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Abstract In this paper, we carry out an assessment of
cosmic distance duality relation (CDDR) based on the lat-
est observations of HII galaxies acting as standard candles
and ultra-compact structure in radio quasars acting as stan-
dard rulers. Particularly, two machine learning reconstruction
methods [Gaussian Process (GP) and Artificial Neural Net-
work (ANN)] are applied to reconstruct the Hubble diagrams
from observational data. We show that both approaches are
capable of reconstructing the current constraints on possible
deviations from the CDDR in the redshift range z ∼ 2.3.
Considering four different parametric methods of CDDR,
which quantify deviations from the CDDR and the standard
cosmological model, we compare the results of the two dif-
ferent machine learning approaches. It is observed that the
validity of CDDR is in well agreement with the current obser-
vational data within 1σ based on the reconstructed distances
through GP in the overlapping redshift domain. Moreover,
we find that ultra-compact radio quasars could provide 10−3-
level constraints on the violation parameter at high redshifts,
when combined with the observations of HII galaxies. In the
framework of ANN, one could derive robust constraints on
the violation parameter at a precision of 10−2, with the valid-
ity of such distance duality relation within 2σ confidence
level.

1 Introduction

The cosmic distance duality relation (CDDR) is a fundamen-
tal relation in modern cosmology, which relates two cosmo-
logical distances in cosmology (i.e. the luminosity distance
DL(z) and angular diameter distance DA(z)). More specifi-
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cally, the CDDR indicates that DL(z) and DA(z) satisfy the
relation of DL(z) = DA(z)(1 + z)2 at the same redshift
[1,2]. Theoretically, the validity of the CDDR depends on
three basic assumptions: (i) the space-time is described by a
metric theory; (ii) the light travels along the null geodesics
between the source and the observer; (iii) the photon num-
ber is conserved. Moreover, one of the basic assumptions of
general relativity is that photons travel along null geodesics.
In other word, the validity of the CDDR can be a support
of general relativity in some extents. As a fundamental rela-
tion, the CDDR has been widely used in varieties of research
fields in astronomy, such as the large-scale distribution of
galaxies and the near-uniformity of the CMB temperature
[3], as well as the gas mass density profile and temperature
profile of galaxy clusters [4,5]. Various astrophysical mecha-
nisms, such as gravitational lensing, and dust extinction, may
cause the deviation of the CDDR from the view of observa-
tion. More specifically, photons emitted from the source are
affected in the process of propagation due to gravitational
lensing effects and dust extinctions. Consequently, the nec-
essary conditions for maintaining the CDDR are violated.
Therefore, it is necessary to test the reliability of the CDDR
accurately before applying to various astronomical theories.

Traditionally, testing CDDR needs two types of observa-
tional data sets, i.e., the luminosity distance derived from
the luminous sources with known (or standardizable) intrin-
sic luminosity in the Universe like type-Ia supernova (SN
Ia), and the angular diameter distance observed from Baryon
Acoustic Oscillations (BAO) [6], Sunyaev–Zeldovich (SZ)
effect in clusters with X-ray surface luminosity measure-
ments [7–9], or strong gravitational lensing (SGL) [10,11],
etc. However, it is necessary to point out that the luminosity
distance inferred from SN Ia only covers the relatively lower
redshift range z ≤ 1.4. The so-called “nuisance” parame-
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ter of SN Ia usually optimizes along with model parame-
ters in the chosen cosmological model [12]. Meanwhile, the
angular diameter distance derived from BAO or SZ effect is
strongly model-dependent, thus will bring systematic uncer-
tainties which are hard to quantify and affect the validity of
testing CDDR. In addition, other works [13–15] attempted
to apply the BAO observations to CDDR test, which also
suffers from the limited sample size and low redshift range
0.35 ≤ z ≤ 0.74. Therefore, in order to perform the validity
of testing CDDR, one needs to reduce the statistical uncer-
tainty by increasing the depth and quality of the observed
data set. Meanwhile, the redshift ranges of the two samples
that inferred the angular diameter distance and the luminosity
distance should be roughly consistent. Such issue has been
recently discussed in Ref. [16], focusing on a new idea of
testing CDDR through the multiple measurements of high-
redshift quasars.

Although many efforts have been made to perform robust
tests of CDDR, the lack of adequate observational sam-
ples and model-independent methods should be taken into
account. Specially, it is difficult to obtain samples that sat-
isfy both the luminosity distance and the angular diameter
distance in roughly the same redshift range. This redshift-
matching problem was recognized a long time ago [8], with a
heuristic suggestion that the choice of redshift difference Δz
could play an important role in model-independent tests of
such relation. More recently, many authors presented a new
way to constrain the CDDR with different machine learn-
ing algorithms [17–19], with the luminosity distance and
angular diameter distance reconstructed from complemen-
tary external probes (Type Ia supernovae and gravitational
wave (GW) standard sirens) [20]. Their results demonstrated
the effectiveness of machine learning approaches in the high-
precision test of the electromagnetic and gravitational dis-
tance duality relations. More importantly, considering the
fact that the purpose of modern cosmology is to establish
consistent and robust theories, all alternative methods of
testing the fundamental principles of cosmology are neces-
sary. In this paper, we will use two non-parameterized meth-
ods, Gaussian Process (GP) and Artificial Neural Network
(ANN) algorithm, to reconstruct the newest observations of
HII galaxy Hubble diagram and ultra-compact structure of
radio quasars, respectively. These two approaches are data-
driven and have no assumptions about the data, suggesting
that they are completely model-independent. The luminosity
distance is inferred from reconstructed HII galaxy Hubble
diagram and the angular diameter distance is obtained from
the angular-size relation of compact radio quasar. The advan-
tage of using these two data is that the redshift ranges of the
two samples are roughly consistent, and can reach a relatively
high redshift range z ∼ 2.33. Since no models were assumed
in our analysis, our method produced a clear measurement
on the CDDR.

This paper is organized as follows: in Sect. 2 we briefly
introduce methodology of deriving two different cosmologi-
cal distances from the HII galaxies and ultra-compact struc-
ture of radio quasar sources, and the two non-parameterized
methods, GP and ANN reconstructing are described. In
Sect. 3 we show the final results and discussion. Finally, we
summarize our conclusions in Sect. 4.

2 Data and methodology

2.1 Luminosity distances from HII galaxies and
extragalactic HII regions

In order to measure luminosity distances in the Universe,
we always turn to sources that have known (or standardised)
intrinsic luminosity, such as type-Ia supernova (SN Ia) [12],
more distant quasars [21–24], and gamma-ray bursts (GRB)
[25], etc. In addition, the HII galaxies and extragalactic HII
regions [26–28] constitute a large fraction of population that
can be observed up to very high redshifts, beyond the feasible
limits of supernova studies. It is well known that the luminos-
ity L(Hβ) in Hβ and the ionized gas velocity dispersion σ of
HII galaxies and extragalactic HII regions may have a quan-
titative relation (be known as “L–σ” relation). The physics
behind this relation is based only on a simple idea, i.e., as
the mass of the starburst component increases, the number
of ionized photons and the turbulent velocity of the gas may
both increase as well. Melnick et al. first found that the scat-
ter of “L–σ” relation is very small and have the capability to
determine the cosmological distance independent of redshift
[29]. More specifically, based on the measured flux density
(or luminosity) and the turbulent velocity of the gas, one can
infer the luminosity distance directly. Whereafter, the valid-
ity of the “L–σ” relation acting as the standard candle and
its possible cosmological applications have been extensively
discussed in the literatures [30–32].

The “L–σ” relation between the luminosity L(Hβ) in Hβ

of a source and its ionized gas velocity dispersion can be
expressed as [27]

log L(Hβ) = α log σ(Hβ) + κ, (1)

where α is the slope and κ is the intercept. The L(Hβ)

is obtained from the reddening corrected flux density
F(Hβ) which only bases on a general equation L(Hβ) =
4πD2

L F(Hβ). Thus, the equation above can be written as a
relation of the observed flux density

log DL ,H I I (z) = 0.5[α log σ(Hβ) − log F(Hβ) + κ]
−25.04. (2)

Analogous to SN Ia applied in cosmology, the α and κ param-
eters should also be optimized with the assumed cosmolog-
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ical model parameters. Fortunately, Wu et al. used the mea-
surements of Hubble parameters from cosmic clocks (model-
independent) to calibrate α and κ , and demonstrated that the
calibrated values α = 5.12 ± 0.08 and κ = 33.08 ± 0.13 are
reliable for cosmological applications [32]. In this work, we
will adopt these values with their corresponding uncertainties
to get the luminosity distance.

The catalog of spectral and astrometric data from HII
galaxies and extragalactic HII regions contain more than 100
sources by far, and its statistical properties can be prelimi-
narily considered in cosmology. In this work, we will use
the current observations of 156 HII objects compiled by Ter-
levich et al. [27] which contain 25 high redshift HII galaxies
sources, 107 local HII galaxies sources, and 24 extragalactic
HII regions sources covering redshift range 0 < z < 2.33.
This dataset is larger than the source samples used by Plio-
nis et al. [30] and is more complete than the high redshift
data used by Melnick et al. [29]. Full information (including
name of the source, redshift, flux density, and turbulent veloc-
ity with corresponding observational uncertainties) about the
sample of 156 HII regions can be found in Table 1 of the work
[28].

2.2 Angular diameter distances measured from compact
structure of radio quasars

Quasars, among the most distant objects in the universe, have
great potential as distance indicators. From an observational
point of view, there are currently two types of quasar data
that can be served as cosmological probes, i.e., the non-linear
relation between the ultraviolet and X-ray fluxes of the quasar
to construct the Hubble diagram [21–23], and the angular
size-distance relation of ultra-compact structures object in
radio quasars (QSO) as the standard ruler of cosmology from
the very-long-baseline interferometry (VLBI) observations
[24]. The first type of quasar data provides the luminosity dis-
tance, but not the angular diameter distance, directly. More-
over, although the sample collected by [21] contained 1598
suitable quasars and redshift reaches to z ∼ 5.5, the sample
itself exhibits a large intrinsic dispersion. Take these factors
into consideration, we will use the radio quasar sample to
obtain the angular diameter distance information.

The angular size-distance relation in compact radio quasar
for cosmological inference was first proposed by Kellermann
et al. [33], in which he tried to obtain the deceleration param-
eter with 79 compact radio sources from VLBI at 5 GHz.
Whereafter, Gurvits [34] extended this method and attempted
to investigate the dependence of characteristic size on lumi-
nosity and redshift based on 337 Active Galactic Nucleuses
(AGNs) observed at 2.29 GHz [35]. In the subsequent anal-
ysis, the literature [34] adopted the modulus of visibility
Γ = Sc/St to redefine angular size of radio sources θ , which
can be expressed by θ(z) = 2

√− ln Γ ln 2/πBθ , where Bθ is

interferometer baseline measured in wavelengths, Sc and St
are correlated flux density and total flux density, respectively.
Based on a simple relation between the angle and distance
with the intrinsic linear size lm of the compact structure in
radio quasars, the angular size θ(z) can be written as

DA,QSO(z) = lm
θ(z)

, (3)

where lm = l Lβ(1 + z)n describes the apparent distribution
of radio brightness within the core, l is the linear size scal-
ing factor, L is the intrinsic luminosity of the source, and
β and n represent the possible dependence of the intrinsic
linear size of the source on luminosity and redshift, respec-
tively. With the gradually refined selection technique and
observations, as well as the elimination of systematic errors
caused by various aspects, Cao et al. [24] compiled milliarc-
second compact radio sample of 120 intermediate-luminosity
(1027W/Hz < L < 1028W/Hz) quasars with reliable mea-
surements of the angular size of the compact structure cov-
ering the redshift range 0.46 < z < 2.76 from VLBI survey
at 2.29 GHz. They showed that lm is independent of redshift
and luminosity (|β| ≈ 10−4, |n| ≈ 10−3), which suggests
that it can be used to cosmological studies. However, the
current problem is how to determine the value of lm . In the
subsequent analysis, the linear size, without pre-assuming a
cosmological model, was determined to be lm = 11.03±0.25
pc by Cao et al. based on the DA(z) reconstruction from H(z)
data obtained from cosmic chronometers [24]. The calibrated
intrinsic length and cosmological application of this sample
had obtained stringent constraints on both the matter den-
sity parameter Ωm and the Hubble constant H0, which are
consist with Planck 2018 observation [3]. The ultra-compact
structures in radio quasars for exploring other cosmological
models has been investigated in many literatures [36–41].
Therefore, it is reasonable to ask whether the derived angular
size depends on the intrinsic luminosity of the radio quasar,
and consequently affecting testing the validity of CDDR. In
fact, the derived angular size is obtained by a ratio of corre-
lated and total flux densities, i.e., the modulus of visibility
Γ = Sc/St . Therefore, from the perspective of observation,
the intrinsic luminosity of the radio quasar does not affect
the effectiveness of CDDR testing.

2.3 Reconstructions based on Gaussian process and
artificial neural network

From a theoretical perspective, one can directly achieve
CDDR testing by combining the L–σ relation in HII regions
with the angular size-distance relation of compact radio
sources. From the observational point of view, however, there
is currently a lack of data samples. Not only of the HII
region, but also samples of quasars. Although their redshifts
cover each other well, there are very few of them meeting
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the same redshift at the same time. In order to achieve the
CDDR testing and obtain convincing results, we consider
two non-parameterized technologies, Gaussian Process (GP)
and Artificial Neural Network (ANN), to reconstruct the HII
galaxy Hubble diagram and ultra-compact structure of radio
quasar sources data, respectively. There is no reason to favor
one technology over another, but mutually consistent results
for different parameterized technique would strengthen the
robustness of the conclusion.
Gaussian Process The Gaussian Process (GP) is a random
process defined in the continuous domain, which can be
regarded as a set of all random variables in the continuous
domain, and any single or multiple random variables satisfy
one-dimensional Gaussian distribution or multi-dimensional
Gaussian distribution [42]. The GP can be determined by a
mean function m(x) and a covariance function k(x, x∗) (also
called kernel function). The GP defines a priori function, one
can assume that for a given x, y there follows a distribution
p(y|x) = N (y|m,K), which K = k(x, x∗). The purpose of
GP is to learn a mapping function f from x to y through x,
y. Then, for the given new x∗, one can predict y∗ = f (x∗).
According to priori distribution of GP, the joint distribution
p(y, y∗|x, x∗) of observed data y and forecast data y∗ are
given by [43](

y
y∗

)
∼ N

((
m
m∗

)
,

(
Ky K∗
KT∗ K∗∗

))
, (4)

where Ky = k(x, x), K∗ = k(x, x∗) and K∗∗ = k(x∗, x∗).
According to the joint distribution of y and y∗, one can get
the conditional distribution

p(y∗|x∗, x, y) = N (y∗|μ∗,Σ∗), (5)

where μ∗ = KT∗ K−1
y y and Σ∗ = K∗∗ − KT∗ K−1

y K∗ are the
expectation vectors and covariance matrices of the posterior
prediction distribution, respectively.

The kernel function has many choices, such as square
exponential function. We take the Matérn (ν = 9/2) covari-
ance function here, because it can provide more reliable
results when using GP to reconstruct function [44]

k(z, z̃) = σ f
2 exp

(
−3 |z − z̃|



)

×
[

1 + 3 |z − z̃|


+ 27(z − z̃)2

72

+ 18|z − z̃|3
73 + 27(z − z̃)4

354

]
, (6)

where  denotes the characteristic length scale in x-direction
and σ f is the signal variance in y-direction. One can see that,
except for the hyper parameters in kernel function, there is
no parameter estimation that was involved in the final pre-
diction of the y∗ = f (x∗). It should be emphasized here

that whenever one performs the GP regression, the hyperpa-
rameters should be optimized by GP with the observed data
set, along with other parameters of interest (cosmological
parameters or not). Therefore, the proper way of perform-
ing such GP analysis is to treat the GP hyperparameters on
the same footing as the cosmological parameters, i.e. varying
all relevant parameters together and sampling the joint poste-
rior. Such procedure, which guarantees that the reconstructed
function is independent of the initial hyperparameter settings,
has been extensively applied in different cosmological stud-
ies [45–48], especially high-fidelity constraints on the spatial
curvature parameter and Hubble constant [49,50].

In this analysis, we use Gaussian Processes in Python
(GaPP)1 to realize the reconstruction of different functions.
For the HII regions sample, the reconstructed logarithmic
luminosity distance log DL ,H I I (z), as a function of loga-
rithmic redshift log z, with the estimation of their 1σ confi-
dence regions are shown in the top panel of Fig. 1. Mean-
while, we also reconstruct function θ(z) from compact radio
sources observations, and final results with their correspond-
ing 1σ uncertainties are shown in the bottom panel of Fig. 1.
We reconstruct 1000 points for HII regions and compact
radio sources, respectively. From this figure, one can see that
the 1σ uncertainty from GP reconstruction is smaller than
that of individual data points. Such issue has been exten-
sively discussed in the recent works [11,51]. More specifi-
cally, the final reconstructed confidence region depends on
three factors, i.e., the observed errors of data, the optimiza-
tion of hyper parameters of the GP method, and the prod-
uct of the covariance matrixes K∗K−1

y KT∗ between the pre-
dicted and current observed points. It should be noted that,
if K∗K−1

y KT∗ > σ f , the uncertainty of the predicted point
will be less than uncertainties of observed points when there
is a large correlation between the data. One can clearly see
from Eq. (6) that the correlation between z and z̃ will be large
when z − z̃ less than . Such condition, which is satisfied by
most of the HII galaxy and quasar data points in our study,
will result in smaller 1σ confidence region from GP. We refer
the reader to Ref. [42] for further details on this issue.

Artificial Neural Network For the second nonparametric
approach, we turn to Artificial Neural Network (ANN) and
show the reconstructed function from observational data.
With the development of computer hardware in the recent
10 years, machine learning technology has been gradually
applied to many research fields in astronomy, and shown
excellent potential for solving cosmological problems, such
as analyzing gravitational waves [52,53] and constraining
cosmological parameters [54–59].

The main purpose of an ANN is to construct an approx-
imate function or map that correlates the input data with

1 http://www.acgc.uct.ac.za/seikel/GAPP/index.html.
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Fig. 1 Top panel: The reconstructed function log DL ,H I I (z) with cor-
responding 1σ errors by using GP (red line), and the gray dots with
error bars represent measurements of HII regions; Bottom panel: The
GP-reconstructed function θ(z) from compact radio sources observa-
tions

the output data. The ANN has been shown to be “universal
approximator” that can represent a wide variety of functions
[60,61]. The ANN is made up of neurons, which are very
simple elements that receive digital input. Generally speak-
ing, the artificial neural network consists of an input layer,
one or more hidden layers and an output layer. Each layer
takes a vector from the previous layer as input, applies a
linear transformation and a nonlinear activation function to
the input, and propagates the current result to the next layer.
Formally, in a vectorized way [62]

zi+1 = xiWi+1 + bi+1, (7)

xi = f (zi+1), (8)

where xi is the input vector at the i th layer, Wi+1 and bi+1 are
linear weights matrix and the offset vector which need to be
optimized, zi+1 is the output vector after linear transforma-
tion, and f is the activation function. Here, the Exponential
Linear Unit (ELU) is acted as the activation function [63],
which is given by

f (x) =
{
x x > 0

α(exp(x) − 1) x ≤ 0
, (9)

where α denotes the hyper-parameter that controls the value
to which an ELU saturates for negative net inputs. Compared
to other activation functions (such as the rectified linear and
the leaky rectified linear), when the network exceeds five
layers, ELU can not only improve the learning speed, but
also have better generalization performance [63].

The ANN equals to a function fW,b(x). The goal of ANN
is to make its output to be as close as possible to the target
value y. Then, according to the difference between the pre-
dicted value fW,b(x) of the current network and the target
value y, the weight matrix of each layer needs to be con-
stantly updated for minimize the difference, which is defined
by a loss function L. The method used is gradient descent,
that is, by constantly moving the loss value to the opposite
direction of the current corresponding gradient to reduce the
loss value. Formally, in a vectorized way [64]

∂L
∂xi+1

= f ′(xi+1)
∂L

∂xi+1
,

∂L
∂Wi+1

= xTi
∂L

∂zi+1
,

∂L
∂xi

= WT
i+1

∂L
∂zi+1

,

∂L
∂bi+1

=
(

∂L
∂zi+1

)
, (10)

where the operator ∂ denotes partial derivatives, and f ′ is the
derivative for the nonlinear function f .

According to the publicly released code by the work [62],
which explicitly describe the ANN method, we use the mod-
ule called Reconstruct Functions with ANN (ReFANN)2

to perform the reconstruction of the HII regions and radio
quasars data-sets. Similarly, we show the reconstructed func-
tion log DL ,H I I (z) by using ANN method as a function of
logarithmic redshift log z with the estimation of 1σ confi-
dence region in the top panel of Fig. 2. For compact radio
sources, the reconstructed function θ(z) with corresponding
1σ uncertainties by using ANN is given in the bottom panel
of Fig. 2. Similarly, we also reconstruct 1000 points for HII
regions and compact radio sources, respectively. Compared
to GP technology, the ANN method does not assume ran-
dom variables that satisfy the Gaussian distribution, which is
a completely data driven approach. It is interestingly to note
that the uncertainties of the data reconstructed by ANN are
almost equal to that of the observations. Therefore, the 1σ

confidence region reconstructed by ANN can be considered
as the average level of observational error. We refer the reader
to Ref. [58] for further details on this issue.

2 https://github.com/Guo-Jian-Wang/refann.
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Fig. 2 Top panel: The reconstructed function log DL ,H I I (z) with 1σ

errors by using ANN (red line), and the gray dots with error bars rep-
resent measurements of HII regions; Bottom panel: The reconstructed
function θ(z) by using ANN from compact radio sources observations

2.4 Testing the validity of CDDR

In order to test the validity of CDDR, we use the reconstructed
data to directly perform a model-independent test of CDDR,
i.e., we do not adopt any parameterized form to quantify the
CDDR, which is given by the following form [65,66]

η(z) = DL(z)

DA(z)(1 + z)2 . (11)

Note that any statistically significant deviation from η(z) = 1
could indicate possible violation of the three basic CDDR
assumptions. Furthermore, we turn to four parameterized
forms of CDDR, which have been extensively discussed in
the quoted papers [8]

ηth(z, η j ) =

⎧⎪⎪⎨
⎪⎪⎩

1 + η0,

1 + η1z,
1 + η2z/(1 + z),
1 + η3z + η4z2.

(12)

Note that the first parameterized form is independent of red-
shift, therefore we can compare it to other parameterized
forms to check its possible dependency on the redshift. In

general, η(z) can be treated as parameterized functions of
the redshift. In this work, we also use other general para-
metric representations for a possible redshift dependence of
CDDR including two one-parameter expressions and a two-
parameter parametrization. The consistency of the results
under different parameterized forms will enhance the robust-
ness of the conclusion.

From the observational perspective, we obtain the lumi-
nosity distance DL(z) through the “L–σ” of HII galaxies and
extragalactic HII regions, and the diameter distance DA(z)
can be derived from compact structure in radio quasars.
For a given DL ,H I I data point, the angular diameter dis-
tance DA,QSO should be observed at the same redshift. To
avoid introducing additional systematic errors, a cosmologi-
cal model-independent selection criterion is considered. We
take |zH I I − zQSO | < 0.005 in our analysis [9,10]. If one
only consider the actual observational sample, it is difficult
to achieve a rigorous CDDR test and get convincing results.
That is the reason why we used two non-parameterized tech-
niques mentioned above to reconstruct the data. Using the
reconstructed samples, we are able to have a one-to-one
matching between HII regions and compact structure in radio
quasars . After executing the redshift selection criterion by
using reconstructed data samples, 892 data are remained.
Subsequently, the observed ηobs(z) can be represented by
following form

ηobs(z) = DL ,H I I

DA,QSO(1 + z)2

= θ

lm(1 + z)2 100.5[α log σ(Hβ)−log F(Hβ)+κ]−25.04.

(13)

Uncertainties have been assessed from the standard uncer-
tainty propagation formula, based on (uncorrelated) uncer-
tainties of observable quantities. The total uncertainty budget
includes the ionized gas velocity dispersion σlog σ(Hβ), flux
densityσlog F(Hβ) and additional systematic errors introduced
from the calibrations of α and κ in HII regions data, the angu-
lar size σθ , and additional systematic errors introduced in the
calibrations of linear size lm in radio quasars. So the total
uncertainty of ηobs(z) can be expressed as

σηobs =
√

σ 2
log σ(Hβ) + σ 2

log F(Hβ) + σ 2
α + σ 2

κ + σ 2
θ + σ 2

lm
.

(14)

In order to determine the best fitting CDDR parameters
and corresponding uncertainties, we use the Bayesian sta-
tistical methods to obtain the posterior probability density
function of the CDDR parameters η j ( j = 0, . . . , 4) cor-
responding to four parametrization forms of Eq. (12). The
posterior probability density function is given by

p(η|obs data) ∝ L(η, obs data) × p(η), (15)
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Fig. 3 Cosmic distance duality relation η(z) for the GP reconstruction
from the HII galaxy and compact radio quasar sample. The dashed line
at unity is η(z) = 1, the solid line is the ANN fit, and the shaded region
is the 1σ GP errors

where L is the likelihood function, and has a following form
of

L =
i=892∏

i

1√
2πση

exp

[
−1

2

(ηobs(z) − ηth(z, η j ))
2

σ 2
η

]
,

(16)

and p(η) is the prior, and assumed the following uniform
distribution: p(η j ) = U [−1, 1]. We use the Python mod-
ule emcee [67] to perform the Markov Chain Monte Carlo
(MCMC) analysis.

3 Results and discussion

Let’s start with the reconstruction of HII galaxy and radio
quasar sample using GP. In Fig. 3 we show a particular real-
ization of the reconstructed CDDR, along with the case of
η(z) = 1 (dashed green line) and the corresponding best-
fit (solid colored line) for the GP. Our results indicate that
there is no obvious deviation from η(z) = 1 at 1σ confi-
dence level. In the higher redshift region, due to the lack of
observational data the errors of reconstruction become larger
and the statistical significance of CDDR reconstruction is
affected. Such finding is well consistent with that obtained
in the recent works [17–20]. Focusing on the different param-
eterized form of ηobs(z), the numerical results by using GP
reconstructed technology for three parameterized forms η j

( j = 0, 1, 2) are summarized in Table 1, and the posterior
probability density functions are shown in Fig. 4. For the
first parameterized form, the best fitting value with 1σ error is
η0 = 0.001±0.0031, which demonstrates that there is no evi-
dence for the dependence relation between the CDDR param-
eter and redshift. Working on the second parameterized form,
we obtain η1 = −0.003 ± 0.003, which contains zero value
within ∼ 1.2σ confidence level. Considering the redshift

Fig. 4 The posterior probability density function with three parame-
terized forms η j ( j = 0, 1, 2) by using GP reconstructed HII galaxy
and compact radio quasar samples

coverage of our CDDR test (z ∼ 2.3), the third parametriza-
tion may effectively avoid the possible divergence at high
redshift. In this case, the best fitting value η2 with 1σ con-
fidence level is η2 = 0.001 ± 0.005. Meanwhile, for the
two-parameter form, the graphic representation and numer-
ical results of the constraints on the CDDR parameters (η3,
η4) are shown in Fig. 5 and Table 1. One can clearly see
that the CDDR seems to be violated at 1σ confidence level,
η3 = −0.033 ± 0.006 and η4 = 0.029 ± 0.003. However,
one should be noted that the degeneracy between η3 and η4 is
strong, and they are in negative correlation. If η3 increases to
zero, then η4 will go back to zero, which means that the strong
degeneracy between them affects our test of CDDR validity.
Such result, which is similar with the findings of previous
works [11], highlights the importance of choosing a reliable
parametrization to describe η(z) in the early universe. Bene-
fit from the GP technology, the HII/QSO pairs satisfying the
redshift selection criteria have a massive growth, therefore,
a considerable amount of high-redshift samples (z > 1.4)
have been included in our analysis. Actually, such a com-
bination of HII regions and radio quasars enables us to get
more precise measurements at the level of Δη ∼ 10−3 by
using GP reconstructed technology. Our method provided
constraints for testing validity of CDDR more stringent than
other currently available results based on real observational
data.

We also consider the added benefit on the reconstruction
brought by other machine learning methods. Working on the
reconstructed luminosity and angular diameter distances with
ANN, we obtain the reconstruction of the distance duality
relation η(z) in Fig. 6, when the full data combination of
HII galaxies and compact radio quasar is considered. Simi-
larly, the reconstructed η(z) function is compatible with the
validity of CDDR at the 1σ confidence level, hence there is
no clear deviation from such fundamental relation in mod-
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Fig. 5 The 1D and 2D marginalized probability distributions for the
fourth CDDR parameters η3 and η4 by using GP reconstructed HII
galaxy and compact radio quasar samples

ern cosmology. Furthermore, for both ML approaches we
find that the reconstructed errors are inconsistent with each
other, since the GP and the ANN are in principle rather dif-
ferent reconstruction methods. Next, in Table 1 we show the
numerical result for CDDR parameters in the framework of
four parameterized forms. The posterior probability density
functions of CDDR parameters η j ( j = 0, 1, 2) from recon-
structed HII galaxy and radio quasar samples are shown in
Fig. 7. We find that there is some deviation from CDDR at
1σ confidence level. The best fitting values η0 and η1 are
0.031±0.016 and 0.028±0.014 for first and second param-
eterized forms, but the results are still consistent with zero
CDDR parameters within 2σ confidence level. Meanwhile,
for the third parameterized form, we get η2 = 0.031±0.033

with 1σ uncertainty. Considering the forth form, the results
are η3 = 0.033 ± 0.043 and η4 = 0.027 ± 0.025 with
1σ errors and shown in Fig. 8. Although considering more
parameters would make the constrained precision of the
CDDR parameters worse, our findings also demonstrate the
robustness of CDDR validity in two-parameter form. In gen-
eral, whatever parameterized forms are considered here, our
results indicate that there is no large extent violation of the
CDDR validity at the current observational data level, and
this is one of unambiguity conclusions in our work.

In order to highlight the potential of our method, it is
necessary to compare our results with those obtained in the
previous works. Traditionally, the angular diameter distances
are derived from SZ effect of galaxy clusters [7,9], BAOs [6],
GRBs [68], and SGLs [10,11]. One can combine the lumi-
nosity distance obtained from SN Ia observations to test the
validity of CDDR. Our results are consistent with the find-
ings of their previous works, which confirm the validity of
the CDDR at early Universe. However, the angular diame-
ter distances inferred from SZ effect and BAOs are model
dependent, SGLs need to the assumption of a flat Universe,
and GRBs requires additional external calibrators to cali-
brate it at low redshifts. We remark here that, without any
assumptions, the angular diameter distances estimated from
compact structure in radio quasars provides a new possi-
bility to test the fundamental relations in the early universe
model independently. More importantly, in work of [66], they
simulated gravitational wave (GW) observations based on
third-generation GW detectors Einstein Telescope and sim-
ulated radio quasars from VLBI to test the CDDR. Their
results shown that the CDDR parameter Δη0 ∼ 0.0029,
Δη1 ∼ 0.0018, and Δη2 ∼ 0.0051 (at 68.3% confidence
level) corresponding to first, second and third parameterized
forms in our work. However, we should seek other meth-
ods and technologies until the observed GW events based on
the third-generation GW detectors will be sufficient to get
statistical results in the future.

Table 1 Constraints on the CDDR parameters for four types of parameterized forms, in the framework of GP and ANN technologies

η j (z) + GP method η0 η1 η2 η3 η4

1 + η0 0.001 ± 0.003 � � � �
1 + η1z � −0.003 ± 0.003 � � �
1 + η2z/(1 + z) � � 0.001 ± 0.005 � �
1 + η3z + η4z2 � � � −0.033 ± 0.006 0.029 ± 0.003

η j (z) + ANN method η0 η1 η2 η3 η4

1 + η0 0.031 ± 0.016 � � � �
1 + η1z � 0.028 ± 0.014 � � �
1 + η2z/(1 + z) � � 0.031 ± 0.033 � �
1 + η3z + η4z2 � � � 0.033 ± 0.043 0.027 ± 0.025
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Fig. 6 Cosmic distance duality relation η(z) for the ANN reconstruc-
tion from the HII galaxy and compact radio quasar sample. The dashed
line at unity is η(z) = 1, the solid line is the ANN fit, and the shaded
region is the 1σ ANN errors

Fig. 7 The posterior probability density function with three parame-
terized forms η j ( j = 0, 1, 2) by using ANN reconstructed HII galaxy
and compact radio quasar samples

4 Conclusion

The cosmic distance duality relation (CDDR), as a fun-
damental relation based on the metric theory of gravity,
plays a important role in modern cosmology. Possible vio-
lations of such fundamental relation indicates that the non-
conservation of the photon number from the source to the
observer due to some new physics. In this paper, we have pro-
posed a new model-independent method to test the CDDR
with the latest observations of HII galaxies acting as standard
candles and ultra-compact structure in radio quasars acting
as standard rulers. Specially, two machine learning recon-
struction methods, i.e., Gaussian Process (GP) and Artificial
Neural Network (ANN), are respectively applied to recon-
struct the Hubble diagrams from the observed HII galaxy
and radio quasar samples. In order to enhance the robustness
of the final results, we use four commonly used parameter-

Fig. 8 The 1D and 2D marginalized probability distributions for the
fourth CDDR parameters η3 and η4 by using ANN reconstructed HII
galaxy and compact radio quasar samples

ized forms η = 1 + η0, η = 1 + η1z, η = 1 + η2z/(1 + z),
and η = 1 + η3z + η4z2 to describe the possible violation of
CDDR. Meanwhile, we also exploit a fully agnostic recon-
struction of CDDR based on two machine learning methods,
which allows us to obtain constraints without any assumption
on the redshift trend of possible deviations from CDDR.

First of all, we focus on the reconstruction of HII regions
and compact radio quasar samples through the GP method.
Based on the reconstructed standard candle and standard ruler
data, we obtain the best-fit values of the CDDR parame-
ters η0 = 0.001 ± 0.0031, η1 = −0.0031 ± 0.0027, and
η2 = 0.0014 ± 0.0054 for the three one-parameter forms,
which are well consistent with no violation of the cosmic dis-
tance duality relation. The results suggest that the tests of cos-
mic opacity are not significantly sensitive to the parametriza-
tion for η. For the two-parameter parameterization, we obtain
η3 = −0.033±0.006 and η4 = 0.029±0.003 at 68.3% con-
fidence level. A strong degeneracy between the two redshift-
dependent CDDR parameters is also revealed in this analysis.
Note that although such negative correlation could poten-
tially affect our test of CDDR, the validity of such funda-
mental relation is still supported within 2.8σ . Therefore, our
results indicate that there is no obvious violation of the CDDR
at the current observational data level, based on Gaussian Pro-
cess for the overlapping redshift domain (z ∼ 2.3). More-
over, we find that ultra-compact radio quasars provide an
alternative to the use of HII galaxies to confirm the valid-
ity of the CDDR, reaching 10−3 constraints on the violation
parameter.
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It is still interesting to see whether those conclusions may
be changed with a different machine learning reconstruc-
tion method. Working on the reconstructed HII regions and
compact radio quasar samples with ANN, one could derive
robust constraints on the violation parameter at the precision
of 10−2, with the validity of such distance duality relation
within 2σ . Although not all of the parameterized forms sup-
port the validity of CDDR within 1σ in the framework of GP,
more convincing results are obtained in the ANN method.
Although the GP and ANN methods have their own advan-
tages and disadvantages [62], they both show great potential
in the studies of precision cosmology. In the case of non-
parameterized reconstruction of CDDR, our results based on
the two machine learning methods both support that there is
no obvious deviation from η(z) = 1 within 1σ confidence
level. However, the statistical significance of our CDDR
reconstruction is still significantly affected by the lack of
observational data, especially at higher redshifts. Looking to
the future, an increase in the number of high-redshift stan-
dard probes would improve the precision of our approach
even further. This strengthens our interest in observational
search for more HII galaxies and compact radio quasars with
smaller statistical and systematic uncertainties.

As a final remark, any possible deviation the CDDR might
have profound implications for the understanding of funda-
mental physics and natural laws. Therefore, our results high-
light the importance of machine learning in accurately test-
ing the current pillars of modern cosmology and probing new
physics beyond the standard cosmological model. Summa-
rizing, considering the wealth of available data and various
machine learning technologies in the future, we may be opti-
mistic to expect detecting possible deviation from the CDDR
at much higher precision.
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