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Abstract In this work, we study two scenarios of the Uni-
verse filled by a perfect fluid following the traditional dark
energy and a viscous fluid as dark matter. In this sense, we
explore the most simple case for the viscosity in the Eckart
formalism, a constant, and then, a polynomial function of the
redshift. We constrain the phase-space of the model param-
eters by performing a Bayesian analysis based on Markov
Chain Monte Carlo method and using the latest data of the
Hubble parameter (OHD), Type Ia Supernovae (SNIa) and
Strong Lensing Systems. The first two samples cover the
region 0.01 < z < 2.36. Based on AIC, we find equally sup-
port of these viscous models over Lambda-Cold Dark Mat-
ter (LCDM) taking into account OHD or SNIa. On the other
hand, we reconstruct the cosmographic parameters (q, j, s, l)
and find good agreement to LCDM within up to 3σ CL.
Additionally, we find that the cosmographic parameters and
the acceleration-deceleration transition are sensible to the
parameters related to the viscosity coefficient, making of
the viscosity an interesting physical mechanism to modified
them.

1 Introduction

Nowadays, one of the challenges in cosmology is the under-
standing and description of the accelerated expansion phase
of the Universe. Several cosmological observations give sup-
port to this phenomena; firstly it was confirmed by Super-
novaes of the Type Ia (SNIa) [1] then, by the acoustic peaks
of cosmic microwave background radiation (CMB) [2] and
supported by direct measurements of the Hubble parame-
ters (OHD) [3], Baryon acoustic oscillations (BAO) [4], and
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strong lensing systems (SLS) [5]. The simplest model, called
�-Cold Dark Matter (LCDM), describes very well such cos-
mological observations and proposes a cosmological con-
stant (� or CC) characterized by an equation of state (EoS)
w = − 1 to model the accelerated expansion of the Universe
and dust matter (w = 0) to simulate the dark matter evo-
lution at the background level. These two extra components
correspond about ∼ 95% of the total [2], being the rest of
components associated with baryons and relativistic species
like photons and neutrinos. Also, in the literature these first
two ingredients are known as dark energy (DE) and dark
matter (DM).

Besides its successful at large scale, LCDM presents sev-
eral problems at local scales, for instance, the well known
missing satellite problem that refers to the discrepancy of
about 10 times more dwarf galaxies obtained by the numer-
ical simulations based on LCDM model and the observed
ones in cluster of galaxies [6,7]. Also, the well-known core-
cusp problem [8]. Furthermore, there are open questions con-
cerning to the origin of the cosmological constant. In this
vein, it is the concordance problem that consists in a dis-
agreement of about 120 orders of magnitude in the CC value
measured from the Quantum Field Theory point of view and
the one obtained from cosmological measurements [9–11].
Additionally, the degeneracy problem which afflicts also the
LCDM model, refers to the inability of measuring the energy-
momentum of each component, instead the total one. In other
words, this implies the inability to know if the dark sector is
composed by one or several components1.

Several models have emerged in order to propose alterna-
tives to the LCDM paradigm, for instance, brane-world [13],
Chaplygin gases [14], Unimodular gravity [15,16], among
others [17], have entered into the scene as a greater con-
tenders, resolving conundrums that the LCDM cannot, more-

1 For a review of the LCDM problems, see for instance [12].
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over, scalar fields as DM [18–21], axion [22,23], etc, are an
important approaches to resolve the problem of DM. In this
vein, fluids with viscosity are great candidates not only to
aboard the DM problem, but also, the DE problem from an
unifying approach. Indeed, the viscous models could affront
problems like the H0 tension, and the problem associated
with the matter fluctuation amplitude. This kind of models
also have the characteristic of predicting an earlier transi-
tion to an accelerated phase in comparison with the stan-
dard cosmological model (see for example [24–26]). This is
because the causative of the Universe acceleration could be
related with a dynamical DE and not a cosmological constant
as states the consensus model. Moreover, we cannot ignore
the recent results of the Experiment to Detect the Global
EoR Signature (EDGES) which detect an excess of radiation
(not predicted by the standard model) in reionization epoch,
specifically in z ≈ 17 [27], which can be boarded through
the viscous model scenario.

In the non perfect fluid context, there are two kind of
viscosity known as shear and bulk. The shear viscosity does
not play an important role at late epochs of the Universe
because it does not satisfy the cosmological principle as the
bulk viscosity does. Then, at late times, it is of great interest
to study the bulk viscosity in any of its formalisms and there
are, typically, two ways to aboard it, using the Eckart theory
[28] or the Israel-Steward (IS) theory [29]. Although, in the
Eckart approach the propagation of the perturbations on the
non perfect fluid occurs at infinite speed, it is a simpler theory
than the IS formalism, allowing to study more complex forms
of the viscosity. For instance, bulk viscosity coefficient has
been modelled as a constant [30–33], polynomials [34–36],
and hyperbolic [36,37] functions. Moreover, it allows easily
to explore the presence of interacting terms in the viscous
fluid [38]. Because the non perfect fluid should satisfy the
near equilibrium condition of thermodynamics, the pressure
of the fluid must be greater than the one generated by the
viscosity. Then, to alleviate this condition, it is convenient to
add an extra perfect fluid such as CC or any other. It is worth
mention that this assumption has a price to pay in the viscous
fluids because they loss the power to describe the dynamics
of the Universe by unifying the DM and the DE in an unique
viscous fluid.

Regarding to IS formalism, there is a small quantity of
viscosity models that has been studied. For instance, some
authors [39–44] consider the viscosity coefficient as ξ ∼ ρs ,
where ρ is the energy density of the fluid and some solu-
tions have been studied for the case s = 1/2. Nevertheless,
to solve the mentioned near equilibrium condition of ther-
modynamics, [45] studies the evolution of the Universe by
adding a fluid as CC to a viscous fluid (considering ξ ∼ ρs).

In this work, we study a Universe filled by two fluids under
the Eckart formalism, a perfect fluid as DE mimicking the
dynamics of the CC, while a non-perfect fluid as DM which

is added to its EoS a viscosity term. We will assume two
cases for the viscosity coefficient: a constant and a polyno-
mial function of the redshift. It is interesting to remark that
our model is reduced to LCDM model (when the relativistic
species are negligibly) by turning off the viscosity. In this
sense, we aim mainly to compare the cosmographic param-
eters of our viscous models and LCDM to understand the
viscosity effects in LCDM. Additionally, we analyze corre-
lations between the cosmography and the viscosity param-
eters. Hence, we perform a Bayesian Markov Chain Monte
Carlo (MCMC) analysis to constrain the free model param-
eters using the largest samples of the observational Hubble
parameter distance measurements [3], Supernovae Pantheon
sample [46] and Strong Lensing Systems [5].

The manuscript is structured as follow: In Sect. 2, it is
presented the mathematical details of the viscous dark fluid
model. Section 3 describes the OHD, SNIa and SLS sam-
ples, together with the joint analysis of the three previously
mentioned samples, in Sect. 4 we present the constraints and
results, finally in Sect. 5 we give some discussions and con-
clusions.

2 Viscous dark fluid model

In what follow, we summarize briefly the two components
models following the mathematical formalism described in
[33,47]. Thus, we consider a flat Universe (k = 0) under the
Friedmann–Lemaître–Robertson–Walker (FLRW) metric,

ds2 = gμνdx
μdxν = − dt2 + a(t)2

(
dr2 + r2d�2

)
, (1)

where a(t) is the scale factor as function of the cosmic time
and d�2 = dθ2 + sin2 θdϕ2 is the solid angle. In addition,
the bulk viscosity term, 
, is introduced through the energy-
momentum tensor as an effective pressure p̃, i.e.,

Tμν = ρuμuν + p̃hμν, (2)

being hμν = gμν+uμuν and uμ = (1, 0, 0, 0) is the cuadriv-
elocity in the co-moving coordinate system, p̃ = p+
 with
p is the total barotropic pressure of the fluids presented in
the Universe. In this vein, we consider a viscous dust-like
matter, with EoS w = p/ρ = 0 coupled to a perfect fluid
behaving as the cosmological constant, i.e., w = − 1. Then,
the Friedmann equations are

H2 = κ2

3
(ρm + ρde), (3)

Ḣ + H2 = −κ2

6
(ρm + ρde + 3 p̃), (4)

ρ̇m + 3Hρm = 9ξH2, (5)

ρ̇de + 3Hρde = 0, (6)
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where κ2 = 8πG and H = ȧ/a is the Hubble parameter, ρm
and ρde are the energy density of the viscous matter and dark
energy, respectively. The effective pressure is p̃ = −ρde −
3ξH where we have inspired the form of 
 to be proportional
to the H through the bulk viscosity coefficient ξ = ξ(t) as
analogy to the fluid dynamics which the viscous effects are
proportional to the velocity.

Based on the procedure presented in [33,47], the homo-
geneous solution (when 
 = 0) of Eqs. (5), (6) with respect
to the redshift z is

ρh(z) =
∑
i

ρi0(1 + z)−3(wi+1), (7)

where i = m, de, and ρi0 means the energy density at current
epochs of the i-component. Notice that this solution corre-
sponds to an Universe filled by two perfect fluids. Addition-
ally, it is interesting to see that it is an approximation of the
LCDM model which we have despised the relativistic species
component at the background level. The viscosity effects will
appear as correction terms in the general solution which is
built as the sum of the homogeneous solution and the partic-
ular one. In other words, we can express the general solution
as

ρ(z) = ρh(z) [1 + u(z)] . (8)

It is important to remark that this form of the general solution
is a simplification coming from the idea that the viscous term
is the same for all the fluids, implying that the function u(z)
is the same for any fluid. For more details see [47]. Then,
it can be possible to find an expression for u(z) in function
also with the bulk viscosity coefficient, through the following
differential equation, as

− (1 + z)
du(z)

dz
= 9

ξ(z)

ρh(z)

√
κ2

3
ρh(z) [1 + u(z)]. (9)

By defining the dimensionless viscosity coefficient λ(z) =
ξ(z)H0/ρcr , being ρcr = 3H2

0 /κ2 the critical density, the
above expression reads as

1 + u(z) =
[

9

2

∫ z

0

λ(z)

(1 + z)
√

�(z)
dz + I0

]2

, (10)

where I0 is an integration constant and we have defined
�(z) = ρh(z)/ρcr = ∑

i �i0(1 + z)3(1+wi ), �i0 = ρi0/ρcr ,
being i = m, de. Now, in order to solve the above integral,
we need to propose a form of λ(z).

By considering the form 9λ(z) = λ0 + λ1(1 + z)n , [36],
we have

1 + u(z) =
[

1

2

∫ z

0

λ0 + λ1(1 + z)n

(1 + z)
√

�(z)
dz + I0

]2

, (11)

where λ0, λ1 ans n are free parameters. Before to solve the
latter expression, it is convenient to write the dimensionless

Hubble parameter as function of the redshift, z, defined as

E(z)2 ≡ H(z)2

H2
0

= 1

ρcr

∑
i

ρi , (12)

where i = m, de and H0 = 100 h km s−1 Mpc−1 and h is the
dimensionless Hubble constant measured at current epochs.
Then, by integrating and using (8) and (12), we obtain,

E(z) = √
�(z)

[
1 + λ0

3
√

�de0
sinh−1

(√
�de0

�m0(1 + z)3

)

− λ0

3
√

�de0
sinh−1

(√
�de0

�m0

)]

+√
�(z)

[
λ1

2n
√

�de0
(1 + z)n

× 2F1

(
1

2
,
n

3
, 1 + n

3
,−�m0(1 + z)3

�de0

)

− λ1

2n
√

�de0
2F1

(
1

2
,
n

3
, 1 + n

3
,− �m0

�de0

)]
, (13)

where we have used E(0) = �(0) = 1, �(z) = �m0(1 +
z)3 + �de0, and 2F1 is the hypergeometric function. In this
work, based on the results obtained on [36] we will set n =
−2. For λ1 = 0, we have the case when the bulk viscosity
coefficient is constant; in this case, we obtain

E(z) = √
�(z)

[
1 + λ0

3
√

�de0
sinh−1

(√
�de0

�m0(1 + z)3

)

− λ0

3
√

�de0
sinh−1

(√
�de0

�m0

)]
, (14)

where sinh−1 is the inverse of hyperbolic sin function. In the
latter we can observe that the standard cosmology (LCDM)
is recovery when λ0 = 0. It is worth to notice that for these
two cases, a future singularity appears for z → −1, crossing
to the Phantom DE region. An evidence of this behavior it
is discussed later in Sect. 5, which coincide with previous
studies provide by [48] about a Little Rip for this kind of
models.

3 Cosmological samples

In order to analyse the viscous models, we use three data sam-
ples provided by direct measurements of the Hubble param-
eters, Supernovae observations and strong lensing system.
This section is devoted to describe them and report the con-
straints of the model parameters considering each sample and
also by performing a joint analysis.
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3.1 Observational Hubble parameter measurements

Currently, the direct way of measuring the accelerated expan-
sion of the Universe is through the Hubble parameter using
the differential age tools and BAO measurements. The largest
sample that include these observations is compiled by [3]
covering a range 0.07 < z < 2.36 with 51 points. We
will refer to this sample as the Observational Hubble dis-
tance (OHD). Then, to constrain the parameter phase space,
� = (h,�m, λ0, λ1) and � = (h,�m, λ0) for the model
when λ is polynomial (setting n = −2) and constant, respec-
tively, we build the χ2-function to be minimize as

χ2
OHD =

51∑
i=1

(
Hth(zi ,�) − Hi

obs

σ i
obs

)2

. (15)

In the above expression, Hi
obs represents the observational

Hubble parameter with its uncertainty σ i
obs at the redshift zi .

On the other hand, Hth represents the theoretical expression
related to the Eqs. (13) and (14) for the polynomial and con-
stant form of the bulk viscosity coefficient (λ), respectively.

3.2 Type Ia Supernovae data

Apart of the OHD sample, it is useful to include the luminos-
ity distance measurements obtained through Type Ia Super-
novae (SNIa). The largest sample, collected by Pantheon
[46], covers the redshift region 0.01 < z < 2.3 with
1048 measurements of the bolometric apparent magnitude.
In order to compare it with our models, we compute the the-
oretical one as

mth(z) = M + 5 log10 [dL(z)/10 pc] , (16)

where, M is a nuisance parameter. The quantity dL(z),
known as the dimensionless luminosity distance, is given
by

dL(z) = (1 + z)
c

H0

∫ z

0

dz′

E(z′)
, (17)

where c is the speed of light and E(z) the dimensionless
Hubble parameter presented in Eqs (13) and (14). Then, we
build the χ2-function as

χ2
SN Ia = (mth − mobs) · Cov−1 · (mth − mobs)

T , (18)

where Cov−1 refers to the inverse of the covariance matrix
and mobs to the observed quantity of m.

3.3 Strong lensing system

Finally, we also use the latest compilation of the strong lens-
ing systems (SLS) provided by [5] which consider only sys-
tems where the lens are early type galaxies. With a total of
205 points, the sample covers the redshift region 0.0625 <

zl < 0.9280 for the lens galaxy and 0.196 < zs < 3.595 for
the source. To constrain cosmological parameters, it is useful
to built the chi-square function given by [49]

χ2
SLS =

205∑
i=1

(
Dth(zl , zs,�) − Di

obs

δDi
obs

)2

. (19)

In the latter, Dth is the theoretical angular diameter distance
ratio defined by

Dth = Dls

Ds
, (20)

being the angular diameter distance to the source,

Ds = 1

1 + z

c

H0

∫ zs

0

dz

E(z)
. (21)

Similarly, Dls means the angular diameter distance between
the source and the lens galaxy, i.e., the same previous equa-
tion but now evaluated in the region zs < z < zl . The obser-
vational counterpart, Dobs , is built as

Dobs = c2θE

4πσ 2 , (22)

where θE is known as the Einstein radius and σ is the velocity
dispersion of the lens DM halo. Its uncertainty is estimated
by

δDobs = Dobs

√(
δθE

θE

)2

+ 4

(
δσ

σ

)2

(23)

where δθE and δσ are the uncertainty of θE and σ , respec-
tively. Notice that δDobs does not consider correlation
between θE and σ . Following [5] we choice an absolute
uncertainty on θE of 0.05 for the data points without a
reported uncertainty.

3.4 Joint analysis

In order to minimize the total χ2-function for each model
given by

χ2 = χ2
OHD + χ2

SN Ia + χ2
SLS, (24)

we perform a Bayesian MCMC analysis based on emcee
module [50]. After achieving a lower value than 1.1 in the
Gelman-Rubin criteria [51] for each free model parameter
to stop the n-burn phase, we obtain 5000 chains with 250
steps, each one to explore the confidence region taking into
account a Gaussian prior on the Hubble constant h and on
DE density �m0 according to the Planck results [2]. Addi-
tionally, we select flat priors for λ0 and λ1 based on [36].
Table 1 summarizes the priors used in the Bayesian analysis.
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Table 1 Priors used in the MCMC analysis based on references [2,36].
Based on results in [36], the parameter n is fixed at n = − 2

Parameter Prior

h Gauss(0.6766, 0.0042)

�m0 Gauss(0.3111, 0.0056)

λ0 Flat in [0, 2]
λ1 Flat in [0, 2]

4 Constraints and results

In this section we present and discuss our results obtained in
the Bayesian analysis. Figure 1 shows the constrained phase
space of the parameters for CVM (top panel) and PVM (bot-
tom panel), respectively at 68% (1σ ), 95% (2σ ), and 99.7%
(3σ ) confidence level (CL). Table 2 presents the mean fitting
values obtained for both viscous models using OHD, SNIa,
SLS and the joint analysis, respectively. The reported uncer-
tainties correspond to 1σ CL. We find good agreement to data
according to the chi-square value of the models, being the
worse fit of them to SLS data with χ2 = 602.3 (603.6) for the
CVM (PVM). It is worth mentioning that CVM and PVM are
better approximations to LCDM because consider a DE com-
ponent with EoS w = − 1 and a viscous matter component.
By setting the λ = 0 (or ξ = 0), we recover the LCDM with
DE and DM components, which the relativistic species are
negligible. In other words, we are studying as a first approxi-
mation the consequences of the viscosity effects in the LCDM
model under the Eckart formalism. In this sense, it is conve-
nient to compare statistically our models with LCDM model.
Instead of using χ2 criteria, it is more convenient to use oth-
ers such as the Akaike information criterion (AIC) [52,53]
and Bayesian information criterion (BIC) [54] because they
allow to compare models with different degree of freedom.
They are defined as AIC = χ2+2k and BIC = χ2+k log(N )

where k is the number of free parameters, and N is the size
of the data sample. In these approaches, the model with low-
est values of AIC (BIC) is preferred by data. To contrast
with LCDM model, we consider the values �m0 = 0.3111,
h = 0.6766 reported by [2], and M = − 19.408 to obtain
AIC and BIC values AICLCDM = 29.4, 1032.5, 1674.4 and
BICLCDM = 33.3, 1047.4, 1689.9 using OHD, SNIa, and
joint analysis. It is worth to mention that we have not esti-
mated BIC and AIC for LCDM using SLS data because this
sample can not constrain either h or �m0. Following the
rules described in [38], we discuss our results. For CVM,
we obtain �AICc = AICc − AICLCDM = 2.5, 2.5, 17.7,
�BICc = BICc−BICLCDM = 4.4, 7.5, 22.9. Then, accord-
ing to AIC values, we have that the CVM and LCDM model
are equally supported considering OHD and SNIa data and
we do not have support for the CVM over LCDM taking
into account the joint analysis. In BIC, we have a weak

evidence against the CVM for OHD, a stronger evidence
against CVM on SNIa analysis and, an even stronger evi-
dence against this viscous model over LCDM on the joint
analysis. For the PVM, we obtain �AICp = − 0.5, 22.0, 4.4
and �BICp = 3.3, 31.9, 14.7. We observe equal support for
both models, PVM and LCDM for OHD, and although, we
have even strong evidence against PVM according to BIC, we
obtain similar support for both models in the AIC. Addition-
ally, we find that the CVM is equally supported than ωCDM,
the Chevallier-Polarski-Linder (CPL), and the Jassal-Bagla-
Padmanabhan (JBP) models [5] and no evidence against as
well. In contrast, we find a slightly less support for PVM than
previous mentioned parameterizations, and a strong evidence
against PVM over them.

We reconstruct the cosmographic parameters for both vis-
cous models, CVM and PVM, in the redshift region 0 < z <

2.5. Figure 2 displays the Hubble and deceleration parame-
ters for CVM (top panel) and PVM (bottom panel) respec-
tively. We find a good agreement with LCDM (star markers)
within 3σ CL along the mentioned range. Additionally, we
calculate the corresponding deceleration-acceleration transi-
tion redshift values, obtaining zt = 0.683+0.025

−0.022 and zt =
0.755+0.063

−0.051. When we compare them with LCDM value

(zLCDM
t = 0.642+0.014

−0.014), we obtain a deviation of 1.9σ and
2.2σ . Figure 3 shows the reconstruction of the high order
cosmographic parameters ( j , s, l) and their uncertainties at
1σ and 3σ . The jerk parameter gives us information about
the dynamics of the DE EoS, corresponding to j = 1 to
w = − 1 for the DE component. In this sense, although our
models are consistent up to 3σ with LCDM, our best fit-
ting values indicate an effective dynamical DE EoS. In other
words, we observe a deviation to LCDM in the jerk parameter
due to the viscosity contributions.

On the other hand, it is well known that the snap and lerk
parameters and higher cosmographic parameters does not
have a well established physical meaning, however they are
an important part of the Taylor series of the Hubble parameter
in cosmography, giving us more precision in the preferred
model by observations. Notoriously, the viscosity generates
important differences (for snap and lerk) in the PVM case
in comparison with LCDM, mainly at lower redshift, which
in turn means that dark energy is dynamic and not constant
in this kind of models. This is consistent with cosmographic
studies where the LCDM is not the preferred model (see Refs.
[55–58] for details).

Furthermore, we report the cosmographic parameters at
current epochs, q0 = − 0.568+0.018

−0.021 j0 = 1.058+0.039
−0.033 s0 =

− 0.184+0.141
−0.117 l0 = 3.139+0.056

−0.051 and q0 = − 0.472+0.064
−0.056,

j0 = 0.444+0.344
−0.394, s0 = − 2.334+1.159

−1.184, l0 = − 2.460+2.636
−1.412

for the constant and polynomial form of the viscosity,
respectively. We have a deviation of about 1.9σ (1.1σ )
between CVM (PVM) value and the LCDM one (qLCDM

0 =
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Fig. 1 2D contour and 1D
posterior distribution of the free
parameters for the two fluids
model when the viscosity
coefficient is a constant (top
panel) and polynomial (bottom
panel) using the OHD, SNIa,
SLS and OHD+SNIa+SLS
(joint) data
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Table 2 Best fitting values of the free model parameters

Sample χ2 h �m0 λ0 λ1 M AIC BIC

ξ0 = Constant

OHD 25.9 0.679+0.004
−0.004 0.312+0.005

−0.005 0.053+0.047
−0.035 – – 31.9 37.7

SNIa 1027.1 0.676+0.004
−0.004 0.312+0.005

−0.005 0.080+0.071
−0.072 – − 19.400+0.016

−0.016 1035.1 1054.9

SLS 602.3 0.677+0.004
−0.004 0.311+0.006

−0.006 0.737+0.175
−0.188 – – 606.3 612.9

Joint 1684.1 0.680+0.004
−0.004 0.311+0.006

−0.005 0.071+0.047
−0.040 – − 19.400+0.012

−0.012 1692.1 1712.8

ξ0 = Polynomial

OHD 20.9 0.676+0.004
−0.004 0.311+0.006

−0.006 0.551+0.237
−0.228 0.929+0.412

−0.401 – 28.9 36.6

SNIa 1044.5 0.676+0.004
−0.004 0.311+0.006

−0.006 0.461+0.441
−0.280 0.580+0.620

−0.395 − 19.400+0.019
−0.019 1054.5 1079.3

SLS 603.6 0.676+0.004
−0.004 0.311+0.006

−0.006 0.927+0.284
−0.235 0.312+0.484

−0.231 – 609.6 619.6

Joint 1668.8 0.679+0.004
−0.004 0.311+0.006

−0.006 0.347+0.183
−0.164 0.465+0.301

−0.263 − 19.400+0.014
−0.014 1678.8 1704.7

Fig. 2 Left panel: Best fits over OHD for the constant (polynomial) model at the top (bottom) panel. Right panel: deceleration parameter. The
darker (lighter) bands correspond the uncertainty at 1σ (3σ ) CL. The (magenta) star marker represents the reconstruction of the LCDM model

− 0.533+0.008
−0.008). Furthermore, the values of q0 are consis-

tent with those reported in the literature [36] within 2.2σ

when hyperbolic functions are considered. Additionally, the
authors [36] also reports q0 = − 0.680+0.085

−0.102 for a Uni-
verse filled by a single non-perfect fluid with polynomial
viscosity, achieving a deviation of 5.3σ (3.7σ ) relative to
CVM (PVM). It is interesting to observe that PVM is a gen-
eralization of this polynomial single fluid model because
PVM includes a DE component but has a better approxi-

mation to LCDM. In summary, Fig. 4 compares the q0 and
zt obtained for several models reported in the literature (see
these Refs. [14,36,38,59–66] for more details about the mod-
els and cosmological data used). The vertical band repre-
sents ±1σ around the central value of LCDM. It is inter-
esting to observe that models with interactions and viscos-
ity have a deceleration-acceleration transition earlier than
LCDM and most of the models are in good agreement with
the expected value q0 for LCDM. Additionally, we esti-
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mate the effective EoS at current times, obtaining values
of we f f 0 = − 0.712+0.012

−0.014 and we f f 0 = − 0.648+0.043
−0.038 for

CVM and PVM respectively. These values have a deviation
from one reported in [14] (Chaplygin-like model) of 3.95σ

and 3.36σ respectively. Furthermore, we find a deviation of
5.66σ and 1.43σ to the value presented in [43] (dissipative
dark fluid model), and good agreement (up to 2.1σ ) with the
one reported in [62].

Figure 5 displays the evolution of E(z)2 as function of
(1 + z)3 for both viscous models. In this diagram, the black
line represents the LCDM, and the region z > 0 over LCDM

corresponds to a quintessence behavior and the region z >

0 below LCDM line to a phantom one. In this vein, it is
interesting to observe that CVM behaves as phantom DE for
any time, presenting a divergence in the future. Although,
PVM also presents a singularity in the future (z = − 1), PVM
presents a transition from phantom to quintessence around
z ≈ 2.2, conserving such behavior close to z = − 1, before
to finish in a Big Rip. It is worth mentioning that a Big Rip
at the future is a typical final state presented in the viscous
models (see for instance [47,48]).

Fig. 3 Cosmographic parameter reconstruction. From left to right, it is the jerk (j), snap (s), and lerk (l) parameters. At top panel is the cosmographic
variables for the constant model and at the bottom is the ones for the polynomial model

Fig. 4 Comparison of the q0 and zt . The vertical band represents the uncertainty at 1σ of the LCDM model
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Fig. 5 Behavior of E(z)2 over (1 + z)3. Solid black line represents
LCDM model, blue dot-dashed line is the PVM, and red dotted line is
the CVM. For the PVM, we observe a slightly transition from phantom
to quintessence behaviour in the region 1 < z < 2.5. Vertical dotted
line represents the current Universe (z = 0)

On the other hand, we estimate the correlation between
cosmographic parameters, zt , and those proper of the mod-
els through the formulae corr(x, y) = Cov(x, y)/σxσy where
Cov(x, y) is the covariance coefficient between x and y, and
σx (σy) is the standard deviation of x (y). We find a strong
correlation (abs(corr)> 0.7) between those related to the vis-
cosity (λ0 and λ1) and q0, and between zt . In other words,
the viscosity terms allow us to modify both physical quanti-
ties that characterize the Universe. Additionally, we also find
a negative strong correlation between (λ0, λ1) and the high
order cosmographic parameters ( j0, s0, l0) at current epochs
(see Table 3).

Finally, although it has been shown (see for instance
[36,62]) that with an unique dissipative fluid it is possible to
explain the accelerated expansion of the Universe, we split
the dark sector into two fluids, dark matter and dark energy,
to satisfy the near equilibrium condition required by thermo-
dynamics, i.e., the viscous pressure 
 must satisfy the con-
dition |
/p| � 1 at least at current epochs, where p is the
total equilibrium pressure of the fluids. On the other hand, by
requiring ä > 0 for late times, the condition −
 > p+ρ/3
must be satisfied, whereρ is the total energy density of the flu-
ids. The latter is fulfilled because an acceleration phase occur
as it is shown in the q(z) reconstruction. Figure 6 shows the
evolution of |
/p| over the redshift range − 1 < z < 2.5. It
is interesting to observe that the both viscous models are far
equilibrium in the past, but have a trend to go to near equilib-
rium at current epochs. Additionally, due to the divergence
at z = − 1, CVM and PVM ends far from an equilibrium
point. Ta
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5 Summary

In this work, we study the Universe filled by one perfect
fluid modelling the DE component and a non-perfect fluid
describing the matter. While the DE is characterized by the
traditional EoS w = − 1, the matter follows an effective EoS
given by wm = − 3ξ(t)H(t)/ρm(t), where ξ is the viscos-
ity coefficient. As we mentioned, for ξ = 0 we recover the
cosmology of LCDM when the relativistic species are negli-
gible. In this vein, we constrain the free parameters assum-
ing that ξ is constant and is a polynomial function of the
redshift using the latest measurements and compilations of
the Hubble parameter, type Ia supernovae and strong lens-
ing. We find good agreement to data according to χ2-value
presented in Table 2. Additionally, we compare statistically
our models with LCDM using AIC and BIC criteria, and we
find that the OHD (SNIa) sample prefers equally our viscous
model than LCDM. In contrast, the joint (OHD+SNIa+SLS)
data give strong evidence against the viscous models over
LCDM. Based on the joint analysis, we present the dynam-
ics of the four main cosmographic parameters (q, j ,s,l) in the
region 0 < z < 2.5, in order to elucidate the differences
and advantages regards to the LCDM model. In this context,
the reconstruction of j for both models indicates an effective
dynamical DE, besides the causative of the universe acceler-
ation in this model, is proposed as a CC behavior. Therefore
j parameter point us the effects of the viscosity, which char-
acterize the model under study. Moreover, we find strong cor-
relations between the viscosity parameters (λ0 and λ1) and
those parameters that characterized the Universe dynamics
(q0 and zt ), allowing modify them according to the viscosity
property.

Finally, we observe that both viscous models finish in a
Big Rip state at z → − 1 as it is typical for this kind of
models. In addition, we observe that the PVM presents a
slightly transition to a quintessence region at late times, i.e.,
a viscous coefficient as function of the redshift may change
the behavior of the Universe from phantom to quintessence.
Further studies should be developed to address this result,
which will be presented elsewhere, and also to extend the
model by including a radiation component, in order to study
the effects of the viscosity at the CMB epochs and the conse-
quences of these dissipative effects at the perturbative level
as in those presented in [67–70]. In particular, the authors in
[69] establish the constriction ξ̃ < 0.24 (at 2σ ) at z = 0 for a
constant viscosity. In this sense, we estimate an upper bound
of ξ̃ = 9λ(0) < 0.149 and ξ̃ = 9λ(0) < 1.617 at 95% CL
for CVM and PVM respectively. We can observe that the first
is tighter than the one reported in [69], while our result for
PVM is less restricted than the mentioned. Additionally, our
results for PVM are also in agreement within 3σ with the
one obtained by [68] (for ξ ∼ ρs), and we obtain a tighter
constraint for CVM.

Fig. 6 Evolution of the quotient |
/p| over z, in the redshift region
− 1 < z < 2.5 and 2.5 < z < 15 for the inner panel. The PVM
and CVM are represented by blue dot-dashed line and red dotted line
respectively
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