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Mixing among lowest-lying scalar mesons and scalar glueball

Hajar Noshad a ∗, S. Mohammad Zebarjad a †, and Soodeh Zarepour b ‡
a Physics Department and Biruni Observatory, Shiraz University, Shiraz 71454, Iran, and

b Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran
(Dated: July 17, 2018)

Scalar glueball is implemented in single nonet linear sigma model (SNLSM) which basically in-
cludes lowest lying scalar and pseudoscalar mesons. Our new version of SNLSM involves mixing
among scalar matter fields and glueball field which is enforced by scale symmetry considerations
and the associated anomaly. Performing iterative Monte Carlo simulations, it is found that among
the three candidates of scalar glueball, i.e., f0(1370), f0(1500) and f0(1710), only f0(1500) is pre-
dominately a glueball state with the mass prediction of 1.566 ± 0.046 GeV and the other two are
predominately quarkonium. The ππ, πK and πη scatterings are reinvestigated in the presence of
scalar glueball and it is found that the overall behavior of the real part of the K-matrix unitarized
ππ scattering amplitude is more compatible with observed data compared with the case of SNLSM
without glueball. We have also presented the predictions of the model for the masses and decay
widths of the scalars obtained from the poles of the K-matrix unitarized ππ, πK and πη scattering
amplitudes. Moreover the ππ scattering phase shift predicted by our model is compared with the
prediction of generalized linear sigma model (GLSM) which contains two nonets of scalar mesons
and two nonets of pseudoscalar mesons (a quark-antiquark nonet and a four-quark nonet). Despite
the fact that at this stage our model lacks the second meson nonet above 1 GeV, its prediction for
the ππ scattering phase shift is close to the prediction of GLSM for

√
s < 1.1 GeV and in better

agreement with experimental data for
√
s > 1.1 GeV in comparison with GLSM.

PACS numbers: 14.80.Bn, 11.30.Rd, 12.39.Fe

I. INTRODUCTION

The non-perturbative behavior of QCD at low-energy can be studied using effective field theory approaches such as
chiral perturbation theory (ChPT) [1–5], single nonet linear sigma model (SNLSM) [6–8], generalized linear sigma
model (GLSM) [9–15], nonlinear chiral Lagrangian models [16–21] and extended linear sigma model (eLSM) [22–27].
The basic feature of all these effective theories is to respect the symmetries of the underlying theory such as chiral
symmetry.
Single nonet linear sigma model (SNLSM) is a version of linear sigma model which is formulated in terms of nine

scalar fields below 1 GeV (the light and broad isosinglet f0(500) or sigma, the isodoublet K∗(800) or kappa and the
two states approximately degenerate, isosinglet f0(980) and isovector a0(980)) and nine pseudoscalar fields below 1
GeV (the isosinglet eta’s η(547) and η′(958), the isodoublet K(496) and the isovector π(137)). The properties of these
mesons in this model are studied based on a quark-antiquark substructure. Single nonet linear sigma model provides
a reasonable matching among ππ and πK scattering amplitudes and experimental data up to nearly 1 GeV[28].
However, it cannot simultaneously describe the quark contents and the mass spectrum for some scalars. For example,
according to the substructure qq̄ , the mass of K∗[800] with quark content us̄ seems to be heavier than the mass of
a0(980) with structure ud̄, while we know kappa meson is lighter than a0(980). Therefore, the light scalar mesons
do not follow the purely quark-antiquark combinations and we need to include other substructures for these mesons.
The MIT bag model [29–32] gives a solution for this puzzle by considering the light scalar mesons as four-quark
states. Many other models such as KK̄ molecule, unitarized quark model and QCD sum-rules have been applied to
understand the nature of scalar [33–49].
Furthermore, while the scalar mesons above 1 GeV are generally expected to be qq̄ states, however study their

masses and decay widths shows that a small component of four-quark substructure has to be include for these mesons.
Therefore, mixing among quark-antiquark components and four-quark components seems to be a reasonable solution
to describe the quark substructure of scalars below and above 1 GeV [16, 50–52]. This mixing is the basic idea of the
generalized linear sigma model (GLSM)[12, 13]. This model is made of two nonets of scalar mesons and two nonets of
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pseudoscalar mesons (one of qq̄ type and the other of qqq̄q̄ type) for which the mixing among two and four quark nonets
is preformed. This model can greatly improve the results of SNLSM for decay widths, masses and quark components
of mesons below 1 GeV and also in some cases above 1 GeV. Moreover, in GLSM, the obtained scattering amplitudes
for ππ [53] and πK [54] are in good agreement with the experimental data up to 1 GeV. However, the predictions of
the model for the mentioned scattering amplitudes for the energy region above 1 GeV is far from experiment. Also
the model fails to obtain acceptable decay widths and masses for states above 1 GeV.
On the other hand we know that glueballs, bound state of glouns with integer spins, should also be considered in the

Lagrangian of the model to complete the spectrum of mesons. The glueballs have not already been included in GLSM
and also in SNLSM with a specific potential and as a consequence the model cannot determine the percentages of
glueball components of scalar mesons. Therefore, it is inevitable to implement scalar glueball field in the Lagrangian
of this effective field theory by enforcing the scale symmetry and also taking into account trace anomaly.
To avoid the complexity due to the large number of involving parameters in GLSM while adding scalar glueball, it

is convincing to consider the mixing of glueball with the scalar mesons of the same quantum numbers [55, 56] first in
SNLSM. Albeit our model lacks the meson nonet above 1 GeV except for the lightest scalar glueball and also does not
consider the possibility of multiquark/molecular states at this stage, we will see that some interesting results emerge
which encourages us to further study mixing of glueball with the second nonet in the framework of GLSM.
In this paper, we investigate the effect of adding the lightest scalar glueball with the quantum number JPC = 0++

on the properties of scalar mesons such as their decay widths, masses and quark components in the framework of
SNLSM. In order to dig deeper and understand the effect of adding scalar glueball a bit better, we have recalculated
the K-matrix unitarized amplitudes of ππ, πK and πη scatterings in the presence of the scalar glueball and compared
our numerical results with the predictions of SNLSM without glueball and also the GLSM predictions.
There are three possible candidates for the scalar glueball of our modified version of SNLSM. These candidates are

f0(1370) (scenario I), f0(1500) (scenario II) and f0(1710) (scenario III). At present there is no agreement in literature
that among the two strongest candidates, i.e., f0(1500) and f0(1710), which one is the lightest scalar glueball. While
in [23, 57–61], f0(1500) is believed to be mostly gluonic, in [62, 63] f0(1710) was argued to be an unmixed scalar
glueball. Moreover the mass obtained from Lattice calculations for the 0++ glueball candidate is around 1600− 1700
MeV with the uncertainty of 100 MeV. It is noteworthy that in lattice calculations the mixing of glueball field with
isosinglet scalar mesons was not considered [62, 64–68] .
This paper is organized as follows: In Sec. II, we give a brief review of single nonet without glueball and will present

its predictions for the masses and decay widths of the scalar and pseudoscalar mesons below 1 GeV. In Sec. III, we
explore the effect of adding scalar glueball to the SNLSM and present the numerical results. Finally in Sec. IV, the
results are summarized and discussed.

II. BRIEF REVIEW OF THE SINGLE NONET LINEAR SIGMA MODEL

The general form of the Lagrangian density of the linear SU(3) sigma model is [28]

L = −1

2
Tr
(
∂μM∂μM

†)− V0 (M)− VSB , (2.1)

where M is the 3× 3 chiral field constructed from scalar S and pseudoscalar φ matrices

M = S + iφ, (2.2)

with the quark-antiquark substructure of

M b
a = (qbA)

†
γ4

1 + γ5
2

qaA = ( ¯qbA)R (qaA)L , (2.3)

where a and A indicate flavor and color indices respectively and qL and qR are left and right handed quark projections.
Under a chiral transformation, M transforms as

M → ULMU †
R. (2.4)

Moreover, V0 is an arbitrary function of the independent non derivative SU(3)L×SU(3)R×U(1)V (but not necessarily
U(1)A) invariants formed out ofM and VSB is a symmetry breaking term. Without knowing details of V0 and just from
chiral symmetry considerations, i.e., using generating equations, it is possible to compute the masses of pseudoscalars
and some of the scalar mesons (two-point vertices) and also the three- and four-point vertices [7, 69]. However, in such
a way, the masses of the lowest lying isoscalars, σ and f0(980), and also their mixing angle θs, the mass of isovector
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a0(980) and consequently the related three-point vertices are not perfectly predicted. Hence, in this paper we prefer
to make a specific choice for V0 in order to have more predictions.
We note that there is an infinite number of chiral invariant terms to be chosen for V0. A systematic way for limiting
the number of terms is based on the number of underlying quark and antiquark lines in each term in the potential.
Keeping the terms with twelve or fewer quark and anti quark lines at each effective vertex (N ≤ 12), the potential is
given by

V0 = c2 Tr(MM†) + ca4 Tr(MM†MM†) + cb4

(
Tr(MM†)

)2
+ ca6 Tr(MM†MM†MM†)

+ cb6

(
Tr(MM†)

)3
+ c3

[
ln
( detM

detM†
)]2

. (2.5)

Except for the last term, all the terms are invariant under U(1)A. The explicit chiral symmetry breaking term which
imposes the quark masses has the minimal form

VSB = −Tr
(
A(M+M†)

)
= −2(A1S

1
1 +A2S

2
2 +A3S

3
3), (2.6)

where A1, A2 and A3 are proportional to the three light quark masses (i.e., in the isospin invariant limit A1 = A2 ∝
mu = md and A3 ∝ ms). The ground state should satisfy the minimum condition〈

∂V0

∂S

〉
0

+

〈
∂VSB

∂S

〉
0

= 0, (2.7)

where the equilibrium values of scalar and pseudoscalar fields S, φ are respectively

〈Sa
b 〉0 = δbaαa, 〈φa

b 〉0 = 0. (2.8)

In the isospin invariant limit, whereas A1 =A2 �= A3, α1 = α2 �= α3, there are ten unknown parameters to be
determined: six coupling constants (c2, c

a
4 , c

b
4, c

a
6 , c

b
6, c3), two mass quark parameters (A1, A3) and two vacuum

values (α1, α3). The two minimum equations reduce the number of independent parameters to eight. Except for
c3 which only affects the isosinglet pseudoscalars properties, other Lagrangian parameters are determined using an
iterative Monte Carlo simulation. This goal may be achieved by minimizing the following χ0 function which leads to
the predictions of the model for physical masses and decay widths of scalars

χ0(c2, c
a
4 , ...) = Σ4

i=1

|qexp.i − qtheo.i (c2, c
a
4 , ...)|

qexp.i

=
|mexp.

σ −mtheo.
σ |

mexp.
σ

+
|Γexp.

σ − Γtheo.
σ |

Γexp.
σ

+
|mexp.

f0(980)
−mtheo.

f0(980)
|

mexp.
f0(980)

+
|Γexp.

f0(980)
− Γtheo.

f0(980)
|

Γexp.
f0(980)

+
|mexp.

a0(980)
−mtheo.

a0(980)
|

mexp.
a0(980)

+
|Γexp.

a0(980)
− Γtheo.

a0(980)
|

Γexp.
a0(980)

+
|mexp.

κ −mtheo.
κ |

mexp.
κ

+
|Γexp.

κ − Γtheo.
κ |

Γexp.
κ

(2.9)

Where qexp.i represent the central values of experimental masses (decay widths) of the scalars (Table I) and qtheo.i

denote the predictions of the model for their physical masses (decay widths).
The remaining c3 parameter which only affects the η and η′ properties can be determined using the trace of the

isosinglet pseudoscalar 2× 2 square mass matrix (M2
η )

Tr(M2
η) = Tr(M2

η)exp. (2.10)

The bare masses and decay widths of scalar mesons obtained from Lagrangian (2.1) are shifted to their physical
values using the K-matrix unitarization method. This method which enforces the exact unitarity of the scattering
amplitude, takes into account the effects of the final state interactions in ππ, πK and πη scatterings. The isoscalar,
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TABLE I: Experimental masses and decay widths of isosinglet scalars below 2 GeV, isodoublet κ, isotriplet a0(980) and
isosinglet pseudoscalars η and η′.

Experiment

Mass (GeV) Width (GeV)

f0(500) or σ 0.400 to 0.550 0.400 to 0.700

f0(980) 0.990± 0.020 0.040 to 0.100

f0(1370) 1.200 to 1.500 0.200 to 0.500

f0(1500) 1.505± 0.006 0.109± 0.007

f0(1710) 1.720± 0.006 0.135± 0.008

K∗
0 (800) or κ 0.682± 0.029 0.547± 0.024

a0(980) 0.980± 0.020 0.050 to 0.100

η 0.547862± 17× 10−6 (0.131± 0.00005)× 10−6

η′ 0.95778± 6× 10−5 0.000197± 9× 10−6

isodoublet and isotriplet physical masses (widths) are determined from the poles of the ππ, πK and πη K-matrix
unitarized amplitudes. In Appendix A, this method is reviewed for ππ, πK and πη scatterings.
The typical results of the Monte Carlo minimization for the parameters of the model are given in Table II and for

the physical masses and decay widths of the scalar and pseudoscalar mesons are given in Tables III and IV. It should
be mentioned that since after running the code with different sets of random numbers, we never get χ0’s less than
(χ0)exp. = 1.414, therefore we have extended the acceptable bound beyond the experimental value, for this case to
χ0 < 3(χ0)exp.. Reported masses and decay widths in Tables III and IV denote averages and standard deviations over
this extended bound, i.e., the sets of masses and decay widths for which χ0 < 3(χ0)exp.. It can be seen that while
the predictions of the SNLSM without including glueball in the Lagrangian, for sigma mass and decay width and also
for kappa mass overlap with the experimental range, other predictions are not too close to experimental data. For
pseudoscalars the predicted masses and decay constants are in the experimental range or very close to it (Table IV).
It should be emphasized that in the present order of the potential, the percentage of s-quark component of f0(980)
is nearly 100% (Table V) and therefore its coupling to pions is weak, i.e., γf0ππ ∼ 0, and since ππ is the dominant
decay channel of f0(980), the prediction of the model for decay width of f0(980) is very close to zero (Table III).

TABLE II: Typical predicted Lagrangian parameters: c2, c
a
4 , c

b
4, c

a
6 , c

b
6, c3, A1, A3 and vacuum parameters: α1, α3 for SNLSM

without glueball for χ0 = 2.4.

c2 (GeV2) ca4 cb4 ca6 (GeV−2) cb6 (GeV−2)

−1.72× 10−1 21.0 4.66× 10−2 7.76× 10−2 4.67× 10−2

c3 (GeV4) A1 (GeV3) A3 (GeV3) α1 (GeV) α3 (GeV)

−1.73× 10−4 6.15× 10−4 1.84× 10−2 6.55× 10−2 9.35× 10−2

The model predictions for the real parts of the K-matrix unitarized ππ, πK and πη scattering amplitudes are given
in Fig. 1. The predictions agree with data up to about 900 MeV for ππ and πK scatterings while due to the lack of
experimental data for the πη scattering, it is not clear if the predictions are acceptable or not. For above 1 GeV, the
model lacks any structure and flattens to a constant value for all these three scattering amplitudes.

III. INCLUDING SCALAR GLUEBALL IN SINGLE NONET LINEAR SIGMA MODEL

While the classical Yang-Mills theory with massless quarks is invariant under the scale transformation xμ → λ−1xμ,
this symmetry is broken at the quantum level (due to the fact that the running coupling constant g(μ) depends on
the energy scale μ). As a consequence, the divergence of the dilatation current does not vanish and it equals to the
trace of the energy-momentum tensor
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TABLE III: Predictions of SNLSM without including scalar glueball for masses and decay widths of scalars below 1 GeV. Note
that since γf0ππ is close to zero, the decay width of f0(980) is near to zero.

Width (GeV) Mass (GeV)

σ 0.562± 0.022 0.454± 0.001

f0(980) 2.310× 10−6 ± 5.505× 10−7 1.362± 0.229

κ 0.524± 0.020 0.796± 0.007

a0(980) 0.150± 0.028 0.867± 0.017

TABLE IV: Predictions of SNLSM without including scalar glueball for masses and decay constants of pseudoscalars below 1
GeV.

Mass (GeV) Decay constant (GeV)

π 0.137± 2.8× 10−5 0.131± 4.94× 10−5

K 0.486± 0.007 0.156± 0.0018

η 0.528± 0.007

η′ 0.968± 0.004

√
s (GeV)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
e
(T

0 0
)

-0.5

-0.3

-0.1

0.1

0.3

0.5
ππ scattering

√
s (GeV)

0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
e
(T

1 2 0
)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
πK scattering

√
s (GeV)

0.5 1 1.5 2

R
e
(T

1 0
)

-0.5

-0.3

-0.1

0.1

0.3

0.5
πη scattering

FIG. 1: Predictions of SNLSM without scalar glueball for the real part of the K-matrix unitarized ππ, πK and πη scattering
amplitudes. Up to about 900 MeV the predictions agree with experimental data for ππ and πK scatterings. There is no data
for πη scattering amplitude.
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TABLE V: The estimate of SNLSM without glueball for the percentages of strange and non-strange quark components of
isoscalars.

uū+dd̄√
2

ss̄

f0(500) 99.999± 4.311× 10−5 8.499× 10−4 ± 4.311× 10−5

f0(980) 8.499× 10−4 ± 4.311× 10−5 99.999± 4.311× 10−5

∂μD
μ = θμμ = −β(g)

4g
Ga

μνGμνa, (3.1)

where θμμ is the trace of energy-momentum tensor, Ga
μν denotes the Yang-Mills field strength tensor and β(g) is the

β-function given by β(g) = ∂g/∂ lnμ =
(11− 2Nf

3 )g3

16π2
+ ..., where Nf is the number of quark flavors.

In addition, the non-vanishing expectation value of the trace anomaly is proportional to the gluon condensate

〈θμμ〉 =
11− 2Nf

3

16

〈αs

π
GμνG

μν
〉
=

11− 2Nf

3

16
C4, (3.2)

where αs =
g2

4π
is the strong fine-structure constant and the numerical value of C is in the range 0.3−0.6 GeV, where

the lower bound of the interval mainly comes from QCD sum-rules [70–75] and the upper bound from lattice QCD
[76–84].
To mimic Eq. (3.1) in our effective theory, we need to implement a scalar glueball (JPC = 0++) h field with scale

dimension 1 in the Lagrangian (2.5) which satisfies

θμμ =
1

γ4
h4, (3.3)

where γ is a dimensionless constant.
To achieve this goal, let us consider a potential Vh constructed out of two sets of real scalar fields ηa and ξa, with the

mass dimensions of 1 and 4 respectively. It has been shown that for this potential the trace of the energy-momentum
tensor (θμμ) reads [85]

θμμ = Σa(ηa
∂Vh

∂ηa
+ 4ξa

∂Vh

∂ξa
)− 4Vh, (3.4)

which vanishes when Vh is scale invariant. We can now choose fields ηa as of M and M† and the fields ξa as glueball
h. Therefore, Eq. (3.4) reads

θμμ = Tr
(
M

∂Vh

∂M
+M † ∂Vh

∂M†
)
+ h

∂Vh

∂h
− 4Vh. (3.5)

Now, we have to look for Vh in terms of h, M and M † in such a way that the obtained θμμ satisfies Eq. (3.3). This aim

is achieved by considering the terms of the form h4Σm(cm/m)ln(Rm/Λm) with the constraint of Σmcm = 1, where
m is the scale dimension of Rm [85]. Rm is an arbitrary function of H and independent invariants made from M
and M† (such as det(MM†)). Following this argument, one can check with the help of Eq. (3.5), that the following
potential with the constraint of c+ c′ = 1, where c and c′ are real coefficients, satisfies Eq. (3.3)

Lh = −1

2
∂μh∂

μh− Vh

= −1

2
∂μh∂

μh− c

4γ4
ln
( h4

γ4Λ4

)
h4 − c′

6γ4
ln
(det(MM†)

Λ6

)
h4, (3.6)

where Λ is a scale parameter with dimensions of mass and can be identified as a particular kind of QCD scale
parameter.
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Putting Eqs. (2.1) and (3.6) together, the effective Lagrangian involving matter and glueball can be written as

L = − 1

2
Tr
(
∂μM∂μM†)− 1

2
∂μh∂

μh− c2
γ2

Tr(MM†)h2 − ca4Tr(MM†MM†)

− cb4

(
Tr(MM†)

)2
− ca6γ

2Tr(MM†MM†MM†)
h2

− cb6γ
2

(
Tr(MM†)

)3
h2

− c3
γ4

[
ln
( detM

detM†
)]2

h4 − c

4γ4
ln
( h4

γ4Λ4

)
h4 − c′

6γ4
ln
(det(MM †)

Λ6

)
h4 − 2Tr(AS). (3.7)

It is worth mentioning that the terms with coefficients c2, c
a
6 and cb6 of the Lagrangian are modified due to scale

invariance, i.e., the trace of the energy-momentum tensor θμμ for these terms must equal to zero.
Expanding the potential around the minimum of the dilaton field, h = h + h0, and setting 〈∂V/∂h〉 = 0, Λ is

obtained as

Λ = Exp
[ c
4
+

γ2

2h6
0

(
c2h

4
0(2α

2
1 + α2

3)− ca6γ
4(2α6

1 + α6
3)− cb6(2α

2
1 + α2

3)
3
)]

hc
0γ

−cα
2(1−c)

3
1 α

(1−c)
3

3 . (3.8)

Substituting Λ in Eq. (3.7), we finally obtain

L = − 1

2
Tr
(
∂μM∂μM†)− 1

2
∂μh∂

μh− c2
γ2

Tr(MM†)h2 − ca4Tr(MM†MM†)

− cb4

(
Tr(MM†)

)2
− ca6γ

2Tr(MM†MM†MM†)
h2

− cb6γ
2

(
Tr(MM†)

)3
h2

(3.9)

−
[
cb6γ

2 (2α
2
1 + α2

3)
3

2h6
0

+ ca6γ
2 (2α

6
1 + α6

3)

2h6
0

− c2
γ2

(2α2
1 + α2

3)

2h2
0

]
h4 − 2Tr(AS)

− (1− c′)
γ4

(−1

4
+ ln(

h

h0
)
)
h4 − c′

6γ4
ln
(det(MM†)

α4
1α

2
3

)
h4 − c3

γ4

[
ln
( detM

detM†
)]2

h4.

Therefore, we have a Lagrangian with twelve unknown coefficients (c2, c
a
4 , c

b
4, c

a
6 , c

b
6, γ, h0, c

′
, α1, α3, A1, A3). To

obtain these unknown parameters, we again apply an iterative Monte-Carlo simulation as in the previous section but
now replacing the function χ0 with the following χ function which should be minimized

χ = χ0 +
|mexp.

f3
−mtheo.

f3
|

mexp
f3

+
|Γexp.

f3
− Γtheo.

f3
|

Γexp.
f3

,

where f3 is one of the three isoscalar scalars above 1 GeV, i.e., f0(1370), f0(1500) and f0(1710). This leads to three
scenarios which are studied in this work. The predictions of SNLSM in the presence of scalar glueball are presented
in Tables VII-X and Figs 2- 8. Note that for scenarios I and III, the minimum χ’s obtained from iterative Monte
Carlo simulations are greater than their corresponding (χ)exp. which equals 1.954 for the first and 1.477 for the third
scenario. The reported average values and the standard deviations for these scenarios are obtained from the sets for
which χ < 3(χ)exp.. However, for scenario II, we find sets for which χ’s are less than (χ)exp.(= 1.483) and the reported
averages are calculated over these sets. The typical Lagrangian parameters for this scenario are given in Table VI for
χ = 1.1.
In Tables VII-IX, the percentages of quark and glue components of the lowest lying isoscalars besides the ones for

f0(1370), f0(1500) and f0(1710) are displayed for the three scenarios. Comparing these three tables, we can see that
for scenario II (Table VIII), 77.36 % of f0(1500) is made of glue component which shows f0(1500) can be considered as
the scalar glueball. Also for this scenario, the strange component of f0(980) is 80.10% and the light quark percentage
of f0(500) is about 85.74%. As a matter of fact, due to the quark model and also the strong coupling of f0(980)
to kaons, the structure of f0(980) can be considered as a pure strange quarkonium ss̄ [34, 35, 86] and f0(500) as a

(uū + dd̄)/
√
2 state[87]. The predictions of the first and the third scenarios which show a large glueball component

for σ and f0(980) are not consistent with the common interpretation of them as quark states (f0(980) is a multiquark
[30, 88] or KK̄ bound state [33] with sizable s-quark content and σ is a multiquark with considerable u−d component
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TABLE VI: Typical predicted Lagrangian parameters: c2, c
a
4 , c

b
4, c

a
6 , c

b
6, c3, c

′, h0, γ, A1, A3 and vacuum parameters: α1, α3

for SNLSM with glueball for χ = 1.1 (scenario II).

c2 ca4 cb4 ca6 cb6

−3.34 17.2 4.27× 10−2 8.35× 10−2 3.42× 10−2

c3 c′ h0 (GeV) γ

−1.08× 10−1 −2.36× 10−2 7.73× 10−2 3.78× 10−1

A1 (GeV3) A3 (GeV3) α1 (GeV) α3 (GeV)

6.15× 10−4 1.51× 10−2 6.55× 10−2 9.32× 10−2

1).

TABLE VII: The estimate of the model for the percentages of quark and glue components of isoscalars for scenario I.

uū+dd̄√
2

ss̄ G

f0(500) 45.80± 35.38 0.56± 0.51 53.63± 35.29

f0(980) 54.08± 35.44 2.36± 2.32 43.54± 33.65

f0(1370) 00.11± 0.12 97.06± 2.50 2.82± 2.39

TABLE VIII: The estimate of the model for the percentages of quark and glue components of isoscalars for scenario II.

uū+dd̄√
2

ss̄ G

f0(500) 85.74± 0.59 3.05± 0.23 11.20± 0.80

f0(980) 8.46± 0.48 80.10± 2.72 11.42± 2.25

f0(1500) 5.79± 0.13 16.84± 2.94 77.36± 3.03

TABLE IX: The estimate of the model for the percentages of quark and glue components of isoscalars for scenario III.

uū+dd̄√
2

ss̄ G

f0(500) 51.52± 34.74 0.66± 0.59 47.81± 34.78

f0(980) 48.13± 34.96 5.17± 7.51 46.68± 32.03

f0(1710) 0.34± 0.62 94.15± 7.94 5.50± 7.33

In Table X, the predictions of the model for the masses and decay constants of pseudoscalar mesons are given. As
we expected, the results are almost the same as those presented in Table IV; the scalar glueball should not affect the
pseudoscalar sector of the Lagrangian.

1 The multiquark or molecule structures for isosinglet scalars can not be predicted in our model, which only contains qq̄ nonet. Therefore,
our model predicts f0(980) and f0(500) as predominately ss̄ and (uū+ dd̄)/

√
2, respectively.
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TABLE X: Prediction of SNLSM in the presence of the scalar glueball for the masses and decay constants of pseudoscalars
below 1 GeV for scenario II.

Mass (GeV) Decay constant (GeV)

π 0.137± 2.67× 10−5 0.131± 5.5× 10−5

K 0.448± 0.005 0.158± 3.86× 10−4

η 0.496± 0.005

η′ 0.985± 0.002

As it is seen from Figs. 2-4, the predictions of the model for the masses and decay widths of f0(500) and f0(980)
are in experimental range or very close to it. However, only for scenario II the decay width of the third scalar, i.e.,
f0(1500) does match with the experimental range. This again confirms that f0(1500) is a preferred candidate for the
scalar glueball.
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FIG. 2: Masses and decay widths of isosinglet scalar mesons obtained from the Monte Carlo simulation for scenario I (pluses)
are compared with their experimental values in Table I (solid circles with error bars). In order to compare predictions with
the experimental data easier, also the average values (triangles) and standard deviations around the averages (error bars) are
depicted. The masses and decay widths of f0(500) and f0(980) are in the experimental range but the predicted decay width of
f0(1370) is too small compared with the experimental data.

It is clear from Fig. 5 that for all scenarios the average predicted masses and decay widths for K∗
0 (800) and also

the average predicted masses for a0(980) are not in the experimental ranges but close to them. As it was expected,
the masses and decay widths of these mesons have not been considerably affected by adding the scalar glueball in
the Lagrangian and therefore for this case none of the scenarios is simply preferable to another. Just for a0(980),
the predicted decay width is in better agreement with experimental range compared with the prediction of SNLSM
(Table III).
Also, we have plotted the predictions of the model for the K-matrix unitarized ππ scattering amplitude for three

scenarios for typical values of χ to see if a better agreement with experiment is obtained. From Fig. 6 it is clear that
while the agreement with experimental data up to 1 GeV is almost lost compared with the case of SNLSM without
glueball (Fig. 1), the mathematical form of the real part of the amplitude is now analogous to experiment up to about
2 GeV (it is more clear for scenarios II and III). For scenarios II and III, not only the similarity in mathematical
structure is seen, but also there are some regions above 1 GeV for which the curve of predictions goes through the
experimental range. Motivated by this similarity in shape, we are encouraged to follow the same procedure and
implement glueball in GLSM (See Appendix B) which does not show good agreement with experimental data above
1 GeV.
Finally, it is shown in Fig. 7 that adding the scalar glueball shifts the K-matrix πK scattering amplitude slightly

for scenarios I and III and considerably for scenario II in the sense that in this case less agreement with experimental
data is achieved for scenario II compared with the case of SNLSM without glueball. Note that adding glueball does
not affect the mathematical form of the K-matrix unitarized scattering amplitudes of πK nor the πη (Fig. 8) in
contrast to ππ.
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FIG. 3: Masses and decay widths of isosinglet scalar mesons obtained from the Monte Carlo simulation for scenario II (pluses)
are compared with their experimental values in Table I (solid circles with error bars). In order to compare predictions with
the experimental data easier, also the average values (triangles) and standard deviations around the averages (error bars) are
depicted. The predicted masses and decay widths of all the three isoscalars are in the experimental range.
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FIG. 4: Masses and decay widths of isosinglet scalar mesons obtained from the Monte Carlo simulation for scenario III (pluses)
are compared with their experimental values in Table I (solid circles with error bars). In order to compare predictions with
the experimental data easier, also the average values (triangles) and standard deviations around the averages (error bars) are
depicted. The masses and decay widths of f0(500) and f0(980) are in the experimental range but the predicted decay width of
f0(1710) is too small compared with the experimental data.
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FIG. 5: Predictions of the model for masses and decay widths of kappa and a0(980) (pluses) for scenario I (the first row), II
(the middle row) and III (the last row), compared with the experimental inputs presented in Table I (solid circles with error
bars). In order to compare predictions with the experimental data easier, also the average values (triangles) and standard
deviations around the averages (error bars) are depicted. The predictions of all three scenarios are very close to each other
and similar to SNLSM results. As expected, including scalar glueball, does not have considerable effect on the properties of
these mesons. Just for a0(980), the predicted decay width is in better agreement with experimental range compared with the
prediction of SNLSM (Table III).
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FIG. 6: Real part of the K-matrix unitarized ππ scattering amplitude for scenarios I, II, III (solid line: SNLSM with glueball
and dot-dashed line: SNLSM without glueball). While the agreement with experimental data up to about 1 GeV is almost
lost after adding glueball, compared with the case of SNLSM without glueball, the mathematical form of the real part of the
amplitude is now in better agreement with experiment for the region above 1 GeV (especially for scenario II and III).
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FIG. 7: Real part of the K-matrix unitarized πK scattering amplitude for scenarios I, II, III (solid line: SNLSM with glueball
and dot-dashed line: SNLSM without glueball). Less agreement with experimental data is achieved in the case of adding
glueball (scenario II) compared with the case of SNLSM without glueball.
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FIG. 8: Real part of the K-matrix unitarized πη scattering amplitude for scenarios I, II, III (solid line: SNLSM with glueball
and dot-dashed line: SNLSM without glueball). As yet there is no experimental data.

IV. SUMMERY AND CONCLUSION

In this paper, we have studied the effect of adding a scalar glueball to the SNLSM to study the properties of scalar
and pseudoscalar mesons. The glueball has been mixed with the matter field to improve the results of SNLSM. It
has been shown that among the three different scenarios for choosing the scalar glueball, i.e., f0(1370), f0(1500)
and f0(1710), f0(1500) is an appropriate candidate (scenario II). The predictions of SNLSM with and without scalar
glueball are presented in Table XI. It can be seen that the predictions with glueball (second column) have been
improved compared with the ones without glueball (first column). Since γf2ππ is very close to zero in SNLSM without
glueball, therefore the decay width of f0(980) can not be determined in this model, but after adding the scalar glueball,
not only we get 0.07 GeV for its decay width which agrees with experimental data but also its mass reduces from
1.362 GeV to 1.066 GeV which indeed is in better agreement with experiment. Moreover, The decay width of a0(980)
gets the value 0.070 GeV which is a better prediction.
Furthermore, it would be very interesting to compare our results to those obtained in generalized linear sigma

model (GLSM) [12, 53, 89], where mixing among qq and qqqq has been performed with two nonets of scalars and two
nonets of pseudoscalars below and above 1 GeV. We would expect the predictions of GLSM to be in better agreement
with experiment compared with the predictions of SNLSM without glueball. This is made evident by comparing the
first column of Table XI with the first column of Table XII. It is interesting that adding a scalar glueball to SNLSM
does greatly modify this model to predict masses and decay widths in the experimental range or close to it (See
Table XI ). Although our model lacks the second meson nonet above 1 GeV, its predictions for masses and widths
are comparable with the results of GLSM which is believed to have a better structure of predicting the low energy
QCD. The comparison between these two models is given in Table XII and Fig 9. It is observed from Table XII
that the decay width of f0(980) is shifted from 0.207 GeV obtained from GLSM to 0.070 GeV in our model which is
closer to the experimental value. In Fig 9, we have compared the predictions of our model for the real part of the
K-matrix unitarized ππ scattering amplitude for scenario II (for the minimum achieved χ which equals 1.19) with
the results of GLSM for three different choices of m[π(1300)] and A3/A1 = 20, 30 [53, 89]. It can be seen that the
prediction of GLSM for the K-matrix unitarized ππ scattering amplitude for m[π(1300)] = 1.22 and A3/A1 = 30 is
in better agreement with experiment below 1 GeV, while adding scalar glueball to SNLSM (the solid line in Fig. 9)
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gives a better fit with the experimental data above 1 GeV. Also shown in Fig. 10 are the averages (triangles) and
standard deviations (error bars) of the prediction of GLSM for the real part of the K-matrix unitarized ππ scattering
amplitude resulted from variation of m[π(1300)] and A3/A1 . Comparing this with the average values (squares)
together with standard deviations (error bars) of SNLSM with glueball (stemming from averaging over all the sets
for which χ < χexp.), shows that up to about 1.1 GeV, the results coincide, although in some regions matching with
experiment (dots with error bars) is not seen. From Fig. 10 it can also be seen that while the predictions of SNLSM
with glueball for the region of 1.1− 1.7 GeV, do match with observed data, GLSM misses agreement with data.
In order to illustrate that GLSM does not succeed in predicting the behavior of data for regions above 1 GeV, it
is worthwhile to also compare its prediction for ππ scattering phase shift with those of SNLSM with and without
glueball. From Fig. 11, it is evident that while up to about 1 GeV, the prediction of SNLSM without glueball match
well with experiment, the prediction of SNLSM including glueball (scenario II) follows the behavior of data up to
about 1.5 GeV and the agreement with data is rather good for

√
s = 1.1−1.5 GeV. It is clear that for the energy region

below 1.1 GeV, the predictions of GLSM and our model are close and far from experiment but for
√
s > 1.1 GeV,

our model is consistent with observed data. Also it can be seen that the predictions of LO ChPT [90, 91, 91] with
different unitarization approaches are successful up to values of

√
s = 1.2 GeV and from there on a fair description of

data is achieved. Note that at this stage it does not make sense to compare the predictions of our model and [90, 92]
since the coupled channels are absent in our calculations.

TABLE XI: The estimate of SNLSM in the absence and presence of the scalar glueball for scenario II.

SNLSM without glueball SNLSM with glueball (scenario II) Experimental values

Width (GeV) Mass of decaying Width (GeV) Mass of decaying Width (GeV) Mass of decaying

particle (GeV) particle (GeV) particle (GeV)

σ 0.562± 0.022 0.454± 0.001 0.350± 0.009 0.460± 0.001 0.400 to 0.700 0.400 to 0.550

f0(980) 2.310× 10−6 ± 5.505× 10−7 1.362± 0.229 0.070± 0.001 1.066± 0.006 0.040 to 0.100 0.990± 0.020

f3 .. ... 0.077± 0.013 1.566± 0.046 0.109± .007 1.505± .006

K∗
0 (800) or κ 0.524± 0.020 0.796± 0.007 0.451± 0.001 0.765± 0.004 0.547± 0.024 0.682± 0.029

a0(980) 0.150± 0.028 0.867± 0.017 0.070± 009 0.777± 0.003 0.050 to 0.100 0.980± 0.020

TABLE XII: Predicted physical masses and decay widths of the lowest lying mesons in the absence of glueball in GLSM [53, 89]
and in the presence of it in SNLSM obtained from the unitarized amplitudes of ππ, πK and πη scatterings.

GLSM[53, 89] SNLSM with glueball

Width (GeV) Mass (GeV) Width (GeV) Mass (GeV)

σ 0.385± 0.061 0.476± 0.004 0.350± 0.009 0.460± 0.001

f0(980) 0.207± 0.065 1.053± 0.044 0.070± 0.001 1.066± 0.006

κ 0.689± 0.027 0.722± 0.028 0.451± 0.001 0.765± 0.004

a0(980) 0.060± 0.052 0.984± 0.007 0.070± 009 0.777± 0.003

The model presented in this paper clearly is more successful in predicting the masses and decay widths of the
scalar and pseudoscalar mesons and also the real part of the unitarized ππ scattering amplitude in comparison with
the standard SNLSM and also GLSM in some cases. However, it misses next-to-lowest lying scalar and pseudoscalar
mesons and also ignores mixing among two quark and four quark states and as a consequence cannot estimate four-
quark percentages of isoscalars. Furthermore, if we calculate gloun condensate from Eq. (3.2), we obtain C = 0.247
GeV which does not agree with the results of QCD sum-rules or lattice simulations. Using Eq. (3.8), the value of
Λ = 483 MeV is evaluated which is far from the expected value in PDG (332± 17 MeV) [93].
In view of the results presented in [89], the GLSM cannot estimate reasonable widths for some scalars above 1 GeV

[89]. We hope that adding the scalar glueball to GLSM will have a considerable effect on the predictions. Therefore,
the next step of this line of research would be adding scalar glueball to the GLSM Lagrangian.
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FIG. 9: A comparison of the real part of the K-matrix unitarized ππ scattering amplitude of our model (scenario II - for the set
with χ = 1.19) and the generalized linear sigma model (GLSM) for three different choices of m[π(1300)] and A3/A1 = 20, 30
[53, 89]. For above 1 GeV, the inclusion of glueball in SNLSM obviously improves the matching between the prediction of our
model and the experimental data.
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the K-matrix unitarized ππ scattering amplitude is compared with the average values (red squares) together with standard
deviations (error bars) of SNLSM with glueball. Up to about 1.1 GeV, the results coincide, although in some regions matching
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FIG. 11: The predictions of SNLSM for elastic ππ scattering phase shift with and without glueball resulted from unitarizing
with the K-matrix method are compared with the predictions of GLSM with the same unitarization approach (averaged on
different values of A3/A1 and m[π(1300)]) [53]. Also the predictions of LO ChPT resulted from two unitarizing approaches are
depicted: chiral unitary approach (for two choices of cutoff energy Λ = 1.1 and 1.2 GeV)[90, 91] and the N/D method [91, 92].
While up to about 1 GeV, the prediction of SNLSM without glueball match well with experiment, the prediction of SNLSM
including glueball (scenario II) follows the behavior of data up to about 1.5 GeV and the agreement with data is rather good
for

√
s = 1.1 − 1.5 GeV. It is clear that for the energy region below 1.1 GeV, the predictions of GLSM and our model are

close and far from experiment but for
√
s > 1.1 GeV, our model is consistent with observed data. Also it can be seen that the

predictions of LO ChPT with different unitarization approaches are successful up to values of
√
s = 1.2 GeV and from there on

a fair description of data is achieved. Note that at this stage it does not make sense to compare the predictions of our model
and [90, 92] since the coupled channels are absent in our calculations.

Appendix A: K-matrix unitarized amplitudes of ππ, πK and πη scatterings.

1. ππ scattering

The I = J = 0 bare partial wave scattering amplitude of ππ scattering consists of a constant background and two
or three poles corresponding to the two lowest-lying isosinglet scalars (σ and f0(980)) and f3 (which may be one of
the next to lowest lying isoscalar scalars in the case of adding glueball to the Lagrangian)

T 0
0
B
= Tα +

nf∑
i

T i
β

m2
fi
− s

, (A1)

with

Tα =
1

64π

√
1− 4m2

π

s

[
−5 γ(4)

ππ +
2

p2π

nf∑
i

γ2
fiππ ln

(
1 +

4p2π
m2

fi

)]
,

T i
β =

3

16π

√
1− 4m2

π

s
γ2
fiππ, (A2)
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where pπ =
√
s− 4m2

π/2 and nf is two (three) for single nonet without (with) glueball . The three and four point

couplings, i.e., γfiππ and γ
(4)
ππ , are defined by the Lagrangian density

−L = γ(4)
ππ (π · π)2 + γ

(4)
πKKKπ · π + γ(4)

πη ηηπ · π
+
γfiππ√

2
fiπ · π +

γfiKK√
2

fiKK +
γaKK√

2
Kτ · aK +

γκKπ√
2

(Kτ · πκ+H.c.)

+ γκKη (κKη +H.c.) + γκKη′ (κ̄Kη′ +H.c.) + γaπηa · πη + γaπη′a · πη′
+ γfiηηfiηη + γfiηη′fiηη

′ + γfiη′η′fiη
′η′ + · · · , (A3)

where the subscript i(= 1, 2 and 3) shows the different isosinglet meson states. These isomultiplets contain the physical
fields

K =

⎡
⎣ K+

K0

⎤
⎦ , K =

[
K− K

0
]
, κ =

⎡
⎣ κ+

κ0

⎤
⎦ , κ =

[
κ− κ0

]
,

π1 =
1√
2
(π+ + π−), π2 =

i√
2
(π+ − π−), π3 = π0,

a01 =
1√
2
(a+0 + a−0 ), a02 =

i√
2
(a+0 − a−0 ), a03 = a00. (A4)

Making use of Eq. (A3) and differentiating with respect to appropriate fields, the three and four point couplings are
related to bare couplings

γ(4)
ππ =

〈
∂4V

∂φ2
1∂φ

1
2∂φ

2
1∂φ

1
2

〉
0

, (A5)

and

γfiππ =
1√
2

∑
A

〈
∂3V

∂fA∂φ2
1∂φ

1
2

〉
0

(L0)Ai, (A6)

where A ia a placeholder for a, b, and c, that, respectively, represent the three bases in Eq. (A7)

F0 =

⎡
⎢⎢⎣
fa

fb

fc

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
S1
1 + S2

2√
2

∝ nn̄

S3
3 ∝ ss̄

αsGμνG
μν

⎤
⎥⎥⎥⎦ , (A7)

where n and s respectively denote the non-strange and strange quark content and Gμν is the field-strength tensor of
gluon fields. L0 in Eq. (A6) is the rotation matrix describing the underlying mixing among two (three) isoscalar fields

⎡
⎢⎢⎣
f1

f2

f3

⎤
⎥⎥⎦ = L−1

0 F0, (A8)

where f1 and f2 are clearly identified with f0(500) and f0(980) respectively, and f3 resembles one of the three isoscalar
scalars above 1 GeV, i.e., f0(1370), f0(1500) and f0(1710) which may represent the scalar glueball. F0 contains the
non-physical fields The bare couplings are given in Appendix C.
In order to consider final state interactions, avoiding the divergence of the bare amplitude at resonance masses and

also forcing unitarity of S-matrix at all s for the partial wave amplitude of ππ scattering, the K-matrix unitarization
method [53, 54, 95] which was originally introduced by Wigner [96] may be applied. In this method, the partial wave
bare amplitude T I B

l transforms to unitarized amplitude T I
l through the following equation

T I
l =

T I B
l

1− iT I B
l

, (A9)
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where I and l are the partial wave isospin and angular momentum. The physical masses (m̃i) and full decay widths

(Γ̃i) of the intermediate scalar mesons are found from the poles (zi) of the K-matrix unitarized amplitude

1− iT I B
l = 0 =⇒ zi = m̃2

i − im̃iΓ̃i. (A10)

With the potential of Eq. (2.5) and using Eq. (A1), we will find the ππ scattering bare amplitude. Inserting that
in Eq. (A10), the physical masses and widths of fi mesons can be found. Likewise, the physical masses and widths
of κ and a0(980) mesons are obtained from the roots of the denominator of (A9) for I = 1/2, J = 0 channel of πK
and I = 1, J = 0 channel of πη scatterings respectively.

2. πK scattering

The I = 1/2 πK tree level amplitude involves κ exchange in the s and u channels, fi exchanges in the t channel as
well as a four point contact term. The tree level invariant amplitude may be written as

A
1
2 (s, t, u) = −γ

(4)
πK +

3

2

γ2
κπK

m2
κi

− s
− 1

2

γ2
κπK

m2
κi

− u
+

nf∑
i=1

γfjKKγfiππ

m2
fi
− t

. (A11)

The couplings are defined by the Lagrangian density in Eq.(A3) and are related to bare couplings by

γ
(4)
πK =

〈
∂4V

∂φ2
1∂φ

1
2∂φ

3
1∂φ

1
3

〉
0

,

γκπK =
∑
a

〈
∂3V

∂φ2
1∂S

3
2∂φ

1
3

〉
0

,

γfiKK =
√
2
∑
A

〈
∂3V

∂fA∂φ3
1∂φ

1
3

〉
0

(L0)Ai. (A12)

The J = 0 partial wave amplitude can be found from

T
1
2B
0 =

ρ(s)

2

∫ 1

−1

d cos θP0(cos θ)A
1
2 (s, t, u), (A13)

with ρ(s) = q/(8π
√
s) where q is the center of mass momentum q = 1/(2

√
s)
√
(s− (mπ +mK)2)(s− (mπ −mK)2).

Performing the partial wave projection we find the “bare” I = 1/2, J = 0 amplitude

T
1
2B
0 =

ρ(s)

2

[
−2γ

(4)
πK + 3

γ2
κπK

m2
κ − s

− 1

4q2
γ2
κπK ln

(
Bκ + 1

Bκ − 1

)
+

1

2q2

nf∑
i=1

γfjKKγfiππ ln

(
1 +

4q2

m2
fi

)]
, (A14)

in which

Bκ =
1

2q2

[
(mκ)

2 −m2
K −m2

π + 2
√

(m2
π + q2)(m2

K + q2)

]
, (A15)

and the Mandelstam variables are expressed in terms of q and θ

t = 2m2
π − 2(q2 +m2

π) + 2q2 cos θ,

u = m2
π +m2

K + 2
√

(m2
π + q2)(m2

K + q2)− 2q2 cos θ. (A16)

Unitarizing the bare amplitude of (A14) via K-matrix method, the physical mass and width of κ resonance will be
predicted.
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3. πη scattering

To this end, the tree level I = 1 πη invariant amplitude is given by

A(s, t, u) = −γ(4)
πη +

nf∑
i=1

2
√
2 γfiππγfiηη
m2

fi
− t

+ γ2
aπη

[
1

m2
a − s

+
1

m2
a − u

]
, (A17)

where the coupling constants are defined as

γ(4)
πη =

∑
A,B

〈
∂4V

∂φ2
1∂φ

1
2∂ηA∂ηB

〉
0

(R0)A1(R0)B1,

γfiηη =
1

2

∑
A,B,C

〈
∂3V

∂fA∂ηB∂ηC

〉
0

(L0)A1(R0)B1(R0)C1,

γa0πη =
∑
A

〈
∂3V

∂S2
1∂ηA∂φ

1
2

〉
0

(R0)A1,

(A18)

where R0 is the I = 0 pseudoscalars rotation matrix⎡
⎣η1
η2

⎤
⎦ = R−1

0

⎡
⎣ηa
ηb

⎤
⎦ , (A19)

and ηa = (φ1
1 + φ2

2)/
√
2 and ηb = φ3

3.
The “bare” J = 0 partial wave amplitude (s-wave) is obtained from Eq. (A13)

T 1B
0 =

q(s)

16π
√
s

[
−2γ(4)

πη + γ2
aπη

(
1

2q2
ln

(
(Bη) + 1

(Bη)− 1

)
+

2

m2
a − s

)

+

nf∑
i=1

√
2

q2
γfiηηγfiππ ln

(
1 +

4q2

m2
fi

)]
, (A20)

where q is the center of mass momentum

q =
1

2
√
s

√
(s− (mπ +mη)2)(s− (mπ −mη)2), (A21)

and Bη is defined as

Bη =
1

2q2

[
m2

a −m2
π −m2

η + 2
√

(m2
π + q2)(m2

η + q2)
]
. (A22)

Here the Mandelstam variables are

t = −2q2(1− cos θ)

u = m2
η +m2

π − 2
√

(m2
π + q2)(m2

η + q2)− 2q2 cos θ, (A23)

where θ is the scattering angle. As before, we get the physical properties of a0(980) by unitarizing the bare amplitude
of Eq. (A20) and solving for the roots of the denominator of Eq. (A9).

Appendix B: A Brief review on Generalized Linear Sigma Model

The basic feature of Generalized Linear Sigma Model is considering mixing between two chiral nonets (a two quark
nonet M , and a four quark nonet M ′) below 2 GeV [12, 13]. The Lagrangian of this model which contains two
scalar meson nonets and two pseudoscalar meson nonets is similar to the one in Eq. (2.1) with V0 (M) replaced by
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V0 (M,M ′) and taking into account the kinetic term for M ′: −1/2Tr
(
∂μM

′∂μM ′†). M ′ describes “bare” scalar and
pseudoscalar fields containing two quarks and two antiquarks: M ′ = S′ + iφ′. The potential of the model V0(M,M ′)
up to N = 8 reads

V0(M,M ′) = − c2 Tr(MM†) + ca4 Tr(MM†MM†)
+ d2 Tr(M

′M ′†) + ea3(εabcε
defMa

dM
b
eM

′c
f +H.c.)

+ c3

[
γ1ln(

detM

detM† ) + (1− γ1)ln
Tr(MM ′†)
Tr(M ′M†)

]2
, (B1)

where the last term is not U(1)A invariant. Up to this order, the model has twelve unknown parameters: the
six coupling constants given in Eq. (B1), the two quark mass parameters, (A1 = A2, A3) and the four vacuum

parameters (α1 = α2 = 〈S1
1〉, α3 = 〈S3

3〉, β1 = β2 = 〈S′1
1〉, β3 = 〈S′3

3〉). These parameters are determined via four
minimum equations and eight experimental inputs.
The model has been used to explore the underlying mixings among scalar mesons below and above 1 GeV (as well as

those of their pseudoscalar chiral partners). Up to now, the underlying mixings among scalar mesons in the η′ → ηππ
decay [94] and also in ππ [53], πK [54] and πη [95] scatterings are investigated exploiting this model. It is found
that while the single nonet linear sigma model which only includes lowest-lying nonet is not accurate in predicting
the decay widths and the amplitudes, but taking into account the mixing of this nonet with the next-to-lowest-lying
nonet, and also considering the effect of the final-state interactions, significantly improves the results. This confirms
the global picture of scalar mesons: those below 1 GeV are predominantly four-quark states and those above 1 GeV,
are closer to the conventional p-wave quark-antiquark states.
Despite being successful in predicting the properties of lowest-lying scalars and pseudoscalars and also the scattering

amplitudes in region up to about 1 GeV, the model predictions for the widths and masses of next-to-lowest-lying scalar
and pseudoscalar mesons besides the scattering amplitudes above 1 GeV are not close to experiment. This encourages
us to further improve the Lagrangian of the model to also includes the terms of mixing among scalars and glueballs
and we believe that it will considerably enhances the results.
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Appendix C: Bare three- and four-point coupling constants

1. SNLSM without glueball

〈
∂4V

∂φ2
1∂φ

1
2∂φ

2
1∂φ

1
2

〉
= 8
(
ca4 + 2 cb4 + 3(4 cb6 + ca6)α

2
1 + 6 cb6α

2
3) (C1)〈

∂4V

∂φ2
1∂φ

1
2∂φ

3
1∂φ

1
3

〉
= 4

(
ca4 + 2cb4

)
+ 12

(
4cb6 + ca6

)
α2
1 − 6ca6α1α3 + 6

(
4cb6 + ca6

)
α2
3 (C2)〈

∂4V

∂φ2
1∂φ

1
2∂ηa∂ηa

〉
= 4

(
3ca4 + 2cb4 +

8c3
α4
1

+ 3
(
4cb6 + 3ca6

)
α2
1 + 6cb6α

2
3

)
(C3)

〈
∂4V

∂φ2
1∂φ

1
2∂ηa∂ηb

〉
=

8
√
2c3

α3
1α3

(C4)〈
∂4V

∂φ2
1∂φ

1
2∂ηb∂ηb

〉
= 8

(
cb4 + 6cb6α

2
1 + 3cb6α

2
3

)
(C5)〈

∂3V

∂fa∂φ2
1∂φ

1
2

〉
= 4

√
2α1

(
ca4 + 2 cb4 + 3(4 cb6 + ca6)α

2
1 + 6 cb6α

2
3

)
(C6)〈

∂3V

∂fb∂φ2
1∂φ

1
2

〉
= 8α3

(
cb4 + 6 cb6α
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1 + 3 cb6α

2
3

)
(C7)

〈
∂3V

∂fa∂φ3
1∂φ

1
3

〉
=

√
2

(
12
(
4 cb6 + ca6

)
α3
1 − 2 ca4α3 − 9 ca6α

2
1α3 − 3 ca6α

3
3

+α1

(
4
(
ca4 + 2 cb4
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+ 6
(
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)
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3

))
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〈
∂3V
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1
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(
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3
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(
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)
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(
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2
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(
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(
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3
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α3
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2
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2. SNLSM with glueball
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