
Phys. Lett. B 853 (2024) 138674

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

A novel algorithm to the shell model study of heavy deformed nuclei using 

the variation after projection approach

Zhan-Jiang Lian (连占江) ,∗, Zao-Chun Gao (高早春), Yong-Shou Chen (陈永寿)

China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413, China

A R T I C L E I N F O A B S T R A C T

Editor: A. Schwenk

Keywords:

Variation after projection
Shell model
Heavy nuclei

We introduce an extension to the conventional variation after projection (VAP) method, in which wave functions 
of different spin states projected from a shared intrinsic wave function are first varied simultaneously. Then 
a second variation is carried out for each individual state starting from the obtained intrinsic wave function. 
This novel algorithm enables the efficient extraction of a rotational band from chaotic non-rotational states 
by adopting only one Slater determinant, which can not be reached by the conventional VAP method. Some 
examples including the heavy deformed nuclei in the 𝑗𝑗56 model space have been calculated. The calculated 
results show that this new method could be a useful tool to systematically study the collective rotational states 
in heavy deformed nuclei. Furthermore, the present method holds potential for probing significant correlations, 
such as octupole correlations, within nuclear structures.
1. Introduction

The shell model (SM) is one of the most powerful methods in nu-
clear physics, which has been proved very successful in describing the 
ground and low-lying excited states of nuclei. However, as the nuclear 
system expands, the full SM calculations face a significant challenge 
due to the exponential increase in dimensionality. To tackle the prob-
lem, it is crucial to seek good truncation schemes in a SM study of 
heavy nuclear systems, which capture the most pertinent configura-
tions. In this way, the basis dimension can be significantly reduced, 
so that the shell model diagonalization can be performed on contem-
porary computing platforms. Various approximated SM methods [1–7]
with different truncation of the SM space have been developed along 
this line. These approximated SM methods have greatly extended the 
shell-model capacity and seem to be applicable over the nuclear chart 
from the lightest nuclear systems to the superheavy 254No nucleus [7].

Among them, the variation after projection (VAP) methods are the
most elaborated and complete ones. In VAP methods, the broken sym-
metries in mean-field calculations are restored through the projection 
techniques and the impact of the projection on the intrinsic wave func-
tions is self-consistently considered. This renders the final VAP wave 
functions closer to exact SM solutions compared to the mean-field and 
projection after variation approaches. In a recent study [5], it is re-
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ported that, calculations for states of 132Ba using the VAP method with 
a single Slater determinant (SD) yielded lower energy than the en-
ergy obtained with 50 SDs in the well-known Monte Carlo shell model 
method [2]. Nevertheless, the complexity of the VAP methods makes 
the required numerical calculations quite heavy. This historically posed 
challenges on their application in description of heavy nuclei.

Fortunately, recent advancements in computation power have made 
VAP calculations for heavy nuclei increasingly feasible. Recently, some 
successful attempts have been made to calculate the yrast states and 
few low-lying nonyrast states [5,7]. Yet, challenges persist for higher 
nonyrast states, as the conventional VAP approaches require calculat-
ing all lower states with the same quantum numbers before obtaining 
the desired state. Such process quickly gets rather complicated as the 
order of the calculated nonyrast state increases. Thus a systematic ap-
plication is still difficult if not impossible. To overcome this obstacle, a 
simple algorithm enabling the straightforward acquisition of high-lying 
nonyrast states should be developed, so that the high-lying nonyrast 
states can be obtained as easy as the yrast one.

In this paper, we propose such an algorithm based on the collective 
nature of heavy deformed nuclei. In the new algorithm, the conven-
tional one-step variation is decomposed into two steps. We first vary the 
projected wave functions with different spin numbers simultaneously by 
adopting the same intrinsic wave function. Then starting from the ob-
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tained intrinsic wave function, a second variation is carried out for each 
state. This novel approach permits direct access to nonyrast states with-
out the necessity of calculating lower states. This advancement opens up 
new possibilities for the systematic and efficient investigation of the col-
lective nuclear motion in heavy nuclei from the SM perspective, which 
is a long-term pursuit in nuclear physics.

The paper is organized as follows. Section 2 gives an introduction of 
the proposed algorithm. Section 3 is devoted to a preliminary applica-
tion of the present method to study rotational bands. A brief summary 
and outlook is presented in Sec. 4.

2. The variation after projection method for rotational bands

Let us start with a brief review of our previous VAP method. Consid-
ering the symmetries of rotation and reflection, a nuclear wave function 
should have good spin and parity. This can be ensured by adopting 
the techniques of angular-momentum projection and parity projection. 
With this techniques, the nuclear wave function can be constructed in 
the following form,

|Ψ(𝑛)
𝐽𝜋𝑀𝛼

⟩ =
𝑛∑

𝑖=1

𝐽∑
𝐾=−𝐽

𝑓𝐽𝛼
𝐾𝑖

𝑃 𝐽
𝑀𝐾

𝑃𝜋|Φ𝑖⟩, (1)

where, 𝑃𝐽
𝑀𝐾

, 𝑃𝜋 are the projection operators of angular momentum (𝐽 )
and parity (𝜋), respectively. 𝛼 is used to label the states with the same 
𝐽 , 𝑀 and 𝜋. Here |Φ𝑖⟩ is assumed to be a fully symmetry-unrestricted 
particle number conserving deformed SD. So the particle number pro-
jection is omitted. 𝑛 is the number of adopted |Φ𝑖⟩ basis states.

In principle, with given spin, 𝐽 , and parity, 𝜋, one can get (2𝐽 + 1)
projected states, 𝑃𝐽

𝑀𝐾
𝑃𝜋 |Φ𝑖⟩, for each |Φ𝑖⟩ with 𝐾 = −𝐽, −𝐽 +1, ⋯ , 𝐽 . 

All these (2𝐽 +1) projected states should be included as in Eq. (1). How-
ever, during the optimization process, we found out that the summation 
of 𝐾 can be safely removed without sacrificing accuracy [8]. For each |Φ𝑖⟩, it is sufficient to select only one of its (2𝐽 + 1) projected states to 
construct a normalized VAP wave function, i.e.,

|Ψ(𝑛)
𝐽𝜋𝑀𝛼

(𝐾)⟩ =
𝑛∑

𝑖=1
𝑓𝐽𝛼
𝑖

𝑃 𝐽
𝑀𝐾

𝑃𝜋 |Φ𝑖⟩. (2)

Here, 𝐾 can be randomly chosen from the 2𝐽 + 1 possible values. All 
subsequent VAP calculations are performed using wave functions in the 
form of Eq. (2) with 𝐾 = 0.

Given a set of |Φ𝑖⟩, the coefficients, 𝑓𝐽𝛼
𝑖
, in Eq. (2) and the cor-

responding energy, 𝐸𝑛
𝐽𝜋𝛼

, are determined by solving the Hill-Wheeler 
equation,∑
𝑖′
⟨Φ𝑖|(�̂� −𝐸𝑛

𝐽𝜋𝛼
)𝑃𝐽

𝐾𝐾
𝑃 𝜋 |Φ𝑖′⟩𝑓𝐽𝛼

𝑖′ = 0. (3)

Obviously, 𝐸𝑛
𝐽𝜋𝛼

is a function of |Φ𝑖⟩. According to the variational prin-
ciple [9], one can keep changing |Φ𝑖⟩ until 𝐸𝑛

𝐽𝜋𝛼
reaches a minimum. 

Then the obtained |Ψ(𝑛)
𝐽𝜋𝑀𝛼

(𝐾)⟩ states will be reasonable approxima-
tions to the corresponding SM wave functions. This is the normal VAP 
method that we have adopted in our previous works [8,10].

In the normal VAP method, to calculate the 𝑚-th state with given 
𝐽 and 𝜋, the number of SDs 𝑛 should be no less than 𝑚 [11]. Since 
the computation time is proportional to 𝑛(𝑛 + 1)∕2, it is much more 
time-consuming to calculate the nonyrast state than the yrast one. For 
instance, the computation time of the fifth nonyrast state is at least 15 
times as large as that of the yrast one. This limitation great hinders the 
application of the normal VAP method in a systematic study of heavy 
nuclei.

Here we make an extension of the normal VAP method for the 
study of heavy nuclei by exploiting their collective nature. It is well 
known that most heavy nuclei are deformed, which is manifested by 
the appearance of rotational bands. In general, states within the same 
rotational band share similar intrinsic structures. Considering this fact, 
2

we assume the wave functions of states within a rotational band can be 
Physics Letters B 853 (2024) 138674

projected from the same intrinsic wave function. In the present work, 
only one SD, |Φ⟩, is considered. Then, the corresponding VAP wave 
function for each state can be expressed as

|Ψ𝐽𝜋𝑀 (𝐾)⟩ = 𝑃𝐽
𝑀𝐾

𝑃𝜋 |Φ⟩√⟨Φ|𝑃𝐽
𝐾𝐾

𝑃 𝜋 |Φ⟩
. (4)

Here 𝐾 represents the magnetic quantum number associated with the 
calculated band. Varying the SD, |Φ⟩, all the corresponding |Ψ𝐽𝜋𝑀 (𝐾)⟩
states and their energies, 𝐸𝐽𝜋 , should change accordingly. The key is 
how to determine the optimized |Φ⟩. In Ref. [11], we have proved that, 
for a state with quantum number 𝐽 , 𝜋 and 𝛼, its VAP energy 𝐸𝑛

𝐽𝜋𝛼
ob-

tained from Eq. (3) is always no less than the corresponding SM energy 
𝐸SM

𝐽𝜋𝛼
, i.e.,

𝐸𝑛
𝐽𝜋𝛼

≥𝐸SM
𝐽𝜋𝛼

. (5)

Here we define the non-negative energy differences 𝛿𝐸𝐽𝜋 =𝐸𝐽𝜋 −𝐸SM
𝐽𝜋

and the total energy difference

Δ𝐸 =
∑
𝐽

𝛿𝐸𝐽𝜋 =
∑
𝐽

𝐸𝐽𝜋 −
∑
𝐽

𝐸SM
𝐽𝜋

. (6)

It is obvious that the optimized |Φ⟩ should be the one that Δ𝐸 reaches 
a minimum. Since 𝐸SM

𝐽𝜋
in Eq. (6) are fixed for a given Hamiltonian, 

instead of minimizing the Δ𝐸, one can equivalently minimize the sum 
of the 𝐸𝐽𝜋 energies,

𝑆 =
∑
𝐽

𝐸𝐽𝜋. (7)

Such minimization of 𝑆 is ensured by the Hylleraas-Undheim-MacDo-
nald (HUM) theorem [12,13], as has been clearly addressed in Ref. [11].

Obviously, when only one 𝐽 is included in Eq. (7), the obtained state 
corresponds to the yrast state. As more additional states with different 
spin are incorporated, more restrictions are provided on the intrinsic 
wave function in variation. Thus the resulting projected states should 
exhibit deviations from the yrast ones. It is reasonable to expect a 
gradual evolution of these projected states from the yrast configuration 
towards a rotational structure since they are projected from the same 
SD and share a common intrinsic structure. But it should be mentioned 
that the minimization of 𝑆 does not necessarily imply the minimization 
of each individual 𝐸𝐽𝜋 . Thus, to ensure |Ψ𝐽𝜋𝑀 (𝐾)⟩ is fully optimized, 
one should further perform a second variation calculation for each state 
starting from the intrinsic wave function obtained in the previous vari-
ation. Here, we call this new algorithm as the variation after projection 
method for rotational bands (VAP-R) to show the difference from the 
normal VAP method.

3. The numerical results

To show the validity of the present method, we first perform VAP-
R calculations for 56Ni. In 56Ni, two well deformed rotational bands 
with opposite parity have been identified from experiment [14]. States 
within these two bands are all nonyrast and embedded in other chaotic 
non-rotational states. Here the positive parity band is considered. We 
set 𝐾 = 0 and adopt the GXPF1A interaction [15] in the 𝑝𝑓 shell 
model space. The minimized 𝑆 in Eq. (7) includes those energies with 
𝐽𝜋 = 0+, 2+, 4+, ⋯ , 𝐽+

max
. 𝐽max is taken as 0, 4, 8, 12, 16, respectively. All 

calculations with different 𝐽max are performed start from the same ran-
domly selected initial trial wavefunction |Φ0⟩, which is constructed in 
the same way as Ref. [16] through the Thouless theorem,

|Φ0⟩ =𝑖𝑒
1
2
∑

𝜇𝜈 𝑑
𝑖
𝜇𝜈𝑐

†
𝜇𝑐𝜈 |Φ00⟩, (8)

where |Φ00⟩ =∑𝐴

𝑖=1 𝑐
†
𝑖
|0⟩ and 𝑐†

𝑖
denotes the creation operator of the 

spherical single particle basis |𝑖⟩ = |𝑁𝑙𝑗𝑚⟩. |Φ0⟩ is parametrized by the 
𝑑𝑖
𝜇𝜈
matrix elements generated stochastically and can be any other SD, 
which is not orthogonal to |Φ00⟩. The optimization problem is solved 
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Fig. 1. The convergence patterns of the energy of the 𝐽𝜋 = 0+ state in 56Ni using 
VAP-R. The open circle and solid circle denote results in the first and second 
variation, respectively. The exact SM energies are shown by the dash lines.

Fig. 2. Comparison of the positive parity band in 56Ni obtained from SM, VAP 
and VAP-R calculations. The energy of the 𝐽𝜋 = 0+ bandhead is set to 0.

using the trust region algorithm [17] (more detail can be found in 
Ref. [16]). To avoid the appearance of vanishing overlaps in solving 
the HW equation, an additional constraint term proposed in Ref. [18]
has been attached to the energy sum. The final minimized quantity is,

𝑆′ = 𝑆 + 𝜒
∑
𝐽

1
⟨Φ|𝑃𝐽

𝐾𝐾
𝑃 𝜋 |Φ⟩ , (9)

where 𝜒 is a tiny number equal to 10−4.
Fig. 1 shows the convergence patterns of the energy of the 𝐽𝜋 = 0+

state with different 𝐽max. For comparison, the exact shell model energies 
are also calculated using the NUSHELLX code [19], which are repre-
sented by the dash lines. One can see that the final obtained 𝐽𝜋 = 0+
state corresponds to the yrast state as usual when 𝐽max ≤ 8. As more 
additional states are added to the summation, however, the result be-
comes quite different. As expected, it suddenly changes from the 0+1
state to the 0+3 state, which is theoretically identified as the bandhead 
of the positive parity rotational band [20].

Fig. 2 further compares the whole positive parity band in 56Ni ob-
tained from the SM method, the normal VAP method and the VAP-R 
method. The SM calculation shows the 𝐽𝜋 = 10+ state within the ro-
tational band has the highest order of 6 [20]. To ensure all the states 
within the band can be obtained, 8 SDs are used in the normal VAP cal-
3

culations. For each spin 𝐽 , the normal VAP variational calculations are 
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Fig. 3. (a) Energy differences between the SM energies and the normal 
VAP (red dots) and the VAP-R (blue dots) energies of states in the posi-
tive parity band in 56Ni; (b) The 𝐵(𝐸2; 𝐽 → 𝐽 − 2) values between states in 
band. The effective charges (𝑒𝑝, 𝑒𝑛) = (1.5, 0.5)𝑒. (c) The values of the overlap, 
|⟨ΨVAP

𝐽𝜋𝑀
(𝐾)|ΨVAP−R

𝐽𝜋𝑀
(𝐾)⟩|.

performed so that the summation of the lowest 6 energy expectation 
values is minimized [11]. In the SM and the normal VAP calculations, 
the states in the band are identified by the large 𝐵(𝐸2; 𝐽 → 𝐽 −2) values 
between band members (see Fig. 3(b)). The VAP-R results are obtained 
by taking 𝐽max = 12. One can see that the SM band structure has been 
well reproduced by both the normal VAP and the VAP-R calculations. 
More interestingly, although only one SD is adopted, both the energies 
and the 𝐵(𝐸2) values obtained from the VAP-R calculations are very 
close to the normal VAP results. Actually, as can be seen from Fig. 3(c), 
most of the calculated overlaps, |⟨ΨVAP

𝐽𝜋𝑀
(𝐾)|ΨVAP−R

𝐽𝜋𝑀
(𝐾)⟩|, between the 

wave functions obtained from VAP-R and VAP are above 0.96. How-
ever, for each spin state, there still exists an energy difference of about 
0.8-0.9 MeV between the VAP-R energy and the SM one due to the trun-
cation of the configuration space (see Fig. 3(a)). This also results in 
some discrepancy in the 𝐵(𝐸2) values. As in the case of other approx-
imated SM methods, such difference can be reduced by adopting more 
SDs in the VAP-R calculations. The VAP-R calculations with multirefer-
ence states will be explored in the future.

To demonstrate the important applicability of the present method 
to heavy deformed nuclei, the ground-state band (𝐾𝜋 = 0+) and the 
𝛾 -vibration band (𝐾𝜋 = 2+) of the rare-earth nucleus 160Dy are calcu-
lated in the 𝑗𝑗56 model space. The 𝑗𝑗56 shell model space consists of all 
single-particle orbits between the shell closures of 132Sn and 208Pb. The 
𝑚-scheme dimension of 160Dy is 4.4 × 1017, which is roughly 106 times 
larger than the current limitation of the conventional Lanczos method. 
Here the jj56pnb interaction is adopted. As described in Ref. [21,22], 
the proton-proton interactions were based on the CD Bonn potential. 
The interactions for the proton-neutron space and the neutron-neutron 
space were obtained from the 𝑁3𝐿𝑂 potential. Fig. 4 compares the ex-
perimental data with the calculated results using the VAP-R method 
and the normal VAP method. In VAP-R calculations of the ground-state 
band, 𝐾 is set to 0 and the positive parity even-spin states with 𝐽 up 
to 20 are all included in the summation. For the 𝛾 -vibration band, we 
set 𝐾 = 2 and the included spins are 𝐽𝜋 = 0+, 1+, 2+, ⋯ , 10+, 11+. For 
each spin 𝐽 , the normal VAP calculation is performed by minimizing 

the lowest 3 energy expectation values using 4 SDs. Then the two bands 
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Fig. 4. Comparison of excitation energies among the experimental data, the 
VAP-R results and the normal VAP results for 160Dy. The experimental data is 
taken from Ref. [23].

are identified by the large intra-band 𝐵(𝐸2) values. It is shown that 
the VAP-R results are very close to the VAP ones for both bands. Most 
of the calculated overlaps between the wave functions are above 0.95. 
Interestingly, as compare to the VAP results, the 2+ state bandhead 
and the even-odd staggering of the 𝛾 -vibration band are much better 
reproduced in VAP-R calculations and the calculated results show an 
excellent agreement with the experimental data. This may be due to the 
better incorporation of the collective nuclear motion in determining the 
VAP-R intrinsic wave functions. Nevertheless, the calculated moments 
of inertia of both bands are smaller than the experimental ones. This 
indicates that the necessary modification of the present jj56pnb inter-
action, as done in the 𝑠𝑑 and 𝑝𝑓 shell [15,24], perhaps be required for 
a better description of the nuclear properties in this mass region.

From above discussions, one can see that, in the normal VAP 
method, a certain number of SDs should be used to describe a rotational 
band with nonyrast states. However, VAP-R calculations are capable to 
reproduce such band by adopting only one SD. The calculated results 
are very close to the normal VAP ones and the collective nuclear motion 
seems to be better described. Since the computation time is propor-
tional to 𝑛(𝑛 + 1)∕2, the computational cost of the VAP-R calculations 
is obviously much lower than that of the normal VAP calculations. On 
the other hand, one can understand that the less number of SDs are 
adopted, the faster the convergence speed is. Actually, for most calcu-
lated states in above examples, the VAP-R calculations converge about 
1-2 times faster than the corresponding VAP calculations. Compared to 
the normal VAP method, the VAP-R method, on the whole, can reduce 
the computation time by up to two orders of magnitude in calculation 
of nonyrast states of a high order. Considering the fact even the one-
SD VAP calculation for heavy nuclei already requires a large amount of 
computation time (1 − 2 days for a complete iteration of a single state 
of 160Dy on an Nvidia Tesla V100 GPU), the present improvement is of 
great importance to a systematic SM study of the collective properties 
of heavy nuclei, especially for abundant high excited bands.

Now we introduce another advantage of the present method. We 
find that, other than one single band, the VAP-R method is able to repro-
duce multi rotational bands simultaneously in one calculation as long 
as they have a similar intrinsic structure. This nice feature may pro-
vide us a simple way to explore some important correlations in nuclei, 
such as the octupole correlation and the tetrahedral symmetry, which 
4

are manifested by the appearance of two or more rotational bands.
Physics Letters B 853 (2024) 138674

Fig. 5. Comparison of (a) excitation energies and (b) the intra-band 𝐵(𝐸2; 𝐽 →
𝐽 − 2) values between the experimental data (black symbols) and the VAP-R 
results (red symbols) for 144Ba. The effective charges (𝑒𝑝, 𝑒𝑛) = (1.5, 0.5)𝑒 and 
the experimental data is taken from Ref. [23].

To show this, here we take 144Ba as an example. Theoretical 
and experimental evidence [25–27] shows that there exist strong oc-
tupole correlations in the neutron-rich nucleus 144Ba, giving rise to 
a low-lying negative parity octupole band above the positive par-
ity ground state band. To study them within the SM framework, we 
set 𝐾 = 0 and perform a VAP-R calculation for 144Ba by including 
𝐽𝜋 = 0+, 1−, 2+, ⋯ , 10+, 11− in the summation. The jj56pnb interaction 
is adopted and the results are shown in Fig. 5. The large intra-band 
𝐵(𝐸2) values confirm that two rotational bands have been obtained in 
our calculation. For the ground state band, both the energies and the 
𝐵(𝐸2) values obtained from the VAP-R calculation have a good agree-
ment with the experimental results. However, it seems that the energies 
of the octupole band can not be well reproduced by the present effec-
tive interaction, which indicates again the necessary modification of the 
jj56pnb interaction. As a result, the calculated reduced transition prob-
ability 𝐵(𝐸3; 3− → 0+) only has a value of 3.8 W.u., much smaller than 
the measured value 48(+25−34) W.u. [27]. But this enhanced value and the 
similar intrinsic structure of two bands can still give us a hint of the 
existence of octupole correlations in 144Ba.

4. Summary and outlook

In summary, we have developed a new method called as the VAP-
R method, in which the projected wave functions with different spin 
numbers are first varied simultaneously before performing calculations 
for each individual state. This method is able to automatically pick out 
the rotational band from the chaotic non-rotational states by adopt-
ing only one SD. Compared to the normal VAP method, the present 
method, in description of well deformed nuclei, not only can save a lot 
of computation time, but also do not have a significant loss of approxi-
mation. This makes it efficient and promising in a systematic SM study 
of the collective nuclear properties of heavy deformed nuclei, which 
was hardly reachable previously. Moreover, the VAP-R method can also 
serve as a useful tool to reproduce different rotational bands with a sim-
ilar intrinsic structure and help us explore the underlying correlations 
in nuclei.

As a preliminary work, only one SD is adopted to ensure the rota-
tional band can be safely extracted. There is some discrepancy between 
the calculated results and the SM ones. Like in VAP, one may expect the 
present VAP-R results can be further improved by considering particle-

hole expansion or adopting more SDs [28–31]. Such work is in progress.
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