therefore, it would be natural to ask whether
the resulting geometry can be viewed as a macroscopic wormhole, and if it cannot, how it
is different from the ordinary classical Einstein-Rosen bridge.

Motivated by this, in this section we would like to evaluate the entanglement entropy
of our coarse-grained states. We remark that the rule to evaluate the entropy here is, first
coarse-graining the state by taking the random averages for all coefficients {c,}, and eval-
uate the entanglement entropy for such a coarse-grained state. In the later discussion sec-
tion 5, we will also make some remarks on how the entanglement entropy changes if we com-
pute it in reverse order; writing the relevant quantities in the fine-grained picture, i.e. keep-
ing all coefficients {c¢, }, then taking the random average at the very end of the calculation.

We will evaluate the entanglement entropy for the following coarse-grained state, which
can be written as a linear combination of the product of thermal states and the TFD states
obtained by averaging (3.1),

PLR = V) (Psl/(Ps|Ps) (3.18)
= p1psr ® ppr + p2 |TFDag) (TFDog| , (3.19)
where
2
N =g ~ O (3.20)
Z(2
p2 = Z(6)2(+52)(2B) ~ e O, (3.21)

We would like to estimate size of “cross-section” and length of “throat” of our wormhole
via the entanglement entropy. In doing so, it is useful to remind that the von-Neumann
entropy for a state p = >, p;p; satisfies the following inequality (see [60], for example),

>_piS(pi) < S(p) <3 piS(pi) + D _(—pilogpi). (3.22)

- 11 -



Therefore, the S(p) is at most
S(p) =" piS(pi) + Y (—pilogpy). (3.23)

Thus, the maximal value of the entropy can be estimated as a sum of the entanglement en-
tropy for each p;. Each p; can be considered to be dual to the semi-classical geometry, thus
the entropy for each p; gives the semi-classical contribution O(Gj\,l). However, suggested
by (3.23), the contribution from each entropy is suppressed by p;.

First, we discuss its cross-section that is estimated by entanglement entropy between
L and R. The inequalities say that since each thermal state has an entropy of order G&l,
the resulting entanglement entropy between L and R is also of order GJ_Vl. Therefore, at
this point, we cannot conclude that our wormhole is non-perturbatively small, although it
is clear that most of the contribution comes from the product state.

On the other hand, we can conclude length of the wormhole throat is non-
perturbatively small even for the coarse-grained state. To be explicit, let us consider
two-dimensional holographic CFT, p on a compact space (i.e. circle) and trace over some
part for each CFT, say Az . The resulting reduced density matrix for (3.19) is

PALAp = PIP1AL AR + P2P2A, Ap > (3.24)

where
P1AL AR = 01, ppL @11, PBR, (3.25)
PRAL AR = trALAR ‘TFD25> <TFD25| . (326)

If we consider a time evolution at early time as [61], the growth of wormhole, coming
only from the second term of the right side of (3.24), is captured by S(p2a,a,) = ﬁt,
where « is an order G?V coefficient. This is suppressed by e O). This implies that
the contribution from the TPQ wormbhole is at most order e_ﬁG]_Vl, hence not like the

ordinary macroscopic wormhole.

3.4 A factorization puzzle

The above discussion can be interpreted as a version of factorization problem based on
spatial wormholes. Namely, although we started from a factorized state (product state),
the averaging gives rise to a non-product contribution which can be viewed as a contribution
from the spatial wormhole. This becomes sharp especially if we consider a charged operator
O, whose thermal expectation value is vanishing (see also related work based on spacetime
wormholes [18]). On the one hand, we have

(¥8Oqlthp) = <Oq>5 = 0. (3.27)

On the other hand, we can prepare a particular pair of charged operators O, and O, such
that

(W3 OgrOg r|¥s) = (YaL| Ogr [¥pL) (ViR Ogr [ViR)
0.8 (TFDB|OqLOq/R|TFD5> 75 0. (3.28)
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The similar situation has been discussed by Harlow in [62]. That is, having a Wilson
line penetrating a spatial wormhole seems at odds with the structure of a microscopic
(physical) Hilbert space which should be factorized, but at the same time it is necessary
to keep the gauge invariance. The proposed resolution is that if there are heavy charged
degrees of freedom in the bulk UV Hilbert space, the Wilson line can be split into two pieces
at the bifurcation surface. In particular, from the IR point of view, we cannot distinguish
whether or not the Wilson line is terminated on the bifurcation surface.

Although our present example (3.28) only involves a specific state, therefore it is not
about the problem of factorization of Hilbert space itself, what we have demonstrated so far
is quite reminiscent of it. In our example, the source of the puzzle is clear. When we coarse-
grained, we neglected a bunch of off-diagonal elements (or non-self-averaging elements) in
the original product states. In other words, in the coarse-grained picture, there are missing
degrees of freedom which originally helped the state factorization. From this perspective,
the missing degrees of freedom may be identified with so-called edge modes in gauge theory
and gravity [63-66].

Such degrees of freedom can revive in the higher moment of correlation functions as
these are more fine-grained observables. In the next section, we will link the missing degrees
of freedom to spatial analog of “half-wormholes”.

4 Higher moments and spatial half-wormholes

In this section, we argue that a product state can have a similar structure to the “half-
wormbhole”, which is first proposed in [35].

To summarize briefly, we will see how TPQ states can split into self-averaging and non-
self-averaging parts. Then, we will show a square of the non-self-averaging part indeed gives
a spatial wormhole which is self-averaging. We will also discuss the entire calculations follow

3

an analog of the “wormhole Wick theorem” and hold a similar structure as (spacetime)

half-wormbholes.

4.1 Review of half~-wormhole

Here we will briefly summarize the results in [35] and introduce the concept of half worm-
hole.

To see how the factorization problem is resolved, an interesting toy model was provided
by Saad, Shenker, Stanford and Yao (called as SSSY model). They considered following
finite dimensional Grassman integral,

9
N i2 e Jiy i, igWiq,ig, i o
z = /d w € Zlgzlg SE . T 1q7 wil,iz,-",iq = wilwiz e wi(ﬂ (41)

which is structurally similar to the SYK partition function, except the fact that the time
direction is reduced to a point. In the same way as the standard SYK, the average is taken
over the J tensor, which follows the Gaussian distribution. In this model, the average of
z vanishes, (z) = 0, therefore, the wormhole contribution can be dominant in the average
(z1zR), due to the absence of the disconnected part. They showed that those saddle points
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can be really interpreted as “wormhole saddle point”. Their approach is as follows. The
starting point is the expression,

I%Z I ) wL 'HPR
szR:/deLdeRe g sigen Tinia (Uil ig T ig ) (4.2)

To study the connection between two systems, it is useful to introduce the following identity,

N q
1= / dGrr 0 [ GLr — %Z%L%R e% (GqLR_(% Zjv:qibfwf‘) )
R g

(4.3)

i

_ / G / dSrr e—zLR(NGLR—Zﬁiqwfw?)e%(GiR—(%Ziquf)q)
R iR 2mi/N

where Grr and Xpr are called “collective fields”. If we evaluate the averaged partition
function (zrzg) by inserting this identity, we obtain

do N(log (iei%g) _Z‘gg_lgq>
= )@ / /N o7 4.4
(z125) /]R g iR 27Ti/Ne (4.4)

where we introduced “rotated” collective fields,

im

ZLR:ief7a, GLR:e%g. (45)
From this expression, we can find that the saddles in the large N limit are located on a
unit circle |o| = 1. Roughly speaking, these collective fields represent a correlation between
two systems L and R (that is, the saddle at o = 0 corresponds to the disconnected geom-
etry without wormhole and the saddles away from the origin correspond to connected, or
“wormhole”, saddles), because in the full SYK model G is interpreted as the propagator
between L and R.

In [35], they were mainly interested in the “non-averaged” partition function zrzg,
and its saddle points. Again by writing the partition function in terms of an integral over
the collective fields, they found two types of saddle points. One of them is the wormhole
saddles distributed on the unit circle || = 1, which also appear in (zzzg). This implies
that these saddles are also saddles of the non-averaged partition function, zpzr D (zL2R).
Furthermore, there is another type of saddle point localized at ¢ = 0, whose contrubution
is denoted by ®(0). They call this saddle as “half-wormhole”. Since the half-wormhole
saddle strongly depends on the coupling .Ji,...;,, the contribution of this saddle disappears
in the averaged partition function (z7zg). For this reason, this saddle is sometimes referred
to as non self-averaging point. In contrast to this, an ordinary wormhole saddle is called a
self-averaging point. The existence of half-wormhole saddle is manifested in (zrzrzr zp/),
where L, R are the original systems of our interest and L', R" are the auxiliary systems. In
the large N limit, we can find the decomposition by the Wick contraction,

<ZLZRZL/ZR/> = <ZLZR> <ZL/ZR/> + <ZLZL/> <ZRZR/> + <ZLZR/> <ZL/ZR> . (4.6)

The saddle points on |o| = 1 only reproduce the first term. It implies that the non-averaged
partition function zyzg should have other saddles.
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They proposed that zpzgr can be well-approximated by wormhole and half-wormhole
saddles, (z2) + ®(0)(= z?). For this to be true, the error ((2% — z2)?) should be small.
In [35], they checked that this error is indeed suppressed, which ensures the proposal that
these two saddles are enough to approximate zpzp,

22 ~ (2% + ®(0). (4.7)
Note that, from (4.6), 22 is expected to have the following suggestive form

22 (422 (4.8)

where we define : 22 : as the normal ordered product, which follows the Wick the-

orem, except that we exclude a self-contraction (for example, (:zazp :zczp:) =
(zazc) (zBzp) + (242p) (zB%c) ) . This structure can also be found in a direct calculation
of 22 itself [36]. Note also that the name “half-wormhole” comes from the reason that if
we focus on the original systems L, R in (4.6), the second and third term corresponds a
remnant of the wormhole to the auxiliary systems L', R’. In the next section, we will show
that a product state can have a similar structure, a decomposition into the wormhole and
half-wormhole contributions.

4.2 Spatial half~-wormholes

In this section, we would like to show that an analog of the half~-wormholes also appears
in the system with state averaging discussed in the previous sections. That is, (1) we have
a non-self-averaging contribution in a single TPQ state that, given more than one copy,
produces new self-averaging contributions (spatial wormholes). (2) Furthermore, it satisfies
the “wormhole Wick theorem”.

4.2.1 Wormhole Wick theorem

As a warm-up exercise, let us revisit a single TPQ state,

_ En
) = )] = Ze ’ " CnCop [R)(m] (4.9)
The goal is to split it into the self-averaging part and non-self-averaging part. To this end,
we write
CnCry = CnCh+ 1 CnCry & (4.10)
Here we defined “normal ordering” of the random valuables : c,c}, = cpc), — cpct,. In

fact, this normal ordering follows the standard rule, i.e., summing over all possible Wick
contractions except for the self-interaction. For example,

tepch, 1= 0. (4.11)
L CnChy 1 CpCh 1 = CnCh - CmChy = O gOm p- (4.12)

It implies that : ¢,cf, : can be thought of as a random variable with zero mean and unit

n-m
variance. For this reason, we denote

Rym =:cncpy v (4.13)
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By using this expression, we can rewrite TP(Q doubled state as

* * —ﬁ * *
pLr(c, B) = [WL)(Wr] @ [YR) (Rl = e 2 (BntEmtEatBo) e, cx crey npag)(mpbe|. (4.14)

nm

To see the structure of it, again let us compute the average of the two point function,

Tr(prr(c, B)OLOR). (4.15)

We would like to reproduce the result (3.4) by using (4.10)—(4.12). To this end, we need
to compute

CnChyCaCl = CnCly, = CaCl 1 CnCh, 1t CaCy (4.16)

The first term gives a “self-loop” in the summand,

(the first term in (4.16)) = 0, m0ap, (4.17)

and results in a product of thermal expectation values, (Or)5(Og) 4. The second term is
just given by (4.12). Thus, for few-body operators, the averaged density matrix is given by

il B) = pu(8) © pal8) + S o) 26), (1.18)

where we defined pr, r(3) as the canonical ensemble,

Z(lﬁ) ZefﬁH |nL,R> (TZLJDL‘ . (4.19)

The second term explains the spatial wormhole contributions as we have already discussed

pL,rR(B) =

in section 3. In this way, as more copies of the state are introduced, more wormhole
contributions that connect originally disconnected systems appear.

This re-derivation manifests the following: each TPQ state pr, r(c, 3) consists of a self-
averaging part ¢,ci, = On,m and a non-self-averaging part : c,c;, := Rpm,. In particular,
the “square of R,,,” gives a standard spatial wormhole (an Einstein Rosen bridge), a new
self-averaging contribution according to the Wick theorem.

The argument so far motivates us to write our TPQ state as

ple,B) = p(B)+ : ple,B) - (4.20)

where p(f) is a thermal state with inverse temperature 8 and we defined the remaining

piece as : p(c, 8) :,
1 B

= m 2 e 2

Inspired by the spacetime half-wormhole argument, one may naively illustrate the bulk

: p(e, B) (EntEm) R In)(ml (4.21)

counterpart of the non-self-averaging part as

:p(c, B) 2 (4.22)
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Note that the circular direction is just a spatial direction, not a Euclidean time. Based on
this naive speculation, the simplest wormhole Wick theorem, which motivated us to call
: p(c, B) : “spatial half-wormhole”, may be illustrated as

(D @ m + : non-self-averaging part :

:pr(c,B): p{TIP) (28

(4.23)
From this simple calculation (and naive pictorial reason), perhaps it is more natural to call
the non-self-averaging part of single state(or partition function) “half-wormhole” although
now the corresponding self-averaging part is the disk contribution, not the wormholes.

Of course, the above cartoon is speculative. The precise bulk interpretation of : p(c, ) :
itself is still unclear. An interesting possibility is that the end of the bulk (fuzzy part of
the cartoon) may be identified with the gravity edge modes at the semi-classical level.
Recently, a bulk candidate of (spacetime) half-wormholes has been proposed in [39]. It
would be an interesting future direction to find Lorentzian analog of such a bulk geometry,
perhaps along the line of [67].

4.2.2 Spatial half~-wormholes from TPQ

In [35], they simplified the SYK model by reducing the time direction to one point, where
the wormhole can be dominant saddle. In this section, we consider an analog of this
simplification. As we have shown in the previous subsection, the averaged state has two
contributions,

Al B) = p2(5) © pa(d) + 2o (5), (4.24)

The first term corresponds to a disk contribution and the second corresponds to a wormbhole,
compared to the SYK model case. For the comparison with the SYK model with one time
point, let us focus on the case where the self-loop contributions (such as pz, and pg) are
negligible. In our example, this is realized in correlation functions of operators which are
not associated with conserved charges.”

In such a correlation function, the expectation value in the canonical ensemble vanishes,
therefore the wormhole contribution can be dominant like the SSSY model. If we strip off
the effective structure of the density matrix (4.24) within the correlation function, we obtain

Z(2B8) (Trp)
Z(ﬁ)QpLR

pLr(c,B) = (8. (4.25)
Now we are interested in whether there are other contributions in the non-averaged density
matrix. For this purpose, it is useful to see the average of the squared quantity like (4.6),
by preparing a copy of the original system. By utilizing the Wick theorem for the random

"Such a situation is also discussed in [68], for example.
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variable Ry, we can show that there are the following contributions in the average,®
— (4 (2/3’))2
2 _
pLR(C, 5) = (Z(/B)Z (4.26)
TFD TFD TFD TFD TFD TFD
< (ol BY@pim (B)+pin (B) @i (B)+ i (B)@plp (B)).

Here we describe the original systems as L, R and the auxiliary systems as L', R’. This Wick
theorem decomposition is completely analogous to (4.6). The first term comes from the nor-
mal wormhole contribution. The second and third terms represent the wormhole between
the original system and the auxiliary system, which can be thought of as half-wormhole
contributions for the same reason explained below (4.8). We should emphasize that these
results are valid only for non-conserved quantities. Our motivation for this simplification
was to discuss situations where wormholes would always be the dominant contributions
as in [35]. We will generalize our argument to conserved quantities in section 4.3.

We can naturally expect that the non-averaged state prr(c, 5) can be approximated by
only these two contributions, wormhole and half-wormhole contributions. This motivates
us to consider the following density matrix p

_ Z(2B) [ (1FD) ' _
AGE (pLR (B)+: prr(c, B) ) (4.27)
where we abused the normal order symbol for simplicity, whose precise definition is
1 _B8 -
p = 5 Z e Q(E"+Em+Ea+Eb)anRba|nLaR><meR| (4.28)
Z(B) n,m,a,b
1 _8
+ AL d e 2(EntEm+EatEy) . R Ry Inpar)mibr|.

n,m,a,b

This is completely analogous to (4.8) in the SSSY model (where p corresponds to z?). It
is worth stressing that the inclusion of : prr(c, ) : recovers the factorized result for the
expectation value before the averaging.

To justify that this is a good approximation, we need to estimate the error (like
(22 — 2%)?) in the SSSY model). Let us consider the error,

(Error) = prr(c, B) — p, (4.29)

then we can show by a brute calculation,

(Error)? = (prr(c,B) — p)? = 0. (4.30)

Therefore, we can conclude that the product state (3.8) has a very similar structure as
found in the SSSY model. Note that unlike in the SSSY model, the effective state (4.27)
is not just a good approximation but an exact expression.

8 As we mentioned before, we focus only on conserved quantities. Therefore, what we are considering is

Tr(pLr(c, B)OLOR)Tx(pr (¢, B)OL Orr),

and here we abbreviate it to avoid cumbersome expressions.
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There is an interesting subsequent work [36], which states that the half-wormhole
configuration automatically appears as an excitation of the wormhole, like the result [69].
It would be interesting to address this issue in our model.

4.2.3 Spatial half~-wormholes from ETH

Here, we will comment on the ETH viewpoint. As one can expect, the same structure can
be found in the ETH. For simplicity, we again restrict observables to charged operators.
Under these assumptions, in the same way as (4.26), the ETH averaging of the squared
quantity leads to the same half-wormhole contributions. Thus, we can conclude that
the state prr(f) with ETH also has two contributions, wormhole contribution and
half-wormhole contribution.

4.3 (Generalization to conserved quantities

We have discussed the random product states and their connection to “spatial half-
wormbholes” contribution, especially for non-conserved quantities. In the rest of this section,
we generalize it to conserved quantities.

In particular, the contributions up to sub-sub leading order schematically become

(V| OLOR [Vg) (V5| OO [Wg)

Z(283

where we suppressed the subscript of subsystems for simplicity. Each numerical coefficient

Z(2p)?

~ (0)5+6

is easily understood as the number of possible Wick contractions which lead to the term,
when we ignore the each label of subsystems. Interestingly, further higher order terms (not
written here) can be understood as a generalization of the bra-ket wormholes [42, 43]. We
discuss this aspect in the next section. It is also worth noting that the aforementioned
higher order terms do not show up if we use the averaging over matrix elements as ETH.
As already mentioned in section 2.2, this difference originates from the difference between
the random vector ¢, and the random matrix R,,."

Notice that the second term of (4.31) has only one wormhole connection. This contri-
bution is more dominant than the two wormholes contribution. Since the ordinary SYK
model should have a non-vanishing one-point function, (z) # 0, we expect that a simi-
lar contribution should also appear if we generalize the results of the SSSY model to the
ordinary SYK model.

5 Discussion

We have argued that the contribution of the spatial wormhole emerges when the classically
correlated product state is coarse-grained. In particular, we have shown that the spatial
analog of half-wormholes is a crucial contribution to solving the factorization puzzle caused

9For example, RqpRcaRes does vanish in ETH, while not in TPQ states. For the definition of R in
TPQ states, see equation (4.13).
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by this wormhole. In the remainder of this paper, we discuss the ambiguities coming
from choice of measure for the state averaging (i.e. coarse-graining) and a path-integral
interpretation of our wormholes as a consequence of state averaging.

5.1 Ambiguities from choice of measure

In this section, we discuss ambiguities coming from the choice of the measure for averaging.
In this paper, we have been studying the product of the TPQ states,

1
W5) = Wpr) [Whn) = 757 > e~ EAEm) ot 10 ) [mpg) (5.1)

in the presence of an ensemble average for random coefficients ¢, over the Gaussian dis-
tribution. The important feature of this prescription is that the ensemble average changes
the norm of the product state;

<\I/5|\I/5> =1+ gi;fg , (5.2)
[ 2
052 = 1+ 62%3 T 322(551 " 82%3 " 6222@ , (5.3)

e.t.c. The normalization affects, for example n-th Rényi entropy between the left and the
right CFT19

0 | —
St = —1— log o}, (5.4)

—nNn

where trp?, is defined by

Brpf, = (WalWa)n/ ((Ws[T5))" . (5.5)

Notice that the ensemble average is taken for the numerator and the denominator (nor-
malization) separately. This prescription is often used when we compute the entanglement
entropy in gravitational systems by the replica trick (for example, see [1] ). However, as
we will see below, this gives an unphysical value of the Rényi entropy in our case.

To see this, we first point out that each way of Wick-contractions between c¢,, always
gives a positive contribution. As a result, one can easily show that

(WslWs)" > ((Wsls))" (5.6)

for n > 1, which leads to the negative Rényi entropy. As we already saw, this unphysical

feature of the Rényi entropy is rooted in our prescription where we take the ensemble
average of the numerator and the normalization separately.

To avoid this unphysical result, one can instead use a different measure of the en-
semble averaging that preserves the normalization of the state. Here we will give a brief
introduction of one of such measures. We introduce the appropriate measure which (i)

10This should not be confused by the results in subsection 3.3. In subsection 3.3, we evaluated the
entanglement entropy from the averaged density matrix prr (3.19) without using the replica trick, and
obtained a physically reasonable result.

—90 —



reproduces the canonical thermal correlators from random states 1) = 3", b, |n)!! and (i)
preserves the norm of the state ||¢|| = (1|¢). One example of such measures is called the
Gaussian adjusted projected (GAP) measure [55], which is also introduced in [22]. The
GAP measure is explicitly written as

D= o1 ol (TTE D) [ arrttt g (252 20 ) . o

e 271

As we can see, the delta function §(1— ||1]|) in the measure projects onto the appropriately
normalized averaged states, i.e, [¢|" = ([¢)™ = 1. Since we have (Ug|Uz)" = (1h[h)*,
the trace of the n-th power of the density matrix trp'; is normalized to be unity

trpfy = (WplWg)" =1, (5.8)

which gives the trivial entanglement entropy. This is rooted in the fact that our original
fine-grained state is a product state that has zero entanglement entropy.
The averaged two-point function of the random coefficients v, is given by

Pn 5
z(p) "
with pp, = e #Fn, which reproduces p = 32, ,, ¥itm|n)(m| = 32, pnln)(n|/Z(B), i.e., the
density matrix in the canonical ensemble as desired. Importantly, this measure changes
the averaged two-point functions for the product state

10) = |¥r)[YR) (5.10)

which we already computed in (3.3) with our original measure. This is computed from the
four-point function of the random coefficients ,,, which is explicitly given by

n1 ¥n pnlpnz 6n m 671 m 571 m 6n m Z(2IB) - pnl - an . .
¢ 177Z} 2wm1¢m2 (6)2( 1mi~n2 2+ 1m2%n2 1)(1+Z(5)2 Z(B) Z(B)) (5 11)

Here we take the thermodynamic limit of 2D CFTs where Z(8) ~ ¢%/2, and omit O(e~%)
terms. From this, the averaged two-point function for the product state |¥) is computed as

(U|OLOR|¥)

~ (O1), (OR) 5 + Z12)

Z(B)?

Compared with (3.3), we have additional negative contributions. They are necessary

(TFD2s|(OL — (OL)5)(Or — (OR) 5)| TFDag) . (5.12)

since when Op, p = 1, the second term in (5.12) should vanish due to the normalization
(¥|¥) = 1.

5.2 Relation to the spacetime wormholes in the gravitational path-integral

In this paper, we studied emergence of the spatial wormholes from averaging over
classically-correlated states. We found similar geometric structures to the spacetime worm-
holes which appear after averaging over theories. One apparent difference between these

" Notice that the coefficients of |1} do not include the Boltzmann factors p,. The corresponding factors
in the thermal correlators computed by averaging these state come from the measure itself.
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D> m

B/2

Figure 2. The geometrical picture of how the canonical TPQ state reproduces the thermal expec-
tation values. This has a similar geometrical structure to the bra-ket wormhole in the gravitational
path-integral.

+c3,1

L R

Figure 3. A schematic picture for higher moments calculation in TPQ states as (4.31). In partic-
ular, we can see the generalization of the bra-ket wormholes. (In (4.31), we neglected the forth and
fifth terms as these are further suppressed by the power of e=°.) Note that we do not describe the
detail of each operator. Also, we represent all operators in terms of a single CFT.

two types of wormholes is that a spacetime wormhole appears in the gravitational path-
integral with a fixed topology of the boundary manifold, while emergence of a spatial
wormhole studied in this paper changes the topology of its boundary manifold itself (see
figure 2 and figure 3). Therefore one might consider that emergence of the spatial worm-
holes studied in this paper has no relevance to that of the spacetime wormholes in the
gravitational path-integral, which plays key roles in understanding holography [34] and the
black hole information paradox [1, 2]. However, in a recent paper [43], it was argued that
one should also take account of geometries with different topologies of boundary manifolds
in the gravitational path-integral to avoid so-called SSA (= Strong Sub-Additivity) para-
dox. As a consequence, one needs to include a new geometry called bra-ket wormhole that
connects the bra with the ket of the original manifold. In this paper, we saw the canonical
TPQ states reproduce the thermal expectation value in section 2.1. In this case, averag-
ing over random coefficients in the expression of the TPQ state (equation (2.1)) leads to
connection between the bra and the ket and that creates a thermal circle to reproduce the
thermal behavior of the correlators (see figure 2). This has a similar geometrical struc-
ture to the bra-ket wormhole in the gravitational path-integral. From this view point, the
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wormholes that appear after averaging over classically-correlated product states can be
viewed as generalizations of the bra-ket wormhole since they are created by connecting the
bras and the kets of the product states respectively (see figure 3). It would be interesting
to understanding emergence of these wormholes in terms of gravitational path-integral in
future work.
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