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1 Introduction

The supersymmetric (SUSY) standard model is one of the most attractive candidates for
new physics beyond the Standard model (SM). In the minimal SUSY standard model
(MSSM), SM gauge couplings beautifully unify at the scale around 1016 GeV. This indi-
cates the existence of a grand unified theory (GUT), which naturally explains the charge
quantization. We now have dark matter (DM) candidates in MSSM. The large hierar-
chy between the electroweak symmetry breaking (EWSB) scale and Planck/GUT scale is
stabilized due to the absence of quadratic divergences. Moreover, interestingly, the long
standing anomaly of the muon g−2 [1–5] is explained if masses of smuons and electroweak
gauginos are O(100)GeV [6]. The situation of the muon g − 2 anomaly is expected to
become clearer near future [7] (see also [8, 9]).

The lightness of sleptons and electroweak gauginos generally leads to unacceptably
large flavor violating processes such as µ → eγ and µ → e conversion. These flavor vio-
lating processes originate from soft SUSY breaking mass parameters which mixes different
generations of sfermions. The dangerous flavor violating sfermion masses are avoided when
the SUSY breaking masses are generated through gauge interactions and SM Yukawa in-
teractions, leading us to gaugino mediation [10–12] or Higgs mediation [13, 14].1 In these
mediation mechanisms, the slepton and squark masses vanish at the tree-level and they
are generated radiatively via gaugino loops or Higgs loops. Therefore, the flavor problem
is absent within MSSM even if some SUSY particles are as light as O(0.1-1 TeV) [17].

Another important constraint on the models with the light sleptons is vacuum stability
constraint in the stau-Higgs potential: if µ tan β is too large, the EWSB minimum decays

1Gauge mediation models are also viable options for the muon g − 2 while avoiding the too large flavor
violating processes. See e.g. refs. [15, 16].
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to a charge breaking minimum, where the staus have non-zero vacuum expectation values
(VEVs), with a too short life time [18–22]. Here, µ is a Higgsino mass parameter and tan β
is a ratio of the VEVs of Higgs doublets. This constraint is avoided if the staus are (much)
heavier than smuons or µ is not large, which requires large soft SUSY breaking masses for
the Higgs doublets as will be shown later.

In refs. [23, 24], it has been shown that, in realistic ultraviolet (UV) models of gaugino
and Higgs mediation, the muon g − 2 anomaly is completely solved within MSSM while
avoiding stringent LHC constraints and the vacuum stability constraint. In particular, the
model of Higgs mediation with non-universal gaugino masses can also explain the correct
relic abundance of dark matter without conflicting direct and indirect experiments [24].2

See also, e.g., refs. [27–34] for recent studies based on phenomenological models explaining
the muon g − 2.

In this paper, we extend the previous studies by including three right-handed (RH)
neutrinos,3 which enables us to explain the tiny neutrino masses via the seesaw mecha-
nism [37, 38] (see also ref. [39]). With the inclusion of the RH neutrinos, flavor violating
elements of the left-handed (LH) slepton mass matrix are induced by a renormalization
group (RG) running effect [40] even in the models of gaugino and Higgs mediation. This
is because the soft SUSY breaking mass for the up-type Higgs is non-vanishing and large
at the tree-level, and the up-type Higgs couples to chiral multiplets of LH leptons and
RH neutrinos through flavor violating neutrino Yukawa couplings. Consequently, lepton
flavor violating (LFV) processes such as µ → eγ and µ → e conversion become non-
negligible and detectable at future LFV experiments when the RH neutrinos are heavier
than O(109)GeV.4 In fact, the RH neutrinos heavier than O(109)GeV are motivated by
the successful thermal leptogenesis [43, 44] for the baryon asymmetry of the universe.

2 SUSY models for muon g − 2

We introduce the three different models for the muon g−2 without flavor violating masses
at the tree-level. All of the models include the direct couplings between the Higgs fields
and a SUSY breaking field Z, which are needed to avoid the vacuum stability constraint
in the stau-Higgs potential.

2.1 CP-safe gaugino mediation model (model A)

We first consider a gaugino mediation model given in ref. [23], which respects the shift
symmetry of the SUSY breaking field Z: Z → Z + iR with R being a real constant. With
the shift symmetry, dangerous CP violating phases are suppressed [45]. We refer to this
model as the model A. The Kähler potential is given by

K = −3 ln
(

1− f(x) + φ†IφI +H†uHu +H†dHd + ∆K
3

)
, (2.1)

2This model can be regarded as a modification of Higgs-anomaly mediation presented in refs. [14, 25, 26]
3There are studies of lepton flavor violations in high scale SUSY models with RH neutrinos of

∼ 1015 GeV [35, 36]. In these studies, all the sfermions including the smuons are heavier than ∼ 10TeV.
4If RH neutrinos are as light as ∼ 1TeV and the neutrino Yukawa couplings are large, loop diagrams

involving RH neutrinos contribute to the muon g − 2 and LFVs violations (see e.g. refs. [41, 42]). In this
case, the small neutrino masses can be explained by assuming a special form of the neutrino Yukawa matrix.
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where x = Z + Z†, f(x) is an arbitrary function of x and

∆K = gu(x)H†uHu + gd(x)H†dHd. (2.2)

Here, ΦI is a matter multiplet; the matter multiplets include three generations of leptons,
quarks and RH neutrinos; gu(x) and gd(x) are arbitrary functions of x; we have omitted
gauge interactions and taken MP = 1, where MP is the reduced Planck mass. We assume
the above Kähler potential is defined at the GUT scale. With the Kähler potential, all
the sfermions are massless at the tree-level, which is a very important assumption to solve
the SUSY flavor problem. The sfermions masses are dominantly generated from gaugino
masses through radiative corrections (gaugino mediation).

The superpotential is

W = C + µHuHd +WYukawas +WRN, (2.3)

where

WRN = N̄i(Yν)ijLjHu −
1
2N̄iMNiN̄i, (2.4)

and

WYukawas = −Ūi(Yu)ijQjHu + D̄i(Yd)iQiHd + Ēi(Ye)iLiHd. (2.5)

Here, we have taken MN , Yd and Ye to be diagonal by the field redefinitions of N̄i, Qi, D̄i,
Li and Ēi without loss of generality.5 The Yukawa coupling, Yu, is given by

Yu = diag(mu,mc,mt)/ 〈Hu〉 × VCKM, (2.6)

with VCKM being the CKM matrix. The mass parameter C is a constant term. We take µ
and C to be real by U(1)R rotation and field redefinitions of Hu and Hd.

The cosmological constant vanishes under the following condition:〈
∂K

∂x

〉2
= 3

〈
∂2K

∂x2

〉
→
〈
∂2f

∂x2

〉
= 0. (2.7)

The SUSY is broken at the minimum of vanishing cosmological constant [46] and F -term
of Z is given by

FZ = −e〈K〉/23(1− 〈f〉 /3)
〈
∂f

∂x

〉−1
C = −3n×m3/2, (2.8)

where m3/2 = e〈K〉/2C is a gravitino mass and

n =
〈
∂f

∂x

〉−1
(1− 〈f〉 /3). (2.9)

Note that FZ is a real number since n and m3/2 are both real.
5If the sfermion masses are not universal nor vanishing, the sfermion mass matrices change with the

field redefinitions, inducing flavor mixings. These flavor mixings generally induce too large flavor changing
processes.
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The canonically normalized kinetic terms for φI , Hu and Hd are obtained by the
following field redefinitions:

φI → (1− 〈f〉 /3)1/2φI ,

Hu →
[ 1 + 〈gu〉

1− 〈f〉 /3

]−1/2
Hu,

Hd →
[ 1 + 〈gd〉

1− 〈f〉 /3

]−1/2
Hd. (2.10)

Accordingly, the parameters in the superpotential are rescaled as [47]

µ → e−〈K〉/2
[ 1 + 〈gu〉

1− 〈f〉 /3

]1/2 [ 1 + 〈gd〉
1− 〈f〉 /3

]1/2
µ,

Yu,ν → e−〈K〉/2(1 + 〈gu〉)1/2(1− 〈f〉 /3)−3/2Yu,ν ,

Yd,e → e−〈K〉/2(1 + 〈gd〉)1/2(1− 〈f〉 /3)−3/2Yd,e. (2.11)

The soft SUSY breaking masses for Hu and Hd are

m2
Hu

= 9n2(c2
u − du)m2

3/2,

m2
Hd

= 9n2(c2
d − dd)m2

3/2, (2.12)

where

cu =
〈
∂gu
∂x

〉
(1 + 〈gu〉)−1, cd =

〈
∂gd
∂x

〉
(1 + 〈gd〉)−1,

du =
〈
∂2gu
∂x2

〉
(1 + 〈gu〉)−1, dd =

〈
∂2gu
∂x2

〉
(1 + 〈gd〉)−1, (2.13)

with cu, cd, du and dd being real numbers.
A-terms and the Higgs B-term are

Au = Aν = −3ncu ×m3/2,

Ad = Ae = −3ncd ×m3/2,

Bµ = (Au +Ad)µ, (2.14)

where we have no CP violating phase.
The gaugino masses are generated by the coupling between Z and field strength super-

fields in a way consistent with a grand unified theory. Here, we consider SU(5)×SU(3)H ×
U(1)H product group unification [48, 49], which solves the doublet triplet splitting problem
in a simple way. The relevant couplings are

L =
∫
d2θ

( 1
4g2

5
− k5Z

2

)
W5W5 + h.c.

+
∫
d2θ

(
1

4g2
3H
− k3HZ

2

)
W3HW3H + h.c.

+
∫
d2θ

(
1

4g2
1H
− k1HZ

2

)
W1HW1H + h.c., (2.15)

– 4 –



J
H
E
P
0
1
(
2
0
2
1
)
0
9
9

where g5, g3H and g1H are gauge couplings of SU(5), SU(3)H and U(1)H , respectively; W5,
W3H and W1H are the field strength superfields of SU(5), SU(3)H and U(1)H . Note that
k5, k3H and k1H are real respecting the shift symmetry so that no CP violating phases
arise from the gaugino masses.

After SU(5) × SU(3)H × U(1)H is broken down to the SM gauge group, the gaugino
masses are obtained as

M1 = (k5N + k1H) g2
5g

2
1H

g2
5 +N g2

1H
(−3n)m3/2,

M2 = k5g
2
5(−3n)m3/2,

M3 = (k5 + k3H) g2
5g

2
3H

g2
5 + g2

3H
(−3n)m3/2, (2.16)

where M1, M2 and M3 are the bino, wino and gluino masses, respectively; N is a real
constant depending on the U(1)H charge of the GUT breaking Higgs field; we have rescaled
the gauge couplings as g−2

a → g−2
a + 2ka 〈Z〉. We note that the gaugino masses are non-

universal at the GUT scale, which is important to explain the muon g − 2 while avoiding
LHC constraints on colored SUSY particles [50, 51].

Apart from the RH neutrino masses, the free parameters in this model are m2
Hu

, m2
Hd

,
Au, Bµ, M1, M2 and M3, or more conveniently, we choose

µ, mA, tan β, Au, M1, M2, M3, (2.17)

where mA is a CP-odd Higgs mass. Here, µ, mA and tan β are defined at the EWSB scale
while M1, M2 and M3 are given at the GUT scale, MGUT.

In order to avoid the vacuum stability constraint in the stau-Higgs potential, we con-
sider a small µ case. Then, the chargino contribution to the muon g − 2 is dominant. The
small µ is achieved by taking m2

Hu
at the GUT scale to be large and positive. As we will

see, this m2
Hu

induces flavor violating slepton masses through the Yukawa interactions in
eq. (2.4).

2.2 Higgs mediation model with bino-wino coannihilation (model B)

Next, we consider a Higgs mediation model presented in ref. [24], focusing on the bino-
wino coannihilation region [52], where the bino and wino masses are quasi degenerated
at the EWSB scale. We refer to this model as the model B. In this model, the Higgs
soft masses are assumed to be tachyonic and large as O(10)TeV. These Higgs soft masses
lead to natural spitting of sfermion masses through radiative corrections [13, 14]: third
generation sfermions become much heavier than first/second generation sfermions without
inducing too large flavor violating masses [17]. Then, the vacuum stability constraint in
the stau-Higgs potential is easily avoided due to the heavy staus as discussed in section 3.

The Kähler potential is given by

K ′ = −3 ln
(

1− f ′(Z,Z†) + φ†IφI +H†uHu +H†dHd + ∆K ′

3

)
, (2.18)
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where f ′(Z,Z†) is a function of Z and Z† and

∆K ′ = chZ
†Z(H†uHu + κdH

†
dHd)− (cb|Z|2HuHd + h.c.). (2.19)

Here, ch is assumed to be positive and κd = 1. The concrete models justifying these
assumptions are given in ref. [26]. In this model, we do not consider the shift symmetry of
Z. However, to construct a model with the shift symmetry is not difficult.

The superpotential is given by

W ′ = C + w(z) + µHuHd +WYukawas +WRN. (2.20)

By assuming 〈Z〉 ' 0, the SUSY breaking F -term is obtained as

〈FZ〉 ' −
〈
∂w(z)
∂Z

〉∗
, (2.21)

where | 〈FZ〉 |2 = 3m2
3/2. Here, we take a canonically normalized kinetic term for Z.

From eqs. (2.19) and (2.20), we obtain

m2
Hu

= m2
Hd

= −3chm2
3/2,

Au = Ad = Ae = Aν = 0,
Bµ = 3cbm2

3/2 −m3/2µ. (2.22)

The gaugino masses are generated from the couplings between Z and field strength
superfields in eq. (2.15), and they are non-universal at the GUT scale. This allows us to
explain the correct relic abundance of dark matter through the bino-wino coannihilation,
avoiding experimental constraints. The free parameters in this model are

m2
Hu
, tan β, M1, M2, M3, sign(µ), (2.23)

which are given at MGUT. In the following analysis, we take µ > 0.

2.3 Higgs mediation model with bino-slepton coannihilation (model C)

Lastly, we consider the Higgs mediation model focusing on the bino-slepton coannihilation
region [53], where the masses of the bino, selectron and smuon are quasi degenerated at the
EWSB scale. We refer to this model as the model C although the Lagrangian is completely
same as that of the model B. The only differences are as follows: the wino mass is larger
and the Higgs soft masses are smaller compared to the model B. The free parameters in
this model are same as those in the model B. We also take µ > 0.

3 Lepton flavor violations and muon g − 2

In this section, we calculate the LFV processes in the model A, B and C, focusing on
parameter regions consistent with the muon g − 2 experiment. The experimental value of
the muon g − 2 [1] is deviated from a SM prediction (see [5] and references therein) with
a significance of 3.7 σ level:

∆aµ = (279± 76)× 10−11. (3.1)

– 6 –
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This deviation is explained only when the smuon(s) and electroweak gauginos are light
as O(100)GeV together with a large tan β of O(10). In this case, the vacuum stability
constraint in the stau-Higgs potential becomes important: if µ tan β is too large, the EWSB
minimum decays into the charge breaking minimum with a life time shorter than the age
of the universe. The constraint is shown in ref. [21] as

η−1
τ

∣∣∣∣mτµ tan β
1 + ∆τ

∣∣∣∣ ≤ 1.01× 102GeV√mL̃3
mẼ3

+ 1.01× 102GeV(mL̃3
+ 1.03mẼ3

)

−2.27× 104GeV2 + 2.97× 106GeV3

mL̃3
+mẼ3

−1.14× 108GeV4
(

1
m2
L̃3

+ 0.983
m2
Ẽ3

)
, (3.2)

where ∆τ is a radiative correction to the tau Yukawa coupling [54], and mL̃3
(mẼ3

) is the
mass of LH (RH) stau. The normalization factor ητ ≈ 1 slightly depends on tan β [20].
Clearly, this constraint is avoided when µ is small or staus are much heavier than the
smuons, which requires large soft SUSY breaking masses for the Higgs doublets.

Let us firstly consider the small µ case, where the chargino diagram dominantly con-
tributes to the muon g−2. The µ parameter is determined by the EWSB condition, which
is given by

m2
Z

2 ' −(m2
Hu

(MGUT) + ∆m2
Hu

+ µ2)

+(m2
Hd

(MGUT) + ∆m2
Hd
−m2

Hu
(MGUT)−∆m2

Hu
)/ tan2 β + . . . , (3.3)

where . . . denotes higher order terms of 1/ tann β (n ≥ 4); mHu(MGUT) and mHd
(MGUT)

are soft SUSY breaking masses for Hu and Hd, respectively; ∆m2
Hu

and ∆m2
Hd

are radiative
corrections. To explain the Higgs boson mass of 125GeV, we need a large stop mass mt̃ or
a large trilinear coupling At [55–59]. In this case, ∆m2

Hu
∼ (m2

t̃
or A2

t ), is inevitably large.
Therefore, the small µ is only achieved with m2

Hu
(MGUT) ∼ (m2

t̃
or A2

t ). Numerically, we
find m2

Hu
(MGUT) ∼ 4 TeV2 to be consistent with µ ∼ 100GeV.

For the large µ case, where the neutralino diagram dominantly contributes to the
muon g − 2, we need the large stau masses to avoid the constraint in eq. (3.2). One
possibility is to make the staus heavy by hand as explored in refs. [60–62]. However, in
this case, the constraint from µ→ eγ is too severe unless we assume a special structure of
the lepton Yukawa couplings [61]. Alternatively, we can make the staus heavy using the
Higgs-loop effects [13, 14], without inducing LFV in the framework of MSSM. Here, the
Higgs soft masses are assumed to be large as mHu,d

= O(10)TeV and tachyonic. Then,
the staus become heavy as ∼ 10TeV by a Higgs loop at the one-loop level due to the large
tau-Yukawa coupling while the selectrons and smuons remain light as O(100)GeV.6 The
generated stau masses are estimated as

m2
L̃3

= (m2
L̃

)33 ∼
Y 2
τ

8π2 |m
2
Hu
| ln MGUT

MSUSY
, (3.4)

6The selectron and smuon masses are dominantly generated by two-loop diagrams involving the Higgs
doublets and one-loop diagrams involving gauginos.
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and

m2
Ẽ3

= (m2
Ẽ

)33 ∼
Y 2
τ

4π2 |m
2
Hu
| ln MGUT

MSUSY
, (3.5)

where m2
Hd
∼ m2

Hu
is used and MSUSY is a SUSY particle mass scale. We note that the

condition, m2
Hd
∼ m2

Hu
, is required so that a U(1)Y D-term contribution to the sfermion

masses proportional to (m2
Hu
− m2

Hd
) is not too large: if the D-term contribution is too

large, the smuon and slectron become tachyonic. See appendix A for renormalization group
equations for the slepton masses.

We have shown that, in order to avoid the vacuum stability constraint in eq. (3.2),
|m2

Hu
(MGUT)| needs to be large. This feature is somewhat model independent. Then,

off-diagonal elements of the slepton mass matrix are induced through the neutrino Yukawa
interactions in eq. (2.4), which are estimated as [40] (see also appendix A)

(m2
L̃

)ij ≈
(m2

Hu
+A2

u)
8π2 (Y †ν )ik ln(MNk

/MGUT)(Yν)kj . (3.6)

As for the diagonal element, (m2
L̃

)33 is given by the sum of eq. (3.4) and (3.6) with i = j =
3.7 The neutrino Yukawa coupling Yν is parameterized as [63]

Yν 〈Hu〉 = diag(
√
MN1 ,

√
MN2 ,

√
MN3)R diag(√mν1 ,

√
mν2 ,

√
mν3)

×diag(e−iα1/2, e−iα2/2, 1)V †PMNS, (3.7)

where R is a complex orthogonal matrix, α1 and α2 are Majorana phases and VPMNS is the
PMNS matrix. In the following numerical calculation, we take R to be a real orthogonal
matrix, α1 = α2 = 0 for simplicity. The neutrino mass differences, the mixing angles
and the Dirac phase are taken from PDG [64]. The neutrino parameter dependence of
LFV appears in the combination of

∑
k(Y †ν )ikln(MNk

/MGUT)(Yν)kj . In figure 1, we check
the mν1 dependence of the LFV coupling parameter, |

∑
k(Y †ν )1kln(MNk

/MGUT)(Yν)k2|, by
taking R randomly. Here we take tan β = 20 and MN3 = 1010 GeV and we consider two
cases: i) MN1 : MN2 : MN3 = 1 : 2 : 3 and ii) MN1 : MN2 : MN3 = 1 : 10 : 100. The
black line corresponds to the case for R = 1. We here impose

∑3
i=1mνi < 0.12 eV [64].

We observe that the larger mν1 induces the larger LFV. Hereafter we take mν1 = 0 for a
conservative estimate.

Once we obtain the non-negligible off-diagonal elements of the slepton mass matrix, the
LFV processes, such as µ → eγ and µ → e conversion, are induced [65]. In what follows,
we estimate the sizes of the LFV processes for each models, and discuss impacts on future
experiments. We employ SuSpect 2.43 [66] to calculate the spectrum for SUSY particles.
Combining the output of SuSpect 2.43 and the general formulae given in ref. [65], we
estimate the sizes of the LFVs. The SM-like Higgs mass and the DM relic density are
estimated using FeynHiggs 2.14.3 [67–75] and MicrOmegas 5.0.4 [76, 77], respectively.
For the estimation of muon g − 2, we include the dominant two-loop corrections: the

7The equation (3.6) is also valid for i = j. However, it is subdominant.
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Figure 1. The mν1 dependence in the LFV coupling parameter. We fix tan β = 20 and MN3 =
1010 GeV and we consider two cases: i) MN1 : MN2 : MN3 = 1 : 2 : 3 and ii) MN1 : MN2 : MN3 =
1 : 10 : 100. The black line corresponds to the case with taking R = 1.

Parameters Point I
M1 (GeV) 3000
M2 (GeV) 250
M3 (GeV) 2500
Au (GeV) -1000
µ (GeV) 260
mA (GeV) 3400

tan β 20
Particles Mass (GeV)

g̃ 5090
q̃ 4330–4400
t̃1,2 3380, 3840
b̃1,2 3850, 4300
ẽL,R 500, 1110
µ̃L,R 499, 1110
τ̃1,2 229, 908
χ̃0

1,2,3 144, 273, 293
χ̃0

4 1340
χ̃±

1,2 145, 299
hSM-like 125.1
109∆aµ 2.19

m2
Hu

(MGUT)(GeV2) 1.17× 107

m2
Hd

(MGUT)(GeV2) 1.23× 107

Table 1. A mass spectrum in the model A. We take MN1 = MN2 = MN3 = 109 GeV.
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Figure 2. Contours of the muon g−2 and LFVs in the modelA with the degenerated RH neutrinos.
We take M1 = 3TeV, M3 = 2.5TeV, mA = 3.4TeV, Au = −1TeV and tan β = 20. In the dark
(light) green regions, the muon g− 2 is explained at 1σ level (2σ level). The purple shaded regions
are excluded due to too large Br(µ→ eγ). The stau becomes the LSP in the gray shaded region.

logarithmic QED correction [78] and the tan β enhanced correction to the muon Yukawa
coupling [79]. The two-loop corrections can be large as O(10)%.

Let us first focus on model A, where the vacuum stability constraint is avoided with
the small µ. Figure 2 shows the sizes of the muon g − 2 and LFV processes for MN1 =
MN2 = MN3(= MN ). In this case, the LFV processes become independent of R (Y †ν Yν is
independent of R). As for the SUSY breaking parameters and tan β, we take M1 = 3TeV,
M3 = 2.5TeV, mA = 3.4TeV, Au = −1TeV and tan β = 20. We fix the RH neutrino
mass as 108 GeV, 109 GeV, 1010 GeV, and 1011 GeV in the top-left, top-right, bottom-left,
and bottom-right figures, respectively. In the gray shaded region, there should be severe
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Figure 3. BR(µ→ eγ) is shown for the model A. In the left (right) panel, MN1 : MN2 : MN3 = 1 :
2 : 3 (MN1 : MN2 : MN3 = 1 : 10 : 100) with MN = MN1 . We fix M2 = 250GeV and µ = 260GeV
and the other parameters are same as figure 2.
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Figure 4. RAl(µ→ e) is shown for model A. The parameters are same as figure 3.

constraints from LHC because the stau becomes the lightest SUSY particle (LSP) and long-
lived [80, 81]. The muon g − 2 is explained at 1σ level (2σ level) in the dark (light) green
region. We see that the modelA can explain muon g−2 if we takeM2, µ ' O(100GeV). On
the other hand, our model simultaneously predicts sizable LFV processes as we discussed
above. The current limit on the LFV processes is shown by the purple shaded region,
which is given by MEG experiment [82]. We observe that the MEG experiment excludes
the parameter region for muon g − 2 when MN = 1011 GeV. Future sensitivities on the
relevant LFV processes, on the other hand, are shown by the colored lines. The region
below these lines can be tested by future LFV experiments. The purple line corresponds
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Figure 5. RTi(µ→ e) is shown for the model A. The parameters are same as figure 3.

Parameters Point II Point III
M2 (GeV) 600 2000
M3 (GeV) −4000 −4000
m2
Hu

(GeV2) −4× 108 −108

tan β 40 40
Particles Mass (GeV) Mass (GeV)

g̃ 8150 8040
q̃ 6650–6670 6700–6810

t̃1,2 (TeV) 10.4, 10.6 7.4, 7.5
b̃1,2 (TeV) 10.6, 11.0 7.3, 7.5
ẽL,R 632, 675 1260, 197
µ̃L,R 661, 728 1270, 268

τ̃1,2 (TeV) 4.5, 6.4 2.7, 3.4
χ̃0

1,2 577, 605 190, 1790
µ (TeV) 17.4 9.2
χ̃±

1 605 1790
hSM-like 125.1 125.2
HA (TeV) 5.8 2.1
109∆aµ 2.26 2.20
ΩDMh

2 0.119 0.120

Table 2. Mass spectra in the model B and C. We take MN1 = MN2 = MN3 = 109 GeV.
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Figure 6. Contours of the muon g−2 and LFVs in the model B with the degenerated RH neutrinos.
We take M3 = −4TeV, tan β = 40 and m2

Hd
= m2

Hu
(= m2

H).

to the future sensitivity of µ → eγ, Br(µ → eγ) ≈ 5 × 10−14, at MEG-II [83]. The red
and dashed red lines are the future sensitivities of µ − e conversion in Al at COMET
Phase-I [84] and COMET phase II [85], which correspond to RAl(µ→ e) ≈ 7× 10−15 and
≈ 3 × 10−17 respectively. Mu2e [86] gives similar sensitivity as COMET phase II. The
blue line is the future sensitivity of µ → e conversion in Ti, RTi(µ → e) ≈ 2 × 10−19,
at PRISM/PRIME [87]. We find that the future LFV experiments can investigate the
parameter region for muon g − 2 if the RH neutrinos are heavier than 108 GeV.

In table 1, we show the typical mass spectrum in this model. Here we fix the RH
neutrino masses as MN1 = MN2 = MN3 = 109 GeV. We note, however, that the SUSY
mass spectrum is almost insensitive to the masses of the RH neutrinos.

It should be reminded that, if we relax the degeneracy of the RH neutrino masses,
the size of LFV depends on the structure of a matrix R which cannot be determined
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Figure 7. BR(µ→ eγ) is shown for the model B. In the left (right) panel, MN1 : MN2 : MN3 = 1 :
2 : 3 (MN1 : MN2 : MN3 = 1 : 10 : 100) with MN = MN1 . We take m2

Hu
= m2

Hd
= −4 × 108 GeV2

and M2 = 600GeV. The other parameters are same as figure 6.
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Figure 8. RAl(µ→ e) is shown for the model B. The parameters are same as figure 7.

by observables. Let us estimate the R dependence of LFV by taking R randomly. The
results are given by figures 3, 4 and 5 which show the size of Br(µ → eγ), RTi(µ → e)
and RAl(µ → e) as a function of the mass of the lightest RH neutrino, respectively. We
consider the two cases; i) the case where the RH neutrinos are almost degenerate, namely
MN1 : MN2 : MN3 = 1 : 2 : 3 and ii) the mass spectrum for the RH neutrinos is hierarchical,
namely MN1 : MN2 : MN3 = 1 : 10 : 100. In both cases, we fix M2 = 250GeV and
µ = 260GeV and the other parameters are same as figure 2. We see that the degeneracy
of the RH neutrino masses reduces the dependence of R. In these figures, we also show the
current limits and the future sensitivities on the LFV. The purple and dashed purple lines
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Figure 9. RTi(µ→ e) is shown for the model B. The parameters are same as figure 7.

in figure 3 are the current limit by MEG [82] and the future sensitivity at MEG-II [83].
The red and dashed red lines in figure 4 show the future sensitivities of RAl(µ→ e) which
are same as figure 2. The blue and dashed blue lines in figure 3 are the current upper limit
by SINDRUM II, RTi(µ→ e) ≈ 4.4×10−12, [88] and the future sensitivity at MEG-II [83].

We next consider the model B. In this model, µ tan β is large but the vacuum stability
constraint is avoided thanks to the heavy staus. Figure 6 shows the contours of the muon
g − 2 and LFV in the (m2

Hu
,M2) plane. We also show the contours of the mass of the

lighter selectron and smuon, mẽ and mµ̃, as the black and black-dotted lines. Here we take
M3 = −4TeV, tan β = 40, m2

Hd
= m2

Hu
, MN1 = MN2 = MN3 , and M1 is fixed as we obtain

the correct DM relic density. We need to avoid the gray shaded region because slepton
becomes LSP in the region. The color notation for the muon g − 2 and LFV is same with
figure 2. The blue shaded region in the bottom-right figure is the current exclusion limit
given by SINDRUM II, RTi(µ→ e) ≈ 4.3×10−12, [88]. We see that the modelB can explain
muon g − 2, and the favorable parameter region can be tested by future LFV experiments
if the RH neutrino are heavier than 107 GeV. The typical mass spectrum in this model is
summarized in the left-handed side of the table 2. The R dependence of the LFV in the
model B is shown by figures 7, 8, and 9. We here take m2

Hu
= m2

Hd
= −4× 108 GeV2 and

M2 = 600GeV. The other parameters are taken as same as 6.
Finally, we discuss the model C. In this model, the vacuum stability constraint is also

avoided thanks to the heavy staus. In figure 10, we take the same parameters as figure 6,
but we focus on the different (m2

Hu
,M2) region where the correct DM relic density can be

realized by bino-slepton coannihilation process. The gray shaded region should be avoided
because selectron becomes lighter than 100GeV in the lower gray shaded region, while the
DM abundance becomes larger than the observed value in the upper gray shaded region.
We observe that the model C can explain muon g − 2 keeping the consistency with the
current LFV measurements, and the future LFV experiments can test the parameter region
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Figure 10. Contours of the muon g − 2 and LFVs in the model C with the degenerated RH
neutrinos. The parameters are same as figure 6.

where MN1 > 108 GeV. We show the typical mass spectrum of this model in the right-
handed side of the table 2. Figures 11, 12, and 13 show the R dependence of the LFV
in the model C. We here take m2

Hu
= m2

Hd
= −108 GeV2 and M2 = 2TeV. The other

parameters are taken as same as figure 10.

4 Conclusion

In this paper, we have shown that, in SUSY models explaining the muon g − 2 anomaly,
µ → eγ and µ → e conversion are very likely to be observed at the future experiments if
the RH neutrinos are heavier than 109 GeV, motivated by the successful thermal leptoge-
nesis. We have observed BR(µ→ eγ) & 10−14 − 10−12, RAl(µ→ e) & 10−17 − 10−14, and
RTi(µ→ e) & 10−17−10−14 for the case with the RH neutrinos heavier than 109 GeV. The
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Figure 11. BR(µ→ eγ) is shown for the model C. In the left (right) panel, MN1 : MN2 : MN3 =
1 : 2 : 3 (MN1 : MN2 : MN3 = 1 : 10 : 100) with MN = MN1 . We take m2

Hu
= m2

Hd
= −108 GeV2

and M2 = 2TeV. The other parameters are taken as same as figure 10
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Figure 12. RAl(µ→ e) is shown for the model C. The parameters are same as figure 11.

LFVs originate from the slepton mass mixing, which is induced by the neutrino Yukawa
interactions together with the large soft SUSY breaking mass for the up-type Higgs. We
have confirmed that the degeneracy of the RH neutrino masses reduces the uncertainty in
the relationship between the neutrino Yukawa couplings and the RH and the SM neutrino
masses. Since the large soft SUSY breaking masses for the Higgs doublets seem to be
inevitable to avoid the vacuum stability constraint in the stau-Higgs potential, this conclu-
sion is somewhat model independent provided that the scale of SUSY breaking mediation
is high enough.
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Figure 13. RTi(µ→ e) is shown for the model C. The parameters are same as figure 11.
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A Beta-functions for the slepton masses

Here, we show one-loop beta-functions for the slepton masses.
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]
(A.1)

where t = lnQr with Qr being the renormalization scale. Here, Ye, Yν , m2
L̃
, m2

Ẽ
, m2

Q̃
, m2

Ũ

and m2
D̃

are 3× 3 matrices.
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