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1 Introduction

According to the “complexity=action” proposal (CA) the quantum computational com-

plexity of a holographic state is given by the on-shell action evaluated on a bulk region

known as the ‘Wheeler-De Witt’ (WDW) patch [1, 2]

C(Σ) =
IWDW

π~
. (1.1)

Here the WDW patch is defined as the domain of dependence of any Cauchy surface in the

bulk whose intersection with the asymptotic boundary is the time slice Σ.

An interesting feature of the complexity is that it grows linearly with time at the

late time with slope given by Lloyd’s bound [3] that is twice of the energy of the state.

Holographic complexity for two-sided black holes has been calculated in [4] where it was

shown that although at the late time the growth rate approaches a constant value that is

twice of the mass of the black hole, the constant is approached from above, violating the

Lloyd’s bound [3].

Another recent interesting development in the literature of theoretical higher energy

is to study a conformal theory deformed by an irrelevant operator such as the one which

is quadratic in the stress energy tensor known as TT deformation. Although typically

deforming a conformal field theory by an irrelevant operator would remove UV fixed point

and makes it non-local at high energies, it was shown that for the mentioned deformation

the resultant theory is still exactly solvable [6, 7].

To be concrete let us consider a two dimensional conformal field theory deformed by

the corresponding operator as follows

IQFT = ICFT + µ

∫
d2xTT . (1.2)

There are some interesting features of the resultant quantum field theory. First of all it

is UV complete. Moreover the spectrum of the deformed theory can be determined non-

perturbatively and rather in a compact form. More precisely for a conformal field theory
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on a cylinder with the circumference L the energy level En(µ,L) for a state denoted by

conformal dimensions (∆n, ∆̄n) is given by [6, 7]

En(µ,L) =
2L

µ

(
1−

√
1− 2πµ

L2

(
Mn +

2πµ

L2
J2
n

) )
, (1.3)

where Mn = ∆n + ∆̄n − c
12 , and Jn = ∆n − ∆̄n.

In the context of AdS/CFT correspondence it was proposed that the above deformation

has a holographic dual. The corresponding dual gravitational theory may be described by

an AdS3 metric with a finite radial cutoff [8]. The radial cutoff rc is given in terms of the

deformed parameter µ, by r2
c = 16πG

µ .

Using AdS/CFT correspondence the generalization of TT deformation to higher di-

mensional conformal field theories has also been studied in [9, 10]. Following [8] one would

also expect that a d + 2 dimensional AdS black brane solution with a radial cutoff could

provide a holographic dual for a d + 1 dimensional TT deformed conformal field theory.

Given the corresponding geometry by

ds2 =
`2

r2

(
−f(r)dt2 +

dr2

f(r)
+

d∑
i=1

d~x2

)
, f(r) = 1−

(
r

rh

)d+1

, (1.4)

where rh and ` are radius of horizon the AdS radius, respectively, the spectrum of energy

of the deformed theory is [9, 10]

E =
Vd`

dd

8πG

1

rd+1
c

(
1−

√
1− rd+1

c

rd+1
h

)
, (1.5)

with Vd being the volume of d-dimensional internal space of the metric parametrized by

xi, i = 1, · · · d.

Motivated by TT deformation and its holographic dual in the present paper we would

like to compute the complexity growth of a black brane at a finite cutoff using CA proposal.

We observe that requiring to reach the Lloyd’s bound at the late time enforces us to have a

cutoff behind the horizon whose value is fixed by boundary cutoff. More precisely for black

brane solutions denoting cutoff radius inside the horizon by r0 one finds (at leading order)

r0r
2
c = 2

4
d+1 r3

h. (1.6)

To explore the significance of our result we will then study holographic complexity for AdS2

vacuum solutions of certain two dimensional Maxwell-Dilaton gravities. One observes that

if we naively compute the complexity without taking into account the behind horizon cutoff

the rate of growth vanishes at the late time. On the other had if one assumes that the

UV cutoff would set a cutoff behind the horizon given by (1.6) the complexity exhibits late

time linear growth, as expected.

The paper is organized as follows. In the next section we will compute holographic

complexity for back brane solutions in the present of a cutoff where we show how the

inside cutoff would emerge. In section three we will study complexity for AdS2 taking into

account the enforced behind the horizon cutoff. The last section is devoted to conclusions.
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2 CA complexity for cutoff geometries

In this section we would like to compute holographic complexity for a black brane solution

with a radial cutoff. To do so, following CA proposal we will need to compute on shell

action on the WDW patch associated with a boundary state given at τ = tL + tR. Here

tL(tR), is time coordinate of left (right) boundary on the eternal black brane (see figure 1).

To proceed we note that the action consists of several parts including bulk, boundary

and joint points as follows [12–14]

I =
1

16πGN

∫
dd+2x

√
−g(R− 2Λ) +

1

8πGN

∫
Σd+1
t

Kt dΣt

± 1

8πGN

∫
Σd+1
s

Ks dΣs ±
1

8πGN

∫
Σd+1
n

Kn dSdλ±
1

8πGN

∫
Jd
a dS . (2.1)

Here the timelike, spacelike, and null boundaries and also joint points are denoted by

Σd+1
t ,Σd+1

s ,Σd+1
n and Jd, respectively. The extrinsic curvature of the corresponding bound-

aries are given by Kt,Ks and Kn. The function a at the intersection of the boundaries is

given by the logarithm of the inner product of the corresponding normal vectors and λ is

the null coordinate defined on the null segments. The sign of different terms depends on the

relative position of the boundaries and the bulk region of interest (see [14] for more details).

The null boundaries B1 and B2 of the future interior are

B1 : t = tR + r∗(rc)− r∗(r), B2 : t = −tL − r∗(rc) + r∗(r), (2.2)

where r∗(r) is the tortoise coordinate. The null vectors associated with these null bound-

aries are also given by

k1 = α

(
∂t +

1

f(r)
∂r

)
, k2 = β

(
∂t −

1

f(r)
∂r

)
. (2.3)

Here α and β are two free constant parameters appearing due to the ambiguity of the

normalization of null vectors.

For the black brane solution without cutoff the corresponding complexity rate growth

has been computed in [4]

dC
dτ

=
1

π

d

dτ
IWDW =

2E

π

(
1 +

1

2
f̃(rm(τ)) log |f(rm(τ))|

)
. (2.4)

Here

f̃(rm(τ)) =

(
rd+1
h

rd+1
m (τ)

− 1

)
, E =

Vd`
d

16πGN

d

rdh
. (2.5)

It is clear from this expression that the late time value is approaches from above leading to

the Lloyd’s bound violation. Of course as far as the late lime linear growth of complexity

is concerned it is sufficient to compute on shell action over the intersection of the WDW

patch with the future interior shown by dark blue color in the figure 1 [11]. When the

cutoff is not set the on shell action evaluated in this patch is [11]

IFI = 2Eτ + time independent term. (2.6)
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u v

tL tR

(εu, εv)

(εu, v0)(u0, εv)

r = rm
r = r0

r = r0

r
=
r c

B
1B 2

Figure 1. The intersection of WDW patch with the future interior of an eternal AdS black brane.

The theory is defined at a radial finite cutoff rc that fixes a cutoff behind the horizon denoted by r0.

Now the aim is to compute on shell action over future interior for the case where we

have a cutoff in the system. In this case, using the notation fixed above, the bulk part of

the on shell action is

Ibulk
FI = − Vd`

d

4πGN
(d+ 1)

∫ r0

rh

dr

rd+2

(τ
2

+ r∗(rc)− r∗(r)
)

= − Vd`
d

8πGN

(
2

d rdh
− 2

d rd0

)
− Vd`

d

8πGN

(
1

rd+1
h

− 1

rd+1
0

)
(τ + τc), (2.7)

where τc = 2(r∗(rc) − r∗(r0)). Note that to find the last expression we have performed

an integration by parts. Here r0 is a cutoff near singularity which could have been sent

to infinity for which all terms containing of different powers of 1
r0

in the above expression

vanish. Of course as it will become clear later, in what follows we keep r0 finite.

There are five boundaries four of which are null that have zero contribution if one uses

the Affine parameter to parametrize the null directions. Therefore we are left with a space

like boundary at future singularity whose contribution is given by

Isurf1
FI = − 1

8πGN

∫
ddx

∫ tR+r∗(rc)−r∗(r)

−tL−r∗(rc)+r∗(r)
dt
√
hKs

∣∣∣
r=r0

, (2.8)

where Ks is the trace of extrinsic curvature of the boundary at r = r0 and h is the

determinant of the induced metric on it. To compute this term it is useful to note that for

a constant r surface using the metric (1.4) one has

√
hK = −

√
grr∂r

√
h = −1

2

`d

rd

(
∂rf(r)− 2(d+ 1)

r
f(r)

)
, (2.9)

therefore the boundary term (2.8) reads

Isurf1
FI =

Vd`
d

8πGN
(d+ 1)

(
1

2rd+1
h

− 1

rd+1
0

)
(τ + τc) . (2.10)
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Note that there is also another boundary term to be evaluated at the surface cutoff behind

the horizon that is given by

Isurf2
FI =

1

8πGN

∫
ddx

∫ tR+r∗(rc)−r∗(r)

−tL−r∗(rc)+r∗(r)
dt
√
|h| d

`

∣∣∣
r=r0

=
Vd`

d

8πGN

d

rd+1
0

√
rd+1

0

rd+1
h

− 1 (τ + τc) .

(2.11)

There are also five joint points, two points at r0 and three at the horizon r = rh. Of

course those at the horizon are not at the same point, though the coordinate system r

cannot make any distinction between them. To label these points it is convenient to use

the following coordinate system [15],

u = −e−
1
2
f ′(rh)(r∗(r)−t), v = −e−

1
2
f ′(rh)(r∗(r)+t) , (2.12)

by which the points are located at (εu, v0), (u0, εv) and (εu, εv) as depicted in figure 1. Here

in order to regularize quantities like r∗(r) at r = rh we have put the horizon at v = εv
and u = εu for small εv and εu. In what follows the radial coordinate associated with

these three points are also labeled by rv0 , ru0 and rε, respectively. Using this notation the

contribution of joint points is [11]

I joint
FI =

Vd`
d

8πGN

 log
αβr20

`2|f(r0)|

rd0
+

log αβr2ε
`2|f(rε)|

rdε
−

log
αβr2u0

`2|f(ru0 )|

rdu0
−

log
αβr2v0

`2|f(rv0 )|

rdv0

 (2.13)

= − Vd`
d

8πGN

 log |f(rε)| − log |f(ru0)| − log |f(rv0)|
rdh

+
log

αβr2h
`2

rdh
+

log
αβr20

`2|f(r0)|

rd0

 .

Here we have used the fact that {rum , rvm , rε} ≈ rh. On the other hand by making use of

the fact that [15]

log |f(ru,v)| = log |uv|+ c0 +O(uv) for uv → 0, (2.14)

one arrives at

I joint
FI =

Vd`
d

8πGN

(
log |u0v0|+ c0

rdh
− log |f(r0)|

rd0

)
− Vd`

d

8πGN

 log
αβr2h
`2

rdh
−

log
αβr20
`2

rd0

 . (2.15)

The only remaining part of the action to be considered is a term needed to remove the

ambiguity associated with the normalization of null vectors [14, 16, 17]

Iamb =
1

8πGN

∫
dλddx

√
γΘ log

|˜̀Θ|
d
, (2.16)

where ˜̀ is an undetermined length scale and γ is the determinant of the induced metric on

the joint point where two null segments intersect, and

Θ =
1
√
γ

∂
√
γ

∂λ
. (2.17)
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In the present case the contribution of this term is (for more details see [11])

Iamb
FI =

Vd`
d

8πGN

 log
αβ ˜̀2r2h
`4

rdh
−

log
αβ ˜̀2r20
`4

rd0

+
Vd`

d

8πGN

(
2

d rdh
− 2

d rd0

)
. (2.18)

Taking all parts contributing to the on shell action into account one arrives at

IFI =
Vd`

d

8πGN

[(
d

rd+1
h

− d

rd+1
0

+
d

rd+1
0

√
rd+1

0

rd+1
h

− 1

)
(τ + τc)

+
(d+ 1)r∗(r0) + c0rh

rd+1
h

− log |f(r0)|
rd0

+

(
1

rdh
− 1

rd0

)
log

˜̀2

`2

]
, (2.19)

leading to the following rate of growth

dIFI

dτ
=
Vd`

dd

8πGN

(
1

rd+1
h

− 1

rd+1
0

+
1

rd+1
0

√
rd+1

0

rd+1
h

− 1

)
, (2.20)

that is indeed the late time expression for the holographic complexity of the corresponding

black brane solution [11]. It is worth noting that this expression does not depend on the

UV cutoff rc and it is also clear that for r0 →∞ the above expression reduces to (2.6).

Now the aim is to compare the above result with Lloyd’s bound for the model under

consideration that has a cutoff. In this case the bound should be read from the energy

spectrum (1.5) that can be recast into the following inspiring form

E =
Vd`

dd

16πG

1

rd+1
h

+
Vd`

dd

16πG

1

rd+1
c

(
1−

√
1− rd+1

c

rd+1
h

)2

. (2.21)

The first terms is energy associated with the black brane and the second terms arises from

because of the cutoff. Therefore if one assumes that at the late time the growth rate of

complexity saturates the Lloyd’s bound, 2E, one may conclude that

1

rd+1
0

(√
rd+1

0

rd+1
h

− 1− 1

)
=

1

rd+1
c

(√
1− rd+1

c

rd+1
h

− 1

)2

, (2.22)

which at leading order reduces to

r0r
2
c = 2

4
d+1 r3

h. (2.23)

This means that the cutoff at the singularity should be given in terms of the UV cutoff at

the boundary if the complexity is going to saturate at the late time to a value given by

twice of the energy of the model. In other words this leads to a conclusion that as soon as

we fixed the UV cutoff we are not allowed to consider another independent cutoff inside

the horizon (let say near the singularity) and the UV cutoff will automatically regularize

the modes inside the horizon. Therefore we were not actually allowed to send r0 → ∞
from the first place. This is, indeed, the main result of the present paper.

To explore the importance of the above conclusion in what follows we will study holo-

graphic complexity for AdS2 vacuum solutions of certain two dimensional gravities.

– 6 –
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tL tR

r = rm

r = rm′

r = r0

r
=

r c

Figure 2. Penrose diagram of AdS2 geometry. The green part is covered by AdS global coordinates,

while the Rindler coordinates cover a portion shown in the figure. The actual WDW patch is shown

by blue color.

3 Complexity for AdS2 geometry

In this section we shall study holographic complexity for certain two dimensional Maxwell-

Dilaton gravities that admit AdS vacuum solutions. The first model we will consider has

the following action1

I =
1

8G

∫
d2x
√
−g
(
eφ
(
R+

2

`2

)
− F 2

)
. (3.1)

Using the entropy function formalism [21] one can show that the above action admits

constant dilaton AdS2 vacuum solution as follows [22]

ds2 = `2
(
−(r2 − r2

h)dt2 +
dr2

r2 − r2
h

)
, eφ = 4G2Q2`2, Frt = 2GQ`2, (3.2)

whose entropy is

SBH = 2πGQ2`2, (3.3)

that it is independent of rh. Let us compute holographic complexity for a state given at

τ = tL + tR. The corresponding WDW patch is depicted in the figure 2.

One may naively compute on shell action in the WDW patch shown in the figure 2

with two joint points denoted by rm and rm′ ( the later point is drown by dashed lines).

Positions of the corresponding points are obtained from the following equations

τ = −2(r∗(rc)− r∗(rm′)) = 2(r∗(rc)− r∗(rm)), (3.4)

where rc is a UV cutoff.

1This is indeed one of the simplest example of two dimensional gravity having non-trivial vacuum. One

could, as well, consider rather more complicated actions (see e.g. [18–20]).
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Following CA proposal the idea is to evaluate on shell action on the corresponding

WDW with a UV cutoff but no, a priori, restriction on modes behind the horizon. This

means that there is no cutoff behind the horizon and both corners denoted by m and

m′ should be taken into account. With this assumption the bulk part of the on shell

action reads

Ibulk =GQ2`2
(∫ rh

rm′

dr (τ+2(r∗(rc)−r∗(r)))+2

∫ rc

rh

dr2(r∗(rc)−r∗(r))

+

∫ rh

rm

dr (−τ+2(r∗(rc)−r∗(r)))
)

= 2GQ2`2
(

(rm−rm′)
τ

2
+

∫ rc

rm′

dr(r∗(rc)−r∗(r))+

∫ rc

rm

dr (r∗(rc)−r∗(r))
)
. (3.5)

By making use of an integration by parts one finds

Ibulk = GQ2`2
(

2 log |f(rc)| − log |f(rm)| − log |f(rm′)|
)
, (3.6)

where f(r) = r2 − r2
h .

On the other hand using Affine parameter to parametrize the null direction one gets

zero contribution from null boundaries. Therefore the only part one needs to further

consider is the contribution of join points. Denoting the null vectors by

k1 = α

(
∂t −

1

f(r)
∂r

)
, k2 = β

(
∂t +

1

f(r)
∂r

)
, (3.7)

one gets

I joint =
eφ

4G

(
log

∣∣∣∣ αβ

`2f(rm)

∣∣∣∣+ log

∣∣∣∣ αβ

`2f(rm′)

∣∣∣∣− 2 log

∣∣∣∣ αβ

`2f(rc)

∣∣∣∣)
= GQ2`2

(
2 log |f(rc)| − log |f(rm)| − log |f(rm′)|

)
. (3.8)

Interestingly enough the free parameters α and β drop from the final result which means

that there is no ambiguity associated with the normalization of null vectors. Therefore we

do not need any further counter terms, except possibly the one that could cancel the most

divergent term of the on shell action, log f(rc). Of course since we are interested in the

time derivative of the action this term does not play any role.

Taking all terms contributing to the on shell action one arrives at

I = Ibulk + I joint = 2GQ2`2
(

2 log |f(rc)| − log |f(rm)| − log |f(rm′)|
)
, (3.9)

whose time derivative is
dI

dτ
= 2GQ2`2(rm − rm′). (3.10)

It is then notable that at the late time when {rm, rm′} → rh the rate of growth vanishes,

leading to a constant late time complexity that is counter intuitive. Indeed we would expect

to get linear growth at the late time.

– 8 –
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Of course in light of our result in the previous section this conclusion is, indeed,

misleading. In fact, as we have already demonstrated in the previous section, setting

a UV cutoff at the boundary would enforce us to have a cutoff inside the horizon that

prevents us to have access to all regions on WDW located behind the horizon.

In other words, as soon as we set the UV cutoff, rc, at the boundary we will also have

to consider a cutoff behind the horizon given by r0 ∼
r3h
r2c

at leading order. Actually having

this cutoff will remove the joint point rm′ from the WDW patch and instead we would have

a space like boundary at r = r0. Therefore one should redo our computations for on shell

action for a new WDW patch that has no joint point m′, as shown with blue color in the

figure 2.

To proceed let us again start with the bulk action. In this case one gets

Ibulk = GQ2`2
(∫ rh

r0

dr (τ + 2(r∗(rc)− r∗(r))) + 2

∫ rc

rh

dr 2 (r∗(rc)− r∗(r))

+

∫ rh

rm

dr (−τ + 2(r∗(rc)− r∗(r)))
)
, (3.11)

that can be recast to the following form after making use of an integration by parts

Ibulk = GQ2`2
(

2 log |f(rc)|−log |f(rm)|−log |f(r0)|−r0 (τ + 2(r∗(rc)− r∗(r0)))

)
. (3.12)

The boundary contributions associated with null boundaries are still zero when Affine

parametrization is used. Of course in the present case we have a apace like boundary

whose contribution is

Isurf = − 1

4G

∫
dteφ
√
−h
(
Ks −

1

`

) ∣∣∣∣
r0

= GQ2`2(r0 + rh) (τ + 2(r∗(rc)− r∗(r0))) . (3.13)

As for joint points we have

Ijoint =
eφ

4G

(
log

∣∣∣∣ αβ

`2f(rm)

∣∣∣∣+ log

∣∣∣∣ α

`
√
f(r0)

∣∣∣∣+ log

∣∣∣∣ β

`
√
f(r0)

∣∣∣∣− 2 log

∣∣∣∣ αβ

`2f(rc)

∣∣∣∣
)

= GQ2`2
(

2 log |f(rc)| − log |f(rm)| − log |f(r0)|
)
. (3.14)

Now putting all terms together one arrives at

I = 2GQ2`2
(

2 log |f(rc)| − log |f(rm)| − log |f(r0)|
)

+GQ2`2rh (τ + 2(r∗(rc)− r∗(r0))) .

(3.15)

It is the easy to show
dI

dt
= GQ2`2(rh + 2rm), (3.16)

which approaches a constant at the late time

dI

dt
= 3GQ2`2rh = 3

(
2πGQ2`2

) ( rh
2π

)
= 3SBHT . (3.17)

– 9 –
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Here T is the Hawking temperature associated with the geometry. This is in agreement

with what is expected; namely one has late time linear growth with slop given by entropy

times temperature. Of course the actual numerical factor does not look universal.

To further explore the above picture better it is also constructive to consider another

two dimensional model admitting AdS2 vacuum solutions as follows

S2 =
1

8G

∫
d2x
√
−g eφ

(
R+

2

`2
− `2

4
e2φF 2

)
. (3.18)

Using the entropy function formalism [21] one can show that the above action admits the

AdS2 vacuum solution as follows [22]2

ds2 =
`2

4

(
−(r2 − r2

h)dt2 +
dr2

r2 − r2
h

)
, eφ =

√
4GQ`2, Ftr =

√
1

16GQ`2
(3.19)

with the entropy,

SBH = 2π

√
Q`2

4G
. (3.20)

Now the aim is to compute the holographic complexity for this model. Of course the

procedure is the same as that we considered in the previous case and the only difference is

the numerical factors. More precisely for the bulk term one finds

Ibulk = − `
4

√
Q

G

(
2 log |f(rc)| − log |f(rm)| − log |f(r0)| − r0 (τ + 2(r∗(rc)− r∗(r0)))

)
.

(3.21)

As for joint points one gets

Ijoint =
`

2

√
Q

G

(
2 log |f(rc)| − log |f(rm)| − log |f(r0)|

)
, (3.22)

while for the surface term one has

Isurf =
`

2

√
Q

G
(r0 + rh) (τ + 2(r∗(rc)− r∗(r0))) . (3.23)

Therefore the total action is found

I =
`

4

√
Q

G

(
2 log |f(rc)| − log |f(rm)| − log |f(r0)|

)
+
`

2

√
Q

G
rh (τ + 2(r∗(rc)− r∗(r0))) ,

(3.24)

resulting to the following rate of growth for the on shell action

dI

dt
=
`

4

√
Q

G
(rm + 2rh), (3.25)

which approaches a constant at late time

dI

dt
= 3

`

4

√
Q

G
rh =

3

2
SBHT . (3.26)

Note that the same as previous one, had not we considered the inside surface cutoff, the

complexity growth would have been zero at the late time.

2See [23] for non-constant dilation solution of the model.
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4 Conclusions

In this paper we have studied holographic complexity for an AdS black brane geometry

with a radial cutoff using CA proposal. Within this explicit example we have found that as

soon as one sets a UV cutoff at the boundary the model enforces us to have a cutoff behind

the horizon whose value is fixed by the UV cutoff. Indeed in the present case one has

1

rd+1
0

(√
rd+1

0

rd+1
h

− 1− 1

)
=

1

rd+1
c

(√
1− rd+1

c

rd+1
h

− 1

)2

. (4.1)

It is worth mentioning that in order to get a consistent result fulfilling the Lloyd’s bound

it was crucial to consider the contribution of certain counter term on the cutoff surface

behind the horizon.

In this paper we have only considered uncharged black hole with flat boundary. It

would be interesting to find an expression for behind the horizon cutoff in terms of the UV

cutoff for a general charged black hole. In general the cutoff r0 is a function of UV cutoff;

r0 = r0(rh, rc), though it might not have such a simple expression as above. Actually this

relation should be intuitively understood from the fact that the energy is a charge defined

at the boundary while the late time behavior of complexity is evaluated from the action

behind the horizon. Indeed this is an interesting feature of complexity that could probe an

object behind the horizon that quantities we are more familiar with (such an correlation

functions) cannot do.

If our result works for a generic black hole, it means that near singularity modes may

be regularized through a UV cutoff. It is, however, important to note that our conclusion

will not affect the results people have found so far in the literature, though it might shed

light on some new problems such as how to deal with Riemann tensor squared.

Actually in order to explore the importance of our result we have studied holographic

complexity for AdS2 vacuum solutions in certain two different Maxwell-Dilaton gravities.

We have found that the complexity is finite at late times if one does not consider the cutoff

enforced by the UV cutoff, that seems counter intuitive. Indeed one would expect that

the complexity exhibits linear growth at the late time. On the other hand if one consid-

ers behind the horizon cutoff fixed by the UV cutoff, indeed one gets the corresponding

linear growth.

Two dimensional AdS solutions we have considered were supported by a constant

Dilaton, though it would be interesting to consider the case where the Dilaton is not

constant. This might be more interesting as it could provide a holographic dual for SYK

model [24–26] (see for example [27–29]).

Note added. While we were in the final stage of our work, the paper [30] appeared in

the arXiv where the complexity of two dimensional gravity has also been studied. In this

paper the authors resolved the undesired late time behavior by adding a new charge to

the model. This in fact could be naturally accommodated if one considers the model as a

dimensionally reduced four dimensional RN black hole.
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