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1 Introduction

In perturbative field theory and string theory, various integrals have to be computed in
order to obtain scattering amplitudes. In the case of field theory, these are integrals over
loop momenta of virtual particles. In string theory, these are integrals over moduli spaces
of punctured (super) Riemann surfaces. In recent years, physicists, number theorists,
and algebraic geometers have gained a better understanding of the methods necessary to
perform these integrals and of the properties of the resulting functions and numbers — or
periods, respectively.

In field theory, the simplest loop integrals yield polylogarithms evaluated at certain
kinematic points or numbers, which can be computed in dimensional regularization using
methods based on differential equations or direct integration [1, 2]. However, even simple
quantum field theories, such as a φ4-theory, can eventually produce more complicated
periods at high enough number of loops [3]. In string theory, the simplest amplitudes
describe the tree-level scattering of massless external states. Their low-energy expansion
returns periods of the moduli space of Riemann spheres with n marked points M0,n [4].
The marked points or punctures, respectively, correspond to the vertex insertion points
of the external string states. Interesting properties of these genus-zero string amplitudes
are made apparent, for example, in the KLT relations, which relate tree-level closed-string
integrals to sums of bilinears of open-string integrals [5]. These relations have beautiful
mathematical interpretations in either intersection theory of ref. [6] or in a more succinct
level, in terms of the single-valued integration of Brown, Dupont and Schnetz [7, 8].

Next in difficulty, there are integrals involving genus-one, or elliptic, curves. They
appear quite non-trivially1 in field theory amplitudes, while their appearance is obvious in

1In particular, it is hard to determine whether a given integral expressible via elliptic functions, for
example, does not admit a representation in terms of genus-zero quantities.
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computing genus-one string theory amplitudes, since the latter involve integrals over the
moduli space of n-punctured genus-one curvesM1,n. A multitude of methods have recently
been developed in computing these integrals as iterated integrals over either the punctures
or the modular parameter of the torus. There has been progress in the computation of
amplitudes beyond genus-one in both string theory and field theory amplitudes, but the
systematics in these cases are not as developed as in the genus-zero or genus-one cases.

An important tool among the methods above is the use of differential equations. In
the context of string integrals, these are differential equations with respect to the moduli,
e.g. the modular parameter τ parametrising the torus at genus one, or the vertex insertion
points. Starting form these differential equations, one can perform a series-expansion in
the inverse string tension α′ for these integrals. In order to use this method, though, one
needs a sufficiently large vector of integrals such that, under integration-by-parts (IBP)
and partial-fractioning, one can define an integrable connection acting on such a vector
of integrals. These methods have been used with great success for tree-level and one-loop
string integrals, as can be seen in refs. [9–18].

In the current work, we expand on the method of ref. [17] to the setting of a genus-one
integral with multiple unintegrated punctures. In doing this, we are also generalizing some of
the results of ref. [18] into a genus-one setting. In this last reference, the authors studied open-
and closed-string integrals with multiple unintegrated punctures and wrote them in terms
of generating functions of multiple polylogarithms. In this paper, we are able to describe
functions closely related to genus-one open string integrals with unintegrated punctures via
a generating function of the elliptic multiple polylogarithms (eMPLs) Γ̃

(
k1 ... kr
z1 ... zr ; z, τ

)
of

ref. [19], and study some of their properties.
The functions studied in this work satisfy a KZB2 differential equations in n punctures.

This means that the differential equation itself provides a representation of a subalgebra3

of the genus-one Drinfeld-Kohno algebra t̄1,n: this is a bigraded algebra that ensures the
integrability of the differential equation [22]. We find matrices that satisfy the algebra
relations of t̄1,n and that obey their grading, up to a shift. Moreover, the theory of the
KZB equation explicitly describes the analytic continuation of its solutions. Thus, we are
able to provide explicit identities for the analytic continuation of eMPLs.

1.1 Outline

In section 2, we review some of the special functions required to describe string integrals at
tree level and one loop. In particular, we describe how the integrals we study in this paper
differ from string integrals in that we utilize meromorphic but not doubly periodic functions
for the integrands. This is in contrast with one-loop string integrals (after integration of
loop momentum in the chiral splitting formalism [23–25]), in which the integrands are
doubly periodic but not meromorphic functions. In particular, the integrals we study can
be seen as generating functions of the genus-one Selberg integrals of ref. [15].

In section 3, we describe Zτ
n,p, the vector of genus-one integrals with n punctures on

the elliptic curve, of which p punctures are integrated over. The integrands of Zτ
n,p are built

2For Knizhnik,Zamolodchikov and Bernard, who first studied these equations [20, 21].
3That is, we have a matrix representation of several elements of this algebra, with a few missing generators.
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from certain products of meromorphic Kronecker-Eisenstein series F (z, η, τ). A related
non-meromorphic version of these integrands has been conjectured to form an integrand
basis, under integration by parts (IBP), for one-loop integrals before in refs. [13, 14, 17]. In
this section we succeed in using IBP relations and the Fay identity, a genus-one analog of
partial fractioning, satisfied by the F (z, η, τ), to obtain a differential system for Zτ

n,p.
We are furthermore able to compare the differential system of Zτ

n,p to the universal
KZB equation, and find that the Schwarz integrability conditions of Zτ

n,p imply several of
the commutation relations known from the theory of the KZB equation. Thus, we claim to
find matrix-and-operator-valued representations x(k)

i,j of the algebra underlying the KZB
equations: the genus-one Drinfeld Kohno algebra t̄1,n [22]. After showing how the initial
values of our differential system for Zτ

n,p degenerates into tree-level string integrals, we end
section 3 with a worked out example of Zτ

4,1.
In section 4, we argue from two different viewpoints how to obtain back Zτ

n,p from a
boundary value. In particular, we show how to recover the dependence of Zτ

n,p on the n− p
unintegrated punctures zi from a regularized initial (i.e. zi → 0) value vn,p via generating
functions of eMPLs. We find that this organization of the zi−dependence (a) simplifies
the τ -dependence of vn,p and moreover (b) for our particular representation x(n)

i,j only one
generating series of eMPLs suffices to describe all the zi−dependence of Zτ

n,p for the branch
choice 0 = z1 < zp+2 < zp+3 < . . . < zn of the unintegrated punctures. We furthermore
compare the computation of Zτ

4,1 via this method to a direct-integration calculation.
In section 5, we study the analytic continuation of our integrals Zτ

n,p away from our
original branch choice 0 = z1 < zp+2 < zp+3 < . . . < zn. With this, we extend the
applicability of our solution Zτ

n,p beyond our initial choice of branch, or equivalently, find
initial conditions compatible with a different branch choice. Moreover, we found these
equations to imply some interesting identities for the change of fibration basis of eMPLs
Γ̃
(
k1 ... kr
z1 ... zr ; z, τ

)
that we have been able to verify numerically.

In section 6, we take a closer look to the matrix representations x(n)
i,j ,x

(0)
j , ε(k) we obtain

for the differential system of Zτ
n,p. After building a dictionary between our representation

and the mathematics literature, we note that our representation respects the grading of
the genus-one Drinfeld-Kohno algebra, t̄1,n [22]. Moreover, we can deduce the relations of
Tsunogai’s special derivation algebra from some combinations of these matrices [26, 27].

In the appendices, we describe the details of the IBP and Fay identity toolkit and
calculations that allow us to obtain the results of section 3 and 4, and explain our particular
choice of integration cycle for the integrated punctures. In appendix A we lay out a
dictionary relating our integrals Zτ

n,p to similar integrals appearing in the string amplitudes
literature. The detailed derivation of the differential system satisfied by Zτ

n,p is documented
in appendix B. In appendix C we report on the eigenvalue equations that allow us to prove
the simplicity of our initial values for Zτ

n,p. In appendix D we detail a pole subtraction
scheme for the direct integration of Zτ

4,1. In appendix E we give some more detail on the
analytic continuation of eMPLs from their generating functions. Finally, in appendix F,
we showcase some partial results about the different orderings of integration cycles for the
integrated punctures. In this last appendix we can see that some simplifications for the
initial value of Zτ

n,p do not occur for generic integration contours.
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2 Review

2.1 Tree-level open-string integrals

In the computation of open-string amplitudes at tree level, one performs integrals over
(ordered) marked points on the boundary of the upper-half plane, parametrising the vertex
insertion points on the boundary of the genus-zero worldsheet. In the case of n massless
states, we need to perform integrals over the positions of n ordered punctures along the
real line. However, fixing residual gauge symmetries is taken into account by dividing out
the volume of the conformal Killing group4 SL2(R), which effectively fixes three punctures.
The remaining (n− 3)−fold string integral takes the form

Ztree
n =

∫
zi<zi+1

dz1dz2dz3 . . . dzn−1dzn
vol SL2(R) KN12...n Φ({zi}, {sij}) . (2.1)

The factor Φ({zi}, {sij}) is a SL2(R)-covariant, rational function of the punctures {zi}ni=1 and
other kinematic data such as polarizations {εi}ni=1 of the external states and dimensionless
Mandelstam variables

sij = 2α′ki · kj , (2.2)

where ki is the momentum of the i-th external state associated to the puncture zi and α′

is a parameter proportional to the inverse of the string tension (and proportional to the
square of the string length). The other factor KN12...n is the Koba-Nielsen factor, which is
a universal factor in n-point string integrals. For massless states, it takes the form

KN12...n =
∏

1≤i<j≤n
(zj − zi)sij . (2.3)

When computing string integrals, we are usually interested in their α′-expansion, that is, a
series expansions in factors of sij .

Contemporary methods to compute tree-level string integrals rely on first rewriting
the integrands Φ({zi}, {sij}) in terms of a basis of integrands whose α′-expansion is known.
This reduction into a basis of integrals is performed with integration by parts (IBP) and
partial fractioning. We are interested in IBP in the presence of a Koba-Nielsen factor
KN12...n, amounting to the relation∫

γ

dz1dz2dz3 . . . dzn−1dzn
vol SL2(R) ∂zi

(
KN12...nΦ({zi}, {sij})

)
= 0 ∀i . (2.4)

The integral vanishes because the Koba-Nielsen factor KN12...n vanishes at the endpoints
(or boundary) of the integration contour ∂γ. This process of finding a basis of integrands
modulo IBP-with-a-Koba-Nielsen and partial fraction identities is known to be well-defined
in the genus-zero case [16]. These integrands define the basis of an (n − 3)!-dimensional

4SL2(R) is the group of transformations zj → azj+b
czj+d

, for a, b, c, d ∈ R that keep the boundary of the
upper-half plane fixed. The rational function Φ({zi}, {sij}) is SL2(R)−covariant such that the whole
integrand is SL2(R)−invariant.
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vector space known as (n− 3)th twisted cohomology group Hn−3(M0,n, d + d log(KN12...n)).
We will not make further use of this notation or the concepts of twisted cohomology and
homology groups, but remark that these give a mathematically precise description to what
we mean by a basis of integrands under an ever-present Koba-Nielsen factor. For definitions
of these twisted homology and cohomology groups, the reader is referred to refs. [28, 29],
also see [6, 30] for their introduction into the string-theory literature.

A good candidate for this basis of integrands, originally found by Aomoto [28], and
rediscovered by physicists [31, 32], is the basis of so-called Parke-Taylor factors:5

PT(1, 2, . . . , n− 1, n) = 1
(z1 − z2)

1
(z2 − z3) . . .

1
(zn−1 − zn)

1
(zn − z1) . (2.5)

One can form a (n−3)!-dimensional basis of integrands by permuting the labels (2, 3, . . . , n−
2). With this basis in mind, the integral in eq. (2.1) can be written as

Ztree
n =

∑
ρ∈Sn−3

bρ({sij})
∫
zi<zi+1

dz1dz2dz3 . . .dzn−1dzn
volSL2(R) KN12...nPT(1,ρ(2, . . . ,n−2) ,n−1,n) ,

(2.6)

where the coefficients bρ({sij}) are rational functions of the kinematic data, and can be
found via IBP and partial fractioning, say with the methods of refs. [34–36].

A last step towards computing the α′-expansion of the string integral of eq. (2.6) is
to compute each of the basis integrals. The integrals with a Parke-Taylor basis — also
known as Z-theory amplitudes — have an α′-expansion detailed in ref. [37]. We note that
other alternative bases of integrals and their α′-expansion have also been studied in the
literature [10, 11, 16, 38].

2.2 Multiple polylogarithms and multiple zeta values

We proceed to define a family of genus-zero iterated integrals closely related to the string
integrals in eq. (2.6). These iterated integrals are called multiple polylogarithms (MPLs)
and recursively defined as follows [39]:

G(a1, a2, . . . , an; z) =
∫ z

0
dt 1
t− a1

G(a2, a3, . . . , an; t) , (2.7)

with a base case G(; z) = 1. A key property of MPLs, by virtue of being iterated integrals,
is that they satisfy the shuffle product. For A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bm),
we have:

G(A; z)G(B; z) =
∑

C∈A B

G(C; z) , (2.8)

where A B is the set of all permutations of (a1, . . . , an, b1, . . . , bm) that preserve the
original ordering of the ai ∈ A and bj ∈ B. An example of this shuffle product is given by:

G(a1; z)G(b1, b2; z) = G(a1, b1, b2; z) +G(b1, a1, b2; z) +G(b1, b2, a1; z) . (2.9)
5These are named for their similarity to the Parke-Taylor formula [33] written in 4-dimensional spinor-

helicity variables.
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One of the simplest example of an MPL is given by G(1; z) = log(1−z). The apparently
simpler case G(0; z) has a basepoint divergence, but this divergence can be regularized
via tangential basepoint regularization [40]. The regularized value assigned to this MPL
then becomes

G(0; z) = log(z) . (2.10)

Other MPLs that have a similar basepoiont divergence are regularized via shuffling with
this regularized MPL above.

Finally, when the letters of an MPL G(a1, a2, . . . , an; z) are either 0 or 1, i.e. ai ∈ {0, 1},
and we furthermore integrate along the unit interval setting z = 1, the MPLs evaluate to
multiple zeta values (MZVs)

ζn1,n2,...,nr =
∑

1≤m1<m2<...mr

1
m1n1m2n2 . . .mr

nr

= (−1)rG
(
0nr−1, 1, 0nr−1−1, 1, . . . , 0n1−1, 1; 1

)
, (2.11)

where 0n denotes a string with n zeroes, and ζn1,n2,...,nr . The sum in eq. (2.11) only converges
if nr ≥ 2. Similar to eq. (2.10), the divergent values associated to MZVs can be regularised
using the definition

G (1; 1) = 0 (2.12)

and the shuffle algebra for the remaining integrals with nr = 1.

2.3 Elliptic multiple polylogarithms and A-cycle elliptic multiple zeta values

We will proceed to define to define an elliptic — or genus-one — analogue of the MPLs
from eq. (2.7). We will follow the definitions of refs. [19, 41]. But first, we will clarify the
setting in which these iterated integrals are defined.

Take τ to be a complex number in the upper-half plane τ ∈ H. Then, for z ∈ C
we can define doubly periodic, but not necessarily meromorphic functions f(z, τ) to be
complex-valued functions such that

f(z, τ) = f(z + 1, τ) = f(z + τ, τ) . (2.13)

For convenience, let’s define the lattice

Λτ = Z + τZ . (2.14)

We note that elliptic functions are unchanged under displacements of z by lattice points Λτ .
Thus, for an elliptic function it is natural to define the domain of z to be in the fundamental
parallelogram, or torus C/Λτ .

That being said, we will mostly not deal with doubly periodic functions in the present
work, but rather with quasi-periodic functions, periodic under z → z + 1 but with a

– 6 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
9

well-defined transformation rule for z → z + τ . Whenever this transformation rule is
multiplicative, i.e.

h(z + 1, τ) = h(z, τ) ,
h(z + τ, τ) = a(z, τ)h(z, τ) (2.15)

with nonzero factor a(z, τ), the corresponding quasiperiodic functions can be understood to
live in the universal cover of the torus, i.e. C.

A quasi-periodic function we will extensively use is the Kronecker-Eisenstein series [42–
44]

F (z, η, τ) = θ1(z + η, τ)θ′1(0, τ)
θ1(z, θ)θ1(η, θ) , (2.16)

where θ1 is the odd Jacobi theta function

θ1(z, τ) = 2q1/8 sin (πz)
∞∏
n=1

(1− qn)
(
1− qne2πiz

) (
1− qne−2πiz

)
(2.17)

with

q = e2πiτ (2.18)

and ′ denotes differentiation with respect to the first argument. This Kronecker-Eisenstein
series is symmetric under an exchange of its first two arguments F (z, η, τ ) = F (η, z, τ ), and
has the following quasi-periodicity properties:

F (z + 1, η, τ) = F (z, η, τ) ,
F (z + τ, η, τ) = e−2πiηF (z, η, τ) . (2.19)

The function F (z, η, τ) has a residue of 1 around z = 0. One can obtain a doubly periodic
but non-meromorphic function from F (z, η, τ ) by multiplying the appropriate prefactor [45]

Ω(z, η, τ) = e2πiη Im z
Im τ F (z, η, τ) . (2.20)

The meromorphic Kronecker-Eisenstein series satisfies the mixed heat equation6

2πi∂τF (z, η, τ) = ∂z∂ηF (z, η, τ) , (2.21)

and the Fay identity7

F (z13, η1, τ)F (z23, η2, τ) = F (z13, η12, τ)F (z21, η2, τ) + F (z23, η12, τ)F (z12, η1, τ) ,
(2.22)

6The doubly periodic Kronecker-Eisenstein series Ω(uτ + v, η, τ) satisfies this equation with ∂v replacing
the ∂z.

7The Fay identity also holds for Ω(z, η, τ).

– 7 –
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where we introduce short-hand notations for differences of punctures

zij = zi − zj (2.23)

and for sums of η-variables

η12...n = η1 + η2 + . . .+ ηn . (2.24)

The Fay identity (2.22) should be considered to be a genus-one version of the partial
fractioning identities that the functions 1/zij satisfy. In fact, if we replace every instance of
F (z, η, τ) in eq. (2.22) by 1/z, we obtain the familiar partial fraction identity:

1
z13

1
z23

= 1
z13

1
z21

+ 1
z23

1
z12

. (2.25)

Expanding as a series in the auxiliary variable η, the Kronecker-Eisenstein series
F (z, η, τ) is a generating function for an infinite class of functions g(k)(z, τ):

ηF (z, η, τ) =
∞∑
k=0

ηkg(k)(z, τ) . (2.26)

The functions g(k)(z, τ) satisfy the symmetry relation

g(k)(−z, τ) = (−1)kg(k)(z, τ) . (2.27)

The first two examples are

g(0)(z, τ) = 1 ,

g(1)(z, τ) = ∂z log(θ1(z, τ)) . (2.28)

Crucially, the only function g(k)(z, τ) that has a simple pole at z = 0 is g(1)(z, τ), while
the remaining functions are regular at z = 0 for k 6= 1. For other positive values of k,
these functions have simple poles at z = nτ , for n ∈ Z\{0}, as can be seen from their
quasi-periodicity following from eq. (2.19):

g(k)(z + 1, τ) = g(k)(z, τ) ,

g(k)(z + τ, τ) =
k∑

n=0

(−2πi)n

n! g(k−n)(z, τ) . (2.29)

Also the Fay identity (2.22) has an echo at the level of the functions g(k)(z, τ). Using the
short-hand notation

g
(n)
ij = g(n)(zij , τ) (2.30)

these identities are:

g
(n)
12 g

(m)
23 = −g(n+m)

13 +
n∑
j=0

(−1)j
(
m− 1 + j

j

)
g

(n−j)
13 g

(m+j)
23

+
m∑
j=0

(−1)j
(
n− 1 + j

j

)
g

(m−j)
13 g

(n+j)
12 . (2.31)

– 8 –
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The functions g(k)(z, τ) evaluate to Eisenstein series when z → 0:

g(k)(0, τ) = −Gk(τ) , ∀k ∈ Z≥2, (2.32)

where the Eisenstein series Gk(τ) are defined8 by

Gk(τ) =



−1 if k = 0 ,

∑
n,m∈Z

(n,m) 6=(0,0)

1
(n+mτ)k if k ∈ 2N ,

0 if k ∈ 2N− 1 .

(2.33)

Similarly, one can consider the non-meromorphic function Ω(z, η, τ ) defined in eq. (2.20)
to be a generating function of doubly-periodic functions f (k)(z, τ):

ηΩ(z, η, τ) =
∞∑
k=0

ηkf (k)(z, τ) . (2.34)

These doubly-periodic functions f (k)(z, τ) also satisfy Fay relations, are non-meromorphic
and coincide with the g(k)(z, τ) when z ∈ R.

We now recursively define9 iterated integrals of the integration kernels g(k)(z, τ) as
follows [19]:

Γ̃
(
k1 k2 ... kr
z1 z2 ... zr ; z, τ

)
=
∫ z

0
dt g(k1)(t− z1)Γ̃

(
k2 k3 ... kr
z2 z3 ... zr ; t, τ

)
, (2.35)

where the base case is given by Γ̃(; z, τ) = 1. We will refer to these iterated integrals as
elliptic multiple polylogarithms (eMPLs) in the present work, even if they are not elliptic
in the usual sense of the word. For an eMPL Γ̃

(
k1 k2 ... kr
z1 z2 ... zr ; z, τ

)
, we define its length by r

and its weight by k1 + k2 + . . .+ kr. The eMPLs obey the shuffle algebra (2.8), by virtue of
being iterated integrals, but now shuffling each entry

(
kr
zr

)
as an individual letter, e.g.:

Γ̃ ( n1
a1 ; z, τ) Γ̃

(m1 m2
b1 b2 ; z, τ

)
= Γ̃

( n1 m1 m2
a1 b1 b2 ; z, τ

)
+ Γ̃

(m1 n1 m2
b1 a1 b2 ; z, τ

)
+ Γ̃

(m1 m2 n1
b1 b2 a1 ; z, τ

)
.

(2.36)

Like their genus-zero counterpart, eMPLs sometimes require regularization. We employ
tangential basepoint regularization as in ref. [48], leading to the definition

Γ̃ ( 1
0 ; z, τ) = log

(
1− e2πiz

)
− πiz + 2

∑
k,l>0

1
k

(1− cos(2πkz)) qkl . (2.37)

Numerical implementations of eMPLs, e.g. ref. [49], use this regularization, which is
compatible with the shuffle product of eMPLs.

8The Eisenstein series G2(τ) is not absolutely convergent, and requires a summation prescription. This
is given by G2(τ) =

∑
n∈Z\{0}

1
n2 +

∑
m∈Z\{0}

∑
n∈Z

1
(n+mτ)2 [41].

9One can define iterated integrals Γ
(
k1 k2 ... kr
z1 z2 ... zr

; z, τ
)
by using the doubly-periodic functions f (k)(z, τ)

instead of the functions g(k)(z, τ) [46]. These iterated integrals of non-meromorphic kernel are not homotopy
invariant — however, they can be lifted to be homotopy invariant integrals [45, 47].

– 9 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
9

Finally, we can obtain elliptic analogues of MZVs by evaluating the eMPLs in the limit
z → 1 along the unit interval. In particular, we have:

lim
z→1

Γ̃
(
k1 k2 ... kr
0 0 ... 0 ; z, τ

)
= ωA(kr, kr−1, . . . , k1; τ) , (2.38)

where the A subscript denotes that the elliptic multiple zeta value (eMZV) has been
evaluated by performing an integral along the A-cycle of the torus (i.e. from 0 to 1 along
the unit interval). These eMZVs were first defined and studied by Enriquez [50]. We note
that they will require some non-trivial endpoint regularization if k1 = 1 and/or kr = 1,
culminating in the definition

ωA(1) = 0 . (2.39)

The remaining (regularized) eMZVs can be deduced from the well-defined instances of
eqs. (2.38) and (2.39) and the shuffle algebra (2.8). In this work we will drop the A-
subscript from now on, and sometimes omit the dependence of the last variable τ . Because
our notation of eMZVs has the last variable written after a semicolon, there should be no
an ambiguity when we omit τ .

2.4 Zτn-integrals

We will now define a genus-one analogue of the integrals in eq. (2.1). For σ ∈ Sn−1 a
permutation of {2, 3, . . . , n}, these will be of the form:10

Zτn(1, σ(2), . . . , σ(n)) =
∫

0<z2<z3<...<zn<1
dz2dz3 . . . dzn KNτ

12...n ϕ̃
τ (1, σ(2), . . . , σ(n)) ,

(2.40)

where KNτ
12...n will be a genus-one version of the tree-level Koba-Nielsen factor from eq. (2.3):

KNτ
12...n = exp

− ∑
1≤j<i≤n

sijGτij

 , (2.41)

and where Gτij is given by11

Gτij = Γ̃
( 1

0 ; zij , τ
)
− ω(1, 0, τ) . (2.42)

Furthermore, the integrands ϕ̃τ (1, σ(2), . . . , σ(n)) are written as chains of meromorphic
Kronecker-Einsenstein series:

ϕ̃τ (a1, a2, . . . , am) =
m∏
i=2

F (zai−1 − zai , ηai,...,am , τ) .

ϕ̃τ (a1) = 1 . (2.43)
10We use ϕ̃τ throughout this work to not clash with the ϕτ of ref. [51]. While ϕτ and ϕ̃τ agree on the

A-cycle, we note that the holomorphicity of the latter makes it easier to relate to the mathematical literature
of KZB equations and twisted (co)homology. See section 6 and refs. [52, 53].

11This is a meromorphic version of the open-string Green’s function.
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The auxiliary variables

ηai,...,am = ηai + ηai+1 + · · ·+ ηam , (2.44)

in the Eisenstein-Kronecker series in eq. (2.43) are linear combinations of auxiliary variables
ηi associated12 to the punctures zi, such that the chains ϕ̃τ satisfy the following algebraic
properties for two disjoint sequences A and B and a label r 6∈ A ∪B:

ϕ̃τ (r,A)ϕ̃τ (r,B) = ϕ̃τ (r,A B) . (2.45)

This identity is obtained by consecutive applications of the Fay identity (2.22).
As defined here, these integrals coincide with the planar integrals of refs. [13, 14], but

differ when considering non-planar integrals.13 We spell out the dictionary between the Zτn
integrals described in this section and the integrals of refs. [13, 14] to appendix A.

The genus-one integrals of eq. (2.40) have two key properties. First, they can be seen
as generating functions of (some of) the genus-one Selberg integrals of ref. [15], by looking
at some of the components of their η-expansion. More importantly, the inclusion of all
possible permutations σ and forming the vector of integrals14

ZZZτn =
(
Zτn(1, σ(2), . . . , σ(n))

)
σ∈Sn−1

(2.46)

from eq. (2.40) leads to a closed differential equation upon differentiating ZZZτn with respect
to τ (and using IBP and Fay identities). This differential equation can be solved recursively
to compute the α′-expansion of ZZZτn and, thus, the integrals from eq. (2.40). This last
fact about the integrals Zτn gives evidence that the vector of integrands described by the
ϕ̃τ (1, σ(2), . . . , σ(n)) form a basis of integrands at genus-one [13, 14]. Section 6 of [55]
contains a proof to this statement in the doubly-periodic version of these integrals.

3 Zτ
n-integrals with multiple unintegrated punctures

In this section, we introduce further classes of integrals defined on the punctured A-cycle of
a torus.15 On the one hand, as shown in detail in the thesis [55], they generalize the open-
string configuration-space integrals Zτn from eq. (2.40) at genus one to multiple unintegrated
punctures. On the other hand, they are the genus-one analogues of the genus-zero integrals
investigated in ref. [18].

12ϕ̃τ is quasiperiodic ϕ̃τ → exp(2πiηj)ϕ̃τ under zj → zj + τ .
13Planar integrals are integrals where the punctureszi are integrated along the interval zi ∈ (0, 1). Non-

planar integrals have a subset of the punctures integrated along the interval zi ∈ (τ/2, τ/2 + 1). This
terminology is borrowed from ref. [54].

14We use bold face to refer to vectors.
15In the thesis [55] of one of the authors of this paper, various results of this section solely worked out by

the author of the thesis have been published already, referring to this paper.
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3.1 Construction of Zτn,p-integrals

Let us consider n distinct punctures on the unit interval (i.e. the A-cycle), where the first
puncture z1 = 0 is fixed at the origin (by the translation invariance of the torus) and the
remaining ones are ordered according to16

0 = z1 < z2 < z3 < · · · < zn < 1 . (3.1)

In ref. [17], the Zτn-integrals of eq. (2.40) were modified by introducing an additional
unintegrated puncture z0 on the A-cycle, which lead to a recursive method to calculate the
Zτn-integrals based on the elliptic KZB associator [15, 17]. We extend this modification and
define for each

0 ≤ p ≤ n− 1 (3.2)

a class of iterated integrals, where the p punctures z2, z3, . . . , zp+1 out of the n punctures
from eq. (3.1) are integrated over and the remaining n−p punctures z1, zp+2, zp+3, . . . , zn
are kept unintegrated. The integrals Zτn,p defined this way will be the central objects of this
work, and are given by [55]:

Zτn,p

((
1, A1

)
,
(
p+ 2, Ap+2

)
,
(
p+ 3, Ap+3

)
, . . . , (n,An) ; zp+2, zp+3, . . . , zn

)
=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dzi KNτ
12...n ϕ̃

τ
(
1, A1

) n∏
k=p+2

ϕ̃τ
(
k,Ak

)
, (3.3)

where for k ∈ {1, p+ 2, p+ 3, . . . , n} the sequences Ak are disjoint, possibly empty subse-
quences of all the possible permutations of the p labels (2, 3, . . . , p+ 1) of the integrated
punctures. In other words, for each (n−p)-tuple of (sub)sequences (A1, Ap+2, . . . , An) there
exists exactly one permutation σ ∈ Sp (and vice-versa) acting on the p-tuple (2, 3, . . . , p+ 1)
such that the following identity of p-tuples holds(

A1, Ap+2, . . . , An
)

= σ(2, 3, . . . , p+ 1) . (3.4)

This defines17

dn,p = (n− 1)!
(n− 1− p)! (3.5)

distinct integrals, which can be written as one vector of integrals

ZZZτn,p (zp+2, zp+3, . . . , zn)

=
(
Zτn,p

((
1, A1) , (p+ 2, Ap+2) , . . . , (n,An) ; zp+2, zp+3, . . . , zn

))
(A1,Ap+2,...,An)=σ(2,3,...,p+1)

,

(3.6)
16This order defines the branch choice considered. However, the integrals can be analytically continued

away from this specific choice, see section 5.
17This dimension is an n → n + 2 offset from the genus-zero result from ref. [18]. A reason for this is

that the Parke-Taylor factors (2.5) in the genus-zero setting have a genus-one counterpart in chains of
Kronecker-Eisenstein series (2.43), but at genus-zero we have in addition to the fixed puncture at 0 two
further unintegrated punctures that are usually SL2(R)-fixed at 1 and ∞, explaining the offset of two. One
can also define dn,p natural integration contours along the A-cycle, following the analogy with the genus-zero
case of ref. [18].
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where σ ∈ Sp is a permutation of the p indices 2, 3, . . . , p+ 1. We remark that the integrals
ZZZτn,p defined above coincide (with the relabeling zn = z0) with the ZZZτ0,n−1 integrals of
ref. [17] for the case (n, p) = (n, n− 2). Additionally, the case (n, p) = (n, n− 1) yields the
integrals Zτn of eq. (2.40):

ZZZτn,n−1 = ZZZτn . (3.7)

3.2 Differential system

The vector ZZZτn,p(zp+2, zp+3, . . . , zn) from eq. (3.6) satisfies a closed differential system [55]
which is reminiscent of an elliptic KZB system on the (n−p)-punctured torus [56]:

∂iZ
τ
n,p =

x(0)
i +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir g

(k)
ir

Zτ
n,p , (3.8a)

2πi∂τZτ
n,p =

−ε(0) +
∑
k≥4

(1− k)ε(k)Gk +
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k − 1)x(k−1)
qr g(k)

qr

Zτ
n,p ,

(3.8b)

where ∂i = ∂zi for p+ 2 ≤ i ≤ n. The (dn,p × dn,p)-dimensional square matrices x(0)
i , x(k)

ir

and ε(k) are explicitly known and calculated in appendix B.1 and appendix B.2, respectively.
The explicit formulae are given in eq. (B.11) and eq. (B.19), respectively. For k ≥ 1 their
entries are polynomials of degree k−1 and k−2 in the auxiliary variables ηi. The entries
of x(0)

i are linear combinations of η−1
i and first-order derivatives ∂ηi . The matrix ε(0) is

a linear combination of η−2
i , second-order derivatives with respect to ηi and factors of ζ2

in the diagonals. Moreover, all the entries of the matrices x(0)
i , x(k)

ir and ε(k) are linear
combinations of the Mandelstam variables sij . Accordingly, the matrices are proportional
to α′:

x
(0)
i , x

(k)
ir , ε

(k) ∝ α′ . (3.9)

3.2.1 Commutation relations

In appendix B.3, we show how the Schwarz integrability conditions

[∂j , ∂i]Zτ
n,p = 0 (3.10)

and

[∂τ , ∂i]Zτ
n,p = 0 (3.11)

for a general system of differential equations of the form

∂iZ
τ
n,p =

x(0)
i +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir g

(k)
ir

Zτ
n,p , (3.12a)
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2πi∂τZτ
n,p =

−ε(0) +
∑
k≥4

(1− k)Gkε(k) +
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k − 1)b(k)
qr g

(k)
qr

Zτ
n,p .

(3.12b)

are used to extract commutation relations among the matrices x(k)
ir , ε

(k), b(k)
qr . Note that

this system is a priori more general than the system (3.8), due to the appearence of b(k)
qr .

However, as shown below, the integrability conditions imply that they are the same. The
statements in this subsection hold for any function Zτ

n,p satisfying the system (3.12). In
particular, we do not use the explicit construction (3.6) of Zτ

n,p.
The restriction (3.10) for an a priori unknown function Zτ

n,p leads to the following
relations for distinct labels |i, j, q, r| = 4 and k, l ≥ 1:

x
(k)
ij = (−1)k+1 x

(k)
ji ,[

x
(0)
i ,x

(0)
j

]
= 0 ,[

x
(k)
iq ,x

(l)
jr

]
= 0 ,

[
x

(0)
i + x(0)

j ,x
(k)
ij

]
=

k−1∑
l=1

∑
q∈{1,p+2,...,n}

q 6=i,j

[
x

(l)
iq ,x

(k−l)
qj

]
,

[
x

(k)
ij ,x

(l)
qi + x(l)

qj

]
=

k−1∑
m=1

(
k − 1
m

)[
x

(l+m)
qj ,x

(k−m)
ij

]
,

[
x

(k)
ij ,x

(0)
q

]
=

k−1∑
m=1

(
k − 1
m

)[
x

(m)
qj ,x

(k−m)
ij

]
. (3.13)

The second integrability condition (3.11) leads to the third and the last relation in
eq. (3.13) and to the following new relations: for distinct labels |i, j, q| and k ≥ 2

b
(k)
ij = x

(k−1)
ij , (3.14)

which ensures that the differential systems (3.8) and (3.12) are equivalent, and for
k ≥ 4, l ≥ 1 [

x
(0)
i , ε(0)

]
= 0 ,

[
x

(0)
i , ε(k)

]
=

k−2∑
l=k/2

∑
j∈{1,p+2,...,n}

j 6=i

(−1)l
[
x

(l)
ij ,x

(k−l−1)
ij

]
,

[
x

(l)
ij , ε

(k)
]

=
l∑

m=1

(
l − 1
m− 1

)[
x

(l+k−m−1)
ij ,x

(m)
ij

]
(3.15)
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and for k ≥ 1[
x

(k)
ij , ε

(0)
]

= (k − 1)
[
x

(k−1)
ij ,x

(0)
i

]
+

∑
q∈{1,p+2,...,n}

q 6=i

k−2∑
l=1

(
k − 1
l − 1

)[
x

(l)
iq ,x

(k−l−1)
ij

]
,

[
x

(k)
ij ,x

(0)
q

]
=

k−1∑
l=1

[
x

(l)
iq ,x

(k−l)
qj

]
. (3.16)

The above relations are all the information we can extract from the integrability
conditions eqs. (3.10) and (3.11): they are sufficient for the commutators eqs. (3.10)
and (3.11) to vanish. We remark that the last lines of (3.13) of (3.16) give two different,
but compatible, equations for [x(k)

ij ,x
(0)
q ].

Further relations can be deduced by combining the above relations. We can for example
combine the fourth or fifth relation in eq. (3.13) and the last relation in eq. (3.16) to obtain
for distinct labels i, j, q and k ≥ 1:x(k)

ij ,
∑

q∈{1,p+2,...,n}
x(0)
q

 = 0 (3.17)

and
k∑
l=1

[
x

(l)
qj ,x

(k+1−l)
iq +

(
k

l

)
x

(k+1−l)
ij

]
= 0 (3.18)

respectively. We remark that the matrices in a KZB system satisfy some extra relations
that are not implied by the its integrability. See e.g. eqs. (6.7) and (6.9), and the text below
these equations.

3.2.2 Boundary values

The asymptotic behaviour of Zτ
n,p for iteratively merging zp+2 → 0, then zp+3 → 0 up to

zn → 0, respecting the order defined by the domain (3.1) is calculated in this subsection.
The degeneration of the Koba-Nielsen factor can be determined using the change

of variables

zi = zp+2 xi (3.19)

for 1 ≤ i ≤ p+ 2, leading to

lim
n,p,k

KNτ
12...n = es12...p+kω(1,0)KN12...p+2

∏
p+k<j≤n

e−s(12...p+k),jGτj1KNτ
p+k+1...n , (3.20)

for k = 2, . . . , n− p and the regularised limit18

lim
n,p,k

=

lim
zp+k→0

(−2πizp+k)s(12...p+k−1),p+k . . . lim
zp+3→0

(−2πizp+3)s(12...p+2),p+3 lim
zp+2→0

(−2πizp+2)s12...p+2 ,

(3.21)

18The factors of (−2πizm)sij...r cancel the nonanalytic behavior of limzm→0 e
−sij...r Γ̃

(
1
0 ;zm ,τ

)
. The choice

of normalization follows the regularization of the divergent eMPL Γ̃
(

1
0 ; z , τ

)
of eq. (2.37).
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and where we have used the following two definitions of sums of Mandelstam variables:

sA =
∑
i,j∈A
i<j

sij , sA,B =
∑

i∈A,j∈B
sij . (3.22)

The punctures and associated momenta sij appearing in the genus-zero Koba-Nielsen factor
KN12...p+2 in eq. (3.20) correspond to the genus-zero punctures

0 = x1 < x2 < · · · < xp+1 < xp+2 = 1 . (3.23)

Note that this gives the same result as simply merging zp+k → 0 and squeezing the punctures
zp+2, . . . , zp+k−1 in between:

lim
zp+k→0

(−2πizp+k)s12...p+kKNτ
12...n =

es12...p+kω(1,0)KN12...p+2
∏

p+k<j≤n
e−s(12...p+k),jGτj1KNτ

p+k+1...n , (3.24)

in particular

lim
n,p,n−p

KNτ
12...n = es12...nω(1,0,τ)KN12...p+2 . (3.25)

Using the same change of variables, the remaining differential form in the integral Zτn,p
from eq. (3.3) degenerates as follows: for zp+2 → 0

ϕ̃τ
(
1, A1

) n∏
k=p+2

ϕ̃τ
(
k,Ak

) p+1∏
i=2

dzi

=


pt
(
1, A1) pt (p+ 2, Ap+2)∏p+1

i=2 dxi if Ak = ∅ for k = p+ 3, . . . , n ,

0 otherwise,
(3.26)

where pt(a1, . . . , am) is an open-chain version of the Parke-Taylor factor of eq. (2.5),
defined by

pt(a1, a2, . . . , am) =
m∏
i=2

1
xai−1 − xai

. (3.27)

The remaining limits zp+k → 0 for 2 < k ≤ n − p do not further affect these differential
forms. Putting all together, we find

lim
n,p,k

Zτn,p

((
1, A1

)
,
(
p+ 2, Ap+2

)
, (p+ 3) , . . . , (n) ; zp+2, zp+3, . . . , zn

)
= es12...p+kω(1,0) ∏

p+k<j≤n
e−s(12...p+3),jGτj1KNτ

p+k+1...n

×
∫

0<xi<xi+1<xp+2

p+1∏
i=2

dxi KN12...p+2 pt
(
1, A1

)
pt
(
p+ 2, Ap+2

)
= es12...p+kω(1,0) ∏

p+k<j≤n
e−s(12...p+3),jGτj1KNτ

p+k+1...nZ
tree
p+3,p+2

((
1, A1

)
,
(
p+ 2, Ap+2

))
,

(3.28)
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while the remaining integrals Zτn,p from eq. (3.3), violating Ap+3 = Ap+4 = · · · = An = ∅,
vanish. The integral on the last line is an SL2-fixed genus-zero, open-string integral given
in eq. (2.1), i.e.

Ztree
p+3,p+2

((
1,A1) ,(p+2,Ap+2))=

∫
0<xi<xi+1<xp+2

p+1∏
i=2

dxiKN12...p+2pt
(
1,A1)pt(p+2,Ap+2) ,

(3.29)

where (A1, Ap+2) is a partition of a permutation σ ∈ Sp of {2, 3, . . . , p+ 1}, i.e.

(A1, Ap+2) = σ(2, 3, . . . , p+ 1) ,

and

(x1, xp+2, xp+3) = (0, 1,∞) (3.30)

the three fixed genus-zero punctures. Thus for k = 2, . . . , n− p

lim
n,p,k

Zτ
n,p = es12...p+kω(1,0) ∏

p+k<j≤n
e−s(12...p+k),jGτj1KNτ

p+k+1...n

(
Up+3,p+1

0

)
Ztree
p+3,p+2 ,

(3.31)

where

Ztree
p+3,p+2 =

(∫
0<xi<xi+1<xp+2

∏p+1
i=2 dxi KN12...p+2 pt

(
1, A1))

A1=σ(2,3,...,p+1)
(3.32)

is a p!-dimensional basis vector of the integrals Ztree
p+3,p+2 from eq. (3.29) with Ap+2 = ∅.

Using integration by parts and partial fractioning, the remaining integrals from eq. (3.29)
with Ap+2 6= ∅ can be written in terms of the integrals in Ztree

p+3,p+2, which is implemented
by the ((p+1)!× p!)-dimensional matrix Up+3,p+2.

3.3 Example: Zτ4,1-integrals

For p = n − 1, the integrals Zτn of ref. [13] and for p = n − 2 the augmented integrals
Zτ0,n−1 of ref. [17] (with zn = z0) are obtained from the integrals Zτn,p of eq. (3.3). The next
case to consider is p = n− 3, with two additional unintegrated punctures, zn−1, zn besides
z1 = 0. Accordingly, the simplest non-trivial example is the class of Zτn,p-integrals with
(n, p) = (4, 1).

The construction in eq. (3.3) defines the d4,1 = 3 integrals

Zτ4,1((1, A1), (3, A3), (4, A4); z3, z4) =
∫ z3

0
dz2 KNτ

1234 ϕ̃
τ (1, A1)ϕ̃τ (3, A3)ϕ̃τ (4, A4) ,

(A1, A2, A3) = (2) . (3.33)

The corresponding vector from eq. (3.6) is given by

Zτ
4,1(z3, z4) =

Z
τ
4,1((1, 2), (3), (4); z3, z4)

Zτ4,1((1), (3, 2), (4); z3, z4)
Zτ4,1((1), (3), (4, 2); z3, z4)

 =
∫ z3

0
dz2 KNτ

1234

F (z12, η2, τ)
F (z32, η2, τ)
F (z42, η2, τ)

 . (3.34)
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3.3.1 Differential system of Zτ4,1
Now, let us write down the differential system satisfied by Zτ

4,1(z3, z4). The closed formulæ
for the matrices in the differential eq. (3.8a) is given in eq. (B.11) and yields for (n, p) = (4, 1)
the z3 derivative

∂3Z
τ
4,1(z3, z4) =

x(0)
3 +

∑
k≥1

(
x

(k)
31 g

(k)
31 + x(k)

34 g
(k)
34

)Zτ
4,1(z3, z4) , (3.35)

the following matrices

x
(0)
3 =


−s23∂η2 −s23

1
η2

0
s12

1
η2

(s12 + s24)∂η2 s24
1
η2

0 −s23
1
η2

−s23∂η2

 ,

x
(1)
31 =

−s13 − s23 s23 0
s12 −s13 − s12 0
0 0 −s13

 ,

x
(k)
31 =

 0 s23(−η2)k−1 0
s12η

k−1
2 0 0

0 0 0

 ,

x
(1)
34 =

−s34 0 0
0 −s34 − s24 s24
0 s23 −s34 − s23

 ,

x
(k)
34 =

0 0 0
0 0 s24(η2)k−1

0 s23(−η2)k−1 0

 , (3.36)

where k ≥ 2. Similarly, the partial differential equation with respect to z4 takes the form

∂4Z
τ
4,1(z3, z4) =

x(0)
4 +

∑
k≥1

(
x

(k)
41 g

(k)
41 + x(k)

43 g
(k)
43

)Zτ
4,1(z3, z4) , (3.37)

where for k ≥ 2

x
(0)
4 =


−s24∂η2 0 −s24

1
η2

0 −s24∂η2 −s24
1
η2

s12
1
η2

s23
1
η2

(s12 + s23)∂η2

 ,

x
(1)
41 =

−s14 − s24 0 s24
0 −s14 0
s12 0 −s14 − s12

 ,

x
(k)
41 =

 0 0 s24(−η2)k−1

0 0 0
s12η

k−1
2 0 0

 ,
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x
(1)
43 =

−s34 0 0
0 −s34 − s24 s24
0 s23 −s34 + s23

 ,

x
(k)
43 =

0 0 0
0 0 s24(−η2)k−1

0 s23η
k−1
2 0

 . (3.38)

These matrices indeed satisfy the commutation relations from subsection 3.2.1. Moreover,
they satisfy an additional relation[

x
(k)
ij ,x

(k+2s)
ij

] ∣∣
(n,p)=(4,1) = 0 , |{i, j}| = 2 , k ≥ 1 , s ∈ Z+ , (3.39)

which is not implied by the integrability of the KZB connection, and in fact does not hold for
the matrices one obtains from Zτ

n,p with p ≥ 2. This kind of “accidental relations” among
matrices obtained in differential equations of integrals are common when the number of
integrated punctures p is small (p = 1 here), see e.g. the matrices e0 and e1 in equation (23)
of ref. [10], which do not give rise to higher-depth MZVs when used as arguments of the
Drinfeld associator19 Φ(e0, e1). An equivalent phenomena was observed in the genus-one
setup of ref. [18], for (n, p) = (n, 1).

The vector Zτ
4,1(z3, z4) also satisfies a differential equation with respect to τ :

2πi∂τZτ
4,1 =

−ε(0) +
∑
k≥4

(1− k)Gkε(k) +
∑
k≥2

(k − 1)
[
b

(k)
13 g

(k)
13 + b(k)

14 g
(k)
14 + b(k)

34 g
(k)
34

]Zτ
4,1 ,

(3.40)

where we find that b(k)
qr = x

(k−1)
qr , and where for k ≥ 4 the matrices ε(0) and ε(k) are given by:

ε(0) = I3
(

2s1234ζ2 −
1
2(s12 + s23 + s24)∂2

η2

)
+


s12

1
η2

2
s23

1
η2

2
s24

1
η2

2

s12
1
η2

2
s23

1
η2

2
s24

1
η2

2

s12
1
η2

2
s23

1
η2

2
s24

1
η2

2

 ,

ε(k) =

s12η
k−2
2 0 0

0 s23η
k−2
2 0

0 0 s24η
k−2
2

 . (3.41)

The matrices x(k)
ij for (n, p) = (4, 1) satisfy the additional relation (3.39) that is not

implied by the commutation relations of eq. (3.13), but is rather due to the specific form of
the matrices. To write an analogous set of commutation relations for the matrices ε(k), it is
convenient to first define some matrices ε̃(k) for k ≥ 2 an even number, as follows:

ε̃(0) = ε(0) ,

ε̃(k) = ε(k) + x(k−1)
13 + x(k−1)

14 + x(k−1)
34 , (3.42)

19We give the definition of the Drinfeld associator in eq. (5.8).
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leading to the explicit matrices

ε̃(2) = −s1234I3 +

s12 s23 s24
s12 s23 s24
s12 s23 s24

 ,

ε̃(k) = ηk−2
2

s12 s23 s24
s12 s23 s24
s12 s23 s24

 . (3.43)

This definition yields the following extra commutation relations for (n, p) = (4, 1):

[ε̃(2m), ε̃(2n)]
∣∣
(n,p)=(4,1) = 0 , m, n ∈ Z≥1 . (3.44)

This last relation is not implied by the commutation relations we have computed in
eqs. (3.15) and (3.16), nor are they implied by the relations of Tsunogai’s derivation algebra
(or Pollack’s relations) [26, 27]. Nonetheless, the definition of the ε̃(k) above will be related
to Pollack’s relations in section 6.3, for general values of (n, p).

3.3.2 Boundary values of Zτ4,1
Let us specialise the analysis from subsection 3.2.2 to the example Zτ

4,1(z3, z4). Thus,
we first consider the degeneration for z3 → 0, then additionally z4 → 0 of the integrals
in eq. (3.34)

Zτ
4,1(z3, z4) =

∫ z3

0
dz2 KNτ

1234

F (z12, η2, τ)
F (z32, η2, τ)
F (z42, η2, τ)

 . (3.45)

For the limit z3 → 0, we can use the change of variables zi = z3xi for i = 1, 2, 3, such
that x1 = 0, x3 = 1, keeping z4 fixed. Then, the Koba-Nielsen factor degenerates to

KNτ
1234 =

∏
1≤j<i≤3

e−sijG
τ
ij
∏

1≤i≤3
e−sijG

τ
4i

= (−2πiz3)−s123es123ω(1,0) ∏
1≤i<j≤3

x
−sij
ij e−s(123),4Gτ41(1 +O(z3))

= (−2πiz3)−s123es123ω(1,0)KN123KNτ
14|s̃14=s(123),4(1 +O(z3)) , (3.46)

where KN123 is the genus-zero, four-point Koba-Nielsen factor of eq. (2.3), with an additional
puncture x4 =∞. The differential form without the Koba-Nielsen factor degenerates to

ϕ̃τ (1, A1)ϕ̃τ (3, A3)ϕ̃τ (4, A4) dz2 =


dx2
−x2

if A1 = (2)
dx2

1−x2
if A3 = (2)

z3x2
z4−z3x2

→ 0 if A4 = (2) ,
(3.47)

where the last entry tends to 0 as x3 → 0 at fixed z4.
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Putting all together, we find that20

lim
z3→0

(−2πiz3)s123Zτ
4,3(z3, z4)

= es123ω(1,0)e−s(123),4Gτ41


∫ 1

0 dx2 KN123
1
−x2∫ 1

0 dx2 KN123
1

1−x2

0



= es123ω(1,0)e−s(123),4Gτ41

Z
tree
4,3 ((1, 2), (3))

Ztree
4,3 ((1), (3, 2))

0



= es123ω(1,0)e−s(123),4Gτ41

 1
− s12
s23

0

Ztree
4,3 ((1, 2), (3)) , (3.48)

where the integrals Ztree
4,3 are related by the integration by parts relation

s12 Z
tree
4,3 ((1, 2), (3)) + s23 Z

tree
4,3 ((1), (3, 2)) = 0 (3.49)

and can be expressed in terms of the Veneziano amplitude

Ztree
4,3 ((1, 2), (3)) = 1

s12

Γ(1− s12)Γ(1− s23)
Γ(1− s12 − s23) . (3.50)

The relation (3.49) leads to the last step in eq. (3.48) and defines the matrix U4,2 from
eq. (3.31):

U4,2 =
(

1
− s12
s23

)
, (3.51)

such that (
Ztree

4,3 ((1, 2), (3))
Ztree

4,3 ((1), (3, 2))

)
= U4,2Z

tree
4,3 ((1, 2), (3)) . (3.52)

The additional limit z4 → 0 is now straightforward:

lim
z4→0

(−2πiz4)s(123),4 lim
z3→0

(−2πiz3)s123Zτ
4,1(z3, z4)

= lim
z4→0

(−2πiz4)s(123),4es123ω(1,0)e−s(123),4Gτ41

(
U4,2

0

)
Ztree

4,3 ((1, 2), (3))

= es1234ω(1,0)
(
U4,2

0

)
Ztree

4,3 ((1, 2), (3))

= es1234ω(1,0)

 1/s12
−1/s23

0

 Γ(1− s12)Γ(1− s23)
Γ(1− s12 − s23) . (3.53)

20Here and throughout this work, we the Mandelstam variables sij to be analytically continued from a
region in which Re(sij) < 0.
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4 Expansion of Zτ
n,p-integrals

4.1 Solving the differential system

The elliptic KZB system (3.8) satisfied by Zτ
n,p = Zτ

n,p(zp+2, . . . , zn) can be solved in the
domain (3.1) using the genus-zero methods in section 3 of ref. [18], leading to a representation
of the α′-expansion of Zτ

n,p in terms of generating series of eMZVs: first, the corresponding
differential

dZτ
n,p =

n∑
i=p+2

Ωi
n,pZ

τ
n,pdzi + Ωτ

n,pZ
τ
n,pdτ (4.1)

will be integrated along the path

(0, . . . , 0, τ) γn→ (0, . . . , 0, zn, τ) γn−1→ . . .
γp+2→ (zp+2, . . . , zn, τ) , (4.2)

where the path γi refers to the path (0, . . . , 0, t, zi+1, . . . , zn) where t ∈ (0, zi). The matrices
Ωi
n,p and Ωτ

n,p in eq. (4.1) are the operator-valued dn,p×dn,p matrices appearing on the right
hand side of eqs. (3.8a) and (3.8b) in the form ∂iZ

τ
n,p = Ωi

n,pZ
τ
n,p and ∂τZτ

n,p = Ωτ
n,pZ

τ
n,p

respectively. Second, the corresponding initial value at zp+2, . . . , zn → 0 will be determined.
And third, homotopy invariance ensures that the solution is valid on the whole domain (3.1).

In order to do so, let us consider for i ∈ {p+ 2, . . . , n} the following generating series
of eMPLs

Γi = Γi(zi, . . . , zn)

=
∑
r≥0

∑
k1,...,kr≥0

∑
j1,...,jr∈{1,i+1,...,n}

Γ̃
(
k1 ... kr
zji ... zjr

; zi, τ
)
X

(k1)
ij1

. . .X
(kr)
ijr

. (4.3)

The matrices X(k)
ij are defined for j ∈ {1, p+ 2, . . . , n} \ {i} and k ≥ 0 from the matrices

x
(k)
ij appearing in eq. (3.8a) by

X
(k)
ij =


x

(k)
ij j 6= 1 ,

x
(k)
i1 +

∑i−1
r=p+2 x

(k)
ir j = 1 .

(4.4)

By construction, for each i ∈ {p+ 2, . . . , n} the generating series Γi satisfies along the path
γi the partial differential equations

∂iΓi|γi = Ωi
n,p|γi Γi|γi , (4.5)

where the matrix Ωi
n,p from the differential form (4.1) is evaluated at γi, i.e. for zp+2 =

. . . zi−1 = 0. For i < j, we obtain by definition

∂iΓj = 0 . (4.6)

Moreover, the asymptotic behaviour of Γi on γi follows from the regularisation of the eMPLs
and is given by21

lim
ε→0

Γi(γi(ε))(−2πiε)−X
(1)
i1 = 1 . (4.7)

21We use the same normalization as in eq. (3.21).
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With these definitions, we can define the dn,p-component vector

Γn,p = Γn,p(zp+2, . . . , zn)
= Γp+2 . . .Γn vn,p , (4.8)

where vn,p is a vector independent of zp+2, . . . , zn. Remarkably, the vector asymptotically
satisfies for each path γi the partial differential equation (4.5), i.e.

∂iΓn,p|γi ∼ Ωi
n,p|γi Γn,p|γi , (4.9)

which can be shown using the commutation relations (3.13) as follows: they imply that for
i > j and s ∈ {i+ 1, . . . , n}

[
X

(1)
j1 ,X

(k)
is

]
=

x(1)
j1 +

j−1∑
r=p+2

x
(1)
jr ,x

(k)
is

 = 0 . (4.10)

For the special case i > j and s = 1, the last relation of eq. (3.13) ensures that also the
following commutator vanishes

[
X

(1)
j1 ,X

(k)
i1

]
=

x(1)
j1 +

j−1∑
r=p+2

x
(1)
jr ,x

(k)
i1 +

i−1∑
s=p+2

x
(k)
is


=

∑
r∈{1,p+2,...j−1}

[
x

(1)
jr ,x

(k)
ir + x(k)

ij

]
= 0 , (4.11)

such that [
X

(1)
j1 ,Ω

i
n,p|γi

]
=
∑
k≥0

[
X

(1)
j1 ,X

(k)
i1

]
g

(k)
1i = 0 . (4.12)

equation (4.12) ensures that Γn,p asymptotically satisfies the following partial differential
equation in the limit zi−1 → zi−2 → · · · → zp+2 → 0:

∂iΓn,p ∼ (−2πizp+2)X
(1)
p+2,1 . . . (−2πizi−1)X

(1)
i−1,1(∂iΓi)Γi+1 . . .Γn vn,p

= (−2πizp+2)X
(1)
p+2,1 . . . (−2πizi−1)X

(1)
i−1,1(Ωi

n,p|γiΓi)Γi+1 . . .Γn vn,p

= Ωi
n,p|γi(−2πizp+2)X

(1)
p+2,1 . . . (−2πizi−1)X

(1)
i−1,1ΓiΓi+1 . . .Γn vn,p

= Ωi
n,p|γiΓn,p , (4.13)

which proves the asymptotic behaviour (4.9). Of course, Γn,p is singular on γi for i < n.
However, eq. (4.9) ensures that for the initial-value vector

vn,p = lim
zn→0

(−2πizn)−X
(1)
n,1 . . . lim

zp+2→0
(−2πizp+2)−X

(1)
p+2,1Zτ

n,p , (4.14)
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the following representation is indeed the integral of dZτ
n,p starting from the initial value

vn,p along γn . . . γp+2:

Zτ
n,p = Γn,p = Γp+2 . . .Γn vn,p . (4.15)

By homotopy invariance, eq. (4.15) expresses the dependence of Zτ
n,p on the punctures

zp+2, . . . , zn on the whole domain (3.1). Since the matrices x(k)
ij are proportional to α′, the

expansion of the generating series of eMPLs Γi in the word length r is its α′-expansion.
Thus, in practice, eq. (4.15) can be used to calculate the α′-expansion of Zτ

n,p up to any
desired order.

The initial vector vn,p from eq. (4.14) can be determined using the following eigen-
value equations

X
(1)
p+2,1

(
Up+3,p+1

0

)
= −s12...p+2

(
Up+3,p+1

0

)
,

X
(1)
p+k,1

(
Up+3,p+1

0

)
= −s12...p+k−1,p+k

(
Up+3,p+1

0

)
, 2 < k ≤ n− p , (4.16)

derived in appendix C, and where the matrices Up+3,p+1 are defined in eq. (3.31) by
integration-by-parts relations of genus-zero integrals. They imply that it is simply given by
the limit from eq. (3.31) for k = n− p:

vn,p = lim
n,p,n−p

Zτ
n,p = es12...nω(1,0)

(
Up+3,p+1

0

)
Ztree
p+3,p+2 . (4.17)

Putting all together, in the domain (3.1), the vector Zτ
n,p can be represented in terms

of genus-zero Zn,p-integrals and generating series of eMPLs as follows:22

Zτ
n,p = es12...nω(1,0) Γp+2 . . .Γn

(
Up+3,p+1

0

)
Ztree
p+3,p+2 . (4.18)

A considerably simpler formula for Zτ
n,p will be given in the next subsection, in eq. (4.25).

4.2 An alternative solution strategy

Instead of using the above arguments with the asymptotic behaviour of the integrals
leading to the representation (4.15), a simpler representation can be deduced for the
integration domain (3.1).

On the one hand, from the calculation (3.31) we see that already for merging only
one puncture zp+2 → 0, the dependence on the other punctures zp+3, . . . , zn becomes quite
simple: it only involves the prefactor formed by the genus-one Koba-Nielsen factor KNτ

p+3...n
and the exponentials involving Gτj1:

lim
zp+2→0

(−2πizp+2)s12...p+2Zτ
n,p

= es12...p+2ω(1,0) ∏
p+2<j≤n

e−s(12...p+2),jGτj1KNτ
p+3...n

(
Up+3,p+1

0

)
Ztree
p+3,p+2 . (4.19)

22We have checked that this hold for the (n, p) = (4, 1) case up to eMPLs of depth 3 and weight 5.
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The eigenvalue equation (4.16) and the definition (4.17) of the initial vector vn,p can be
used for the following alternative representation of the above limit

lim
zp+2→0

(−2πizp+2)−X
(1)
p+2,1Zτ

n,p = esp+3...nω(1,0) ∏
p+2<j≤n

e−s(12...p+2),j(Gτj1−ω(1,0))KNτ
p+3...nvn,p .

(4.20)

On the other hand, the vector Zτ
n,p and the matrix Γp+2 defined in eq. (4.3) satisfy on the

domain (3.1) the same partial differential equation (4.5) with respect to zp+2:

∂p+2Γp+2 = Ωp+2
n,p Γp+2 ,

∂p+2Z
τ
n,p = Ωp+2

n,p Z
τ
n,p . (4.21)

Since Γp+2 is a path-ordered matrix exponential, it is invertible, such that we can consider
the vector

v̂n = (Γp+2)−1Zτ
n,p . (4.22)

Differentiation with respect to zp+2 and using the above partial differential equations, we
find v̂n is independent of zp+2,

∂p+2v̂n = ∂p+2
(
(Γp+2)−1Zτ

n,p

)
= −(Γp+2)−1Ωp+2

n,p (Γp+2)−1Γp+2Z
τ
n,p + (Γp+2)−1Ωp+2

n,p Z
τ
n,p

= 0 . (4.23)

Therefore, we can evaluate v̂n in the limit zp+2 → 0, where the asymptotic behaviour (4.7)
of Γp+2 yields the limit (4.20), i.e.

v̂n = lim
zp+2→0

v̂n

= lim
zp+2→0

(Γp+2)−1Zτ
n,p

= lim
zp+2→0

(−2πizp+2)−X
(1)
p+2,1Zτ

n,p

= esp+3...nω(1,0) ∏
p+2<j≤n

e−s(12...p+2),j(Gτj1−ω(1,0))KNτ
p+3...nvn,p . (4.24)

Using this representation of v̂n and multiplying eq. (4.22) from the left by Γp+2 leads to
the following matrix representation of Zτ

n,p:

Zτ
n,p = esp+3...nω(1,0) ∏

p+2<j≤n
e−s(12...p+2),j(Gτj1−ω(1,0))KNτ

p+3...nΓp+2vn,p

= es12...p+2ω(1,0) ∏
p+2<j≤n

e−s(12...p+2),jGτj1KNτ
p+3...nΓp+2

(
Up+3,p+1

0

)
Ztree
p+3,p+2 . (4.25)
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Comparing this representation with the previous result (4.18), we have achieved a consid-
erable simplification for the dependence on the punctures zp+3, . . . , zn. In particular, the
following eigenvalue equation can be read off:

Γp+3 . . .Γn

(
Up+3,p+1

0

)
= e(s12...p+2−s12...n)ω(1,0)

∏
p+2<j≤n

e−s(12...p+2),jGτj1KNτ
p+3...n

(
Up+3,p+1

0

)
.

(4.26)

4.3 Zτ4,1-integrals

Let us check the formulæ (4.18) and (4.25) for (n, p) = (4, 1), i.e.

Zτ
4,1(z3, z4) = es1234ω(1,0) Γ3Γ4

 1/s12
−1/s23

0

 Γ(1− s12)Γ(1− s23)
Γ(1− s12 − s23)

= es123ω(1,0)−s(123,4)Gτ41 Γ3

 1/s12
−1/s23

0

 Γ(1− s12)Γ(1− s23)
Γ(1− s12 − s23) , (4.27)

where the generating series

Γ4 (z4) =
∑
r≥0

∑
k1,...,kr≥0

Γ̃
(
k1 ... kr
0 ... 0 ; z4, τ

) (
x

(k1)
41 + x(k1)

43

)
. . .
(
x

(kr)
41 + x(kr)

43

)
(4.28)

and

Γ3(z3, z4) =
∑
r≥0

∑
k1,...,kr≥0

∑
j1,...,jr∈{1,4}

Γ̃
(
k1 ... kr
zji ... zjr

; z3, τ
)
x

(k1)
3j1 . . .x

(kr)
3jr (4.29)

involve the matrices from subsection 3.3.1. The first few terms in the α′-expansion of
Zτ

4,1(z3, z4) by the use of eq. (4.27) are given by:

Zτ
4,1(z3, z4) = es123ω(1,0)−s(123,4)Gτ41

W
τ
1

W τ
2

W τ
3

 , (4.30)

where the non-trivial α′-expansions of the components W τ
1 , W τ

2 and W τ
3 are

W τ
1 = 1

s12

+
[ 1
η2

Γ̃ ( 0
0 ; z3, τ)− s12 + s23 + s13

s12
Γ̃ ( 1

0 ; z3, τ)− s34
s12

Γ̃
( 1
z4 ; z3, τ

)
+O(η2)

]
−
[ 1
η2

(
(s12 + s23 + s13) Γ̃ ( 0 1

0 0 ; z3, τ) + (s24 + s34) Γ̃
( 0 1

0 z4 ; z3, τ
)

+s13Γ̃ ( 1 0
0 0 ; z3, τ) + s34Γ̃

( 1 0
z4 0 ; z3, τ

))
+O

(
η0

2

)]
+O

(
α′2
)
, (4.31)
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W τ
2 =− 1

s23

+
[ 1
η2

Γ̃ ( 0
0 ; z3, τ) + s12 + s23 + s13

s23
Γ̃ ( 1

0 ; z3, τ) + s24 + s34
s23

Γ̃
( 1
z4 ; z3, τ

)
+O(η2)

]
−
[ 1
η2

(
(s12 + s23 + s13) Γ̃ ( 0 1

0 0 ; z3, τ) + (s24 + s34) Γ̃
( 0 1

0 z4 ; z3, τ
)

+s13Γ̃ ( 1 0
0 0 ; z3, τ) + s34Γ̃

( 1 0
z4 0 ; z3, τ

))
+O

(
η0

2

)]
+O

(
α′2
)
, (4.32)

W τ
3 =

[ 1
η2

Γ̃ ( 0
0 ; z3, τ)− Γ̃

( 1
z4 ; z3, τ

)
+ η2Γ̃

( 2
z4 ; z3, τ

)
+O

(
η2

2

)]
−
[
(s12 + s23 + s13) Γ̃ ( 0 1

0 0 ; z3, τ) + (s24 + s34) Γ̃
( 0 1

0 z4 ; z3, τ
)

+s13Γ̃ ( 1 0
0 0 ; z3, τ) + s14Γ̃

( 1 0
z4 0 ; z3, τ

)
+O

(
η0

2

)]
+O

(
α′2
)
. (4.33)

There are three key features of the components W τ
i above. Both W τ

1 and W τ
2 have a

kinematic pole (in s12 and s23 respectively) at their O(η0
2) coefficients, while every other

coefficients have no kinematic pole. The W τ
3 component, however, has no kinematic pole.

Some of these poles are expected from the form of the initial values — however, the fact
that several of these cancel is not obvious from this differential equation method. Lastly,
another fact not apparent from the differential equation method shown here is that none of
the W τ

i have poles η−2
2 , η−3

2 , . . . of order ≥ 2 in η2. This is not obvious from the generating
series of Γ3(z3, z4), but is clear from the original definition of the integrand of Zτ

4,1(z3, z4)
in eq. (3.45).

In the next subsection, we will review an alternative way to obtain the α′-expansions
of Zτ

4,1(z3, z4) via the direct α′-expansion of the integral. This will serve both as a sanity
check for the values of W τ

i found above, but will also explain the appearance or absence of
the kinematic poles in these components.

4.4 Zτ4,1-integrals by direct integration

Now, we want to cross-check (4.30) via direct integration, i.e. α′-expanding the Koba-
Nielsen factor KNτ

12...n, η2-expanding the Kronecker-Einsenstein series and performing the
integrations of every term in this expansion. However, we can see that the vector of integrals
Zτ4,1 contains entries (W τ

1 and W τ
2 ) with poles in the Mandelstam variables sij , which

cannot be generated by α′-expanding the genus-one Koba-Nielsen factor of the integrand.
These poles only appear a the order η0

2 , and are an indication that we have to deal with the
simple poles of the worldsheet functions g(1)(zj − z2), for j = 1, 3. In the presence of these
simple poles, one needs the pole subtraction method of section 5 of ref. [57]. We will detail
the results of using these methods in appendix D.

For the direct integration, we need to α′-expand the integrand. A first identity for the
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α′−expansion of the Koba-Nielsen factor KNτ
1234 with zi > zj reads

Γ̃ ( 1
0 ; zi − zj , τ) = Γ̃

( 1
zi ; zj , τ

)
+ Γ̃ ( 1

0 ; zi, τ) , (4.34)

which we use for all Gτji with i 6= 0. With this identity, we note that the genus-one
Koba-Nielsen factor KNτ

1234 factorizes as follows:

KNτ
1234 =es1234ω(1,0;τ) e−s123,4Γ̃( 1

0 ;z4,τ) × exp[−s34Γ̃
( 1
z4 ; z3, τ

)
− (s13 + s23)Γ̃ ( 1

0 ; z3, τ)]
× exp[−s12Γ̃ ( 1

0 ; z2, τ)− s23Γ̃
( 1
z3 ; z2, τ

)
− s24Γ̃

( 1
z4 ; z2, τ

)
] , (4.35)

from which we can write Zτ
4,1(z3, z4) as:

Zτ
4,1 (z3, z4)

= es1234ω(1,0;τ) e−s123,4Γ̃( 1
0 ;z4,τ)

× exp
[
− s34Γ̃

( 1
z4 ; z3, τ

)
− (s13 + s23) Γ̃ ( 1

0 ; z3, τ)
]

×
∫ z3

0
dz2 exp

[
− s12Γ̃ ( 1

0 ; z2, τ)− s23Γ̃
( 1
z3 ; z2, τ

)
− s24Γ̃

( 1
z4 ; z2, τ

) ]F (z12, η2, τ)
F (z32, η2, τ)
F (z42, η2, τ)

 .

(4.36)

The purpose of writing the Koba-Nielsen factor KNτ
1234 as in eq. (4.35) becomes clear when

we compare eq. (4.36) with eq. (4.30): the last two lines of eq. (4.36) correspond to the
nontrivial vector (W τ

1 ,W
τ
2 ,W

τ
3 )ᵀ of eq. (4.30). Furthermore, the last line of eq. (4.36)

contains an integral in z2 that we can now start to α′-expand and η2-expand its integrand.
For their importance in this subsection, we will define the last line of eq. (4.36) as:V
τ

1
V τ

2
V τ

3

=
∫ z3

0
dz2 exp

[
−s12Γ̃ (1

0 ;z2, τ)−s23Γ̃
( 1
z3 ;z2, τ

)
−s24Γ̃

( 1
z4 ;z2, τ

)]F (z12,η2, τ)
F (z32,η2, τ)
F (z42,η2, τ)

 .

(4.37)

We now report the first few η2,α′- coefficients of these V τ
j integrals, up to O(α′2) and

O(η2) terms:23

V τ
1 = 1

η2

[
Γ̃ ( 0

0 ; z3, τ)− s12Γ̃ ( 0 1
0 0 ; z3, τ)− s24Γ̃

( 0 1
0 z4 ; z3, τ

)
+ s23Γ̃ ( 1 0

0 0 ; z3, τ)
]

+
[ 1
s12
− Γ̃ ( 1

0 ; z3, τ)− 2s23Γ̃ ( 0 2
0 0 ; z3, τ) + s12Γ̃ ( 1 1

0 0 ; z3, τ) + s24Γ̃
( 1 1

0 z4 ; z3, τ
)

−s23Γ̃ ( 2 0
0 0 ; z3, τ)− s23ζ2

]
+O (η2) +O

(
α′2
)
, (4.38a)

23It is natural to organize this computation by first expanding in η2, and then taking different orders in
α′. This is contrary to the differential equation method, in which one naturally expands in α′ first, and
afterwards in η2.
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V τ
2 = 1

η2

[
Γ̃ ( 0

0 ; z3, τ)− s12Γ̃ ( 0 1
0 0 ; z3, τ)− s24Γ̃

( 0 1
0 z4 ; z3, τ

)
+ s23Γ̃ ( 1 0

0 0 ; z3, τ)
]

+
[
− 1
s23

+ s12
s23

Γ̃ ( 1
0 ; z3, τ) + s24

s23
Γ̃ ( 1

0 ; z3, τ)− s2
12
s23

Γ̃ ( 1 1
0 0 ; z3, τ)− s12s24

s23
Γ̃
( 1 1

0 z4 ; z3, τ
)

−s12s24
s23

Γ̃
( 1 1
z4 0 ; z3, τ

)
− s2

24
s23

Γ̃
( 1 1
z4 z4 ; z3, τ

)
+ (2s12 + s24)Γ̃ ( 0 2

0 0 ; z3, τ)

+s24Γ̃
( 0 2

0 z4 ; z3, τ
)

+ s24Γ̃
( 1 1

0 z4 ; z3, τ
)

+ s12Γ̃ ( 2 0
0 0 ; z3, τ)− s24Γ̃

( 1 1
z4 z4 ; z3, τ

)
+s24Γ̃

( 2 0
z4 0 ; z3, τ

)
+ s12ζ2

]
+O (η2) +O

(
α′2
)
, (4.38b)

V τ
3 = 1

η2

[
Γ̃ ( 0

0 ; z3, τ)− s12Γ̃ ( 0 1
0 0 ; z3, τ)− s24Γ̃

( 0 1
0 z4 ; z3, τ

)
+ s23Γ̃ ( 1 0

0 0 ; z3, τ)
]

+
[
−Γ̃

( 1
z4 ; z3, τ

)
− s23Γ̃ ( 0 2

0 0 ; z3, τ)− s23Γ̃
( 0 2

0 z4 ; z3, τ
)
− s23Γ̃

( 1 1
0 z4 ; z3, τ

)
+s12Γ̃

( 1 1
z4 0 ; z3, τ

)
+ (s23 + s24)Γ̃

( 1 1
z4 z4 ; z3, τ

)
− s23Γ̃

( 2 0
z4 0 ; z3, τ

)]
+O (η2) +O

(
α′2
)
. (4.38c)

In computing these V τ
j integrals we need to use z-removal identities that are detailed

in appendix B.2 of ref. [46]. Computing these integrals is mostly straightforward, except for
the O(η0

2) coefficients of V τ
1 and V τ

2 , which are spelled out in eqs. (D.4) and (D.6).
We note that the expansions of obtained here for eq. (4.37) is consistent with the one

found in eq. (4.30). This serves as an important sanity check for our method of computing
Selberg integrals by the differential equation of Zτ

n,p. We have performed this check up
to and including some O(η2

2) and α′2 expressions. More explicitly, we have found both
computations for Zτ

4,1 to agree up to eMPLs of depth 3 and total weight 5.

5 Analytic continuation and alternative initial conditions

In the previous section, we have studied the α′-expansion of Zτ
n,p-integrals Γn,p, a generating

function of eMPLs defined on the domain

0 = z1 < zp+2 < zp+3 < · · · < zn < 1 . (5.1)

In this section, we make use of elements of the theory of the universal KZB equation to
describe how to extend this generating function to a domain

0 = z1 < zβ(p+2) < zβ(p+3) < · · · < zβ(n) < 1 , (5.2)

where β ∈ Sn−p−1. We can relate these two domains by continuously braiding the uninte-
grated punctures around each other, while keeping them distinct along the way. This process
defines a certain braiding of the punctures. We need to make a choice of how to braid the
punctures {zp+2, zp+3, . . . , zn} around each other when relating these two domains. That
is, the permutation β described above is actually obtained from a projection of a braiding
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z1 z2 z3

z1z2z3

(a)

z1 z2 z3

z1z2z3

(b)

pr

Figure 1: (a) A graphical representation of the braiding σ1,2σ2,3σ1,2 of punctures z1, z2, and z3. (b)
The projection pr forgets the details of the braiding, and just remembers the permutation performed
on the punctures: the permutation (13), which exchanges punctures z1 with z3.

g ∈ Bn−p−1, where BN is the braid group on N strands. We denote by pr projection from
the braid group Bn−p−1 into the permutation group Sn−p−1:

pr :Bn−p−1 → Sn−p−1

pr :g 7→ gpr , (5.3)

where the permutation gpr only remembers the endpoints of the braiding. Figure 1 exempli-
fies what the projection pr does. The theory of the KZB equation will allow us to describe
such a braiding by a simple matrix multiplication acting on our generating function Γn,p.

5.1 Analytic continuation of Γn,p and relating fibration bases of eMPLs

We will describe the analytic continuation of Γn,p(zp+2, . . . , zn) given by an element g ∈ BN ,
where N = n−p.24 The braid group BN on the strands {1, 2, . . . , N} is the group generated
by the elements σi := σi,i+1 acting on nearest neighbors, where 1 ≤ i ≤ N − 1, satisfying
the relations [58]

σiσj = σjσi , |i− j| ≥ 2 ,
σiσi+1σi = σi+1σiσi+1 , 1 ≤ i ≤ N − 2 . (5.4)

For convenience, we will label the generators of the braid group by the indices of the
unintegrated punctures {p + 2, p + 3, . . . , n}.25 Now, letting σi,i+1 denote the operation
of braiding the puncture zi+1 counterclockwise half a turn around zi, we can define the
function σi,i+1Γn,p, on the region

0 = z1 < zp+2 < zp+3 < · · · < zi+1 < zi < . . . < zn < 1 . (5.5)
24One can also consider the braid group on the torus, B1,N , with additional generators given by A-cycle

and B-cycle monodromies. We will not consider these braiding elements in this work, but note that the
theory of the KZB equation can also deal with these generators.

25We note that z1 is also unintegrated.
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This function is obtained from the analytic continuation of Γn,p by performing the
braiding operation σi,i+1 described above: we interchange zi and zi+1 by moving the
puncture zi+1 counterclockwise around zi. We write the function we obtain through this
process of analytic continuation by [22]:

σi,i+1Γn,p := Γp+2 . . .ΓnX(σi,i+1)vn,p
= (Γp+2 . . .Γn )

∣∣
(i,i+1)vn,p , (5.6)

where X(σi,i+1) is a matrix that will be defined later, and (i, i+ 1) is a permutation that
acts on the indices of the punctures zi and zi+1 in the definition of Γn,p. This permutation
acts in the arguments of the eMPLs, in the path-ordered integration of the KZB connection,
shown in eq. (4.2), and additionally on the lower indices of the matrices x(k)

ri and x(0)
i .

However, this (i, i+ 1) permutation does not act on the indices of the Mandelstam variables
sij appearing in the matrix entries of our representation, nor does it on the indices of the
ηi variables.

The matrix X(σi,i+1), in a sense, performs the analytic continuation above, and is
given by

X(σi,i+1) = Φ

−x(1)
1,i −

i−1∑
j=p+2

x
(1)
j,i+1,−x

(1)
i,i+1

 exp
(
iπx

(1)
i,i+1

)

× Φ

−x(1)
i,i+1,−x

(1)
1,i+1 −

i−1∑
j=p+2

x
(1)
j,i+1

 , (5.7)

where Φ(A,B) is the Drinfeld associator, a regularized holonomy of the KZ equation, and
is given by the series in noncommuting variables E0,E1 [59]:

Φ(E0, E1) =
∞∑
r=0

∑
a1,a2,...,ar∈{0,1}

G(ar, . . . , a2, a1; 1)Ea1Ea2 . . . Ear

= 1 + ζ2[E0, E1]− ζ3[E0 + E1, [E0, E1]] + . . . , (5.8)

where we obtain the shuffle-regularized MZVs from the first line, as in eq. (2.11). We
note that its multiplicative inverse is simply given by [Φ(E0, E1)]−1 = Φ(E1, E0). The
genus-0 case (i.e. the analytic continuation of two punctures for the KZ equation) has a
form precisely analogous to eq. (5.6) here. The genus-0 case is written in equation 5.18 of
ref. [18], but with braid matrices eij instead of the matrices x(1)

ij here.
Knowing how analytic continuation works for a generator of the braid group σi,i+1, we

can furnish from this an action of any group element g ∈ Bn−p. The key is to find out how
to describe the group action of a product of group elements g = g1g2. In particular, it is
sufficient to find a matrix X(g) that satisfies:

Γp+2 . . .ΓnX(g) = gpr (Γp+2 . . .Γn ) , (5.9)

where gpr = pr(g) ∈ Sn−p. By using the equation above and inserting g = g1g2 we find
the condition

X(g1g2) = X(g1)gpr
1 (X(g2)) , (5.10)
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where we are using conventions of composition of braidings and permutations consistent
with σpr

34σ
pr
45 = (34)(45) = (345). We can use eq. (5.10) to obtain X(g) for any group

element g ∈ Bn−p.

5.2 Analytic continuation of Γ4,1 and an alternative initial value

The simplest example of an analytic continuation as described in the previous section is
the case of (n, p) = (4, 1), with a braiding σ34. From the eq. (5.6), we can see that the
initial value v4,1 plays an spectating role in this equation, so we can write the analytic
continuation of generating functions of eMPLs as follows:26

Γ3(z3, z4)Γ4(z4)X(σ34) = (Γ3(z3, z4)Γ4(z4) )
∣∣
3↔4 =: Γ4(z4, z3)Γ3(z3) , (5.11)

where the generating functions on the right-hand side are defined by the permutation (34)
of the middle term, and X(σ34) is given by

X(σ34) = Φ
(
−x(1)

13 ,−x
(1)
34

)
exp

(
iπx

(1)
34

)
Φ
(
−x(1)

34 ,−x
(1)
14

)
. (5.12)

In particular, we have that

Γ3(z3) =
∑
r≥0

∑
k1,...,kr≥0

Γ
(
k1 ... kr
z1 ... z1 ; z3, τ

)
X̃

(k1)
3,1 . . . X̃

(kr)
3,1 . (5.13)

The matrices X̃(k)
3,1 are defined for k ≥ 0 from the matrices x(k)

ij appearing in the elliptic
KZB system (3.8a)–(3.8b) by

X̃
(k)
3,1 = x

(k)
31 + x(k)

34 . (5.14)

Meanwhile, we have for the other generating function on the r.h.s. of eq. (5.11):

Γ4(z4, z3) =
∑
r≥0

∑
k1,...,kr≥0

∑
j1,...,jr∈{1,3}

Γ̃
(
k1 ... kr
zj1 ... zjr ; z4, τ

)
X̃

(k1)
4,j1 . . . X̃

(kr)
4,jr . (5.15)

The matrices X̃(k)
4,j are defined for j ∈ {1, 3} and k ≥ 0 from the matrices x(k)

ij appearing in
the elliptic KZB system (3.8a)–(3.8b) by

X̃
(k)
4,j = x

(k)
4,j . (5.16)

We have made explicit which x(k)
ij appear in eq. (5.11) to make explicit the action of

the permutation 3↔ 4, which is consistent with performing the path-ordered integration of
section 4. There is key difference between the definitions here, for Γ3(z3) and Γ4(z4, z3),
compared with the definitions of eqs. (4.28) and (4.29) for Γ4(z4) and Γ3(z3, z4). The series
Γ4(z4, z3) here contains eMPLs where the rightmost puncture is z4, and the punctures to
the left of the semicolon can be z3 or z1, e.g. Γ

( 1
z3 ; z4, τ

)
. Meanwhile, the series Γ3(z3, z4)

26The explicit matrices x(0)
3 and x(0)

4 have η2−derivatives, which turns the generating functions Γi into
operators. However, there is no η2−dependence in v4,1, so we can understand the following equation as an
operator acting on a 3× 3 identity matrix. The end result of this operation is a matrix.
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contains eMPLs where the rightmost puncture is z3 and the punctures to the left of the
semicolon can be z4 or z1, e.g. Γ

( 1
z4 ; z3, τ

)
.

Now, we will look back at eq. (5.11) and note that it is relating eMPLs in different
fibration bases. For example, the l.h.s. contains Γ̃

( 1
z3 ; z4, τ

)
, while the r.h.s. contains

Γ̃
( 1
z4 ; z3, τ

)
. Because of this, we can obtain identities relating different fibration bases by

taking coefficients in the α′− and η2−expansion of both sides of eq. (5.11).

5.2.1 Two-puncture fibration-basis-change identities from matrix
representations

In this section, we use the explicit matrix representations that we found in section 3.3.1
into the definition of (5.11). As explained in the previous subsection, we insert an identity
matrix as the initial condition on which the operator-valued l.h.s. and r.h.s. of (5.11) act.

From the steps above, we obtain a matrix equation for (5.11) that can be expanded in
both α′ and η2. From this equation, we can now obtain identities by looking at a certain
entries of these matrices, and looking at a certain Mandelstam monomial and η2 power. An
example of this is the following equation, that comes from looking at the η0

2s34 coefficient
of the (1, 1)-entry:

Γ̃ ( 1
0 ; z3, τ) + Γ̃

( 1
z3 ; z4, τ

)
= iπ + Γ̃ ( 1

0 ; z4, τ) + Γ̃
( 1
z4 ; z3, τ

)
. (5.17)

This equation has been checked numerically in Mathematica, and it holds when
arg(z3) > arg(z4) for z3 and z4 in the fundamental parallelogram. The identity is very
similar to the identity for MPLs, which can be found via PolyLogTools [60]:

G(0; z3) +G(z3; z4) = iπ +G(0; z4) +G(z4, z3) , (5.18)

valid in the same domain. Note, however, that both of these last two fibration-basis-change
formulæ can be performed by hand. However, one can find higher length-and-weight
fibration-basis-change formulæ. For example, one can obtain a fibration-basis-change
formula for the eMPL Γ̃

( 1 1 1
0 z3 z3 ; z4, τ

)
— which contains a ζ3 — by looking at the system

of two equations formed by the η0
2s23s24- and the η0s2

23s24- coefficients of the (1, 3)-entry of
eq. (5.11). These identities are showcased in eqs. (E.3) and (E.4). We note that the r.h.s.
of these equations feature eMPLs of the form Γ̃

(
k1 ... kr
0 ... 0 ; z4, τ

)
and Γ̃

(
k1 ... kr
a1 ... ar ; z3, τ

)
for

ai ∈ {0, z4}, making these nontrivial identities.
We note that our numerical implementation has been cross-checked with the one of

GINAC whenever they coincide [49]. We need our own implementation because identities
like the one above always include at least one eMPL that requires an analytic continuation
not supported by the current implementation of GINAC. We note that one can also use
the elliptic symbol of ref. [61] as checks for these equations.

Following this method, one is able to extract equations that relate eMPLs written in
different fibration bases. However, the number of distinct eMPLs grows exponentially with
powers of α′ and η2 — which respectively correspond to the length and the weight of the
eMPLs — while the number of independent Mandelstam monomials grows polynomially with
α′. Thus, at some point the system of equations one is able to obtain cannot necessarily be
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solved for. For example, the eMPLs Γ̃
( 2 3
z3 0 ; z4, τ

)
and Γ̃

( 3 2
z3 0 ; z4, τ

)
only appear in a single

monomial, s12s24, in the (2, 1)−entry of the left-hand-side of eq. (5.11). Because of this, we
can obtain an equation involving these two eMPLs that can not be solved analytically for
either of them. Still, one can also insert in eq. (5.11) larger matrix representations with
(n, p) = (n, n− 3). These larger matrix representations are obtained in scenarios that also
leave the last two punctures unintegrated, but involve matrices of size ( (n−1)!

2 × (n−1)!
2 ),

more ηi variables and more Mandelstam monomials. We invite the interested reader to
use the file in the supplementary material for the matrices for (n, p) = (5, 1), (5, 2) to test
this method. An alternative method to solve for the eMPLs of these analytic continuation
identities is outlined in appendix E.

We have looked at several of the equations we can obtain from inserting the explicit
matrix representations for (n, p) = (4, 1) in eq. (5.11). We have performed numerical checks
on these equations up to weight 3 and length 3 in the eMPLs. All the equations so obtained
have been found to be consistent with the same branch choice, namely arg(z3) > arg(z4)
for z3 an z4 in the fundamental parallelogram. This is consistent with the definition of the
braiding operation that performs the analytic continuation.

5.2.2 Alternative initial value for Γ4,1

In the previous subsection, we described the analytic continuation of Γ4,1 in an active way.
However, there is an alternate interpretation of this analytic continuation, coming from the
last two terms of eq. (5.6). Because X(σi,i+1) is invertible, the following equation holds:

Γ4,1 = Γ3(z3, z4)Γ4(z4)v4,1 = Γ4(z4, z3)Γ3(z3)
[
X(σ3,4)

]−1
v4,1 . (5.19)

In the equation above, we remind the reader that the generating functions Γ4(z4, z3)
and Γ3(z3) are defined naturally from performing path-ordered integration in the order

(0, 0)→ (z3, 0)→ (z3, z4) , (5.20)

which suggests that with this order of integration in mind, we should use
[
X(σ3,4)

]−1
v4,1 as

an initial value. That is:[
X(σ3,4)

]−1
v4,1 = lim

z3→0
(−2πiz3)−X

(1)
3,1 lim

z4→0
(−2πiz4)−X

(1)
4,1Zτ

4,1 . (5.21)

In this passive way of understanding the analytic continuation of eq. (5.6), we will
be able to find the initial values from which to perform path-ordered integration along
alternative integration paths. If we use this alternative initial value in eq. (4.27), now the
α′-expansion will include factors of iπ and additional MZVs.

5.3 Outlook for analytic continuation for more punctures

In this short subsection, we restate that eqs. (5.9) and (5.10) allow one to write more
complicated analytic continuations (labeled by how one braids the punctures zi around
each other) for any number of unintegrated punctures, and any braiding element g — this
last fact is restating that the σi,i+1 are the generators of B1,n−p. We will show an example

– 34 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
9

of such braidings in this section. We will write eq. (5.9) for the case (n, p) = (5, 1), i.e. with
three unintegrated punctures: (z3, z4, z5), and g = σ34σ45:

Γ3(z3, z4, z5)Γ4(z4, z5)Γ5(z5)X(σ34)
(
X(σ45)

∣∣
3↔4

)
= Γ4(z3, z5, z4)Γ5(z3, z5)Γ3(z3) , (5.22)

where we have made use of X(σ34σ45) = X(σ34)
(
X(σ45)

∣∣
3↔4

)
on the l.h.s. and of pr(σ34σ45) =

(345) on the r.h.s. X(σ34) is defined as in eq. (5.12), and

X(σ45)
∣∣
3↔4 = Φ

(
−x(1)

14 − x
(1)
34 ,−x

(1)
45

)
exp

(
iπx

(1)
45

)
Φ
(
−x(1)

45 ,−x
(1)
15 − x

(1)
35

) ∣∣
3↔4

= Φ
(
−x(1)

13 − x
(1)
34 ,−x

(1)
35

)
exp

(
iπx

(1)
35

)
Φ
(
−x(1)

35 ,−x
(1)
15 − x

(1)
45

)
. (5.23)

The l.h.s. and r.h.s. of eq. (5.22) contain eMPLs in different fibration basis, and one
can use e.g. the methods of appendix E to obtain change-of-fibration-basis identities for
eMPLs in three variables. By using numerical methods, and checking the coefficients of
eq. (5.22) by the methods of appendix E, we have found that this equation is valid for
arg(z3) > arg(z4) > arg(z5) for z3, z4, and z5 in the fundamental parallelogram. See
eq. (E.9) for an example of a change-of-fibration-basis identity we can find, associated to
this braiding. We remark that this is a similar domain of validity for g = σ34σ45 as in the
genus-0 case of appendix B.3 of ref. [18].

6 Connections with the mathematical literature

We remark that the elements x(n)
i,j and x(0)

i that we have described in our differential
system have been checked to satisfy several of the relations of elements of the genus-one
Drinfeld-Kohno algebra t̄1,N , for N = n− p unintegrated punctures, which mathematicians
use for the study of the KZB equation. In this section, we will follow the notation of ref. [22],
and refer to some related work on derivation algebras by refs. [26, 27, 56]. More precisely,
the KZB equation in the so-called universal case is a system of differential equations for a
function of (n−p) punctures {zi}, FKZB(z1, zp+2, . . . , zn, τ), written in the following form:27

∂iF
KZB =

−yi +
∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

adkxi(yr)g
(k)
ir

FKZB , (6.1a)

2πi∂τFKZB =

−∆0 +
∑
k≥4

(1− k)δk−2Gk +
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k − 1)adk−1
xq (yr)g(k)

qr

FKZB ,

(6.1b)

where we are using the fact that the Eisenstein series Gk vanish for odd values of k, so the
only terms that contribute in the second sum are δ2k, for k ≥ 2. In eq. (6.1) above, the
{xi} and {yi} are generators of the algebra t̄1,n−p, with indices {1, p+ 2, p+ 3, . . . , n}. A

27We are using a numbering system for indices matching our convention for ZZZτn,p(zp+2, zp+3, . . . , zn).
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word of caution: these generators xi should not be confused with the matrices x(0)
i and

x
(k)
ij , which we write in boldface letters to avoid confusion. ∆0 and the δ2k are elements

of a lie Algebra d, which acts as a derivation algebra on t̄1,n−p (i.e. there is a Lie algebra
morphism d→ Der(̄t1,n−p). We refer to the image of this morphism with the same notation
as elements in d by abuse of notation). Moreover, we are denoting nested commutators or
repeated adjoint actions by adna(b) = [a, adn−1

a (b)], and ad1
a(b) = ada(b) = [a, b].

The genus-one Drinfeld-Kohno algebra t̄1,n−p is generated by the elements {xi} and
{yi}, with indices i ∈ {1, p+ 2, p+ 3, . . . , n}, and subject to the following relations:28

[xi, xj ] = 0 = [yi, yj ] , ∀i, j , (6.2a)

tij = [xi, yj ] , i 6= j , (6.2b)

tij = tji (6.2c)

[tij , tkl] = 0 , |{i, j, k, l}| = 4 , (6.2d)

[xi, yi] = −
∑
j 6=i

tij [xi, tjk] = 0 = [yi, tjk] , |{i, j, k}| = 3 , (6.2e)

[xi + xj , tij ] = 0 = [yi + yj , tij ] , |{i, j, k}| = 3 , (6.2f)∑
i

xi = 0 =
∑
i

yi . (6.2g)

Note that eq. (6.2b) is nothing else as to name a certain commutator tij to simplify the
rest of the relations the generators of the algebra satisfy. Moreover, we note that eq. (6.2g)
basically states that FKZB is translation-invariant, which reflects the case for our integrals
Zτ
n,p:

∑
i yi = 0 translates to

∑
i ∂ziZ

τ
n,p = 0. Meanwhile,

∑
i xi = 0 is related to an

infinitesimal translation of all the punctures of Zτ
n,p along the τ direction, which should

also vanish by translation-invariance. The derivations ∆0 and δ2k have to satisfy the single
relation among them in d:

ad2k+1
∆0

(δ2k) = 0 , (6.3)

and as derivations on t̄1,n−p, the have to satisfy the following relations:29

[∆0, xi] = yi , (6.4a)

[∆0, yi] = [∆0, tij ] = 0 , (6.4b)

[δ2m, xi] = 0 , (6.4c)

[δ2m, tij ] =
[
tij , ad2m

xi (tij)
]
, (6.4d)

[δ2m, yi] = 1
2
∑
j 6=i

∑
p+q=2m−1

[
adpxi (tij) , (−1)q adqxi (tij)

]
. (6.4e)

28The last of these relations is what separates t1,n−p from t̄1,n−p. The generators of the latter are written
with horizontal bars on top of them in the mathematics literature, e.g. x̄i. We will denote these without the
bar in this work.

29For concreteness, we use here commutators for what in the ref. [22] would be written in functional
relation, e.g. ∆0(xi) = yi.
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All in all, this means that the algebra elements appearing in eq. (6.1a) are all elements of
t̄1,n−p o d.30 In this section, we will explain how the matrices x(k)

ij , x(0)
i and ε(k) we find in

this work form a representation of a subalgebra of t̄1,n−p o d, and discuss some nontrivial
properties of t̄1,n−p o d that are reflected on these matrices that appear in eq. (3.8).

6.1 Building a dictionary between these languages

By comparing eq. (6.1) with eq. (3.8), we can readily postulate a dictionary that relates the
matrices x(n)

i,j , x
(0)
i and ε(k) to elements in t̄1,n−p o d, i.e. with the commutation relations

in (6.2) and (6.4). The dictionary goes as follows:

x
(0)
i = −yi , (6.5a)

x
(k)
ij = adkxi(yj) , (6.5b)

ε(0) = ∆0 , (6.5c)

ε(2k) = δ2k−2 . (6.5d)

We first note the lack of a matrix representative for the generator xi ∈ t̄1,n−p o d. Because
of this, even if we were to forget about the action of d, the matrices x(k)

ij and x(0)
i furnish a

representation of only a subalgebra L ⊂ t̄1,n−p. We would like to emphasize that we tried
to find a matrix representative for this xi ∈ t̄1,n−p but failed to find one in the same using
d(n,p) × d(n,p) matrices. However, one can formally add Lie algebra generators that act like
the xi ∈ t̄1,n−p and commute with each other, and thus obtain the whole of t̄1,n−p.31

One key property of t̄1,n−pod is that its elements satisfy commutation relations sufficient
for the integrability of the differential system in (6.1a)–(6.1b) (i.e. the commutation of mixed
partial derivatives). In the original writing of this equation of ref. [22], these properties are
used succinctly via holomorphic Kronecker-Eisenstein series that have been expanded in the
writing of this equation here. In our analysis of the integrability of eqs. (3.8a) and (3.8b),
we also arrived at some sufficient conditions that have to be imposed on commutators
of x(k)

ij , x(0)
i and ε(k). We should expect these two results to match, but this matching

is nontrivial, basically, because the commutation relations we found are written in terms
of x(k)

ij , e.g. eq. (3.13) instead of the simpler generators xi and yi. A satisfying fact to
us was that most of these commutations relations among the x(k)

ij (or rather, among the
adkxi(yj)) are computed and used in ref. [22], the most complicated of these when proving the
compatibility of d as an algebra of derivations on t̄1,n−p and its own Lie algebraic relations.

To best of our knowledge, among the t̄1,n−p relations, only the commutation relations
for [x(k)

i,q ,x
(l)
j,r] and [x(k)

i,j ,x
(l)
q,i] are not included explicitly in ref. [22]. However, given the

dictionary of eq. (6.5b), it is straightforward to prove that the commutation relations of
these that appear in eq. (3.13) are implied by the relations among the generators of t̄1,n−p.
Thus, we remark that to the best of our knowledge, the relations among the generators

30The semidirect product o reflects the fact that the commutators among elements in d and t̄1,n−p written
in the equations (6.4) can all be expressed in terms of commutators of elements of t̄1,n−p only.

31We thank Benjamin Enriquez for pointing this out.
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of t̄1,n−p o d, and the properties of d as a derivation imply the relations we have found in
section 3.2.1. We have additionally checked that the explicit matrices that we build out of
the process described in appendix B have been checked to satisfy the relations tabulated in
section 3.2.1, for several different values of (n, p) as sanity checks during the computation
of the matrices themselves.

6.2 Grading of t̄1,n−p

We remark that t̄1,n−p o d is a graded algebra, with grading of its elements given by

deg(xi) = (1, 0) , deg(yi) = (0, 1) ,
deg(∆0) = (−1, 1) , deg(δ2m) = (2m+ 1, 1) . (6.6)

The matrices x(k)
ij , x(0)

i and ε(k) reflect this grading in the following way: according to our
dictionary and the grading above, the second entry of the grading of these explicit matrices
should be 1. Noticing that these matrices are all proportional to Mandelstam variables
sij (which themselves are proportional to α′), we posit that the α′−order of the matrix
representations that we have found follows precisely the grading of yi. The grading of xi is
slightly more subtle, but a glance at the matrices, for example, in the (n, p) = (4, 1) case
should tell use that this grading follows the homogeneity degree32 of the ηi — with an
exception for ε(0), which includes a term of order η0

i proportional to the identity matrix,
which drops out from every commutator. In particular, given that the matrices x(0)

i have a
(ηi, α′) grading of (−1, 1), we conclude that the ηi homogeneity power follows the abstract
grading of xi, with an offset of 1. The homogeneity degrees in ηj and linearity in α′ of
the matrices ε(k) also follow the expected grading dictated by the grading given by this
dictionary just described. In fact, this is the case generically for the matrices we find for
our differential system in (3.8a)–(3.8b), as can be read off from eqs. (B.11) and (B.19).
Thus, we posit that the homogeneity degree of ηi and the linearity in α′ of the matrices
x

(n)
i,j , x

(0)
i and ε(k) is no coincidence, but rather is a consequence of these belonging to a

representation of a graded algebra.33

The grading of t̄1,n−p described above is relevant when considering equations such
as (5.11). If we give an interpretation of this equation in terms of generators of the algebra
t̄1,n−p, then we notice that the eMPLs of weight w and length r in the generating function,
say, Γ3(z3, z4) appears as coefficient of an element of t̄1,n−p with grading (w, r). Moreover,
every MZV ζn1,n2,...,nr in the Drinfeld associators appears as a coefficient of an element of
t̄1,n−p with grading (n1 + . . .+nr, n1 + . . .+nr) — this last fact means that we should assign
a weight and length (as in eMPLs) of n1 + . . .+ nr to the MZV ζn1,n2,...,nr . With this in
mind, we note that equations obtained from looking at components of eq. (5.11) will contain
eMPLs and MZV of uniform total weight and length as just described. An example of such
an equation can be seen in the change-of-fibration-basis identities of eqs. (5.17) and (E.9).
As long as the eq. (5.11) indeed holds for generic values in t̄1,n−p, we should expect every

32We define this to follow the degree of the ηi in the matrices, and to also be equal to −k to ∂kηi .
33With this dictionary in mind, the two gradings in eq. (6.6) can be seen, up to a shift, as eigenvalues of

the operators [
∑

j
ηj∂ηj , _ ] and [α∂α, _ ], when dealing with the explicit matrix representations.
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such change-of-fibration-basis equation to respect the length-and-weight grading of eMPLs
just described.

6.3 Pollack’s relations

We shall now comment on some extra commutation relations among the ε(k) not implied
by the requirement of integrability. These relations have been studied by Tsunogai [26]
and spelled out in great detail by Pollack [27]. These are commutation relations among a
derivation algebra of elements ε(k)

Tsu that satisfy:

adk−1
ε
(0)
Tsu

(ε(k)
Tsu) = 0 , k = 0, 2, 4, . . . , (6.7)

which is a relation satisfied for example by the matrices ε(k) if we replace ε(k)
Tsu → ε(k),

according to eq. (6.3), after following the dictionary of subsection 6.1. Moreover, the first
lines of eqs. (3.15) and (3.16) implies that

adkε(0)(x(k)
ij ) = 0 . (6.8)

However, there are further nontrivial relations that these derivations of Tsunogai satisfy.
For example, the following depth-two and depth-three identities are expected to be satisfied
by such derivations of Tsunogai [62]:

[
ε

(10)
Tsu , ε

(4)
Tsu

]
− 3

[
ε

(8)
Tsu, ε

(6)
Tsu

]
= 0 ,

2
[
ε

(14)
Tsu , ε

(4)
Tsu

]
− 7

[
ε

(12)
Tsu , ε

(6)
Tsu

]
+ 11

[
ε

(10)
Tsu , ε

(8)
Tsu

]
= 0 ,

−80
[
ε

(0)
Tsu,

[
ε

(4)
Tsu, ε

(12)
Tsu

]]
+ 250

[
ε

(0)
Tsu,

[
ε

(6)
Tsu, ε

(10)
Tsu

]]
+ 96

[
ε

(4)
Tsu,

[
ε

(0)
Tsu, ε

(12)
Tsu

]]
+462

[
ε

(4)
Tsu,

[
ε

(4)
Tsu, ε

(8)
Tsu

]]
− 375

[
ε

(6)
Tsu,

[
ε

(0)
Tsu, ε

(10)
Tsu

]]
− 1725

[
ε

(6)
Tsu,

[
ε

(4)
Tsu, ε

(6)
Tsu

]]
+280

[
ε

(8)
Tsu,

[
ε

(0)
Tsu, ε

(8)
Tsu

]]
= 0 (6.9)

We have found that, while the matrices ε(k) that we found in this work do not satisfy
these relations above, a certain combination of matrices do. If we define ε̃(k) by

ε̃(0) = ε(0) ,

[ε̃(k) = ε(k) +
∑
i<j

x
(k−1)
i,j , k ≥ 2 , even , (6.10)

then the matrices ε̃(k) do satisfy the commutation relations of the Tsunogai special derivation
algebra that we have exemplified above in eq. (6.9). We have checked that these depth-two
relations holds for different values of (n, p), including (4, 1), (5, 1), and (5, 2). Other higher-
depth irreducible relations34 that generalize the ones in (6.9), and described by ref. [27]

34Depth here refers to the number of commutators not involving ε̃(0)
Tsu in the relation. Irreducible relations

are those that are not immediately implied by writing linear combinations of commutators of lower-
depth relations.

– 39 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
9

have been checked, including some depth-3 relations that have been written in refs. [27, 62].
The formula of eq. (6.10) generalizes the result of ref. [17],35 valid for (n, p) = (n, n− 2), to
the case of generic values of integrated and unintegrated punctures.

The precise combinations that define ε̃(k) have a geometrical meaning: if we take the
limit zij → 0 of eq. (6.1b), we obtain a differential equation in τ but for t̄1,1 instead of
t̄1,n−p. Vectors of string integrals that satisfy such a differential equation have been studied
in detail in refs. [13, 14]. The differential equations studied in these papers gave rise to
matrices ε̃(k) that are observed to satisfy the commutation relations of Pollack to high
orders. We note that it was important in refs. [13, 14] and in the present work to study
cases of (n, p) beyond p = 1 to make sure that the accidental relations that appear in the
p = 1 case (see eq. (3.44)) don’t spoil these tests.

7 Conclusion

In this paper, we present vectors of genus-one open-string-like integrals with any number
of unintegrated punctures, Zτ

n,p of length dn,p = (n−1)!
(n−1−p)! that satisfies a KZB system

in multiple variables. We managed to do this by extending previous methods to handle
integration-by-parts (IBP) and Fay identities — a genus-1 version of partial-fractioning —
for chains of Kronecker-Eisenstein series used in refs. [13, 14, 17]. The end result is that
Zτ
n,p can be seen as a path-ordered integration of the KZB equation from an initial value of

tree-level string integrals. More explicitly, the solution for Zτ
n,p is captured by some initial

value given by a known series in MZVs, and a generating function of eMPLs.
By showing that such a generalization of the vectors of integrals of refs. [13, 14, 17] exists,

we have provided further evidence towards the use of (generalized) chains of Kronecker-
Eisenstein series as a basis of integrands that is complete under IBP and Fay identity. Because
these Kronecker-Eisenstein series themselves are generating functions of the meromorphic
but not doubly-periodic kernels g(k)(zij), the components of these Zτ

n,p contain integrands
closely related to the ones appearing in one-loop open-string amplitudes. Moreover, the IBP
algorithms described in appendix B work perfectly well with the non-holomorphic version
of the integrands of refs. [13, 14, 17].

The main results of this paper is the computation of integrals along the A-cycle (for
unintegrated punctures zi ∈ R). Thus, most of the results here can be readily translated
to ordinary doubly-periodic open-string integrals if we place the unintegrated punctures
zp+2, . . . , zn on the real axis. However, this is not the case for section 5 in which we use
some results from the theory of the universal KZB equation — itself defined with the
meromorphic kernels g(k)(zij) — to determine the analytic continuation of Zτ

n,p and their
components, the eMPLs Γ̃

(
k1 ... kr
z1 ... zr ; z, τ

)
of ref. [19]. This section also suggests that the

analytic continuation of eMPLs is itself dictated by properties of the universal KZB equation
that can be read from ref. [22]. If so, this could be a valuable addition for the numerical
implementations of these eMPLs, e.g. of ref. [49].

35Reference [17] was the first to show that ε(k) by themselves failed to satisfy Pollack’s relations at depth-3
and above, and found the combination of matrices that indeed satisfy Pollacks’ relations.

– 40 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
9

We comment now on some of the questions that we have touched upon, but not gave
a complete answer. We have described in appendix F the steps needed to generalize the
integrals Zτ

n,p to a different integration cycle for the integrated punctures. We note that we
do not currently know how to extend the content of this section towards a proof showing
that the dimension of the vector space of integration cycles is36 dn,p = (n−1)!

(n−1−p)! . Given
that we are working in a meromorphic setup, we believe that one can establish monodromy
relations along the lines of refs. [52, 63–67], but we do not try to compute these in the
present work.37 Given all monodromy relations, one could find the number of independent
integration cycles modulo these, which would give a starting candidate for a basis. We
expect that with such bases of integration cycles and integrands in hand, one could perform
the coaction checks for these genus-one integrals along the lines of ref. [18].38

We comment that a proof of the dimensionality39 of the Zτ
n,p could be obtained by giving

the entries of this vector an interpretation as intersection numbers between (representatives
of) twisted cohomology and homology with local coefficients, along the lines of refs. [6, 18, 30],
which build upon the theory of twisted (co)homology of Aomoto and Kita [29]. To the
best of our knowledge, the closest construction in the literature to the one in this work are
the ones by refs. [52, 53]. In particular, the authors of ref. [52] do manage to give a proof
of the dimensionality of the integrands and integration contours for the integrals Zτ

n,p for
(n, p) = (n, 1) via methods of twisted (co)homology. Moreover, it would be interesting to
relate the KZB equations in this work to those of the integral representations in ref. [53]
and to investigate possible connections with conformal blocks on an elliptic curve. Finally, a
better understanding of these genus-one integration contours — in particular, their so-called
“twisted intersection numbers” — could lead to a genus-one generalization of the string
theory KLT relations [5].
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A Meromorphic vs. doubly periodic integrals

In this appendix, we compare the integrals of this work with the ones of refs. [13, 14, 17].
36Because of the natural pairing of integration cycles and integrands given by integration, it is fair to

expect these to have the same dimension as vector spaces.
37We expect that the material given in appendix F will help in checking such monodromy relations.
38We note that such coaction checks have been done for (n, p) = (n, n− 1) in the section 7.2 of ref. [13]

using the coaction of ref. [61].
39We could be using an overcomplete number of integrals or missing some integrals in defining the

components of Zτn,p.
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A.1 Dictionary between the integrands

The genus integrals described here and in refs. [13, 14, 17] are schematically of the follow-
ing form:

Zτn =
∫
γ

dz2dz3 . . . dzp+1K̂Nτ
12...n Φ̂(σ, zij , ηj) , (A.1)

where γ is an integration contour, Φ̂(σ, zij , ηj) is defined as in eq. (2.43), but with either
meromorphic F (z, η, τ) (in this work) or doubly-periodic Ω(z, η, τ) (in refs. [13, 14, 17])
Kronecker-Eisenstein series. The Koba-Nielsen factor K̂Nτ

12...n is defined as

K̂Nτ
12...n = exp

− ∑
1≤j<i≤n

sijĜτij

 , (A.2)

where the open-string Green’s function Ĝτij is given by:

Ĝτij =


Γ̃ ( 1

0 ; zij , τ)− ω (1, 0, τ) , this work ,

Γ ( 1
0 ; |zij | , τ)− ω (1, 0, τ) , refs. [13, 14, 17] .

(A.3)

These differences means that with an integration contour γ that corresponds to a planar
integral (i.e. integrating along the real axis only), the integrals of our work and of refs. [13,
14, 17] coincide, at least up to a harmless phase difference (due to the absolute value in
Ĝτij). We can further expand the dictionary thus far once we notice that the τ derivative of
K̂Nτ

12...n is given by

2πi∂τ K̂Nτ
12...n =


−
∑

1≤i≤j≤n sij
(
g

(2)
ij + 2ζ2

)
K̂Nτ

12...n , this work ,

−
∑

1≤i≤j≤n sij
(
f

(2)
ij + 2ζ2

)
K̂Nτ

12...n , refs. [13, 14, 17] ,
(A.4)

and that

∂zkK̂Nτ
12...n =


−
∑
j 6=k skj

(
g

(1)
kj

)
K̂Nτ

12...n , this work ,

−
∑
j 6=k skj

(
f

(1)
kj

)
K̂Nτ

12...n , refs. [13, 14, 17] .
(A.5)

However, an important key identity, the mixed-heat equation (2.21) is not straightforwardly
valid for the holomorphic z-derivative of Ω(z, η, τ ). Because of this, the differential equations
in ref. [17] are taken when the extra, unintegrated puncture z0 is purely real. A thorough
discussion of the ways in which the mixed-heat equation can be written for the non-
meromorphic Ω(z, η, τ) can be found around eq. (2.9) of ref. [68].

Lastly, because the Fay relations and derivatives of the integrals in eq. (A.1) can be
made to work the same, there is one important corollary: the combinatorics used in this
work to find the differential KZB system (in appendix B) will translate precisely to valid
combinatorics in the doubly-periodic setting of refs. [13, 14, 17]: in the differential equation,
simply replace all g(k)

ij by a f (k)
ij , and take all the unintegrated punctures to be on the real

axis. Because of this, we note that if one can prove in this meromorphic setting that the
basis of integrands is indeed (n−1)!

(n−p−1)! , then this would also prove this statement in the
setting of refs. [13, 14, 17].
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B Deriving the differential system

In this appendix, explicit derivation of various results from subsection 3.2 are given.

B.1 The zi-derivatives for general (n,p)

The derivation of the zi-derivative in the differential system (3.8a)–(3.8b) is similar to the
calculation in section 4 of [17].

The Koba-Nielsen factor ensures that the partial derivative of the integration boundaries
vanishes. Using the antisymmetry of Fij(η) = F (zi − zj , η, τ):

∂iFij(η) = −∂jFij(η) (B.1)

and integration by parts, the derivative of the integrand in eq. (3.3) can be written as a
sum of partial derivatives solely acting on the Koba-Nielsen factor

∂iZ
τ
n,p

((
1,A1) ,(p+2,Ap+2) ,(p+3,Ap+3) , . . . ,(n,An) ;zp+2,zp+3, . . . ,zn

)
=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dzi ∂i

(
KNτ

12...n ϕ̃
τ
(
1,A1) n∏

k=p+2
ϕ̃τ
(
k,Ak

))

=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dzi

((
∂i+

∑
k∈Ai

∂k

)
KNτ

12...n

)
ϕ̃τ
(
1,A1) n∏

k=p+2
ϕ̃τ
(
k,Ak

)

=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n

−
∑

k∈{i,Ai}
j 6∈{i,Ai}

skjg
(1)
kj

 ϕ̃τ
(
1,A1) n∏

k=p+2
ϕ̃τ
(
k,Ak

)

=−
∑

k∈{i,Ai}
j 6∈{i,Ai}

skj

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...nFkj (ξ) ϕ̃τ

(
1,A1) n∏

k=p+2
ϕ̃τ
(
k,Ak

)
|ξ0

=−
∑

r∈{1,p+2,...,n}
r 6=i

(
sirg

(1)
ir Z

τ
n,p

((
1,A1) ,(p+2,Ap+2) ,(p+3,Ap+3) , . . . ,(n,An) ;zp+2,zp+3, . . . ,zn

)

+
|Ar|∑
j=1

siar
k

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...nFiark (ξ) ϕ̃τ

(
1,A1) n∏

k=p+2
ϕ̃τ
(
k,Ak

)
|ξ0

+
|Ai|∑
k=1

sai
j
r

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...nFaijr (ξ) ϕ̃τ

(
1,A1) n∏

k=p+2
ϕ̃τ
(
k,Ak

)
|ξ0

+
|Ai|∑
k=1

|Ar|∑
j=1

sai
j
ar
k

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...nFaijark (ξ) ϕ̃τ

(
1,A1) n∏

k=p+2
ϕ̃τ
(
k,Ak

)
|ξ0

)
, (B.2)

where we denote the elements of a sequence Ai by

Ai =
(
ai1, a

i
2, . . . , a

i
|Ai|

)
. (B.3)

The essential factors in the above sum over r are

siar
k
Fiar

k
(ξ) ϕ̃τ (r,Ar) , (B.4)

saijr
Faijr

(ξ) ϕ̃τ
(
i, Ai

)
, (B.5)
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and
saija

r
k
Fai

k
arj

(ξ)ϕ̃τ (i, Ai)ϕ̃τ (r,Ar) . (B.6)

These are exactly the sums appearing in the derivatives of ref. [17] (with the notational
identification i = 1, r = 0 and Ai = B,Ar = A, cf. equations (B.16), (B.18) and (B.14) of
ref. [17]), where they have been rewritten in terms of linear combinations of products

ϕ̃τ
(
1, A1

) n∏
k=p+2

ϕ̃τ
(
k,Ak

)
, (B.7)

which appear in the definition (3.3) of the integrals Zτn,p(A1, Ap+2, Ap+3, . . . , An;
zp+2, zp+3, . . . , zn). Thus, we can simply copy the result eq. (4.21) of ref. [17] with the
corresponding notational adaption to obtain the closed formula. Defining the decomposition
of a sequence C into subsequences Cij as

C = (c1, . . . , ci−1, ci, ci+1 . . . , cj−1︸ ︷︷ ︸
Ci,j=Cij

, cj , cj+1 . . . , cm) , (B.8)

with

Cji = ∅ for j ≥ i , C1,m+1 = C , C̃ij = (cj−1, cj−2, . . . , ci) , (B.9)

where a tilde denotes the reversal of a sequence and for sequences P = (p1, p2, . . . , pl),
Q = (q1, q2, . . . , qm) and the following sum of Mandelstam variables

sP,Q =
l∑

i=1

m∑
j=1

spiqj , (B.10)

the closed formula can be written as

∂iZ
τ
n,p

((
1,A1) ,(p+2,Ap+2) ,(p+3,Ap+3) , . . . ,(n,An) ;zp+2,zp+3, . . . ,zn

)
=

∑
r∈{1,p+2,...,n}

r 6=i

{(
s(i,Ai),(r,Ar)g

(1)
ri +

|Ai|∑
j=1

sai
j
,(r,Ar)∂ηai

j

−
|Ar|∑
k=1

s(i,Ai),ar
k
∂ηar

k

)
Zτn,p (. . .)

−
|Ar|∑
k=1

|Ai|∑
j=1

sai
j
,ar
k

k∑
m=1

j∑
l=1

(−1)k+j−m−l
Fri

(
−ηAi

l,|Ai|+1

)

Zτn,p

(
. . . ,
(
r,Ar1m

(
ark,
(
Ãrm,k Ark+1,|Ar|+1

) (
aij , Ã

i
l,j Aij+1,|Ai|+1

)))
, . . . ,

(
i,Ai1l

)
, . . .
)

−
|Ar|∑
k=1

|Ai|∑
j=1

sai
j
,ar
k

k∑
m=1

j∑
l=1

(−1)k+j−m−l
Fri

(
ηAr

m,|Ar |+1

)

Zτn,p

(
. . . ,(r,Ar1m) , . . . ,

(
i,Ai1l

(
aij ,
(
Ãil,j Aij+1,|Ai|+1

) (
ark, Ã

r
m,k Ark+1,|Ar|+1

)))
, . . .
)

−
|Ai|∑
j=1

sai
j
,r

j∑
l=1

(−1)j−lFri
(
−ηAi

l,|Ai|+1

)
Zτn,p

(
. . . ,
(
r,Ar

(
aij , Ã

i
l,j Aij+1,|Ai|+1

))
, . . . ,

(
i,Ai1l

)
. . .
)

−
|Ar|∑
k=1

si,ar
k

k∑
m=1

(−1)k−mFri
(
ηAr

m,|Ar |+1

)
Zτn,p

(
. . . ,(r,Ar1m) , . . . ,

(
i,Ai

(
ark, Ã

r
m,k Ark+1,|Ar|+1

))
. . .
)}

,

(B.11)
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where any empty slots in the argument of Zτn,p denoted by . . . are understood to be exactly
the same as for the initial integral Zτn,p((1, A1), (p+ 2, Ap+2), . . . , (n,An); zp+2, . . . , zn) which is
being differentiated.

Upon expanding the Eisenstein-Kronecker series Fri in eq. (B.11), one obtains the
coefficients of the matrices x(0)

i and x(k)
ir in the partial differential equation

∂iZ
τ
n,p =

x(0)
i +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir g

(k)
ir

Zτ
n,p . (B.12)

B.2 The τ -derivative for general (n,p)

The integrals Zτn,p also depend on the modular parameter τ . The partial derivative of
the vector Zτ

n,p with respect to τ can also be expressed in a closed form, given in the
differential system (3.8a)–(3.8b). It is derived in this subsection and follows the calculation
in section 4 of [17].

First, the derivative of the Koba-Nielsen factor

2πi∂τKNτ
12...n = −

∑
1≤i<j≤n

sij
(
g

(2)
ij + 2ζ2

)
KNτ

12...n (B.13)

and the heat equation

2πi∂τFij (η) = ∂i∂ηFij (η) = −∂j∂ηFij(η) (B.14)

are required. Denoting Ak = (ak1, . . . , ak|Ak|) and k = ak0, we find

2πi∂τZτn,p
((

1,A1) ,(p+2,Ap+2) ,(p+3,Ap+3) , . . . ,(n,An) ;zp+2,zp+3, . . . ,zn
)

=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dzi 2πi∂τ

(
KNτ

12...n ϕ̃
τ
(
1,A1) n∏

k=p+2

ϕ̃τ
(
k,Ak

))

=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dzi

(
(2πi∂τKNτ

12...n) ϕ̃τ
(
1,A1) n∏

k=p+2

ϕ̃τ
(
k,Ak

)
+KNτ

12...n

∑
r∈{1,p+2,...,n}

|Ar|∑
i=1

|Ar|∏
j=1
j 6=i

Far
j−1a

r
j

(
ηar
j
...ar|Ar|

)(
2πi∂τFar

i−1a
r
i

(
ηar
i
...ar|Ar|

)) ∏
k∈{1,p+2,...,n}

k 6=r

ϕ̃τ
(
k,Ak

))

=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dzi
(

(2πi∂τKNτ
12...n) ϕ̃τ

(
1,A1) n∏

k=p+2

ϕ̃τ
(
k,Ak

)
−KNτ

12...n

∑
r∈{1,p+2,...,n}

|Ar|∑
i=1

|Ar|∏
j=1
j 6=i

Far
j−1a

r
j

(
ηar
j
...ar|Ar|

)(
∂ar
i
∂ηar

i
...ar
|Ar|

Far
i−1a

r
i

(
ηar
i
...ar|Ar|

))

×
∏

k∈{1,p+2,...,n}
k 6=r

ϕ̃τ
(
k,Ak

))
=
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=
∫

0<zi<zi+1<zp+2

p+1∏
i=2

dzi
(

(2πi∂τKNτ
12...n) ϕ̃τ

(
1,A1) n∏

k=p+2

ϕ̃τ
(
k,Ak

)
+

∑
r∈{1,p+2,...,n}

|Ar|∑
i=1

(|Ar|∑
k=i

∂ar
i
KNτ

12...n

)(
∂ηar

i
−θi≥2∂ηar

i−1

) ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

))

=−
∑

1≤i<j≤n

sij

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n

(
g

(2)
ij +2ζ2

)
ϕ̃τ
(
1,A1) n∏

k=p+2

ϕ̃τ
(
k,Ak

)
−

∑
r∈{1,p+2,...,n}

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n

|Ar|∑
i=1

|A
r|∑

k=i

i−1∑
j=0

sar
k
ar
j
g

(1)
ar
k
ar
j
+
|Ar|∑
k=i

∑
q∈{1,p+2,...,n}

q 6=r

|Aq |∑
j=0

sar
k
a
q
j
g

(1)
ar
k
a
q
j

(∂ηari −θi≥2∂ηar
i−1

) ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)

=−
∑

1≤i<j≤n

sij

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n

(
g

(2)
ij +2ζ2

)
ϕ̃τ
(
1,A1) n∏

k=p+2

ϕ̃τ
(
k,Ak

)
−

∑
r∈{1,p+2,...,n}

|Ar|∑
k=1

k−1∑
j=0

sar
k
ar
j

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n g

(1)
ar
k
ar
j

(
∂ηar

k
−θj≥1∂ηar

j

) ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)
−

∑
r∈{1,p+2,...,n}

∑
q∈{1,p+2,...,n}

q 6=r

|Ar|∑
k=1

|Aq |∑
j=0

sar
k
a
q
j

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n g

(1)
ar
k
a
q
j

∂ηar
k

∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)

=−
∑

1≤i<j≤n

sij

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n

(
g

(2)
ij +2ζ2

)
ϕ̃τ
(
1,A1) n∏

k=p+2

ϕ̃τ
(
k,Ak

)
−

∑
r∈{1,p+2,...,n}

|Ar|∑
k=1

k−1∑
j=0

sar
k
ar
j

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n g

(1)
ar
k
ar
j

(
∂ηar

k
−θj≥1∂ηar

j

)
×

∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)
−

∑
r,q∈{1,p+2,...,n}

q<r

|Ar|∑
k=0

|Aq |∑
j=0

sar
k
a
q
j

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n g

(1)
ar
k
a
q
j

(
θk≥1∂ηar

k
−θj≥1∂η

a
q
j

)

×
∏

k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)
=−s12...n2ζ2Zτn,p

((
1,A1) ,(p+2,Ap+2) ,(p+3,Ap+3) , . . . ,(n,An) ;zp+2,zp+3, . . . ,zn

)
−

∑
r∈{1,p+2,...,n}

|Ar|∑
k=1

k−1∑
j=0

sar
k
ar
j

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n(

g
(1)
ar
k
ar
j

(
∂ηar

k
−θj≥1∂ηar

j

)
+g(2)

ar
k
ar
j

) ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)
−

∑
r,q∈{1,p+2,...,n}

q<r

|Ar|∑
k=0

|Aq |∑
j=0

sar
k
a
q
j

∫
0<zi<zi+1<zp+2

p+1∏
i=2

dziKNτ
12...n

(
g

(1)
ar
k
a
q
j

(
θk≥1∂ηar

k
−θj≥1∂η

a
q
j

)
+g(2)

ar
k
a
q
j

) ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)
. (B.15)
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In ref. [17], the following identities are proven
|Ar|∑
k=1

k−1∑
j=0

sar
k
arj

(
g

(1)
ar
k
arj

(∂ηar
k
− θj≥1∂ηar

j
) + g

(2)
ar
k
arj

) ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)

=
|Ar|∑
k=1

k−1∑
j=0

sar
k
arj

(
∂ηar

k
− θj≥1∂ηar

j
+ ∂ξ

)
Far

k
arj

(ξ)
∏

k∈{1,p+2,...,n}
ϕ̃τ
(
k,Ak

)
|ξ0

= −1
2

|Ar|∑
k=1

k−1∑
j=0

sar
k
arj

(
∂ηar

k
− θj≥1∂ηar

j

)2 ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)

+
|Ar|∑
k=1

k−1∑
j=0

sar
k
arj

k∑
l=j+1

℘
(
ηAr

l,|Ar |+1

)
(−1)k−l

∏
k∈{1,p+2,...,n}

k 6=r

ϕ̃τ
(
k,Ak

)

ϕ̃τ
(
r,Ar1,j , a

r
j , A

r
j+1,l

(
ak, Ã

r
l,k Ark+1,|Ar|+1

))
(B.16)

and
|Ar|∑
k=0

|Aq |∑
j=0

sar
k
aqj

(
g

(1)
ar
k
aqj

(
θk≥1∂ηar

k
− θj≥1∂η

a
q
j

)
+ g

(2)
ar
k
aqj

) ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)

=
|Ar|∑
k=0

|Aq |∑
j=0

sar
k
aqj

(
θk≥1∂ηar

k
− θj≥1∂η

a
q
j

+ ∂ξ

)
Far

k
aqj

(ξ)
∏

k∈{1,p+2,...,n}
ϕ̃τ
(
k,Ak

)
|ξ0

=

s(r,Ar),(q,Aq)g
(2)
ar
k
aqj
− 1

2

|Ar|∑
k=0

|Aq |∑
j=0

sar
k
aqj

(
θk≥1∂ηar

k
− θj≥1∂η

a
q
j

)2
 ∏
k∈{1,p+2,...,n}

ϕ̃τ
(
k,Ak

)

−
|Ar|∑
k=0

|Aq |∑
j=0

sar
k
aqj

k∑
i=1

j∑
l=1

(−1)k+j−i−l F+
qr

(
ηAq

l,|Aq |+1

) ∏
k∈{1,p+2,...,n}

k 6=r,q

ϕ̃τ
(
k,Ak

)

ϕ̃τ
(
q, Aq1l

)
ϕ̃τ
(
r,Ar1i

(
ark,
(
Ãri,k Ark+1,|Ar|+1

) (
aqj , Ã

q
l,j Aqj+1,|Aq |+1

)))

−
|Ar|∑
k=0

|Aq |∑
j=0

sar
k
aqj

k∑
i=1

j∑
l=1

(−1)k+j−i−l F−qr

(
−ηAr

i,|Ar |+1

) ∏
k∈{1,p+2,...,n}

k 6=r,q

ϕ̃τ
(
k,Ak

)

ϕ̃τ (r,Ar1i) ϕ̃τ
(
q, Aq1l

(
aqj ,
(
Ãql,j Aqj+1,|Aq |+1

) (
ark, Ã

r
i,k Ark+1,|Ar|+1

)))
,

(B.17)
where

F±ij (±ξ) = ±∂ξFij(±ξ)

= ±∂ξ
∑
k≥0

g
(k)
ij (±ξ)k−1

=
∑
k≥0

(k − 1)g(k)
ij (±ξ)k−2 . (B.18)
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This leads to the closed formula

2πi∂τZτn,p
((

1,A1) ,(p+2,Ap+2) ,(p+3,Ap+3) , . . . ,(n,An) ;zp+2,zp+3, . . . ,zn
)

=(
1
2

p+1∑
j=2

(
s(1,p+2,...,n),j

)
∂2
ηj + 1

2
∑

2≤i<j≤p+1

sij
(
∂ηi−∂ηj

)2−2ζ2s12...n−
∑

r,q∈{1,p+2,...,n}
q<r

s(k,Ak),(q,Aq)g
(2)
kq

)
Zτn,p (. . .)

−
∑

r∈{1,p+2,...,n}

|Ar|∑
k=1

k−1∑
j=0

sar
k
,ar
j

k∑
l=j+1

℘
(
ηAr

l,|Ar|+1

)
(−1)k−lZτn,p

(
. . . ,
(
r,Ar1,j ,a

r
j ,A

r
j,l

(
ark, Ã

r
l,k Ark+1,|Ar|+1

))
, . . .
)

+
∑

r,q∈{1,p+2,...,n}
q<r

|Ar|∑
k=1

|Aq |∑
j=1

sar
k
,a
q
j

k∑
i=1

j∑
l=1

(−1)k+j−i−lF+
qr

(
ηAq

l,|Aq|+1

)

Zτn,p

(
. . . ,(q,Aq1l) , . . . ,

(
r,Ar1i

(
ark,
(
Ãri,k Ark+1,|Ar|+1

) (
aqj , Ã

q
l,j Aqj+1,|Aq |+1

)))
, . . .
)

+
∑

r,q∈{1,p+2,...,n}
q<r

|Ar|∑
k=1

|Aq |∑
j=1

sar
k
,a
q
j

k∑
i=1

j∑
l=1

(−1)k+j−i−lF−qr

(
−ηAr

i,|Ar|+1

)

Zτn,p

(
. . . ,
(
q,Aq1l

(
aqj ,
(
Ãql,j Aqj+1,|Aq |+1

) (
ark, Ã

r
i,k Ark+1,|Ar|+1

)))
, . . . ,(r,Ar1i) , . . .

)
+

∑
r,q∈{1,p+2,...,n}

q<r

|Aq |∑
j=1

sr,aq
j

j∑
l=1

(−1)j−lF+
qr

(
ηAq

l,|Aq|+1

)

Zτn,p

(
. . . ,(q,Aq1l) , . . . ,

(
r,Ar

(
aqj , Ã

q
l,j Aqj+1,|Aq |+1

))
, . . .
)

+
∑

r,q∈{1,p+2,...,n}
q<r

|Ar|∑
k=1

sar
k
,q

k∑
i=1

(−1)k−iF−qr
(
−ηAr

i
,|Ar|+1

)

Zτn,p
(
. . . , ,

(
q,Aq

(
ark, Ã

r
i,k Ark+1,|Ar|+1

))
, . . . ,(r,Ar1i) , . . .

)
, (B.19)

where all arguments of the integrals Zτn,p on the right-hand side which are only implicitly
written by the dots, are the same as the ones on the left-hand side. Expanding the
Weierstrass ℘-function in terms of the Eisenstein series Gk = Gk(τ) from eq. (2.33)40

℘(η) = ℘(η, τ) = 1
η2 +

∑
k≥4

(k − 1)Gkηk−2 (B.20)

and comparing with the closed formula for the zi-derivative (B.11), the τ -derivative of the
vector Zτ

n,p is of the form

2πi∂τZτ
n,p =

−ε(0) +
∑
k≥4

(1− k)Gkε(k) +
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k − 1)xk−1
qr g(k)

qr

Zτ
n,p ,

(B.21)
40The Eisenstein series G2(τ) is not absolutely convergent, and requires a summation prescription. This

is given by G2(τ) =
∑

n∈Z\{0}
1
n2 +

∑
m∈Z\{0}

∑
n∈Z

1
(n+mτ)2 [41].
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where the matrices ε(k) are homogeneous of degree one in the Mandelstam variables and
homogeneous of degree k − 2 in the η-variables.

B.3 Commutation relations

In this subsection, the (commutation) relations presented in subsection 3.2.1 satisfied by
the matrices in the differential system (3.12), i.e.

∂iZ
τ
n,p =

x(0)
i +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir g

(k)
ir

Zτ
n,p , (B.22)

2πi∂τZτ
n,p =

−ε(0) +
∑
k≥4

(1− k)Gkε(k) +
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k − 1)b(k)
qr g

(k)
qr

Zτ
n,p (B.23)

for an arbitrary solution Zτ
n,p, are derived.

B.3.1 Commutators from [∂zi, ∂zj ] = 0

The Schwarz integrability condition leads to commutation relations among the matrices
x

(k)
ri : differentiating

∂iZ
τ
n,p =

x(0)
i +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir g

(k)
ir

Zτ
n,p (B.24)

with respect to xj , where j ∈ {p+ 2, . . . , n} \ {i}, leads to

∂j∂iZ
τ
n,p = x

(0)
i ∂jZ

τ
n,p +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir ∂j

(
g

(k)
ir Z

τ
n,p

)

= x
(0)
i

x(0)
j +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=j

x
(k)
jr g

(k)
jr

Zτ
n,p

+
∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir

(
δjr(∂jg(k)

ij )Zτ
n,p + g

(k)
ir ∂jZ

τ
n,p

)

= x
(0)
i x

(0)
j Z

τ
n,p +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=j

x
(0)
i x

(k)
jr g

(k)
jr Z

τ
n,p

+
∑
k≥1

x
(k)
ij ∂jg

(k)
ij Z

τ
n,p +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir x

(0)
j g

(k)
ir Z

τ
n,p

+
∑
k,l≥1

∑
r,s∈{1,p+2,...,n}

r 6=i
s 6=j

x
(k)
ir x

(l)
js g

(k)
ir g

(l)
jsZ

τ
n,p . (B.25)
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Decomposing the double sum over r, s as follows∑
r,s∈{1,p+2,...,n}

r 6=i
s 6=j

=
∑

r∈{1,p+2,...,n}
r 6=i,j

∑
s∈{1,p+2,...,n}

s 6=i,j,r

+
∑

r∈{1,p+2,...,n}
r 6=i,j
s=r

+
∑

r∈{1,p+2,...,n}
r 6=i,j
s=i

+
∑

s∈{1,p+2,...,n}
s 6=i,j
r=j

+
∑
s=i
r=j

(B.26)

yields

∂j∂iZ
τ
n,p = x

(0)
i x

(0)
j Z

τ
n,p

+
∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=j

x
(0)
i x

(k)
jr g

(k)
jr Z

τ
n,p +

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir x

(0)
j g

(k)
ir Z

τ
n,p

+
∑
k≥1

x
(k)
ij ∂jg

(k)
ij Z

τ
n,p +

∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

∑
s∈{1,p+2,...,n}

s 6=i,j,r

x
(k)
ir x

(l)
js g

(k)
ir g

(l)
jsZ

τ
n,p

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

(
x

(k)
ir x

(l)
jr g

(k)
ir g

(l)
jr + x(k)

ir x
(l)
ji g

(k)
ir g

(l)
ji + x(k)

ij x
(l)
jr g

(k)
ij g

(l)
jr

)
Zτ
n,p

+
∑
k,l≥1

x
(k)
ij x

(l)
ji g

(k)
ij g

(l)
ji Z

τ
n,p . (B.27)

Therefore

0 = [∂j ,∂i]Zτ
n,p

=
[
x

(0)
i ,x

(0)
j

]
Zτ
n,p+

∑
k≥1

g
(k)
ji

([
x

(0)
i ,x

(k)
ji

]
−(−1)k

[
x

(0)
j ,x

(k)
ij

])
Zτ
n,p

+
∑
k≥1

(
x

(k)
ij +(−1)kx(k)

ji

)
∂jg

(k)
ij Z

τ
n,p+

∑
k,l≥1

[
x

(k)
ij ,x

(l)
ji

]
g

(k)
ij g

(l)
ji Z

τ
n,p

+
∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

g
(k)
jr

[
x

(0)
i ,x

(k)
jr

]
Zτ
n,p+

∑
k≥1

g
(k)
ir

∑
r∈{1,p+2,...,n}

r 6=i,j

[
x

(k)
ir ,x

(0)
j

]
Zτ
n,p

+
∑
k,l≥1

∑
r,s∈{1,p+2,...,n}

r,s 6=i,j
r 6=s

[
x

(k)
ir ,x

(l)
js

]
g

(k)
ir g

(l)
jsZ

τ
n,p (B.28)

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

([
x

(k)
ir ,x

(l)
jr

]
g

(k)
ir g

(l)
jr +

[
x

(k)
ir ,x

(l)
ji

]
g

(k)
ir g

(l)
ji +

[
x

(k)
ij ,x

(l)
jr

]
g

(k)
ij g

(l)
jr

)
Zτ
n,p ,

where we have used that ∂ig(k)
ji = −∂jg(k)

ji = −(−1)k∂jg(k)
ij . Since for k ≥ 1 the derivative

∂jg
(k)
ij has terms proportional to the Eisenstein series of weight two, which does not appear

in g(k)
ij , the above calculation implies

x
(k)
ji = (−1)k+1x

(k)
ij , k ≥ 1 . (B.29)
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This last parity relation implies that
∑
k,l>0[x(k)

ij ,x
(l)
ji ]g(k)

ij g
(l)
ji = 0, so there is no

constraint on [x(k)
ij ,x

(l)
ij ] for k, l ≥ 1 from the above equation. This can be contrasted with

eq. (3.39), which holds for the particular matrices found in this work.
Moreover for disjoint i, j, r, s and k, l ≥ 1, the products g(k)

ir g
(l)
js are independent,

such that [
x

(k)
ir ,x

(l)
js

]
= 0 , |{i, j, r, s}| = 4 . (B.30)

Therefore, the leftover constraint is

0 =
[
x

(0)
i ,x

(0)
j

]
Zτ
n,p +

∑
k≥1

g
(k)
ji

[
x

(0)
i + x(0)

j ,x
(k)
ji

]
Zτ
n,p

+
∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

g
(k)
jr

[
x

(0)
i ,x

(k)
jr

]
Zτ
n,p +

∑
k≥1

g
(k)
ir

∑
r∈{1,p+2,...,n}

r 6=i,j

[
x

(k)
ir ,x

(0)
j

]
Zτ
n,p

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

([
x

(k)
ir ,x

(l)
ji

]
g

(k)
ir g

(l)
ji +

[
x

(k)
ij ,x

(l)
jr

]
g

(k)
ij g

(l)
jr

)
Zτ
n,p

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

[
x

(k)
ir ,x

(l)
jr

]
(−1)k+1 g

(k+l)
ji Zτ

n,p

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

[
x

(k)
ir ,x

(l)
jr

] l∑
a=0

(
k + a− 1
k − 1

)
g

(l−a)
ji g

(k+a)
ir Zτ

n,p

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

[
x

(k)
ir ,x

(l)
jr

] k∑
a=0

(
l + a− 1
l − 1

)
g

(k−a)
ij g

(l+a)
jr Zτ

n,p

=
[
x

(0)
i ,x

(0)
j

]
Zτ
n,p +

∑
k≥1

g
(k)
ji

[x(0)
i + x(0)

j ,x
(k)
ji

]
+
k−1∑
l=1

∑
r∈{1,p+2,...,n}

r 6=i,j

[
x

(k−l)
ri ,x

(l)
jr

]Zτ
n,p

+
∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

g
(k)
jr

([
x

(0)
i ,x

(k)
jr

]
+
k−1∑
a=1

(
k − 1
a

)[
x

(a)
ir ,x

(k−a)
jr

])
Zτ
n,p

+
∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

g
(k)
ir

([
x

(k)
ir ,x

(0)
j

]
+
k−1∑
a=1

(
k − 1
a

)[
x

(k−a)
ir ,x

(a)
jr

])
Zτ
n,p +

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

g
(k)
ir g

(l)
ji

([
x

(k)
ir ,x

(l)
ji

]
+
k−1∑
a=0

(
k − 1
a

)[
x

(k−a)
ir ,x

(l+a)
jr

])
Zτ
n,p

+
∑
k,l≥1

∑
r∈{1,p+2,...,n}

r 6=i,j

g
(k)
ij g

(l)
jr

([
x

(k)
ij ,x

(l)
jr

]
+

l−1∑
a=0

(
l − 1
a

)[
x

(k+a)
ir ,x

(l−a)
jr

])
Zτ
n,p , (B.31)

where we have used the Fay identity, followed by a change of summation variables. All
the lines have to vanish separately due to the functional independence of the factors
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g
(k)
jr , g

(k)
ir , g

(k)
ir g

(l)
ji , g

(k)
ij g

(l)
jr , which yields the following commutators for distinct labels i, j, r ∈

{1, p+ 2, . . . , n} and k, l ≥ 0: [
x

(0)
i ,x

(0)
j

]
= 0 ,[

x
(0)
i + x(0)

j ,x
(k)
ji

]
+
k−1∑
l=1

∑
r∈{1,p+2,...,n}

r 6=i,j

[
x

(k−l)
ri ,x

(l)
jr

]
= 0 ,

[
x

(k)
ir ,x

(0)
j

]
+
k−1∑
a=1

(
k − 1
a

)[
x

(k−a)
ir ,x

(a)
jr

]
= 0 ,

[
x

(k)
ir ,x

(l)
ji + x(l)

jr

]
+
k−1∑
a=1

(
k − 1
a

)[
x

(k−a)
ir ,x

(l+a)
jr

]
= 0 . (B.32)

B.3.2 Commutators from [∂τ , ∂zi] = 0

Now, let us investigate the consequence of the vanishing of the commutator

[2πi∂τ , ∂zi ]Zτ
n,p = 0 . (B.33)

Using the identity 2πi∂τg(k)
ir = k∂zig

(k+1)
ir implied by the mixed heat equation, we

can calculate

2πi∂τ∂ziZτn,p

=

∑
k≥1

∑
r∈{1,p+2,...,n}

r 6=i

x
(k)
ir

(
2πi∂τg(k)

ir

)Zτn,p

+

x(0)
i +

∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

x
(l)
is g

(l)
is


−ε(0)+

∑
k≥4

(1−k)Gkε(k)+
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k−1)b(k)
qr g

(k)
qr

Zτn,p

=
∑
k≥2

 ∑
r∈{1,p+2,...,n}

r 6=i

x
(k−1)
ir (k−1)

(
∂zig

(k)
ir

)Zτn,p

+

x(0)
i +

∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

x
(l)
is g

(l)
is


−ε(0)+

∑
k≥4

(1−k)Gkε(k)+
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k−1)b(k)
qr g

(k)
qr

Zτn,p
(B.34)

and

∂zi2πi∂τZτn,p

=

 ∑
r,q∈{1,p+2,...,n}

q<r

∑
k≥2

(k−1)b(k)
qr

(
∂zig

(k)
qr

)Zτn,p

+

−ε(0)+
∑
k≥4

(1−k)Gkε(k)+
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k−1)b(k)
qr g

(k)
qr


x(0)

i +
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

x
(l)
is g

(l)
is

Zτn,p =
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=

 ∑
r∈{1,p+2,...,n}

r<i

∑
k≥2

(k−1)b(k)
ri (−1)k

(
∂zig

(k)
ir

)Zτn,p+

 ∑
r∈{1,p+2,...,n}

i<r

∑
k≥2

(k−1)b(k)
ir

(
∂zig

(k)
ir

)Zτn,p

+

−ε(0)+
∑
k≥4

(1−k)Gkε(k)+
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k−1)b(k)
qr g

(k)
qr


x(0)

i +
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

x
(l)
is g

(l)
is

Zτn,p .
(B.35)

Therefore

0 = [2πi∂τ ,∂zi ]Zτn,p

=
∑
k≥2

(k−1)

 ∑
r∈{1,p+2,...,n}

r<i

(
∂zig

(k)
ir

)(
x

(k−1)
ri −(−1)k b(k)

ri

)
+

∑
r∈{1,p+2,...,n}

i<r

(∂zig
(k)
ir )(x(k−1)

ir −b(k)
ir )

Zτn,p

+

x(0)
i +

∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

x
(l)
is g

(l)
is


−ε(0)+

∑
k≥4

(1−k)Gkε(k)+
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k−1)b(k)
qr g

(k)
qr

Zτn,p

−

−ε(0)+
∑
k≥4

(1−k)Gkε(k)+
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k−1)b(k)
qr g

(k)
qr


x(0)

i +
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

x
(l)
is g

(l)
is

Zτn,p .
(B.36)

The first line has to vanish due to the appearance of derivatives ∂zig
(k)
ir , leading to

b
(k)
ir = x

(k−1)
ir , (B.37)

which also serves as a definition for b(k)
ir in the case r > i. Hence

0 =

− [x(0)
i , ε(0)

]
+
∑
k≥4

(1− k)Gk
[
x

(0)
i , ε(k)

]Zτ
n,p

+
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
is

− [x(l)
is , ε

(0)
]

+
∑
k≥4

(1− k)Gk
[
x

(l)
is , ε

(k)
]Zτ

n,p +

+

 ∑
r,q∈{1,p+2,...,n}

q<r

∑
k≥2

(k − 1)
[
x

(0)
i ,x(k−1)

qr

]
g(k)
qr

Zτ
n,p

+
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
is

 ∑
r,q∈{1,p+2,...,n}

q<r

∑
k≥2

(k − 1)
[
x

(l)
is ,x

(k−1)
qr

]
g(k)
qr

Zτ
n,p . (B.38)
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Note that each term in the sum over q, r on the last two lines is symmetric in q, r, due to

x(k−1)
qr g(k)

qr = x(k−1)
rq g(k)

rq , (B.39)

such that the first one can be decomposed as∑
r,q∈{1,p+2,...,n}

q<r

= 1
2

∑
r,q∈{1,p+2,...,n}

q 6=r

= 1
2

 ∑
r,q∈{1,p+2,...,n}\{i}

q 6=r

+
∑

q∈{1,p+2,...,n}\{i}
r=i

+
∑

r∈{1,p+2,...,n}\{i}
q=i


=

∑
r,q∈{1,p+2,...,n}\{i}

q<r

+
∑

r∈{1,p+2,...,n}\{i}
q=i

, (B.40)

and the second as follows∑
r,q∈{1,p+2,...,n}

q<r

= 1
2

∑
r,q∈{1,p+2,...,n}

q 6=r

= 1
2

 ∑
r,q∈{1,p+2,...,n}\{i,s}

q 6=r

+
∑

q∈{1,p+2,...,n}\{i,s}
r=i

+
∑

q∈{1,p+2,...,n}\{i,s}
r=s

+
∑

r∈{1,p+2,...,n}\{i,s}
q=i

+
∑

r∈{1,p+2,...,n}\{i,s}
q=s

+
∑
q=i
r=s

+
∑
q=s
r=i


=

∑
r,q∈{1,p+2,...,n}\{i,s}

q<r

+
∑

q∈{1,p+2,...,n}\{i,s}
r=i

+
∑

q∈{1,p+2,...,n}\{i,s}
r=s

+
∑
q=s
r=i

.

(B.41)

Thus, we can proceed with

0 =

−[x(0)
i ,ε(0)

]
+
∑
k≥4

(1−k)Gk
[
x

(0)
i ,ε(k)

]
+

∑
s∈{1,p+2,...,n}\{i}

∑
k≥2

(k−1)
[
x

(0)
i ,x

(k−1)
is

]
g

(k)
is

Zτn,p
+
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
is

(
−
[
x

(l)
is ,ε

(0)
]
+
∑
k≥4

(1−k)Gk
[
x

(l)
is ,ε

(k)
]
+
∑
k≥2

(k−1)
[
x

(l)
is ,x

(k−1)
is

]
g

(k)
is

)
Zτn,p

+

 ∑
r,q∈{1,p+2,...,n}\{i}

q<r

∑
k≥2

(k−1)
[
x

(0)
i ,x(k−1)

qr

]
g(k)
qr

Zτn,p−
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−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qi

]
g

(k)
qi

Zτn,p

−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qs

]
g(k)
qs

Zτn,p

−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
r,q∈{1,p+2,...,n}\{i,s}

q<r

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qr

]
g(k)
qr

Zτn,p . (B.42)

The last line of eq. (B.42) has to vanish since it depends on four distinct punctures,
reproducing eq. (B.30). The products g(l)

si g
(k)
si appearing in the second line can be rewritten

using for a+ b ≥ 2

bg
(a)
is g

(b+1)
is − ag(a+1)

is g
(b)
is

= (b− a)(a+ b+ 1)!
(a+ 1)!(b+ 1)! g

(a+b+1)
is − (−1)b(a+ b)Ga+b+1

+
a+1∑
k=4

(
a+ b− k
b− 1

)
(k − 1)Gkg

(a+b+1−k)
is −

b+1∑
k=4

(
a+ b− k
a− 1

)
(k − 1)Gkg

(a+b+1−k)
is .

(B.43)

This yields

0 =

−[x(0)
i ,ε(0)

]
+
∑
k≥4

(1−k)Gk
[
x

(0)
i ,ε(k)

]
+

∑
s∈{1,p+2,...,n}\{i}

∑
k≥2

(k−1)
[
x

(0)
i ,x

(k−1)
is

]
g

(k)
is

Zτn,p
+
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
is

(
−
[
x

(l)
is ,ε

(0)
]
+
∑
k≥4

(1−k)Gk
[
x

(l)
is ,ε

(k)
]
+
∑
k≥2

(k−1)
[
x

(l)
is ,x

(k−1)
is

]
g

(k)
is

)
Zτn,p

+

 ∑
r,q∈{1,p+2,...,n}\{i}

q<r

∑
k≥2

(k−1)
[
x

(0)
i ,x(k−1)

qr

]
g(k)
qr

Zτn,p
−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qi

]
g

(k)
qi

Zτn,p +

−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qs

]
g(k)
qs

Zτn,p

−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
r,q∈{1,p+2,...,n}\{i,s}

q<r

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qr

]
g(k)
qr

Zτn,p
=

(
−
[
x

(0)
i ,ε(0)

]
+
∑
k≥4

(1−k)Gk
[
x

(0)
i ,ε(k)

])
Zτn,p+
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+
∑
k≥1

∑
s∈{1,p+2,...,n}\{i}

g
(k)
is

(
(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
[
x

(k)
is ,ε

(0)
])
Zτn,p

+
∑
l≥1

∑
k≥4

∑
s∈{1,p+2,...,n}\{i}

g
(l)
is Gk (1−k)

[
x

(l)
is ,ε

(k)
]
Zτn,p

+
∑

1≤a<b

∑
s∈{1,p+2,...,n}\{i}

(
(b−a)(a+b+1)!
(a+1)!(b+1)! g

(a+b+1)
is −(−1)b (a+b)Ga+b+1

+
a+1∑
k=4

(
a+b−k
b−1

)
(k−1)Gkg(a+b+1−k)

is −
b+1∑
k=4

(
a+b−k
a−1

)
(k−1)Gkg(a+b+1−k)

is

)[
x

(a)
is ,x

(b)
is

]
Zτn,p

+

 ∑
r,q∈{1,p+2,...,n}\{i}

q<r

∑
k≥2

(k−1)
[
x

(0)
i ,x(k−1)

qr

]
g(k)
qr

Zτn,p
−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qi

]
g

(k)
qi

Zτn,p
−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qs

]
g(k)
qs

Zτn,p

−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
r,q∈{1,p+2,...,n}\{i,s}

q<r

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qr

]
g(k)
qr

Zτn,p
=

−[x(0)
i ,ε(0)

]
+
∑
k≥4

(1−k)Gk

[x(0)
i ,ε(k)

]
+

k−2∑
l=k/2

∑
s∈{1,p+2,...,n}\{i}

(−1)l
[
x

(k−l−1)
is ,x

(l)
is

]Zτn,p
−
∑
k≥1

∑
s∈{1,p+2,...,n}\{i}

g
(k)
is

([
x

(k)
is ,ε

(0)
]
−(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
k−2∑
l=1

(
k−1
l−1

)[
x

(k−l−1)
is ,x

(l)
is

])
Zτn,p

+
∑
l≥1

∑
k≥4

∑
s∈{1,p+2,...,n}\{i}

g
(l)
is Gk (1−k)

([
x

(l)
is ,ε

(k)
]
−

l∑
b=1

(
l−1
b−1

)[
x

(l+k−b−1)
is ,x

(b)
is

])
Zτn,p

+

 ∑
r,q∈{1,p+2,...,n}\{i}

q<r

∑
k≥2

(k−1)
[
x

(0)
i ,x(k−1)

qr

]
g(k)
qr

Zτn,p +

−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qi

]
g

(k)
qi

Zτn,p
−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
q∈{1,p+2,...,n}\{i,s}

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qs

]
g(k)
qs

Zτn,p

−
∑
l≥1

∑
s∈{1,p+2,...,n}

s 6=i

g
(l)
si

 ∑
r,q∈{1,p+2,...,n}\{i,s}

q<r

∑
k≥2

(k−1)
[
x

(l)
si ,x

(k−1)
qr

]
g(k)
qr

Zτn,p . (B.44)

– 56 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
9

The terms proportional to Gk and g(l)
is Gk on the first and third line have to vanish separately,

which leads to the commutation relations

[
x

(0)
i , ε(0)

]
= 0 ,[

x
(0)
i , ε(k)

]
=

k−2∑
l=k/2

∑
s∈{1,p+2,...,n}\{i}

(−1)l
[
x

(l)
is ,x

(k−l−1)
is

]
,

[
x

(l)
is , ε

(k)
]

=
l∑

b=1

(
l − 1
b− 1

)[
x

(l+k−b−1)
is ,x

(b)
is

]
(B.45)

for l ≥ 1, k ≥ 4.

The products g(l)
si g

(k)
qi on the third last line of eq. (B.44) can be rewritten using the

Fay identity

g
(l)
si g

(k)
qi = (−1)l+1g(l+k)

qs +
k∑
r=0

(
l + r − 1
l − 1

)
g(k−r)
qs g

(l+r)
si +

l∑
r=0

(
k + r − 1
k − 1

)
g(l−r)
sq g

(k+r)
qi .

(B.46)

Thus, the remaining terms of eq. (B.44) are

0 =−
∑
k≥1

∑
s∈{1,p+2,...,n}\{i}

g
(k)
is

([
x

(k)
is ,ε

(0)
]
−(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
k−2∑
l=1

(
k−1
l−1

)[
x

(k−l−1)
is ,x

(l)
is

])
Zτn,p

+
∑

r,q∈{1,p+2,...,n}\{i}
q<r

∑
k≥2

(k−1)
[
x

(0)
i ,x(k−1)

qr

]
g(k)
qr Z

τ
n,p

−
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

(−1)l+1
g(l+k)
qs (k−1)

[
x

(l)
si ,x

(k−1)
qi

]
Zτn,p

−
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

k∑
r=0

(
l+r−1
l−1

)
g(k−r)
qs g

(l+r)
si (k−1)

[
x

(l)
si ,x

(k−1)
qi

]
Zτn,p

−
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

l∑
r=0

(
k+r−1
k−1

)
g(l−r)
sq g

(k+r)
qi (k−1)

[
x

(l)
si ,x

(k−1)
qi

]
Zτn,p

−
∑
l,k≥1

∑
s∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs (k−1)

[
x

(l)
si ,x

(k−1)
qs

]
Zτn,p . (B.47)

We can interchange the role of the summation indices s and q in the second last line,
such that all products of integration kernels are of the form g

(l)
qs g

(k)
si . Additionally collecting
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terms g(k)
si , g

(l)
qs and g(l)

qs g
(k)
si leads to

0 =−
∑
k≥1

∑
s∈{1,p+2,...,n}\{i}

g
(k)
is

([
x

(k)
is ,ε

(0)
]
−(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
k−2∑
l=1

(
k−1
l−1

)[
x

(k−l−1)
is ,x

(l)
is

]

−
∑

q∈{1,p+2,...,n}
q 6=i,s

(
k−2∑
l=1

(
k−1
l−1

)
(k−l−1)

[
x

(l)
is ,x

(k−l−1)
iq

]
+
k−2∑
l=1

(
k−1
k−l−1

)
(k−l−1)

[
x

(l)
iq ,x

(k−l−1)
is

]))
Zτn,p

+
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
qs

(
k−1

2

[
x

(0)
i ,x(k−1)

qs

]
−
k−2∑
l=1

(−1)l+1 (k−l−1)
[
x

(l)
si ,x

(k−l−1)
qi

])
Zτn,p

−
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

k−1∑
r=0

(
l+r−1
l−1

)
g(k−r)
qs g

(l+r)
si (k−1)

[
x

(l)
si ,x

(k−1)
qi

]
Zτn,p

−
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

l−1∑
r=0

(
k+r−1
k−1

)
g(l−r)
qs g

(k+r)
si (k−1)

[
x

(l)
qi ,x

(k−1)
si

]
Zτn,p

−
∑
l,k≥1

∑
s∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs (k−1)

[
x

(l)
si ,x

(k−1)
qs

]
Zτn,p . (B.48)

The terms proportional to products g(l)
si g

(k)
qs for l, k ≥ 1 on the three last lines have to

vanish separately, leading to

0 =
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

k−1∑
r=0

(
l+r−1
l−1

)
g(k−r)
qs g

(l+r)
si (k−1)

[
x

(l)
si ,x

(k−1)
qi

]
Zτn,p

+
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

l−1∑
r=0

(
k+r−1
k−1

)
g(l−r)
qs g

(k+r)
si (k−1)

[
x

(l)
qi ,x

(k−1)
si

]
Zτn,p

+
∑
l,k≥1

∑
s∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs (k−1)

[
x

(l)
si ,x

(k−1)
qs

]
Zτn,p

=
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs

l−1∑
r=0

(
l−1
r

)
(k+r−1)

[
x

(l−r)
si ,x

(k+r−1)
qi

]
Zτn,p

+
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs

l−1∑
r=0

(
l−1
r

)
(l−r−1)

[
x

(k+r)
qi ,x

(l−r−1)
si

]
Zτn,p

+
∑
l,k≥1

∑
s∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs (k−1)

[
x

(l)
si ,x

(k−1)
qs

]
Zτn,p

=
∑
l,k≥1

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs

(
(k−1)

[
x

(l)
si ,x

(k−1)
qs

]
+(k−1)

[
x

(l)
si ,x

(k−1)
qi

]

+
l−1∑
r=1

((
l−1
r

)
(k+r−1)−

(
l−1
r−1

)
(l−r)

)[
x

(l−r)
si ,x

(k+r−1)
qi

])
Zτn,p . (B.49)
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The identity (
l − 1
r

)
(k + r − 1)−

(
l − 1
r − 1

)
(l − r) =

(
l − 1
r

)
(k − 1) (B.50)

finally leads to

0 =
∑
l≥1

∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

s 6=q

g
(l)
si g

(k)
qs (k − 1)

([
x

(l)
si ,x

(k−1)
qs

]
+
[
x

(l)
si ,x

(k−1)
qi

]

+
l−1∑
r=1

(
l − 1
r

)[
x

(l−r)
si ,x

(k+r−1)
qi

])
Zτ
n,p . (B.51)

However, the bracket on the right-hand side of eq. (B.51) vanishes trivially due to the
commutation relation (B.32), i.e.[

x
(l)
si ,x

(k)
qs

]
+
[
x

(l)
si ,x

(k)
qi

]
+

l−1∑
r=1

(
l − 1
r

)[
x

(l−r)
si ,x

(k+r)
qi

]
= 0 , k, l ≥ 1 . (B.52)

Thus, we are left with the first three lines of eq. (B.48). The terms on the first two lines
proportional to g(k)

si and on the third line proportional to g(k)
qs have to vanish separately,

since the latter are independent of the puncture zi. Using(
k−1
l

)
l−
(
k−1
l−1

)
(k−l−1) =

(
k−1
l−1

)
, (B.53)

the former term leads to

0 =
[
x

(k)
is ,ε

(0)
]
−(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
k−2∑
l=1

(
k−1
l−1

)[
x

(k−l−1)
is ,x

(l)
is

]
−

∑
q∈{1,p+2,...,n}

q 6=i,s

(
k−2∑
l=1

(
k−1
l−1

)
(k−l−1)

[
x

(l)
is ,x

(k−l−1)
iq

]
+
k−2∑
l=1

(
k−1
k−l−1

)
(k−l−1)

[
x

(l)
iq ,x

(k−l−1)
is

])

=
[
x

(k)
is ,ε

(0)
]
−(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
k−2∑
l=1

(
k−1
l−1

)[
x

(k−l−1)
is ,x

(l)
is

]
−

∑
q∈{1,p+2,...,n}

q 6=i,s

k−2∑
l=1

((
k−1
l−1

)
(k−l−1)+

(
k−1
l

)
l

)[
x

(l)
is ,x

(k−l−1)
iq

]

=
[
x

(k)
is ,ε

(0)
]
−(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
k−2∑
l=1

(
k−1
l−1

)[
x

(k−l−1)
is ,x

(l)
is

]
−

∑
q∈{1,p+2,...,n}

q 6=i,s

k−2∑
l=1

((
k−1
l−1

)
(k−l−1)−

(
k−1
l

)
l

)[
x

(l)
is ,x

(k−l−1)
iq

]

=
[
x

(k)
is ,ε

(0)
]
−(k−1)

[
x

(0)
i ,x

(k−1)
is

]
−
k−2∑
l=1

(
k−1
l−1

)[
x

(k−l−1)
is ,x

(l)
is

]
+

∑
q∈{1,p+2,...,n}

q 6=i,s

k−2∑
l=1

(
k−1
l−1

)[
x

(l)
is ,x

(k−l−1)
iq

]
, (B.54)
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such that[
x

(k)
is , ε

(0)
]

= (k − 1)
[
x

(k−1)
is ,x

(0)
i

]
+

∑
q∈{1,p+2,...,n}

q 6=i

k−2∑
l=1

(
k − 1
l − 1

)[
x

(k−l−1)
iq ,x

(l)
is

]
(B.55)

for k ≥ 1. Therefore, we are left with the terms proportional to g(k)
qs in eq. (B.48), where

various terms cancel pairwise as follows

0 =
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
qs

(
k−1

2

[
x

(0)
i ,x(k−1)

qs

]
−
k−2∑
l=1

(−1)l+1 (k−l−1)
[
x

(l)
si ,x

(k−l−1)
qi

])
Zτn,p

=
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
qs

k−1
2

[
x

(0)
i ,x(k−1)

qs

]
Zτn,p

− 1
2
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
qs

k−2∑
l=1

(−1)l+1 (k−l−1)
[
x

(l)
si ,x

(k−l−1)
qi

]
Zτn,p

− 1
2
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
sq

k−2∑
l=1

(−1)k−l l
[
x

(k−l−1)
qi ,x

(l)
si

]
Zτn,p

=
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
qs

k−1
2

([
x

(0)
i ,x(k−1)

qs

]
−
k−2∑
l=1

(−1)l+1
[
x

(l)
si ,x

(k−l−1)
qi

])
Zτn,p

− 1
2
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
qs

k−2∑
l=1

(−1)l l
([
x

(l)
si ,x

(k−l−1)
qi

]
+
[
x

(k−l−1)
qi ,x

(l)
si

])
Zτn,p

=
∑
k≥2

∑
s,q∈{1,p+2,...,n}\{i}

q 6=s

g(k)
qs

k−1
2

([
x

(0)
i ,x(k−1)

qs

]
−
k−2∑
l=1

(−1)l+1[x(l)
si ,x

(k−l−1)
qi ]

)
Zτn,p , (B.56)

such that the remaining commutator relation is given by

[
x

(0)
i ,x(k)

qs

]
=

k−1∑
l=1

[
x

(l)
is ,x

(k−l)
qi

]
, |{i, s, q}| = 3 (B.57)

for k ≥ 1.

C Eigenvalue equations

In this appendix, the eigenvalue equations for the matrix Up+3,p+1 from eq. (3.31) are
determined starting from the following condition[

lim
n,p,k

,2πi∂τ
]
Zτn,p = 0 (C.1)

for k= 2, . . . ,p−n, where

lim
n,p,k

= lim
zp+k→0

(−2πizp+k)s(12...p+k−1),p+k . . . lim
zp+3→0

(−2πizp+3)s(12...p+2),p+3 lim
zp+2→0

(−2πizp+2)s12...p+2 .

(C.2)
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First evaluating the derivative, then the limit yields

lim
n,p,k

2πi∂τZτn,p

= lim
n,p,k

−ε(0)+
∑
k≥4

(1−k)Gkε(k)+
∑

r,q∈{1,p+2,...,n}
q<r

∑
k≥2

(k−1)x(k−1)
qr g(k)

qr

Zτn,p

=

−ε(0)+
∑
k≥4

(1−k)Gkε(k)

+
∑
k≥2

(k−1)

 ∑
r,q∈{1,p+2,...,p+k}

q<r

+
∑

q∈{1,p+2,...,p+k}
r∈{p+k+1,...,n}

+
∑

r,q∈{p+k+1,...,n}
q<r

x(k−1)
qr lim

n,p,k
g(k)
qr

Zτn,p

=

−ε(0)+
∑
k≥4

(1−k)Gk

ε(k)+
∑

r,q∈{1,p+2,...,p+k}
q<r

x(k−1)
qr

−G2
∑

r,q∈{1,p+2,...,p+k}
q<r

x(1)
qr

+
∑
k≥2

(k−1)

 ∑
q∈{1,p+2,...,p+k}
r∈{p+k+1,...,n}

+
∑

r,q∈{p+k+1,...,n}
q<r

x(k−1)
qr lim

n,p,k
g(k)
qr

Zτn,p
=

(
−ε(0)+

∑
k≥4

(1−k)Gk

(
ε(k)+

p+k∑
r=p+2

X
(k−1)
r1

)
−G2

p+k∑
r=p+2

X
(1)
r1

+
∑
k≥2

(k−1)

 ∑
q∈{1,p+2,...,p+k}
r∈{p+k+1,...,n}

+
∑

r,q∈{p+k+1,...,n}
q<r

x(k−1)
rq lim

n,p,k
g(k)
rq


es12...p+kω(1,0)

∏
p+k<j≤n

e−s(12...p+k),jGτj1 KNτ
p+k+1...n

(
Up+3,p+1

0

)
Ztree
p+3,p+2 , (C.3)

where we have used that

lim
zi→0

g
(k)
i1 = −Gk . (C.4)

On the other hand, changing the order of the limit and derivative leads to

2πi∂τ lim
n,p,k

Zτ
n,p

= 2πi∂τ

(
es12...p+kω(1,0) ∏

p+k<j≤n
e−s(12...p+k),jGτj1KNτ

p+k+1...n

)(
Up+3,p+1

0

)
Ztree
p+3,p+2

=
(

(G2 − 2ζ2)s12...p+k +
∑

p+k<j≤n
s(12...p+k),j(g

(2)
1j − 2ζ2)−

∑
q,r∈{p+k+1...n}

q<r

sqr(g(2)
qr + 2ζ2)

)

es12...p+kω(1,0) ∏
p+k<j≤n

e−s(12...p+k),jGτj1KNτ
p+k+1...n

(
Up+3,p+1

0

)
Ztree
p+3,p+2 , (C.5)
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where we have used that

2πi∂τω(1, 0) = G2 − 2ζ2 (C.6)

and

2πi∂τGτj1 = −(g(2)
1j + 2ζ2) ,

2πi∂τKNτ
p+k+1...n = −

∑
q,r∈{p+k+1...n}

q<r

sqr(g(2)
qr + 2ζ2)KNτ

p+k+1...n . (C.7)

Comparing the coefficients of G2 in the above calculations leads to the eigen-
value equations

X
(1)
p+2,1

(
Up+3,p+1

0

)
= −s12...p+2

(
Up+3,p+1

0

)
,

X
(1)
p+k,1

(
Up+3,p+1

0

)
= −s12...p+k−1,p+k

(
Up+3,p+1

0

)
, 2 < k ≤ n− p . (C.8)

D Pole subtraction for Zτ
4,1-integrals

Here we summarize the computation of the O(η0
2) coefficients of V τ

1 and V τ
2 defined in

eq. (4.37). For future convenience, we define

h1 (z2) = exp
[
−s23Γ̃

( 1
z3 ; z2, τ

)
− s24Γ̃

( 1
z4 ; z2, τ

)]
, (D.1)

and

h2 (z2) = exp
[
−s12Γ̃ ( 1

0 ; z2, τ)− s24Γ̃
( 1
z4 ; z2, τ

)]
. (D.2)

Note that h1(z2) behaves like O(1) as z2 → 0, and h1(z2) behaves like O(1) when z2 → z3.
Now, we notice that the simple poles of g(1)(zj − z2), for j = 1, 3 appear in the endpoints
of the integration contour need to be addressed. Following ref. [46], we can write for the
eta0

2- component of V τ
1 :

V τ1
∣∣
η0

2
=
∫ z3

0
dz2 e

−s12Γ̃(1
0;z2,τ)h1 (z2)g(1) (−z2)

=
∫ z3

0
dz2 e

−s12Γ̃(1
0;z2,τ) [h1 (z2)−h1 (0)]g(1) (−z2)+

∫ z3

0
dz2 e

−s12Γ̃(1
0;z2,τ)h1 (0)g(1) (−z2)

=
∫ z3

0
dz2 e

−s12Γ̃(1
0;z2,τ) [h1 (z2)−h1 (0)]g(1) (−z2)+ 1

s12
exp

[
−s12Γ̃ (1

0 ;z3, τ)
]
. (D.3)

To obtain third line of eq. (D.3) we integrate a total z2− derivative, and assume we can
analytically continue s12 from a positive value so we discard the z2 → 0 limit. More
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importantly, in the third line of eq. (D.3), the leftover integrand can now be α′−expanded.
More explicitly, the formula for this η0

2−component of V τ
1 is:

V τ
1
∣∣
η0

2
= −

∫ z3

0
dz2 e

−s12Γ̃( 1
0 ;z2,τ) {exp

[
−s23Γ̃

( 1
z3 ; z2, τ

)
− s24Γ̃

( 1
z4 ; z2, τ

)]
− 1

}
g(1) (z2)

+ 1
s12

exp
[
−s12Γ̃ ( 1

0 ; z3, τ)
]
. (D.4)

For the η0
2- component of V τ

2 we can write:

V τ2
∣∣
η0

2
=
∫ z3

0
dz2 e

−s23Γ̃
( 1
z3

;z2,τ
)
h2 (z2)g(1) (z3−z2)

=
∫ z3

0
dz2 e

−s23Γ̃
( 1
z3

;z2,τ
)

[h2 (z2)−h2 (z3)]g(1) (−z2)+
∫ z3

0
dz2 e

−s23Γ̃
( 1
z3

;z2,τ
)
h2 (z3)g(1) (−z2)

=
∫ z3

0
dz2 e

−s23Γ̃
( 1
z3

;z2,τ
)

[h2 (z2)−h2 (z3)]g(1) (−z2)

− 1
s23

exp
[
−s12Γ̃ (1

0 ;z3, τ)−s24Γ̃
( 1
z4 ;z3, τ

)]
. (D.5)

The integral in the last line of eq. (D.5) can be safely α′− expanded. More explicitly, the
η0

2- component of V τ
2 is given by:

V τ
2
∣∣
η0

2
=−

∫ z3

0
dz2 e

−s23Γ̃
( 1
z3

;z2,τ
){

exp[−s12Γ̃ ( 1
0 ; z2, τ)− s24Γ̃

( 1
z4 ; z2, τ

)
]

− exp[−s12Γ̃ ( 1
0 ; z3, τ)− s24Γ̃

( 1
z4 ; z3, τ

)
]
}
g(1)(z2 − z3)

− 1
s23

exp[−s12Γ̃ ( 1
0 ; z3, τ)− s24Γ̃

( 1
z4 ; z3, τ

)
] . (D.6)

E Solving for fibration basis changes via commutation relations

In this section, we outline a method to solve generating function equations such as eq. (5.9)
relying solely on the commutation relations of x(k)

ij and x(0)
i in eq. (3.13). The idea is to

treat x(k)
ij and x(0)

j as abstract non-commutative symbols subject to eq. (3.13) without using
any specific matrix representation. Throughout this section, we will treat x(k)

ij and x(0)
i as

abstract noncommuting variables. Keeping in mind the dictionary set up in section 6.1,
this means that we are purely using relations of t̄1,N , the genus-one Drinfeld-Kohno algebra.
However, in this appendix we will follow closely the notation x(k)

ij and x(0)
i of section 5.2,

including the numbering notation for the punctures.

E.1 Solving for fibration basis changes in two variables: t̄1,3

We will now proceed to try and solve eq. (5.11). As a first step, we isolate the generating
function Γ4(z4, z3):41

Γ4(z4, z3) = Γ3(z3, z4)Γ4(z4)X(σ34) [Γ3(z3)]−1 . (E.1)
41One can write an inverse of all the generating functions Γm, by virtue of them being path-ordered integrals.
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According to eq. (5.15), we can obtain the analytic continuation of, Γ
(
k1 k2
zj1 zj2

; z4, τ
)
, by

looking at the component of the r.h.s. of eq. (E.1) that accompanies x(k1)
4,j1x

(k2)
4,j2 , according to

the definition of the l.h.s. of this equation. However, the r.h.s. of eq. (E.1) as written above
contains matrices x(k)

ij that do not appear in its l.h.s. In other words, this equation only
holds after one takes into account the commutation relations among the x(k)

ij and x(0)
i . We

can try to overcome this obstacle by using a sufficiently large subset of the commutation
relations of t̄1,3 to put the r.h.s. of this equation into a form that allows comparison with
the l.h.s., i.e. a canonical form.

To obtain a canonical form, we will make use of the commutation relations that we
have found in section 3.2.1. In particular, we make use of the commutation relations to
move x(k)

j,4 and x(0)
4 to the rightmost position of every word w ∈ t̄1,3, to the right of any

other letter except either of them. That this process terminates is clear from looking at the
commutation relations. After this process is done on the r.h.s. of eq. (E.1), we can look at
the eMPLs of each word to obtain a change-of-fibration-basis identity for the corresponding
eMPL. As an example, we can look at the component of the r.h.s. multiplying the letter
x

(1)
34 , to obtain an identity for Γ̃

( 1
z3 ; z4, τ

)
:

Γ̃
( 1
z3 ; z4, τ

)
= iπ − Γ̃ ( 1

0 ; z3, τ) + Γ̃ ( 1
0 ; z4, τ) + Γ̃

( 1
z4 ; z3, τ

)
, (E.2)

where there is no actual need to use the commutation relations of t̄1,3 because this is the
component of a single letter, but notice that it coincides with the result of eq. (5.17). Now,
let’s look at a less trivial example, which is the coefficient multiplying the word x(1)

14 x
(1)
34 :

Γ̃
( 1 1

0 z3 ; z4, τ
)

=− 2ζ2 − iπΓ̃ ( 1
0 ; z3, τ) + iπΓ̃ ( 1

0 ; z4, τ)− Γ̃ ( 1
0 ; z3, τ) Γ̃ ( 1

0 ; z4, τ)
− Γ̃ ( 0

0 ; z4, τ) Γ̃ ( 2
0 ; z3, τ)− 2Γ̃ ( 0

0 ; z3, τ) Γ̃ ( 2
0 ; z4, τ)− Γ̃ ( 0 2

0 0 ; z3, τ)
+ Γ̃

( 0 2
0 z4 ; z3, τ

)
+ Γ̃ ( 1 1

0 0 ; z3, τ) + Γ̃ ( 1 1
0 0 ; z4, τ)− Γ̃

( 1 1
0 z4 ; z3, τ

)
. (E.3)

As a final example, let’s look at the coefficient multiplying the word x(1)
14 x

(1)
34 x

(1)
34 , which

contains a ζ3:

Γ̃
( 1 1 1

0 z3 z3 ; z4, τ
)

=− iπ3

6 + 3ζ2Γ̃ ( 1
0 ; z3, τ)− 3ζ2Γ̃ ( 1

0 ; z4, τ)− iπΓ̃ ( 1
0 ; z3, τ) Γ̃ ( 1

0 ; z4, τ)

− iπΓ̃ ( 0
0 ; z4, τ) Γ̃ ( 2

0 ; z3, τ)− 2iπΓ̃ ( 0
0 ; z3, τ) Γ̃ ( 2

0 ; z4, τ)

+ 3Γ̃ ( 3
0 ; z4, τ) Γ̃ ( 0 0

0 0 ; z3, τ) + 2Γ̃ ( 2
0 ; z4, τ) Γ̃ ( 0 1

0 0 ; z3, τ)

− Γ̃ ( 2
0 ; z3, τ) Γ̃ ( 0 1

0 0 ; z4, τ) + iπΓ̃ ( 0 2
0 0 ; z3, τ)

+ Γ̃ ( 1
0 ; z4, τ) Γ̃ ( 0 2

0 0 ; z3, τ) + Γ̃ ( 0
0 ; z4, τ) Γ̃ ( 0 3

0 0 ; z3, τ)

+ iπΓ̃ ( 0 2
0 0 ; z4, τ) + Γ̃ ( 1

0 ; z4, τ) Γ̃
( 0 2

0 z4 ; z3, τ
)

+ iπΓ̃ ( 1 1
0 0 ; z3, τ) + Γ̃ ( 1

0 ; z4, τ) Γ̃ ( 1 1
0 0 ; z3, τ)

+ iπΓ̃ ( 1 1
0 0 ; z4, τ)− Γ̃ ( 1

0 ; z3, τ) Γ̃ ( 1 1
0 0 ; z4, τ)

− iπΓ̃
( 1 1

0 z4 ; z3, τ
)
− Γ̃ ( 1

0 ; z4, τ) Γ̃
( 1 1

0 z4 ; z3, τ
)

+
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+ iπΓ̃ ( 2 0
0 0 ; z3, τ) + Γ̃ ( 1

0 ; z4, τ) Γ̃ ( 2 0
0 0 ; z3, τ)

+ Γ̃ ( 0
0 ; z4, τ) Γ̃ ( 2 1

0 0 ; z3, τ)− 2Γ̃ ( 0
0 ; z3, τ) Γ̃ ( 2 1

0 0 ; z4, τ)

− Γ̃ ( 0 0 3
0 0 0 ; z3, τ) + Γ̃

( 0 0 3
0 0 z4 ; z3, τ

)
+ 2Γ̃ ( 0 1 2

0 0 0 ; z3, τ)

− 2Γ̃
( 0 1 2

0 0 z4 ; z3, τ
)
− Γ̃ ( 0 2 1

0 0 0 ; z3, τ) + Γ̃
( 0 2 1

0 0 z4 ; z3, τ
)

− Γ̃
( 0 2 1

0 z4 0 ; z3, τ
)

+ Γ̃
( 0 2 1

0 z4 z4 ; z3, τ
)
− Γ̃ ( 1 1 1

0 0 0 ; z3, τ)

+ Γ̃ ( 1 1 1
0 0 0 ; z4, τ) + Γ̃

( 1 1 1
0 0 z4 ; z3, τ

)
+ Γ̃

( 1 1 1
0 z4 0 ; z3, τ

)
− Γ̃

( 1 1 1
0 z4 z4 ; z3, τ

)
− Γ̃ ( 2 0 1

0 0 0 ; z3, τ) + Γ̃
( 2 0 1

0 0 z4 ; z3, τ
)

+ ζ3 . (E.4)

We have performed numerical checks on these and several other identities that can be
obtained via this method. These have been found to hold when arg(z3) > arg(z4) for z3
and z4 in the fundamental parallelogram. We note that these last two identities can also
be derived from the explicit representation of the matrices x(0)

i and x(k)
ij , as explained in

section 5.2.1.

E.2 Solving for fibration basis changes in three variables: t̄1,4

In this subsection we will sketch how to use the commutation relations of t̄1,4 to solve for
Γ4(z3, z5, z4) in eq. (5.22). However, we will do this in two steps, by studying separately
the analytic continuations due to σ34 and σ45:

Γ3(z3, z4, z5)Γ4(z4, z5)Γ5(z5)X(σ34) = Γ4(z4, z3, z5)Γ3(z3, z5)Γ5(z5) , (E.5)

and

Γ3(z3, z4, z5)Γ4(z4, z5)Γ5(z5)X(σ45) = Γ3(z3, z5, z4)Γ5(z5, z4)Γ4(z4) . (E.6)

If we look carefully, it turns out that both Γ3(z3, z4, z5) and Γ3(z3, z5, z4) in eq. (E.6)
describe the same function — in other words, the braiding σ45 only acts nontrivially on
the product of generating functions Γ5(z5, z4)Γ4(z4). However, the leftover formula is an
(albeit nontrivial) relabeling of the result of the previous section, with a relabeling given by:(

z3, z4,x
(0)
3 ,x

(0)
4 ,x

(k)
34 ,x

(k)
31 ,x

(k)
41

)
→
(
z4, z5,x

(0)
4 ,x

(0)
5 ,x

(k)
45 ,x

(k)
41 + x(k)

43 ,x
(k)
51 + x(k)

54

)
.

(E.7)

Thus, eq. (E.6) has the same information as eq. (E.1) of the two-variable case. Because of
this, we will focus on eq. (E.5) for the rest of this subsection.

We proceed by isolating the term Γ4(z4, z3, z5) in eq. (E.5):

Γ4(z4, z3, z5) = Γ3(z3, z4, z5)Γ4(z4, z5)Γ5(z5)X(σ34)[Γ5(z5)]−1[Γ3(z3, z5)]−1 . (E.8)

We now need to write the r.h.s. of eq. (E.8) in a canonical form. We follow the same logic
as in the two-variable case, and try to use the commutation relations such that in every
word in the r.h.s. of eq. (E.8) we move the letters x(k)

4,j and x(0)
4 to the right of any letter

x
(m)
l,p and x(0)

q for 4 /∈ {l, p, q}. However, as opposed to the two-puncture case, we need to
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make a choice for using the following commutation relation: we use j = 4 when making use
of the last commutation relation of eq. (3.13). One has to additionally be careful in never
using a commutation relation that would produce an element x(0)

1 .
It is not hard to convince oneself that the algorithm described above terminates.

Moreover, we have experimentally checked that, as a pleasant property of the end result,
every word left over in the r.h.s. of eq. (E.8) is a word that appears in its l.h.s., when using
eMPLs of weight and length up to 4. We do not currently have an argument for why this
should be the case. Now, once the r.h.s. of eq. (E.8) has been written in a canonical form,
we can obtain identities by simply reading out the coefficients of the expected word of the
l.h.s. For example, the coefficient of the word x(1)

45 x
(1)
34 of the r.h.s. of eq. (E.8) is:

Γ̃
( 1 1
z5 z3 ; z4, τ

)
=− Γ̃ ( 0

0 ; z3, τ) Γ̃ ( 2
0 ; z4, τ)− iπΓ̃

( 1
z5 ; z3, τ

)
− Γ̃ ( 1

0 ; z4, τ) Γ̃
( 1
z5 ; z3, τ

)
+ iπΓ̃

( 1
z5 ; z4, τ

)
− Γ̃ ( 1

0 ; z3, τ) Γ̃
( 1
z5 ; z4, τ

)
+ Γ̃

( 1
z5 ; z3, τ

)
Γ̃
( 1
z5 ; z4, τ

)
− Γ̃ ( 0

0 ; z4, τ) Γ̃
( 2
z5 ; z3, τ

)
− Γ̃ ( 0

0 ; z3, τ) Γ̃
( 2
z5 ; z4, τ

)
− Γ̃ ( 0 2

0 0 ; z3, τ)

+ Γ̃
( 0 2

0 z4 ; z3, τ
)

+ Γ̃
( 1 1
z5 0 ; z3, τ

)
+ Γ̃

( 1 1
z5 0 ; z4, τ

)
− Γ̃

( 1 1
z5 z4 ; z3, τ

)
.

(E.9)

We have checked this last identity to be valid numerically when arg(z3) > arg(z4) >
arg(z5) for z3, z4, and z5 in the fundamental parallelogram.

F Towards general integration domains along A-cycle

We now consider alternate integration domains for our genus-one integrals. The main goal
of this appendix will be to outline the computation of the regularized initial values lim

n,p,n−p
of these new types of integrals. We start with a concrete example by looking at the case of
(n, p) = (3, 1). We then outline the three possible outcomes of taking a single regularized
limit lim

zp+2→0
(−2πizp+2)s12...p+2 . One can thereafter iterate this process.

F.1 An alternate integration domain for (n, p) = (3, 1)

Consider the (n, p) = (3, 1) integral with the integration contour γ = {z3 = 0 < z2 < 1 ≡ 0,
which we will denote as Zτ

γ(z3):

Zτ
γ(z3) =

∫ 1

z3
dz2 KNτ

123

(
F (z12, η2, τ)
F (z32, η2, τ)

)
. (F.1)

In order to use the methods of section 4, we need a regularized initial value as z3 → 0
of Zτ

γ(z3). At the integrand level, we can write

KNτ
123 = exp (−s12Gτ21 − s13Gτ31 − s23Gτ32)

= exp (±πis23) exp (−s12Gτ21 − s13Gτ31 − s23Gτ23]

= exp (±πis23) es23ω(1,0|τ) (−2πiz3)−s23 e−(s12+s23)Gτ21(1 +O(z3)) , (F.2)
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where in the first line we obtain a phase factor exp(±πis23) from writing Gτ23 in terms of
Gτ32, and in the second line we use the local behavior of Γ̃ ( 1

0 ; z, τ) ∼ log(−2πiz) + O(z).
Meanwhile, the F (z32, η2, τ) simply degenerates to F (z12, η2, τ) when taking the limit z3 → 0
in the integrand. For the integration domain, however, there is a subtlety in taking the
z3 → 0 limit, and we cannot simply set z3 to 0 in the integration domain.42 This can be
seen from writing e.g.:

Zτ
γ(z3) =

∫ 1

0
dz2 KNτ

123

(
F (z12, η2, τ)
F (z32, η2, τ)

)
−
∫ z3

0
dz2 KNτ

123

(
F (z12, η2, τ)
F (z32, η2, τ)

)
. (F.3)

The r.h.s. of eq. (F.3) has a first term leading order of O((−z3)−s23), which can be seen
from the integrand behavior we just computed. The second term of the r.h.s., however,
has a leading behavior of O((−z3)−s123), see appendix E.1 of ref. [17]. For this second
term to be subleading, we additionally require that the Mandelstam variables satisfy
Re(s123) < Re(s23) < 0. Thus, by further constraining the Mandelstam variables, we can
easily obtain the desired initial condition:

lim
z3→0

(−2πiz3)s13Zτ
γ(z3) = exp(±πis23)es23ω(1,0|τ)

∫ 1

0
dz2 e

−(s12+s23)Gτ21

(
F (z12, η2, τ)
F (z12, η2, τ

)
.

(F.4)

This result coincides with the one of appendix E.1 of ref. [17], under the relabeling
{z3, z2, s3j , η2} → {1− z0, 1− z2, s0j , η}, except for the phase factor exp(±πis23) which is
due to the difference conventions for KNτ

123. The regularized initial condition for Zτ
γ(z3) has

nontrivial τ - and η2-dependence, and precisely in the form of the Zτ2 integrals introduced in
subsection 2.4, under some relabeling of momenta.

F.2 General integration domains along A-cycle for (n, p)

We will now consider more general integration contours γ(n,p)
~B

. These integration contours
will have to describe how to integrate the punctures z2, z3, . . . , zp+1, given that any ordered
partition of these will be integrated between a pair of the ordered, unintegrated punctures,
z1 = 0 < zp+2 < zp+3 < . . . < zn < 1 ≡ 0. E.g. for (n, p) = (5, 2), we can integrate {z2, z3}
along the contour γ = {z1 = 0 < z3 < z2 < z4 < z5 < 1}.

Generically, an integration contour γ(n,p)
~B

will have some punctures being integrated
between two neighboring unintegrated punctures zj < zk, and we will label this (possibly
empty) set of ordered punctures by the ordered partition Bj . For example, the contour
γ above involves integrates the punctures z3 and z2 integrated between the neighboring
unintegrated punctures z1 < z4, so it will have an ordered set B1 = (3, 2). Likewise,
we notice that γ has B4 = () because no punctures are being integrated between the
pair z4 and z5. Likewise, B5 = (), and we can fully characterize the integration contour
of γ = {z1 = 0 < z3 < z2 < z4 < z5 < 1} by the ordered partition of (2, 3) given by
~B = (B1, B4, B5) = ((3, 2), (), ()).

42We will soon state conditions on the Re(sij) that makes this simple approach work.
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We now give two examples of this notation are given by:

γ
(6,2)
((),(),(2),(3)) = {z1 = 0 < z4 < z5 < z2 < z6 < z3 < 1} , (F.5)

where B1 = (0), B4 = (0), B5 = (2), B6 = (3), and

γ
(6,3)
((4,2),(3),(0)) = {z1 = 0 < z4 < z2 < z5 < z3 < z6 < 1} , (F.6)

where B1 = (4, 2), B5 = (3), B6 = (0).
More explicitly, any Bk can be written as Bk = (bk1, bk2, . . . , bk|Bk|), and any integration

contour along the A-cycle can be written as:

γ
(n,p)
~B

=
{
z1 = 0 < zb11

< · · · < zb1
|B1|

< zp+2

< z
bp+2
1

< · · · < z
bp+2
|Bp+2|

< zp+3 < . . .

< zbn−1
1

< · · · < zbn−1
|Bn−1|

< zn

< zbn1 < · · · < zbn|Bn| < 1
}
, (F.7)

and where {B1, Bp+2, . . . , Bn} is a partition of the labels of the p integrated punctures, i.e.
as an unordered set: {

B1, Bp+2, . . . , Bn
}

= {2, 3, . . . , p+ 1} . (F.8)

Let us repeat the analysis from above to determine the degeneration of the type-(n, p)
integrals on the configurations γ(n,p)

~B
for the single regularized limit

(zp+2, zp+3, zp+4 . . . , zn)→ (0, zp+3, zp+4, . . . , zn) . (F.9)

We now focus on the zp+2 → 0 behavior of the Koba-Nielsen factor KNτ
12...n, which can

be seen understood with the change of variables zi = zp+2xi for i ∈ {1, B1, p + 2}, the
Koba-Nielsen factor degenerates as follows43

KNτ
12...n

= χ
∏

i≺j∈{1,B1,p+2}
e−sijG

τ
ji

∏
i∈{1,B1,p+2}

j∈{Bp+2,p+3,...,n,Bn}

e−sijG
τ
ji

∏
i≺j∈{Bp+2,p+3,...,n,Bn}

e−sijG
τ
ji

= χ (−2πizp+2)−s(1,B1,p+2)e
s(1,B1,p+2)ω(1,0) ∏

i≺j∈{1,B1,p+2}
x
−sij
ji

∏
j∈{Bp+2,p+3,...,n,Bn}

e
−s(1,B1,p+2),jG

τ
j1

×
∏

i≺j∈{Bp+2,p+3,...,n,Bn}
e−sijG

τ
ji(1 +O(zp+2)) , (F.10)

43In these products, we use the convention that i ≺ j for labels i, j ∈ {A)} if zi < zj . This rewriting of
the Koba-Nielsen factor generates a phase χ, of the schematic form χ = exp(

∑
ij

±πisij), see e.g. (F.2).
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such that

lim
zp+2→0

z
s(1,B1,p+2)
p+2 KNτ

12...n =

e
s(1,B1,p+2)ω(1,0)KN1,B1,p+2 (xi, {sij}) KNτ

1,Bp+2,p+3,...,n,Bn
(
zi,
{
sp+2
ij

})
, (F.11)

where for 2 ≤ k ≤ n− p, we have relabeled Mandelstam variables

sp+kij =


s(1,B1,p+2,Bp+2,...,p+k),j if i = 1

sij otherwise,
(F.12)

and where we have can identify tree-level and genus-one Koba-Nielsen factors.44 It is
important to note that the SL2−fixed tree-level Koba-Nielsen factor KN1,B1,p+2(xi, {sij})
is one corresponding to (|B1| + 3) punctures (one of them SL2− fixed at infinity, so not
explicitly seen). The genus-one Koba-Nielsen factor KNτ

1,Bp+2,p+3,...,n,Bn(zi, {sp+2
ij }) is one

corresponding to (n− |B1|) punctures, with some Mandelstam variables relabeled.
The behavior of the Eisenstein-Kronecker chains under zp+2 → z1 = 0 is understood by

first looking at the whole differential form:

ϕ̃τ
(
1, A1

) n∏
k=p+2

ϕ̃τ
(
k,Ak

) p+1∏
i=2

dzi

= ϕ̃τ
(
1, A1

)
ϕ̃τ
(
p+ 2, Ap+2

) n∏
k=p+3

ϕ̃τ
(
k,Ak

) ∏
b∈B1

dzb
n∏

j=p+2

∏
b∈Bj

dzb

= ϕ̃τ
(
1, A1

)
ϕ̃τ
(
p+ 2, Ap+2

) n∏
k=p+3

ϕ̃τ
(
k,Ak

)
z
|B1|
p+2

∏
b∈B1

dxb
n∏

j=p+2

∏
b∈Bj

dzb . (F.13)

The factor z|B
1|

p+2 from the change of variables zi = zp+2xi for z1 ≤ zi ≤ zp+2 can only be
compensated if the sequences A1 and Ap+2 begin with the integration variables in B1, i.e. if
for an unordered partition {

B1
1 , B

1
p+2

}
= B1 , (F.14)

we have

A1 =
(
B1

1 , A
1
2

)
, Ap+2 =

(
B1
p+2, A

p+2
2

)
. (F.15)

In this case, the above differential form degenerates to

ϕ̃τ
(
1, A1

) n∏
k=p+2

ϕ̃τ
(
k,Ak

) p+1∏
i=2

dzi

= pt
(
1, B1

1

)
pt
(
p+ 2, B1

p+2

) ∏
b∈B1

dxb

× ϕ̃τ
(
1, A1

2 Ap+2
2

) n∏
k=p+3

ϕ̃τ
(
k,Ak

) n∏
j=p+2

∏
b∈Bj

dzb +O (zp+2) , (F.16)

44These Koba-Nielsen factors are now written following the ordering of punctures the punctures, i.e. using
i ≺ j in their definition. This means that we do not need to introduce more phase factors χ in iterating this
limiting procedure.
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where the pt are the genus-zero SL2−fixed Parke-Taylor factors with respect to the variables
xi and for 2 ≤ k ≤ n− p, the punctures xp+k = 1 are additional punctures on genus-zero
Riemann surface. Note that the products separates into factors pt(1, B1

1)pt(p + 2, B1
p+2)

containing the rescaled variables xi and factors ϕ̃τ (1, A1
2 Ap+2

2 )
∏n
k=p+3 ϕ̃

τ (k,Ak)
∏n
j=p+2

depending on the non-rescaled variables zi. Chains which would mix the two are sub-leading.
Putting all together, in the limit zp+2 → 0, the integral

Zτn,p

(
γn,p~B

;
(
1, A1

)
,
(
p+ 2, Ap+2

)
,
(
p+ 3, Ap+3

)
, . . . , (n,An) ; zp+2, zp+3, . . . , zn; {sij}

)
=
∫
γ

(n,p)
~B

p+1∏
i=2

dzi KNτ
12...n (zi, {sij}) ϕ̃τ

(
1, A1

) n∏
k=p+2

ϕ̃τ
(
k,Ak

)
(F.17)

vanishes unless the condition (F.15) is satisfied. When this condition is satisfied, the integral
degenerates as follows

lim
zp+2→0

(−2πizp+2)s(1,B1,p+2) Zτn,p

(
γn,p~B

,zp+2,zp+3, . . . ,zn;{sij}
)

(F.18)

= e
s(1,B1,p+2)ω(1,0)

Ztree
|B1|+3,|B1|

(
γ
|B1|+3,|B1|
B1 ;

(
1,B1

1
)
,
(
p+2,B1

p+2
)

;{sij}
)

lim
zp+2→0

[
(−2πizp+2)s(1,B1,p+2)

Zτn−|B1|,p−|B1|

(
γ
n−|B1|,p−|B1|
~B′

;
(
1,A1

2 Ap+2
2
)
,
(
p+3,Ap+3) , . . . ,(n,An) ;zp+3, . . . ,zn;

{
sp+2
ij

})]
,

(F.19)

where we have stripped off a factor of a genus-zero Ztree-integral with n punctures, n− 3 of
which are integrated over and three of which are fixed to

(x1, xn−1, xn) = (0, 1,∞) . (F.20)

Ztree
n,n+3

(
γn,pB1 ;

(
1, B1

1

)
,
(
p+ 2, B1

p+2

)
; {sij}

)
=
∫
x1=0<x

b11
<x

b12
<...<x1

|B1|
<1=xp+2

∏
i∈B1

dxi KN1,B1,p+2 (xi, {sij}) pt
(
1, B1

)
pt
(
p+ 2, B1

p+2

)
.

(F.21)

We have not yet finished evaluating the last limit because the genus-1 integral now
needs to be integrated over the zp+2−dependent integration domain γn−|B

1|,p−|B1|
~B′

, where

γ
n−|B1|,p−|B1|
~B′

= {z1 = 0 < zp+2

< z
bp+2
1

< · · · < z
bp+2
|Bp+2|

< zp+3 < . . .

< zbn−1
1

< · · · < zbn−1
|Bn−1|

< zn

< zbn1 < · · · < zbn|Bn| < 1} , (F.22)

i.e. the lower integration boundary is now zp+2. It would be convenient to just set zp+2 = 0
in the integration domain, but this is not correct, because other terms of similar leading
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behavior contribute, see e.g. the previous subsection. However, following the methods of
appendix E.2 of ref. [17], we can make these other contributions subleading by requiring
that,45 for any 1 ≤ l ≤ |Bp+22|:

Re(sp+2
1,p+2,bp+2

1 ,bp+2
2 ,...,bp+2

l

) < Re(sp+2
1,p+2) < 0 . (F.23)

Assuming that this last equation holds (or that we can analytically continue from such
kinematic points), we write the regularized initial value of our integral:

lim
zp+2→0

(−2πizp+2)s(1,B1,p+2) Zτn,p

(
γn,p~B

,zp+2,zp+3, . . . ,zn;{sij}
)

= e
s(1,B1,p+2)ω(1,0)

Ztree
|B1|+3,|B1|

(
γ
|B1|+3,|B1|
B1 ;

(
1,B1

1
)
,
(
p+2,B1

p+2
)

;{sij}
)

Zτn−|B1|−1,p−|B1|

(
γ
n−|B1|−1,p−|B1|
~B′′

;
(
1,A1

2 Ap+2
2
)
,
(
p+3,Ap+3) , . . . ,(n,An) ;zp+3, . . . ,zn;

{
sp+2
ij

})
,

(F.24)

where the integration domain γn−|B
1|−1,p−|B1|

~B′′
has no zp+2−dependence:

γ
n−|B1|−1,p−|B1|
~B′′

=
{
z1 = 0 < z

bp+2
1

< · · · < z
bp+2
|Bp+2|

< zp+3 < . . .

< zbn−1
1

< · · · < zbn−1
|Bn−1|

< zn

< zbn1 < · · · < zbn|Bn| < 1
}
. (F.25)

We will now comment on the implications of the regularized-initial value eq. (F.24).
When one takes a single limit, the Zτn,p( ~B, ~A) integrals46 have a simple behavior: they either
vanish at the leading order, depending on the compatibility of ~A and ~B by eq. (F.15) (this
happens e.g. with the third entry of eq. (3.34)). When the initial value does not vanish
at leading order and if B1 is nonempty, we obtain, as a factor, a genus-0 string integral
of (|B1|+ 3) punctures.47 Further, we are left with a genus-one integral with fewer total
unintegrated and integrated punctures, and with some shift of the Mandelstam variables
sij → sp+2

ij : Zτ(n−|B1|−1,p−|B1|).
Note that if p − |B1| = 0, then the leftover Zτ(n−|B1|−1,p−|B1|) is not an integral, but

simply a genus-one Koba-Nielsen factor. This is precisely what happens with the integrals
that are the focus of the main text, see eq. (4.19).

We note that one can iterate this process in a straightforward way to compute lim
n,p,n−p

.
From the rules above, we note that these regularized initial values will be given, if they
do not vanish, by products of tree-level integrals, Ztree and, for the cases where Bn is
nonempty, these products of tree-level integrals will multiply a genus-one integral Zτ|Bn+1|.

48

45The key idea is to write the contour that we want, with zp+2 = 0 as the lower integration boundary, as
an union of contours in which the puncture zp+2 is in all possible intermediate points between z1 and zp+3.

The leading behavior of each of the new contours that we obtain this way is (−2πizp+2)
−(sp+2

1,p+2,b2
1,b

2
2,...,b

2
k

)
.

To make these other contours subleading with respect to the contour we want, the condition stated follows.
46We hope the notation here is intuitive: ~A describes the integrand and ~B describes the integration contour.
47If B1 is empty, this factor is 1. See e.g. eq. (F.4).
48We saw an example of such genus-one integral earlier in this appendix, in eq. (F.4).
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Finally, we remark that in order to iterate this limiting procedure, we require the
Mandelstam variables to satisfy, for 2 ≤ k ≤ n− p and 1 ≤ l ≤ Bp+k:

Re
(
sp+k

1,p+k,bk+2
1 ,bk+2

2 ,...,bk+2
l

)
< Re

(
sp+k1,p+k

)
< 0 . (F.26)
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