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ABSTRACT: We perform a unitary renormalization group (URG) study of the 1D fermionic
Hubbard model. The formalism generates a family of effective Hamiltonians and many-
body eigenstates arranged holographically across the tensor network from UV to IR. The
URG is realized as a quantum circuit, leading to the entanglement holographic mapping
(EHM) tensor network description. A topological ©-term of the projected Hilbert space
of the degrees of freedom at the Fermi surface are shown to govern the nature of RG flow
towards either the gapless Tomonaga-Luttinger liquid or gapped quantum liquid phases.
This results in a nonperturbative version of the Berezenskii-Kosterlitz-Thouless (BKT)
RG phase diagram, revealing a line of intermediate coupling stable fixed points, while
the nature of RG flow around the critical point is identical to that obtained from the
weak-coupling RG analysis. This coincides with a phase transition in the many-particle
entanglement, as the entanglement entropy RG flow shows distinct features for the critical
and gapped phases depending on the value of the topological ©-term. We demonstrate
the Ryu-Takyanagi entropy bound for the many-body eigenstates comprising the EHM
network, concretizing the relation to the holographic duality principle. The scaling of the
entropy bound also distinguishes the gapped and gapless phases, implying the generation of
very different holographic spacetimes across the critical point. Finally, we treat the Fermi
surface as a quantum impurity coupled to the high energy electronic states. A thought-
experiment is devised in order to study entanglement entropy generated by isolating the
impurity, and propose ways by which to measure it by studying the quantum noise and
higher order cumulants of the full counting statistics.
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1 Introduction

Electronic correlations in one dimension are generically observed to lead to exotic quantum
liquids that either remain critical (and belong to the universality class of the Tomonaga
Luttinger liquid (TLL)) or possess a gapped spectrum [1, 2]. Careful studies involving
a host of analytical and numerical methods reveal a variety of low-energy gapped quan-
tum liquids including the Luther Emery (LE) liquid and the Mott insulating liquid (MI).
One dimensional gapped quantum liquids can be classified via their emergent topologi-
cal properties [3-12], and are notably different from the tenfold classification of gapped
non-interacting systems [13, 14]. Transitions from the TLL to various gapped phases are
described by the Berezinski-Kosterlitz-Thouless universality class. Further, the universality
has been shown to extend to a variety of models in 1D, e.g., the Schwinger model, massive
Thirring model, quantum sine-Gordon model etc. Extensive studies have shown that the
BKT binding-unbinding transitions of vortices that describe instabilities of the TLL can
be studied from the spin and charge vertex operators of the associated sine-Gordon field
theory [1, 15]. Topological aspects of the zero mode of these vertex operators [16] are
understood from their connection to non-local gauge transformations [17, 18] arising from
boundary condition changes on the Hilbert space [19]. Indeed, such boundary condition



changes are associated with Berry phases that characterize the various phases in the BKT
renormalization group (RG) phase diagram [19]. These insights inspire the following ques-
tions. Instabilities of a gapless state such as the TLL are outcomes of divergent quantum
fluctuations that begin with scatterings events at the Fermi surface, and lead to the gapping
of its neighbourhood. Can we relate such scattering processes to topological properties of
the fermionic Hilbert space at the Fermi surface? Can we build a skeletal phase diagram by
studying this Fermi surface scattering problem, and if yes, how closely does this resemble
the phase diagram obtained from a RG study of the divergent quantum fluctuations? An
affirmative answer would indicate that the topological features of degrees of freedom at the
Fermi surface can track the low-energy physics arising from UV-IR mixing.

At the same time, the nature of many-body entanglement analyzed via tensor net-
work methods [20-22], e.g., the matrix product state (MPS) [4, 6, 23-25] representation
for gapped states and multiscale entanglement RG (MERA) [26, 27] for gapless states,
provides another important pathway for classifying low dimensional quantum liquids. The
entanglement entropy (EE) of critical 1D quantum liquids has also been studied extensively
using field theory methods [28-32], and is consistent with other calculations for the EE
arising from a finite Fermi surface in higher spatial dimensions that show a violation of the
area law [33-35]. Given the extensive developments in the understanding the physics of
interacting fermions in 1D, a unified view is needed of the emergence of the effective low-
energy Hamiltonians of quantum liquids and the associated entanglement content of their
many-particle Hilbert space. This will surely provide deeper insights into the interplay of
electronic correlations, low spatial dimensions and many-body entanglement. With this
as our goal, we turn to the recently developed unitary network RG (URG) for fermionic
systems [36-40], as this method generates the RG flow of both Hamiltonians and their
eigenbasis along the holographic RG direction [41-47] via disentanglement of high-energy
electronic states (UV) from their low-energy (IR) counterparts. More specifically, at every
step of the URG, one UV degree of freedom is disentangled from the rest. The holographic
organization of effective Hamiltonians and entanglement features (e.g., entanglement spec-
trum, entanglement entropy etc.) from UV to IR is carried out via a collection of unitary
gate layers, and reveals the entanglement holographic mapping (EHM) [48] tensor network
representation of URG [38]. The boundary of the tensor network is in the UV, while the
collection of layers comprising the bulk of the network are directed towards the IR.

In this manner, the URG can be realized as a quantum circuit [38, 49-51]. Importantly,
as the RG can be implemented on a 1D momentum-space lattice, we aim to clarify the role
played by the topological properties of electronic states near the Fermi surface in guiding
the RG flow towards a variety of gapped or gapless fixed points. The interplay between
Fermi surface topology and electronic correlations has been recently demonstrated by us
for the nested Fermi surface of the tight-binding model on the square lattice in a study
of the 2D Hubbard model [36, 37]. There, we took careful account of the singular nature
of the Fermi surface, as it contained van Hove singularities at half-filling. Here, we aim
is to study the simplest possible Fermi surface, i.e., the two-point Fermi surface of the
tight-binding chain, in the hope of gleaning insights on higher dimensional systems with
regular connected (non-singular) [40] or Dirac point-like [52] Fermi surfaces. Even as we



apply the URG to the 1D fermionic Hubbard Hamiltonian, our conclusions are relevant to
the case of translation invariant four-fermionic interactions. Further, our analysis neither
requires the linearisation of the electronic dispersion near the Fermi surface, nor relies on
any emergent phenomenon such as the separation of charge and spin excitations.

A variety of tensor network RG methods have been dicussed in the literature (see
ref. [21] for a review), and we review briefly here those among them that are connected
to the URG formalism. MERA is tensor network comprised of a collection of pairs of
layers of quantum circuits: (i) the unitary gate layer has unit depth and is composed of a
direct product of two-local unitary gates followed by, (ii) layer of isometries that removes
the disentangled qubits from the bulk of the tensor network. The latter feature of MERA
is distinct with regards to the EHM [48] discussed earlier. By contrast, every unitary
gate layer of the URG has a finite depth [38], with every sublayer composed of a two-
qubit gate that disentangles a given UV degree of freedom (with one electronic state) from
all others, such that its quantum number becomes integral of motion. The finite depth
feature is, however, similar to the deep MERA (dAMERA) construction of ref. [53]. Unlike
the variational determination of the parameters of the unitary gates in MERA [54] and
dMERA [53], there exists an exact construction of the unitary disentangler within the URG
framework in terms of the electronic Hamiltonian [39]. Various real space renormalisation
approaches similar to URG, in the sense that they lead to the iterative block diagonalization
of Hamiltonian, have appeared in refs. [55-61]. An important property of the URG tensor
network [38] is that it satisfies the Ryu-Takayanagi bound [62, 63] for the entanglement
entropy (S): this is a statement of the observation that S(R) generated upon isolating a
region R located at the boundary of the tensor network (the UV) from the bulk (the IR)
is bounded by the number of links connecting it to the rest of the system. This feature
is also shared by other entanglement RG methods such as MERA [64, 65] and EHM [48],
providing a connection between entanglement scaling and holographic duality.

The URG procedure discussed earlier generates a family of RG scale dependent effec-
tive Hamiltonians, from which we can extract the RG flow of various two-, four-, six-point
and higher order vertices [36, 37, 39, 40]. Further, the RG procedure reveals a multitude of
energy scales (w) for quantum fluctuations that arise out of the non-commutivity between
various terms of the Hamiltonian. Importantly, the RG equations of the renormalized ver-
tices are nonperturbative in nature, as they involve the resummation of loops to all orders to
obtain closed form analytic expressions [39]. The resummation process generically leads to
denominators in the RG equations that are dependent on the quantum fluctuation scale w,
renormalized self- and correlation energies. In a study of the 2D Hubbard model in ref. [36],
we have also established an equivalence of the URG at weak coupling to the functional RG
formalism [66], and shown the origin of BCS, ZS, ZS’ diagrams [67] in our vertex RG equa-
tions. As a direct consequence of the nonperturbative RG equations, we obtain stable fixed
points as a function of fluctuation scale w. Upon reaching gapped phases at stable fixed
points, the effective Hamiltonian are written in terms of composite operators formed out of
pairs of electronic states, and describe the condensation of these emergent degrees of free-
dom. Importantly, we have also demonstrated quantitative checks for the URG by bench-
marking with high accuracy the ground state energy and double occupancy of the 2D Hub-
bard model at, and away from, half-filling [36] against various numerical methods [68-70].



This leads us to ask the following questions in the present work. First, can the URG
procedure show the emergence of nonlocal constraints associated with the Hilbert space
topology of degrees of freedom residing at (and near the) Fermi surface, and how this leads
to the condensation of composite degrees of freedom? As our starting point is a lattice
version of the sine-Gordon model, we expect that an affirmative answer to this question
will likely yield a non-perturbative version of the BKT phase diagram. The BKT phase
diagram has separatrices that separate relevant from irrelevant flows, while the flows along
the separatrices meet at a critical point [71]. Is it possible to reconcile the partitioning
of the coupling space diagram obtained from analysis of topological objects living at the
Fermi surface with the partitioning of the BKT RG phase diagram via the separatrices?
Can we diagonalise the effective Hamiltonians obtained from the stable fixed points of the
URG flow to obtain the low-energy spectrum and the associated eigenstates? If yes, we can
perform a reverse URG on by the low-energy eigenstates of the fixed point Hamiltonian
by re-entangling the UV degrees of feedom, generating thereby many-body eigenstates
at higher energy scales. In refs. [36, 38], we have already demonstrated this scheme for
the 2D Mott liquid (ML) ground state of the 2D Hubbard model, as well as its parent
Marginal Fermi liquid (MFL) metallic state. In this way, we aim to obtain the EHM
tensor network representation of the URG, and study the entanglement RG for the various
phases in the BKT RG phase diagram. Will the critical and gapped fixed points reveal
distinct entanglement entropy scaling features from such a study? We verified the Ryu-
Takayanagi entanglement entropy bound [38, 62, 63| for the ML and MFL ground states of
the 2D Hubbard model, concretizing the connection between entanglement renormalization
and holographic duality for the unitary quantum circuit/tensor network of the URG. In a
similar fashion, can we construct the entanglement holographic mapping tensor network
for the entanglement RG flow of correlated electrons in 1D, and verify the entropy bound
in this case as well? Finally, can we provide a quantum circuit description of the RG flow
in terms of two-local unitary disentangling maps? While a quantum circuit model for the
entanglement scaling of massless Dirac fermions [51] was recently achieved in the continuum
field theory for gapless phases, we aim instead to construct quantum circuit models for both
gapped as well as gapless phases arising from a Hamiltonian of lattice-based electrons.

We now present an outline of the rest of the work. In section 3, we review the sym-
metries and topological properties of the Hilbert space for the degrees of freedom at the
Fermi surface of the 1D tight binding chain. We follow this in section 4 by showing that,
in the presence of a Fermi surface instability arising from the presence of inter-particle in-
teractions, a topological property of the Fermi surface Hilbert space (the first Chern class)
imposes a constraint on the condensation of four-fermion vertices, involving the formation
of composite pseudospin S = 1/2 degrees of freedom formed by the pairing of fermions.
This is followed in section 5 by showing that the pseudospin backscattering vertices con-
necting the Fermi points +kpr lead to a change in the center of mass Hilbert space by
satisfying a constructive interference condition for scattering processes. We then imple-
ment the URG formalism for the case of correlated electrons on the 1D tight-binding chain
in section 6, and demonstrate how the topological features of the Fermi surface Hilbert
space guide the RG flows. In section 7, we study the URG flow of the many-particle en-



tanglement and unveil the role played by the Fermi surface in distinguishing between flows

to gapless and gapped quantum liquid phases. We study dynamical spectral weight redis-

tribution between the fundamental and emergent degrees of freedom in section 8, showing

the manifest unitarity of the RG formalism by tracking the flow of the Friedel’s phase shift

from the scattering matrix [72]. In section 9, we unveil signatures of topological order in

some of the gapped quantum liquids attained from the URG flow, and design a thought

experiment to track its features of from the properties of the degrees of freedom at the

(erstwhile) Fermi surface. We end by summarising our results in section 10, and presenting

some future directions.

2 Summary of main results

1.

In section 3, we demonstrate the relation between Luttinger’s sum, the shift of the
center of mass momentum and a first class Chern invariant for a system of non-
interacting electrons in one spatial dimension. Together, these quantities represent
the topological aspect of the two point Fermi surface for such a one dimensional
system of electrons.

In section 4, we identify the subspaces of the many-body Hilbert space in which the
primary putative instabilities of the Tomonaga Luttinger liquid (TLL), i.e., BCS and
Mott instabilities, can arise. Within these subspaces, we study the electronic pairing
instabilities through the condensation of particular pseudospin degrees of freedom.

In section 5, we study a simplified problem of the dynamics of many-particle electronic
states on the Fermi surface of an interacting system. From the various special sub-
spaces identified in section 4, we then construct a skeletal counterpart of the BKT
phase diagram on the basis of topological arguments applied to the Fermi surface
Hilbert space.

. In section 6, we perform a URG study of the primary instabilities and obtain a non-

perturbative version of the BKT phase diagram. While all features of the critical
fixed points are found to be identical to those obtained originally by BKT, we find
additionally the existence of a line of stable fixed points at intermediate coupling.
This in contrast to the perturbative nature of the original RG calculation, which
indicate that all couplings diverge at strong coupling. Importantly, we obtain effective
Hamiltonians and low energy eigenstates for the new stable fixed points.

In section 7, we demonstrate that the scaling of the entanglement entropy for the
effective theories obtained at the gapless TLL fixed points and the gapped fixed
points are very different.

In section 8, we conceptualize a quantum transport based thought experiment for
the measurement of the full counting statistics of the electrons in the background of
a putative Fermi surface instability. In this way, we provide a prescription for the
measurement of the entanglement entropy related to the instabilities.



7. In section 9, we study the origin of topological order in the low-energy subspace,
and present various measurables that signal changes in Hilbert space geometry and
topology. Our major predictions here include: (a) the ground state of the 1d Hubbard
model is two-fold degenerate at half-filling, (b) the entanglement entropy in the center
of mass Hilbert space has a topological piece, and (c) there are fractional excitations
that interpolate between the ground states.

3 Symmetries and topology of the Fermi surface

We recapitulate the symmetries and topological properties of the Fermi volume and Fermi
surface of non-interacting electrons in one spatial dimension in this section, as these will
be critical in dealing with the case of interacting electrons in later sections. To begin with,
the 1D tight binding Hamiltonian in momentum-space for spinful electrons is given by [73]

Hy = —2t " cos(k) ¢}, o, (3.1)
ko

and leads to the dispersion spectrum Ej, = —2tcos k . The parity operation (P) PCL UPJr =
T

—ko
tonian invariant

c P € Z; and time reversal transformation (T) 7' CETTT = cL 1, T' € Z leave the Hamil-

PHP"' = H,, TH,T' = H; . (3.2)

Accordingly, the dispersion has the following symmetries: Ep, = F_j,, Epi = Ejy.
The Hamiltonian H; commutes with the number operator N = Y ko Nka, [Ht,N } = 0,
admitting a global U(1) phase-rotation symmetry of the Hamiltonian under the unitary
operation U(f) € U(1): U(H)CLUUT(H) = eiac};a. At zero temperature and with a chemical
potential u, a description of the low-energy fermionic excitations about the sharp Fermi
surface is obtained by linearisation of the dispersion around the two Fermi points, kg
and —kp: Eg; = —2tcosk — Ep ~ vp(k £ kr), where the Fermi energy and velocity are
Ep = —2tcoskp,vp = —2tsin kp and where a = R/L.

The retarded single-particle propagator (Green’s function) for states in the window
Wy, : [=Ao/hvp, Ag/hvp] around the Fermi points (—kp, kp) is given by

G™(2,k) = (2 — Eg) "1, Im(2) > 0, (3.3)

and the advanced propagator by its complex conjugate: GI%(z,k) = (G*(2,k))*. The
retarded Green’s function has poles in the complex frequency plane at z = wye+iw;m , where
Wim = 04, wre,r, = vp(k—kr) and wye r = vp(k+kp). For all non-zero momenta, the poles
appear in pairs (L, R) for (f,]) spin-states due to the Z& x ZI symmetry mentioned above.
For states at the Fermi energy (kp, —kp), the poles appear at the points z;, = 0 = zg. At
this point, we recall a topological invariant (/N7) associated with number of states at the
Fermi energy [74, 75]. This arises from the E = 0 poles of the non-interacting single-particle
Green’s function (eq. (3.3))

Ny = /dw@wTT(ln Go) = Tr(lnGo(0+in)) — Tr(InGo(0 — in)). (3.4)

For the 1D Fermi surface, N; = 4 (accounting for spin degeneracy).



We can represent the Hamiltonian of non-interacting electrons as a sum over a set of
sub-Hamiltonians, each of which governs a group of four states k = (k, —k)®(1,]) as follows

=) Hj, Hy= E;;m£-74m;;, (3.5)
k

where mj, = [cgt, Cryy C—kt, C—k))'s B, = Eio, Iy is the 4 X 4 unit matrix, Iy = I§ x I. 2L/R

and the two Iy unit matrices are Casimir invariants of the SU(2) groups for the spin (s)
and chirality (L/R) sectors respectively. For the poles at z = 0, the Fermi energy sub-
Hamiltonian Hy—y = 0 possesses a further particle-hole symmetry (C' € Z3). This unites
with the number conservation U(1) symmetry, leading to an enhanced SUq(2) symmetry
for states at the Fermi surface. Thus, the complete symmetry group for the two Fermi
points is seen to be SUs(2) x SUL r(2) x SUc(2).

The S = 1/2 representation of symmetry group SU(2) is associated with a topological
C Py space, i.e., the Bloch sphere. The rotations on the Bloch sphere is generated by the
set of unitary operations U = al + o - n, where o is the S=1/2 representative of the SU(2)
group and the constraint a? + |n|? = 1 represents the compact space S3. The homotopy
group of the compact space SU(2) (with a constraint n? = 1) is given by m3(SU(2)) = Z.
The topological invariants of this space are Chern invariants. The existence of the Fermi
surface as a sharp boundary in energy-momentum space at 7= 0K can then be seen as
the N; topological invariant (eq. (3.4)) arising out of a pole of the single-particle Green’s
function at zero frequency [76]. Further, N; is associated with a non-trivial homotopy
group m(S1) = Z characterizing the winding around the sharp Fermi surface.

A pole in the complex frequency plane of the single-particle Green’s function G'(z, k)
at a given momentum k near the left or right Fermi point (¢ = L/R) is also associated
with a residue. This residue is picked up by the phase field ®(k, z) of the single-particle
Creen’s function G(k,z) = |G(k,2)|e!®*?) by traversing a non-contractible closed path
P = S; around the singularity. The number of electrons (14 4k) Noak € Z at a given state
ko belongs to the homotopy group of P, m(S(1)) = Z, such that

-1
/ dz Gii(2,k) 0. [Ga(z, k)| (3.6)

Ng,ak = 27”

The orientation of the two Fermi points [77, 78] is defined as an integral over the momentum
vector at T' = 0K for a sharp Fermi surface within a window 2A¢/Avp

1 [hrtet  dng p(k) 1 [t dng.p(k)
o dk—20 — 1y, = — de ey s,
VoR = 5 /kF—hAvi’p Ik Vol = 5 " Jk (3.7)

Using eq. (3.6) in eq. (3.7), along with compactifying the boundaries of the momentum-

th , m]}F] and frequency-space [—oo + 0i, 0o + 0i] windows, the Fermi point singular-

ities lead to first class Chern invariants on the frequency-momentum torus

space |

Voo = %dk]{dw Tr [Gaa(w k)oRGs L H(w, k)Goalw, k)0,Go  (w, k)| . (3.8)

omi



It can be seen that vy, g = £1 X C, where C' =25 =1 € m3(SU(2)). The Atiyah-Singer
index [77] is then obtained as v,;, — v,r = 2, and can be related to the net axial current
(AJ?) across the gapless Fermi points (kr, —kr) in the presence of an electric field (E)

A A
AJE:JE(O)—J§<—°>=6E, JP=Jer — Jor,
hUF h’l)F ’ ’
Jma = GG;}(]% W)akGaa(ka W) > (CL = L/R) ) (39)

where e is the charge of the electron and A.J? is related to the anomaly of the axial charge

Qs [79)]

AJ? = % = e% (/ da(l by, — wgwR)) = Uyl — VoR. (3.10)
For fermions on a 1D lattice, the axial current is generated by momentum imparted
to the center of mass spin (s) and charge (c¢) degrees of freedom (d.o.f) with positions
Xs = X4 — X, Xc = X4 + X respectively by a twist operation [17, 80, 81]. Note that
X, = 1/(2N) Zj-v:l Jnjo(here fj, = 1/1}61/1]-0, and we have kept a factor of 2 for the spin
degeneracy. The twist operator is defined in terms of the following unitary operations on
the center of mass
O, = U3U], O. = U;U, (3.11)

where U, = exp [i21¢ X ] leads to twisted boundary conditions (TBC) in real space. Thus,
the spin twist operator O, changes boundary conditions for 1 and | fermions with opposite
phases Oy — P1(j = N) = e™y(j = 0), ¥, (j = N) = e 7 (j = 0), causing a shift in
center of mass momentum (Fey,) due to spin excitations of the Fermi sea

0,701 = T m/NINS=5ie,) | (3.12)

where S& = >2; 57 is the z-component of the total spin angular momentum and T =
exp [i Pep| is the global translation operator. On the other hand, the charge twist operator
O, causes an equal amount of twist for 1 and | fermions, leading to a gain in momentum
for the center of mass of the Fermi sea

0,101 = Te/N)Ne (3.13)

where the total no. of electrons is given by N, = > jo Mjo - The non-commutativity between
T and the twist operators O/, defines Wilson loop operators on a two-tori [18, 81, 82]
(¢, Xes) = T2 =81 x Sy

Zeps = Oy TOY T (3.14)
where log Z. = iN./2N , log Z, = iSZ,/N — S. The action of the Wilson loop operators
ZC/S on the state |Poy = 0, S, ) gives

2c/S|PCHl = 0? S§0t> = ei27ruc/s |PCHI = 0? S§0t> ’ (3'15)

where v. = N./2N and vs = SZ;/N are the net flux in the ¢ and s sectors respectively
emanating from 72. By taking a state | Py = 0, 57, ) around in a local patch (P) given by
P={¢e€(0, al),XC/S € (0,a2)}, we obtain the twisted state

|\IJ(0417 042)> = TaQOc/sal |Pcm =0, Stzot> ) (316)



Figure 1. The red vectors on the torus 72 represent the eigenstates |¥(c)) that form a Mébius
strip for the centre of mass Hilbert space, where the angle between initial and final vector is v = .

where TQQXC/ST(IQ = AC/S + ag and Oalﬁcmégl = Py + a1. In the space a = (a1, az),
we define the persistent current vector J./ o = (¥(a)|V[¥(a)), such that J. 0 =
(J1¢/sas J2c/sa) TEPTEsents the zero mode of the charge/spin current generated on T2 due
to TBC. The first Chern class [83, 84] on the torus can now be computed in terms of the
curl of the nonlocal current vector in the a space

| p
7:—,/ d°a i -V X Jp/gq =21~ . (3.17)
2t Jo Jo q

As shown in figure 1, the ray field |¥U(a)) (represented by the red vector) gathers a phase
as it traverses the torus 72 along a Mé&bius strip. In the above relation, p/q = (S — M)
is the Luttinger’s sum for spin excitations of the Fermi sea [18, 80] (where S and M are
the total spin quantum number and magnetisation of the Fermi sea respectively), while
p/q = v is the Luttinger’s sum for charge excitations [74, 85-87]. In the presence of both
time-reversal and particle-hole symmetries, v = 1/2 (i.e., M = 0, N, = N/2) such that
~v = 7. Additionally, the first Chern class v (eq. (3.17)) is proportional to the center of
mass “momentum shift” obtained upon adiabatic twisting of the flux over one closed circuit
from 0 to @9, AP = %(I)O.

Spectral flow arguments further reveal the significance of the momentum shift
APy [17, 88]. For this, we note that the eigenvalue (E,/,(¢)) of the twisted tight-binding
Hamiltonian is given by

The energy curvature (d2E, /s/ doﬁC /8) corresponding to the change in the persistent current

(@.J(areys,2m) = eAPfr{ns) induced in the ring under the adiabatic twisting of boundary
conditions (Aay./,) [17, 88] can now be computed

dQEc/s - APccr418 Y

= — e 3.19
da%c/s eAalc/s “or’ (3.19)

where the persistent current momentum generated in the ring is given by

Jojs = eAPE = €0/ PanO) ), — €Pery (3.20)
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Figure 2. Chern numbers vy, and vgr around the two Fermi energy points +kp of the 1D tight-
binding electronic chain take part in the spectral flow of the center of mass spectrum upon changing
boundary conditions by a full flux quantum ® = ®,.

In this way, we find that the energy curvature (eq. (3.19)) is related to a topological in-
variant () belonging to the first Chern class v (eq. (3.17)). While the energy curvature is
proportional to the Drude weight [17, 88] for a system possessing Lorentz invariance [1, 2],
this is generally not true for a lattice based non-relativistic system of interacting electrons.
Importantly, a Fermi surface instability arising from Umklapp back-scattering processes
can lead to a RG relevant vertex, resulting in the creation of a many-body gap and an as-
sociated change in the energy curvature [1, 2]. We will discuss the effect of such instabilities
associated with topology changing terms in a later section.

Further, it can be shown that a net persistent current AJy./ = J1./4(®o,0)—J1(0,0) is
accumulated by taking the center of mass on a one-flux quantum circuit of ¢ = ®./,/®g €
[0,1] (where @/, is the AB flux), and is connected to the Atiyah-Singer index computed
from the Chern numbers (eq. (3.8)) for the states (kpc/s, —Kpe/s)

1
kFc/s

AJiys=(vp—vR) =2=AJ". (3.21)

In the above, kp./, represents the Fermi momentum of the charge (k 1,k |) and spin
(k 1, —k |) excitations of the Fermi sea.

The same thought experiment can also be carried out with the persistent current Js,
i.e., by now taking the center of mass on a complete circuit of X/, € [0,27]. The above
relation depicts that the net current accumulated by the center of mass is associated with
an anomaly in the bulk of Fermi sea: the injection of one electron from the left Fermi point
(v = —1 = —C), together with the ejection of one electron from the right Fermi point
(vg =1 = (), leads to a net transfer of 2C' = 2 states upon tuning through a complete
circuit. At the same time, as shown in figure 2, the relation can also be interpreted as the
action of independent monopole sources at the L/R Fermi points (the Chern nos. C) in
leading to an anomalous current AJ®. This is the well-known phenomenon of anomalous
axial-symmetry breaking [89, 90|, seen either from the perspective of the center of mass
or that of the Fermi surface. When taken together, these two anomalies cancel and the
apparent anomalous breaking of the symmetry is restored. Finally, the Atiyah-Singer index
is directly related to the central charge (c¢) of the conformal field theory for a gapless 1D
electronic system [35, 91, 92, ¢ = % (v, — vg).
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While the results presented in this section are for the case of a two-point Fermi surface,
the formalism adopted by us is equally applicable to Fermi surfaces of higher dimensional
systems of noninteracting electrons. Further, the notion of adiabatic continuity guaran-
tees the existence of a Fermi surface in Landau’s formulation of the Fermi liquid even in
the presence of electronic correlations. It is, thus, possible to explore various topological
properties of the Fermi liquid in an analogous manner. In what follows, many of the ideas
introduced in this section will be shown to be useful in understanding the interplay of
interactions, symmetry and topology in shaping the many-body instabilities of the Fermi
surface. Specifically, we will see in section 4 that, in the presence of a Fermi surface insta-
bility arising from the presence of inter-particle interactions, the first Chern class v = =«
imposes a topological constraint on the condensation of four-fermion vertices. This involves
the formation of composite pseudospin S = 1/2 = /27 d.o.fs formed by pairing 1/5 = 2
fermions. We will follow this up in section 5 by showing that the pseudospin backscattering
vertices connecting the Fermi points +kg lead to a change in the center of mass Hilbert
space by satisfying the constructive interference condition 2y = 2x.

4 Topological constraints on condensation

We will now look into the topological features that arise out of various instabilities of the
Fermi surface (e.g., either the spin backscattering or the Umklapp scattering across the
Fermi surface [2]) upon adding the Hubbard term (with on-site repulsion strength U) to
the tight-binding Hamiltonian

H=-2t Zcos(k:) cLackg +U Z”iT”ii, (4.1)
k,o %

where the local electronic density is n;, = wj +Wio - The Hubbard term has a spin backscat-
tering vertex CL1+q¢CT—k1—q¢ka1Tck1i , where CLU = 1/V2N > eika/z;a. This scattering
process operates in the low-energy subspace with zero momentum and opposite spin pairs
respecting parity and time reversal symmetries, as seen from the application of the following
constraint on the many-body fermionic Fock space [93]

Cht Ay = Afpg - (4.2)

This constraint can be classified in terms of matching of helicity (7 = sgn(k)sgn(o) =
+1) across the Fermi surface. Starting with the SU(2)s ® SU(2)/r ® U(1)c symmetric
many-body fermionic Fock space of the metal (see section 3), the matching of helicities
leads to a locking of spin SU(2)s and chirality SU(2),r projected Hilbert spaces to form
a new helicity SU(2)s ® SU(2);/g — SU(2),=+1 Hilbert space for the emergent degrees
of freedom whose condensation characterizes the instability. Time reversal symmetry is
respected via the formation of paired-fermion states (N., = 2) that are either occupied or
unoccupied. The constraint C; ensures that each paired-fermion state is equivalent to a
two-level system (i.e., isomorphic to CP!). It is important to note the topological origin
of Cy: the Chern class v = 7 (eq. (3.17)) defining the center of mass topology of the metal
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Figure 3. (a) The four-fermionic vertex (designated by the U within the oval) is composed of
¢,c’ € Fyn. The constraint C; condenses pairs of fermions forming S = 1/2 pseudo-spin Aoy €
SU(2). (b) The pseudo-spins scatter via spin-flip (1>) and non-spin-flip vertices (2>).

is connected to constraint Cy via the relation
|fko + Nefpeo — 1| = 277/2m = Neo /2. (4.3)

As a consequence of the constraint Cq, v = 275 leads to formation of SU(2) S = 1/2
Hilbert spaces from the original many-body fermionic Fock space. Due to TRS, every 1
state has a partner |. Hence, the 4N particle antisymmetrized Hilbert space of a 1D system
of 2N lattice sites is defined as Fyny = AH®*N, where A is the antisymmetrizer and # is the
single-particle projective Hilbert space in which the many-body states are represented in
the basis Br, := {[I)9 cLl |0), k; € [—m, 7]} and N, is the number of electrons. A subspace
ngAO = AH®*Nao C Fyy is constituted of 8Ny, states in the window Wy, = [—Ag, Ag]
around the two Fermi points(kp, —kp). The momentum wave-vectors in the window are
given by kx = kps+AS, where A is the normal distance from the two point Fermi surface and
§ denotes the orientation (§ = 1 and —1 for right and left Fermi points respectively). The
states within Fg Na, transform via imposition of the constraint C;: as shown in figure 3, the
constraint C'; maps a subset of four-fermion scattering vertices involving zero-momentum
pairs onto S = 1/2 pseudospin vertices.

We now present a precise mathematical formulation of how the symmetries and topol-
ogy of the Fermi surface guides the constraint C; in shaping the projective Hilbert space
of the emergent condensate. In order to carry out the transformation of the Hilbert space,
we first obtain a compact notation for the one-electron states: |k) = |ky s, 0). In this way,
we define partial trace operators Tr(;;)(...) that extract four-fermion vertices involving |x)
from the Hamiltonian H

U
Tro(cl H)ep + he. = = Z chLlc,ﬁch3 . (4.4)

R1,R2,K3

The single-electron states |x) can be grouped into two helicity (1) classes, n = 1 for k(n =
1) = (A 1,1) or (A,—1,-1) and n = —1 for k(n = —1) = (A,1,—1) or (A,—1,1). The

- 12 —



three normal distances Als and orientations §;s correspond to the momentum wave-vectors
ka,sy, knys, and kp,g,, such that kag+kp, s, = 2nm+kp, g, +kags,. Note that if kp = £7/2,
the Umklapp process is allowed, implying n = 0, 1. On the other hand, for kp # +7/2, we
have only n = 0. The three spin orientations are given as (o1, 02,03) = (—0, —0,0).

A subset of the four-fermion vertices containing the zero pair-momentum p = 0 TRS-
invariant pair (1,]) is extracted as follows

U
TT,{(CLTT‘H/(CL,H))CH/C,{ + h.c. = v Z el el euc + hec., (4.5)

Ky CkK1
K1

where k = (A,8,0), ¥ = (A,=8§,—0), k1 = (A,§,0') and, &} = (A',—-§,—0'). We

can easily see that the sum of momentum wave-vectors belonging to x and " is p = 0.

Summing over all the s electronic states, we obtain an effective model containing off-

diagonal scattering terms involving p = 0 net-momentum electronic pairs

U
E Tr,ﬁ(c};Tr,{/(CL,H))c,.ifcH + h.c. = v E CLCL,C%CM . (4.6)
K

K,K1

The wavevectors k, k', k1, K are defined as earlier. We now define Nambu spinors [94] in
the C P! representation dj\,n = (cl. ) for the p = 0 TRS pairs, where 1 = sgn(5)sgn(o) is
the helicity. From the spinors, we define Anderson pseudospins [93] A, ,, with magnitude
|Ap 02 = S(S + 1)(R + Ay — 1)2. Here, S = 1/2 as A/j\[%7 = 0. We also note that the
Hartree processses n,n,, within the p = 0 momentum subspace can be written purely in
terms of AimAfvm,.

The instability in the electronic Hilbert space due to the backscattering processes re-
sults in the condensation of electronic pairs, as seen from eq. (4.2). The resulting Anderson
pseudo-spins [93] (A, , € SU(2)) follow the SU(2) algebra

[ j\7"77 A?\/,n’} = eijde,A/ 67],77/14?&777 bl (47)

and the Casimir |[Ay ,|? = S(S + 1)I (where I = [ D){(t |+ | L) |). S =1/2 leads to a
two-level system (|1x4,1_k}),|Okt,0_k;)). This allows identification of the first Chern class
7 (eq (3.17)) on the center of mass torus 72 with a monopole of charge 25 = v/7 = v = 7.

Within the projective Hilbert space enforced via eq. (4.2) arises an emergent symmetry
SU(2)®2Na0 of the resulting projected Hamiltonian eq. (4.6). Here, Ag is the width around
both the Fermi points within which the putative condensation takes place, and N(Ay) is the
number of electronic states within the window. We will demonstrate this via the unitary RG
prescription in a later section. Further, this space of SU(2) transformations is spanned by

Na
L= H eXp[inSAj : nj] ) SAj,n = SE}LX],JIO'EA].W, (48)
j=1
where 6Rj’n = (chf’] Cj\j/m) , S =1/2 and with a parameter space S — (6;,n;). As shown

by figure 4a, the S? spheres explore the topology of the enclosed null vectors at the origin
of the angular momentum sphere: [Sp | = S(S+1)(fk, ;4 — Ak, _,)* = 0. The non-trivial
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Figure 4. (a) The unitary operations L (ﬁAwﬁT = A,) span the space S® that wraps around a
monopole of charge 25. (b) A representation of the geometry of the Hilbert space of the angular
momentum vectors A, S,,.

®2NA g seen, therefore, from the homotopy group

topology of the symmetry group SU(2)
m3(SU(2)) = Z, and is a reflection of the existence of angular momentum spheres of radius
(JAr | = +/S(S+1)) in the Fock space Fyy. As shown in figure 4b, the geometry of the
angular momentum vector A, , traces a sphere S? centred around a monopole of charge
2S = /7 coinciding with the null vector S,,. This symmetry in the projective Hilbert space
reflects in the invariance of the basis B = {®|A})} under unitary operation: LB=B.

For n; = (0,0,n),0; = 6kp;, the U(1)®2NA0 group generated by the center of mass
translation operators is

U.=exp (i) k;S; | : X00 = X80 + 278, X5, = (1/ANA) Y jin, 50 5 (4.9)
J

jso

where U, € S and k; = kr + A, and the number of states within window W}, is given
by Np. Further, U,|¥) = |¥) implies the presence of parity, and leads to a vanishing
total current for composite objects: 2eP) = 0. Therefore, a vanishing center of mass
kinetic energy, Pé}g /21 = 0, ensures the stability of the composite objects. A shift of
the center of mass momentum, PCAH1 # 0, can be generated by applying twisted boundary
conditions for the states in the window Wy, via the twist operator O, (eq. (3.11)). The twist
operator imparts a net momentum p to every electronic pair, resulting in the pseudospins
Aprg = OCAAWOI, being constituted of electronic states (A + p,+1,0) and (A, -1, —0).
This momentum gain creates a collective Cooper-pair persistent current Pey, = 2Ny, with
a modified constraint C : ng e = N—pyp —o-

The dynamics of the modified projective Hilbert space, Hior = (CP1)®* Va0 | is governed
by the projected Hamiltonian

U

HP=Y = VE ZAAK?? + mA+1 A, (410)

where A, is the total pseudospin vector given by A, = > 5 A, . The zero mode of the
Hamiltonian is given by

v U
Hﬁ:(] - mA+1 . A_]_, (411)
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and possesses eigenstates and eigenvalues given by [95]

U
’A:p,A+1:A_1=n+1/2>, En’m’p:W

plp+1)—(2n+1) (n + 3)] . (4.12)

Ao 2
The gap AFE around the Fermi energy Er = 0 between the highest negative energy
state (Ep = |U|/(8Nyp), a pseudo-spin triplet (|1;1/2,1/2))) and the lowest positive
energy state (E; = —=3|U|/(8N,), a pseudo-spin singlet (]|0;1/2,1/2))) is given by
AFE = Ey — Ey = U/2N,. This shows that AE gaps the spin excitations around Ep. We
will show subsequently that AFE survives after taking account of divergent fluctuations
in a renormalization group (RG) formalism. Unlike backscattering processes, forward
scattering physics is given by A?H + A2, and does not cause the coupling of helicities.
Hence, the latter does not lead to instabilities of the Fermi surface. The RG irrelevance of
forward scattering events in gap opening of the 1D Fermi surface has been confirmed by
RG [96, 97] and bosonization [1, 2] methods.

A similar analysis of the Umklapp (charge) scattering instability leads to the constraint
Csy : ny, = ng, where w = (A, §,0) and w = (—A, 8, —0), and which can be classified in terms
of the chirality (§ = +1/ —1). The Fermi momentum satisfies the condition 2kr = 7, such
that the particle-hole symmetry enforces the first Chern class for the torus 72 in the center
of mass Hilbert space, v = w. In turn, this leads to pairs of fermions from the same side
of the Fermi sea forming a SU(2) projective Hilbert space of spins with S = 1/2 = ~/2m.
This projective Hilbert space is again associated with a S = 1/2 representation of the
SU(2) group for pseudospin operators Ay s = S(cl, cz)o(cl, ¢z)T, and where § = +1/ — 1
represents the two chiralities L/R.

The projection mechanism leads to the condensation of spinors representing pairs of
fermions with total momentum 2akr. The Umklapp instability Hamiltonian is governing
the dynamics in the projective Hilbert space SU(2)®2Mo is given by

- U
H/I{O +2kp - mAL . AR, (413)

where Az = > ) Aj ;s is the total pseudospin vector that acts as the generator of global
rotations in the projective Hilbert space. The Hamiltonian H*?*F has eigenvalues and
eigen vectors given by

U 3
Ay =pidL = Ar =1+ 1/2). Bump =50 [plo+ )= a1 (n3)] (a1

The gap around the Fermi energy for charge excitations exists between pseudospin singlet
and triplet states: AE = U/2N,. The robust nature of this charge gap will be confirmed
via RG in a later section. For the sake of generality, we will study the anisotropic version
of this Hamiltonian

p=x2kp __ JH V4 Az JJ—
LA

P RA""m

+ —
= [AfAzy +hee] (4.15)

In the next section, we will see the formation of topological objects (with v = 7) at the
Fermi surface arising from the constraints C; or C3. Subsequently, we will study their
effect on the center of mass Hilbert space due to the ensuing instability.

~15 —



5 Structure of the Fermi surface pseudospin Hilbert space

In this section, we will see how the instability associated with constraints C; and Cs form
SU(2) projective Hilbert space at the Fermi surface (FS), supporting topological objects
like Dirac strings and magnetic monopoles. Furthermore, the first Chern class v = 7 on
the center of mass Hilbert space will be seen to characterize the topological objects at FS.
The states at the FS are given by

F = {[1%50) = Mkptlsrpl)s [ Ese) = [0kt 051p1) b
| thise) = Mhpilehet)s | Yrgse) = Ok Ohpt) } (5.1)

belonging to projective Hilbert space SU(2), ® SU(2),. Here, the indices (a/b) — s :=
(+/—) and the index ¢ := (R/L) correspond to the pseudospin projective Hilbert space of
spin and charge instability sectors respectively. The sub-Hamiltonian (Hp) operating on
F' is given by

Hp (51{3};‘ :0) = 2‘%/\AF(1'AFZ)7 (52)
and possesses a resonant backscattering at the F'S in terms of the action of the pseudospin-
flip piece 1/2(A}, Apy + h.c.) on the subspace Fi = {| Tradrp), | dFalrp)} containing 2
electrons (Np = >a—t o Nakpo = 2). The backscattering leads to helicity (n = +/-)
symmetry breaking: SU(2), x SU(2), — SU(2)44s. The subspace Ny =2 = A%, + Apy =
A% = 0 allows the identification Np = 2C,, where Cp, = 28 is the Chern number of
the effective monopole charge associated with the homotopy group m3(SU(2)r,) = Z and
SU(2)p, C SU4(2) x SUp(2). The projective Hilbert space SU(2)p, is composed of the
states in F}, and is associated with a topological C' P! space.

As seen from the center of mass projective Hilbert space, a doubled twist operator Og /s
causes the total momentum (P.py, defined on the compact space S' : P, € S : (0,27])
to shift by a reciprocal lattice vector P, — Pew + 27 = Pey + 27 due to the transfer of
2 electrons [19, 81]. The relation 2y = 27 is equivalent to the Lieb-Schultz-Mattis crite-
rion [18], and allows either a gapless unique ground state or a doubly-degenerate gapped
state of matter. The gapped state of matter is associated with constructive interference
between paths on a non-simply connected P, Hilbert space manifold, and will be discussed
further in section 8. This leads us to conclude that, in basis Fj, the pseudospin flip term
(corresponding to a vertex operator in the equivalent sine-Gordon theory) is equivalent to
the double-twist operator Og s [19]

(Af Ay +h.c) =0, + he.. (5.3)

Tunnelling between the two degenerate levels of the subspace F} can be studied via
the effective Hamiltonian

Hp, = —U/2N\D? + U/2N\D,,, (5.4)

where D = (7/271)A}0AF, and the spinor Al, = (AL, Af,) ete. Hp, is invariant under
a Unitary transformation U; = exp[i2nD,] € Zy & Uy = exp[i#D;] € U(1). In the
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Figure 5. (Left) Topological object in subspace Fy, the WZNW topological term. (Right) Topo-
logical object in subspace F}, the ©-term for a monopole with a Dirac string.

parameter space S? of radius R = |U/2N,|, a closed path is traced such that the eigen-
state [¢(R)) € CP! traces a great circle on the Bloch sphere described by Fubini-Study
metric [98, 99

ds® = (Dvp|Dy) = S%r2(dh? + sin? 0dp?) = S%d¢*, (r=1,0 =7/2,¢ = (0,27]), (5.5)

where |Dv) = [¢) — ) (¥|d) is a gauge-invariant derivative on the projective Hilbert
space. The great circle S; — ds?> = d¢? traced by U; winds around the Dirac-string
associated with the monopole of charge 25 = 2v/27 (R =0 — E; = E_) arising from the
energy degeneracy point. The integrated two-form, dF = (Dy| A |Dvy) = Fdx, A dxy,
can be written in terms of the Berry curvature [100] F,, = Im((D,¥|D,y)) for a
hemisphere of the Bloch sphere (with solid angle Q = 27). Parametrizing the Bloch
sphere by the angles (6, ¢) gives the non-commutativity between the unitary operators
11 = exp [Z(T(/Q)Dg} and Th = exp [z‘Qﬂ'lA)qb}

Tl’f‘zf’{rj—g == e”b 5 (56)

where, following Schwinger [101], we define the generators Dy = (1/2i)(Die™ — e D_)
and Dy = (1/i)0,. The topological phase accrued by the closed circuit () is then given by
i

7 dF = LQ=~. (5.7)

b= 5
= o o<m/2 2m

This shows that the nesting instability associated with -, arises from a monopole of
charge 25 = ~/m [102], where ~ is the first Chern class of the gapless F'S. This leads
to the equivalence: TlTQTIT; = e = OC/STOZ/STT = ¢". The Dirac string [102] (see
figure 5(right)) carries an effective flux ® = ~/27®(, punctures the XZ plane from the
North/South pole (vpny = —7ps), and is revealed by using Gauss’ law

fyb:ijfdA, dA =dl- 6L . (5.8)
2m
The associated ©-term, v,/v € m(U(1)) = Z, acts as a half-flux quantum ®(/2 Dirac

string for the Md&bius strip projective Hilbert space encircling the great circle of the Bloch
sphere made by the subspace Fi.
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By making the two-spin interaction of the Hamiltonian eq. (5.2) anisotropic

J
He = 2 a2 Ji

= TNA Fa %b + m(A;aA;’b + hC) y (59)

we extend our arguments to a two-dimensional coupling space: (J g l). Now, Hr low-
ers the symmetry associated with its projective Hilbert space from SU(2), ® SU(2), —
U(D)atb ® Z2gyp. Along two special lines on the (J),J1) plane, Jj = £J,, the Hamil-
tonian Hp has the enhanced symmetry SU(2),4p. Further, precisely at the crossing
point of the two lines, JIl = £.J, the Hamiltonian vanishes (Hp = 0) and the sym-
metry group is emergently restored to SU(2), ® SU(2),. The Hp Hamiltonian can be
block decomposed as Hr = Hp, & Hp,, where Hp, is given in eq. (5.4) and the Hamil-
tonian Hp, = J”52[F2 is represented by subspace Fy» = {| T.Ts),| lads)} C F and
Ip, = | Tate)(Tals | +1 dads){dads |- The family of unitary operations that keep Hp,
invariant is Us,—o.p,(0,7) = exp [i0S1 - 7] € S, where S; = Sfl;:aflg,fl} = (A;aA;b)
and S = 1/2. This S wraps the FS metric singularity of the projective Hilbert space Fy:
ds? = 5?r?(d6? + sin? d¢*) = 0 as r = 0. The density matrix pp, = 3[I +r - ]|, lies at
the origin of the Bloch sphere, reaffirming the SU(2) symmetry of F5. The f vectors form
a unit sphere S? homeomorphic to CP! (i.e., once again a Bloch sphere with a monopole
of charge 25). The topological term associated with the homotopy group of this SU(2)
projective Hilbert space is the 0 + 1D Wess-Zumino-Novikov-Witten term [103]

Cp, = 25/d2xn - (Ogm X Oym) , (5.10)

where the Chern numbers Cr, € m3(SU(2)4z=11) € Z. The monopole charge 25 = 1 is
shown in figure 5(left), and arises from an equivalence of the projective Hilbert space F
to a two-level system formed by pairing of two pseudospins of S = 1/2 representation.

We have seen earlier that Hp, = —JTHDE + %Dm acts in sub-basis F7 for which we
have computed the topological © — term associated with a Dirac string is given by v, =
7%, Q = 2n(1 — cos),0 = 7/2. By varying the coupling values (JII, J1), the four energy
eigenvalues (Ey 1, = E,|, = JII/4), (Ey x4 = —JII/4+ T+ /2) rearrange themselves. Thus,
the existence of topological objects like magnetic monopoles or Dirac strings in the lowest
energy subspace ({1;} suchthat Hp; = Evy;, E = min[Ey 4, E |1, Eri+14, Er—14])
is determined by whether the low energy subspace is in F; or F». A compact form for -,
can be written down in terms of (JII, J+)

W= f+sen(f)(v = [f]) (5.11)

where f = sgn(J)(v/2(1+sgn(r))sgn(J)++v/4(1—sgn(r)) (1+sgn(J!)) and r = J+2 - Jl2,

Figure 6(a) is a skeletal phase diagram that depicts the topological objects residing
in the projective Hilbert space of the Fermi surface degrees of freedom for anisotropic
couplings characterized by r # 0. For J;; < 0 and r < 0, the low-energy subspace is F is
associated with a monopole with strength given by Chern number Cr, = 2S5 (eq. (5.10)).
On the other hand, for either » > 0 or J) > 0, the low-energy subspace is Fy possesses
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Figure 6. (a) corresponds to topological objects lying between the separatrices of the coupling
(JII, J*) phase diagram obtained by studying the effective problem at the Fermi surface. (b)
corresponds to the topological objects living on the separatrices, and at the critical point (the
origin). Together, these two diagrams reveal the shape of the BKT RG phase diagram. See main
text for detailed discussions.
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a Dirac string whose O-term coefficient is given by =, (eq. (5.8)). Two special half-lines
J+ =4Jll = J < 0 where 7 = 0 lead to the low-energy subspace

By —tr7<0 = {| TFaTFo)s | {FadFv), | W)} , where

(v—p)

) = |[Ap =1/2(1 4+ 2 ), A% =0). (5.12)

This special subspace contains states belonging to both F; and F;. As depicted in
the skeletal phase diagram of figure 6(b), the topological objects describing this sub-
space is a monopole associated with projective Hilbert space F» (with Chern number
Crp, = 25 =1 € m3(SU(2)g,)) and a Dirac string associated with Fy (with © term
W/ € m1(U(1))). The co-existence of two topological objects in the low-energy subspace
for r = 0, J)] < 0 is an outcome of an emergent SU(2),4 seen from a 2® 2 = 3 @ 1 block
decomposition of the Hamiltonian

J 3J
Hp = Z-’%_ﬁ — Z|%)<%| ; (5.13)

where I7=*7 is a 3 x 3 Casimir invariant under SU(2) rotations of spin representation S = 1.
For J > 0,7 = 0, the low-energy subspaces B, —+r,7<0 (€q. (5.12)) and B, —+x j>0 = {| ) }
switch. Precisely at the critical point J!l = JL = 0, the subspace F; U F, = F and
possesses both the Chern numbers Cp, € w3(SU(2)p,) and Cp, € m3(SU(2)p ) given
earlier, displaying the enhanced symmetry of SU(2), x SU(2),. In the following section,
we will treat the instabilities of the Fermi surface via a renormalization group (RG)
procedure. We will see there that the RG flows are characterized by the quantity r
shown above, such that the relevance or irrelevance of a flow is decided by the quantities
(sgn(J)),sgn(r),sgn(J1)). In this way, RG flows will be dictated by the discontinuous
changes in boundary conditions accounted for by the topological object at the FS (73).

6 URG for Fermi surface instabilities: a topological viewpoint

In section 4, we showed that the constraints C7 and C5 lead to the condensation of four-
fermion vertices into SU(2)®2NA0 projective Hilbert space associated with the putative
BCS and Mott instabilities respectively. This way, the first Chern class v = 7 associated
with the Fock space Fg Na, of the gapless FS became the Chern number belonging to the
homotopy group of the SU(2) condensate projective Hilbert space, i.e., C = 25 = 2v/27 €
m3(SU(2)) = Z. Further, in section 5, the first Chern class C' was observed to be a monopole
of charge (2v/m), possessing a Dirac string given by the O-term v, = v acting on the Fermi
surface projective Hilbert space F. In this section, we will show how FS topology shapes
the instabilities via a renormalization group (RG) formalism. For this, we start with an
electronic model for strong correlations, and perform the unitary renormalization group
(URG) method by decoupling electronic states starting from the UV. In this way, we show
the emergence of IR fixed points governed by the topological constraints C, Cs of section 4.
Furthermore, we show that the essential features of the RG phase diagram obtained via
URG is dictated by a topological term +;, and reflects the qualitative accuracy of the
skeletal phase diagrams shown in figures 6(a) and (b).
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URG algorithm. In the URG scheme [36—40], the Hamiltonian H is iteratively block-

diagonalized by a succession of unitary maps Uny, Un—_1),---, Uy, leading to the flow
equation

_ t

H—1y) = Uy HpUp),

where j is the j-th electronic state that is disentangled and Hy = H is the bare

[Hj),7;] =0, (6.1)

Hamiltonian. The occupancies of the disentangled electronic states become good quantum
numbers, as they commute with the Hamiltonian, [H;,7;] = 0 for i > j. The N
electronic states are labelled as j € [1, N], in increasing order of bare one-particle energy
€1 < e < ... < epn. Electronic states in the UV are disentangled first, eventually scaling
towards the IR. Concomitantly, this involves the entanglement renormalization within the
eigenstates [V ;)) of Hy;

TG =Upl¥i) s 2al¥-n) = Y1) (6.2)

This guarantees the preservation of the many-body eigenspectrum

Hip V) = E([9)) [¥), (6.3)
where the initial (bare) eigenstate is [¥) = [W¥(y)). The unitary operation U ) [36-40] is
given by

U() :L(1+7](‘)—7ﬁ. ) T]Jr. = L CTTT‘(H()C‘). (64)
D2 J () () ) — Trj<Hg)ﬁj)ﬁj g I G)

The operators 7)), 772]') in the above expression satisfy the algebra {n(j),ngj)} = 1,
[n(j),ngj)] = 1 —2n;). The operator &) accounts for the residual quantum fluctuations

due to renormalized off-diagonal blocks, and is defined as

~ D X X
) = Hoay + Higoy = Hpyy (6.5)

H (lj?) and H, ()j{) represents the diagonal and the off-diagonal components of H;). Note that
eq. (6.5) is essentially a rewriting of the Hamiltonian RG flow equation: AH, G =Hi-1)—
Hipy=w3) — H(l]).). In terms of 7(j), the Hamiltonian renormalization AH|;) is given by

AH(y = m{Tr(ciH))e;,n!}

= Tj{TT(C}H(j))Cj,

1 t

_ e (H, c-)}, (6.6)
&) —Trj(H(%nj)nj VAN OOR

where {A, B} = AB + BA represents the anti-commutator and 7; = n; — % represents
the disentangled degree of freedom. Associated with the quantum fluctuation operator

&(j) are eigenstates |®(w(;))) and eigenvalues w(;). These constitute the natural quantum

7
energyscales arising from the off-diagonal blocks. For each of the w;s, an effective
Hamiltonian RG flow is obtained, describing the renormalization of a sub-part of the
many-body energy spectrum. The condition for reaching a stable RG fixed point is

obtained from the vanishing of the matrix element &w; — H 5) (using eq. (6.5))

(D)@ — HO)I ) = (@)l(wi) — HGIY ) = (@) |AH [P )) =0. (6.7)
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This implies that the projected subspace generated by |®(;))(®(;)|, @(;) is number diagonal:
[wii [ L) (P, H(lj?)] = 0. Finally, by comparing eq. (6.6) and eq. (6.7), we find that the
poles of the Hamiltonian RG flow equation are fixed points at which elements of AH j
vanish.

URG study of the BCS and Mott instabilities of 1D correlated electrons. We
adapt the URG procedure to a 1D model of strongly correlated electrons. We first address
the BCS instability by starting from the model

_ . P
Hy = Z €xlls + Z |:Kcn(p7n)cn’(p,n)cf‘i/1(py—”]:)c'fl(Pv7])
k SN

td
V(o) o () O (0im,) Cra (o) | (6.8)

where p is the pair momentum and 7 is the helicity. We have included the spin-
backscattering process (with coupling K) and forward scattering processes for the vari-
ous opposite spin, p momentum pairs (with coupling V). The redefinition of momentum
wavevectors kxs = kps + AS in section 4 unveils a natural labelling scheme for states in
terms of normal distances from Fermi points Ay > ... > A; > A;_1 > ... > 0. The RG
transformations then disentangle electronic states farthest from the Fermi points, while
scaling gradually towards it. At RG step j, two electronic states with spins (1,]) at a
distance A; from both the L and R Fermi points are simultaneously disentangled. The net
unitary transformation at the step j is Uy = [[s241 5—41 Ujs,0, Where Ujs, (eq. (6.4))
disentangles the electronic state |ky 3, 0). The rotated Hamiltonian H;_;) = U(j)H(j)U(Tj)
thus obtained is off-diagonal with respect to electronic states at distances A < A;.

Next, from the Hamiltonian RG flow equation, we extract the vertex RG flow equations
for all the p = 0 and p # 0 pair momentum vertices (see appendix A for details)

KOV ) 0 (p) (KD (p))*
1 V@ (p) AV (p) = I )
w—i(@qj +€n;)_T w—i(enj—i—eﬁg_)_T

AKD (p) = (6.9)

where k; = (Aj,8,0) and /4;9» = (Aj + p,—5,—0). In obtaining the above equations, we
have chosen the intermediate configuration 7,; = Tt = % It is important to note that in
arriving at the above RG equations, we have accounted for the quantum fluctuation energy
scales w at only the one-particle level. Also, we have not accounted for the feedback of the
renormalized vertices into the w’s (se eq. (6.5)). As discussed earlier, an important feature
of eq. (6.9) is that the denominator in the RG equations originates from the denominator in
the Hamiltonian flow equation eq. (6.6) (see also appendix A). Following this identification,
we note that the poles of RG eq. (6.9) correspond to stable fixed points in theory space.
A similar form of the RG equation (i.e., with a pole structure related to RG fixed points)
was obtained in ref. [104] for simple Hamiltonians.

We investigate the RG equation in the regime

1
w < 5(6,.%. + EH;), (6.10)
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as it corresponds to the vicinity of Fermi energy. Note that the only set of non-trivial fixed
points of the above RG equations (eq. (6.9)) exists for V, V) (p) < 0. Further, in those
cases, the two-particle vertices scattering p = 0 momentum pairs constitute the dominant
RG flows

‘w — g <A] + g) ‘ > |w — hUFAj’
— [AKY(p)| < |AKD(0)], |AVD(p)] < [AVYI(0)] . (6.11)

Here, the net kinetic energy for the pair of electronic states near the Fermi surface (about
EFr) is given by (es; + €x! 1) = hwp(2A; + p). We have additionally reasoned that |w —
hwp (205 + p)| > |V]; as V O(1/L) (where L is the system dimension), the relation is
naturally satisfied for large system sizes. With these arguments, we restrict our study to
that of the dominant 2-particle vertex (p = 0 momentum vertices) RG flow equations in
the continuum limit

dK1 Kl‘/l
= Ki(1—-wGw,A))+———,
dVi K?
—— = V11 —wG(w,A)) + ————, 6.12
where G(w,A) = m In obtaining the continuum RG equations, we have replaced

the discrete difference A log /% by the differential d log AAO’ and defined the couplings K =
K(A)/(w—hvpA) and Vi = V(A)/(w—hvpA). In the regime of eq. (6.10), the signatures of
K7 and Vj are related to those of K and V', as sgn(K7) = —sgn(K) and sgn(V1) = —sgn(V).
For w < 0 and upon scaling towards the Fermi surface A — 0, the ratio hvpA/w — 0—,
such that wG(w,A) = (1 — hvpA/w)~! — 1. This ensures that both RG equations are
eventually dominated by the second term, i.e.,

dK; Kiv; A% K12

dlog &= 1-Vi/4" dlog &~ 1-Vi/4 (6.13)

Similarly, in order to study the Mott instability, we study the Hamiltonian that includes
Umklapp scattering processes (with coupling K’) along with forward scattering processes
(with coupling V')

.|.
Hy = ZGHTLH + Z [K’ c K (p,8) 51(p7,§7)c,£1(p7_§)

KK \pin

PN

V ( ) (p S) Hl(p7 7) Hl(pvé) ) (6'14)
where k(p, 8) = (A, 8,0) and k/'(p, §) = (—A+p, 8§, —0). The pair of electronic states |x) and
|") scatter onto the opposite side of the Fermi surface, such that net momentum transfer
is 2m. The resulting electronic states |k1) and |k}) are given by k1 = (A, —§,0), &} =
(A,—8,0) and k1 = (=A + p, —38,—0). By constructing the unitary maps U(;) (eq. (6.4)),
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we obtain the coupling RG equations from eq. (6.6) as

K G (p)y' ) ” K6 (p))2
KOGV BN p— (KD (p) oo (619)
w= gl teg) =1 w = glen; ) = —1

AK' D (p) =

We again make the choice of electronic states in the vicinity of the Fermi surface, %(65 ;T
€. ) = —hvpp, and investigate the above RG equations in the regime w + hvpp > 0, where
J

v, v0) (p) > 0 leads to non-trivial fixed points. In this case, the pairs with net momentum
ka5 + k_p s = m dominate the RG flows as seen below

w<wthopp = [AKD(p)| < [AKD(0)], AV D (p)] < |AVD(0)]. (6.16)

In the continuum limit, the RG equations attain the form

dlogAA0 1-Vvi/4 dlogAA0 1_‘%1/7

where K| = K'(A)/w, V] = V/(A)/w. The RG equations for the Mott (eq. (6.17)) and
BCS (eq. (6.12)) instabilities include all higher order contributions of the ZS’ and BCS
diagrams respectively. This is in contrast weak coupling 1-loop RG, which accounts for
only the leading diagrams [67]. This diagrammatic contributions in URG have also been
demonstrated for the 2d Hubbard model by some of us [36, 37]. We also note that the
continuum RG equations eq. (6.8) and eq. (6.14) are equivalent to the non-perturbative RG
equations obtained in ref. [105] (upon reparameterization J| = —Jj/2 and J = J/ V2)
for the XXZ spin model belonging to the Gaussian model universality class [106-108].

RG and Fermi surface topology. The continuum RG equations for the Mott
(eq. (6.17)) and BCS instabilities (eq. (6.12)) can be written in a compact form as

dJH . Ji dJJ_ . JJ_J”
A T Jy? A T Jy

(6.18)

with J; = V{ or V1 and J; = K7 or K for the Mott and BCS cases respectively. These
equations have the same form as the Berezinskii-Kosterlitz-Thouless (BKT) RG equa-
tions [109, 110], and are precisely identical to them at weak coupling (i.e., for Jjj — 0).
They also possess the same RG invariant labelling each RG trajectory, r = Ji — Jﬁ. How-
ever, the presence of the (1 — JHSQ)_l term in the denominator of both RG equations
represents a new non-perturbative feature obtained from the URG formalism, and will be
seen to be responsible for the RG flows reaching stable fixed points at intermediate cou-
pling [36-40]. The critical and intermediate coupling stable fixed point features of the RG
phase diagram are depicted in figure 7. Remarkably, the essential structure of this RG
phase diagram is captured by the skeletal phase diagrams presented earlier in figure 6(a)
and (b). We recall that the diagrams in figure 6(a) and (b) were obtained purely from the
consideration of the topological features of the Fermi surface Hamiltonian.
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r>0Y

Figure 7. Nonperturbative BKT RG phase diagram for the LE/Mott instabilities of the TLL. The
WZNW transitions are depicted by the separatrices (i.e., the r = 0 trajectories). The red line drawn
across trajectories shows the transition from the TLL fixed points (blue circles) to the LE/Mott
phases (red circles). The dashed line (including the origin) corresponds to a line of interaction
driven Fermi surface topology changing (Lifshitz) transitions of the Fermi surface.

We can now use the RG invariant r to write the two RG equations in a combined
fashion
dJj,  sen(Ju)sgn(J))y/JT — |rlsgn(r)

- sgn(J|
dinA g U 2 (r)

(6.19)

Using eq. (5.11), it is possible to simplify this RG equation for the case of the WZNW lines
(r =0, Jy==xJL = J) in terms of the topological properties of the Fermi surface, i.e., the
first Chern class v and the © term -,

dJ| _ e TP
dIln A 1 — ei(v—%)ﬂ% ’

(6.20)

where particle-hole/time reversal symmetry leads to v = 7 (eq. (3.17)). We recall that a
change in O-term (eq. (5.11)) with the sign of J coupling, i.e., 7, = ysgn(J), is associated
with a change in the Fermi surface subspace from B, j<o to B_,, >0 (eq. (5.12)). Indeed,
as seen from RG flow eq. (6.20), this change in 7, triggers the back-scattering instability,
leading to an irrelevant coupling turning dangerously relevant.

Further, the RG equation eq. (6.20) has a Zy helicity-inversion symmetry, (Jj|, J1) =

(J}j, —=J1), given by the unitary operation: K= 011/2 = exp [im/2(A}, — A%p)])-
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The enhanced symmetry of the critical point »r = 0, J; = 0 can now be seen as follows.
For v, = —v, d|J|/dlogA < 0 (irrelevant RG flows) and A — 0 leads to the coupling
sequence {[Ja,, | > [Jr,, 4| > ... > [Ja| > [Ja—1| = 0}. This tracks the passage through a
space of SU(2)444 symmetric theories ending at a SU(2), ® SU(2); fixed point theory. The
enhanced symmetry of the critical point is associated with two Chern invariants C'r, and
Cr, in the pseudo-spin composite operator basis F' (see section 5). Remarkably, it is also
a consequence of the independent conservation laws for the chiral currents J;, and Jg for
the gapless Fermi surface. We recall that in eq. (3.8), these conserved currents gave rise
to Chern invariants v, and vp. In the presence of an electric field, this gapless spectrum
will again display the axial anomaly seen earlier the non-interacting metal (eq. (3.10)).
Similarly, the relation observed earlier between the central charge (c¢) of the associated
conformal field theory and the Atiyah-Singer indices (7, — vg) holds here as well.

Topological structure of the RG phase diagram. For RG invariant r # 0, the ©-
term (7, = f in eq. (5.11)) changes from , = v (for either » > 0 or (r < 0,J; > 0))
toyw = 0 (r < 0,J; < 0). This change shows up as a distinction between irrelevant
(v = 0) and relevant (v, = v) RG flows (above and below the r = 0 WZNW separatrices
respectively) in the equation

/72
M - ei(W—%)L ) (6.21)
dlog A 1—%/@2_—7“

By combining the isotropic (eq. (6.20)) and anisotropic (eq. (6.21)) RG flows, we obtain
the RG equation

2
il _ oty VLT (6.22)
dlog A 1_%/‘]%_7“

where w(r) is given by
’W(’f’):(’}/—’yb), 7“7&07
(’Y_fyb)/27 r=0.

Changing w from 0 : 0 —  leads to constructive interference 2w = 27 between clockwise

(6.23)

& anticlockwise paths in the center of mass projective Hilbert space P, : [0,2m).
This causes vortices and anti-vortices in momentum-space, Og /s = ¢!/ Xess and
O?}s = ¢ '2m/MXess pegpectively, to bind via the spin/charge backscattering term
T, + he) = JL(AL A, + h.c) [19).

The red dots in figure 7 for the J; > 0 and J; < 0 regime indicate stable fixed points at
intermediate coupling, and lead to (charge/spin) vortex-antivortex pseudospin singlet and
triplet condensates which are odd and even under (helicity /chirality) exchange respectively.
This is equivalent to the unbinding of real space vortex-anti vortex pairs, as is well known
for the BKT transition [109, 110]. Instead, for the cases (r < 0,J) < 0), there is no Dirac
string in the subspace (see figure 6(a): 7, = 0, and the Y = —1 phase factor in the RG
equation, and will lead to destructive interference between paths traversed in clockwise and
anticlockwise senses in the center of mass projective Hilbert space Py, € [0, 7) (as shown in
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Figure 8. Destructive interference in the scattering processes involving the center of mass Hilbert
space (left) leads to a gapless TLL metal (right). The interference shows up between two opposing

A

trajectories involving the twist (O) and translation (1") operations of the center of mass position
X, with phases 4+/2 respectively.

figure 8). The irrelevant RG flows then lead to a line of blue dots in figure 7, corresponding
to gapless Tomonaga-Luttinger liquid (TLL) metallic system [74, 111]. The dashed line in
figure 7 corresponds to a line of Lifshitz transitions of the Fermi surface labelled by the topo-
logical angle w(r) (eq. (6.23)). Recall that below eq. (3.17), we have shown the equivalence
of the shift of the center of mass momentum AP, and the first Chern class 7. In eq. (6.23)
above, we have shown that the RG relevance of an Umklapp instability is directly associ-
ated with the change in a topological angle to(r). This change in @ can now be associated
with the vanishing of the “momentum shift” (AP, ). We note that a similar conclusion was
reached for the 1d Hubbard and sine-Gordon models in ref. [19]. Finally, note that the uni-
tary RG procedure generates effective Hamiltonian at the gapless fixed points (blue dots)
and gapped fixed points (red dots) in figure 7. In the next section, we present the math-
ematical forms of the effective Hamiltonians, as well as their eigenstates and eigenvalues.

Effective Hamiltonians obtained at the stable fixed points of the RG flow. We
just saw that the appearance of a ©-term with v, (eq. (5.11)) in the RG eq. (6.20) governs
the nature of stable fixed points, i.e., 7, = 7 corresponds to non-critical phases and v, = 0
corresponds to the critical phases. From the coupling RG flows for these two cases, we can
construct the effective Hamiltonians Hj and H; corresponding to the critical and gapped
fixed points (blue dots and red dots respectively in figure 7 as

Hy = Ji) | AzAp (6.24)
* " J1 -

H7r = JHACZL If + 7(A;_Ab + hC) . (625)
fl\’ JI’I‘ and J7 are the magnitudes of the couplings for the Ising and pseudospin scattering

terms at the fixed points, and can be reconstructed from their definitions below egs. (6.12)

and (6.17). Here, pseudospins A, and A are collective pseudospins constructed by sum-

ming over individual pseudospins A, = >y _p+ Ap o, Where Ay , is constructed from a pair
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O©-term () LE ML

0 1y = Il 1y = Il

0 J = —4|lw — hvpA¥| J = 4w

Table 1. Magnitude of couplings at critical and non-critical fixed points.

of electronic states in the low-energy window at the fixed point. Note that in obtaining the
above fixed point Hamiltonians, we have only accounted for only the dominant RG flows.

The values of the fixed point couplings at the Luther-Emery (LE) and Mott liquid (ML)
phases arising from the RG flow of Hamiltonians H; eq. (6.8) and Hy eq. (6.14) are tabu-
lated in table-1. Along the WZNW lines (r = 0 and with v, = 7), the eigenstates at the
stable fixed point are given by

N, N,
N gy = 2
9’ b 2 >7 (6 6)

W) = |Aa+ Ap=m, A2+ A; =0, A, =
where N, is the number of pseudospins within each emergent window [—A*, A*] centered
about the Fermi points. From H; (eq. (6.25)), we obtain the corresponding eigenspectrum
as E(m) = J*[m(m+ 1) — 2N, (N. + 1)], where 0 < m < 2N, and J* = —4|w — hvpA*| for
the LE liquid, and J* = 4w for the Mott liquid phase. As the LE fixed point is reached in
the attractive regime J* < 0, the eigenfunctions are determined completely from m = 2N,;
on the other hand, m = 0 for the ML fixed point. Similarly for the critical phases governed

by H{ (eq. (6.24)), the many-body eigenfunctions are given by
|W)o = |Aq = N, Ap = Ny A2 = m, A2 = m, A; = m), (6.27)

and the corresponding eigenspectrum is E(m) = meQ. In subsequent sections, we will
show that the electronic states at the Fermi surface are witness to the low energy features
of the LE and ML phases.

7 Holographic entanglement scaling towards the Fermi surface

The Entanglement entropy (EE) S(R) of an interacting quantum system is a measure of
many-particle quantum entanglement that is generated upon isolating a region R from the
rest of the system. It quantifies the information lost with regards to quantum correlations
between degrees of freedom in region R and its complement. Earlier works based on real
space entanglement RG [112] revealed distinct scaling features of EE for gapped as against
gapless phases. Using the URG formalism, some of us have recently studied entanglement
RG flow towards various IR fixed points of the 2D Hubbard model, distinguishing thereby
the entanglement scaling features of the normal and Mott insulating states [38]. The URG
represents the nonlocal unitary disentanglement transformations as a product of two-local
unitary operations, providing thereby a entanglement holographic mapping (EHM) [48, 113]
or tensor network representation of URG. The URG method generates Hamiltonian and
entanglement RG along the holographic scaling direction of the EHM [48, 64, 114]. Further,
ref. [38] shows that the many-body states generated by the entanglement renormalisation
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Figure 9. EHM representation of URG flow towards the LE ground state. The black nodes
0,...,9 represent pseudospins with helicity n = +1, while 10,...,19 represent psuedospins with
n = —1. Together, they comprise the holographic boundary in the UV. Pseudospins are labelled
in descending order of energy, such that the pair (0,9) is associated with the highest energy. The
energy of the pairs (1,10), (2,11),..., forms a monotonically decreasing sequence such that the
(9,19) pair is located at the Fermi energy. The yellow block represents the unitary map U;) that,
at every step, disentangles the highest energy pair of pseudospins (represented by red nodes in the
bulk of the EHM). The dotted circle around the pair of black nodes (9,19) comprise the entangled
ground state emergent in the IR. The grey box represents the region (nodes 0 to 9) in the UV that
is being isolated by the blue dotted minimal curve from within the bulk of the network.

respects the Ryu-Takyanagi EE bound [62, 63], i.e., the entanglement entropy generated
upon isolating region R from its complement is bounded from above by the number of
links between them. In this section, we will demonstrate that the RG flow of EE and the
holographic EE bound possess distinct features in the TLL phase and Luther Emery phases.

As noted above, upon scaling from UV towards the IR fixed point, the URG generates
effective Hamiltonians at each step. Starting with the ground state at the IR fixed point,
W« (eq. (6.26) and eq. (6.27)) of the effective Hamiltonian H ;- (eq. (6.25) and eq. (6.24)
respectively), and performing reverse URG steps using the unitary maps Ut leads to the
reconstruction of the states in the UV energy scale:

U, U, U ix
uv B IR Hovy =2 Hiyoyy ——2 D, Higey,
reverse URG . U(TN) U(j*+2) U(Tj*+1)
IR fevese URG, () » W) 2 (@) (7.0)

We now discuss some important features of this scheme. Recall that at each step of the
URG, two pseudospin degrees of freedom of opposite helicities Ap; 11 and A, 1 are
disentangled, generating a Hamiltonian flow towards, say, the Luther-Emery fixed point
(see table-1). On the other hand, along the reverse RG flow, two pseudospins re-entangle
at each step, enabling the reconstruction of the eigenstates at high energy scales. Figure 9
displays the EHM construction for the entanglement RG flow from the UV towards the
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Figure 10. Decomposition of nonlocal unitary disentanglement map U, into two-qubit disentan-
glers represented as orange blocks (within the right figure). Us decouples the pseudospins/qubits
[17) and |7) (red nodes) from the pseudospins |8), |9), |18), |19) and has depth (d=number of orange
blocks acting sequentially) d = 5. An orange block operates on the two pseudospins demarcated by
the lines crossing its edges.

LE ground state in the IR. Pseudospin states are labelled in descending order of energy,
such that pair of pseudospins |0), [10) with opposite helicities () are located farthest from
the Fermi points and naturally associated with the highest electronic pair-energy. Thus, a
succession of pseudospin pairs (|1), [11)), (|2), [12)), ... carry a decreasing sequence of net
electronic energy, such that the pair |9), |19) is located at the Fermi points. The dotted
oval in figure 9 represents the entangled groundstate |¥,) of the LE phase (eq. (6.26)).
Comprised of the pseudospins |9) with helicity 7 = +1 and |19) with helicity —1, it has
the form |U,) =[A=1,A, =0,A4; = 3,A_1 = 1). The complete ground state at the IR
fixed point can be obtained by performing a tensor product of |¥;) with the disentangled
pseudospin states labelled 0 to 8 and 11 to 18, () = [Vr) @ [si) @21, |si). Here, the
s; are the | 1) and | {}) configurations of the individual pseudospins. The reverse unitary
operations UT (yellows blocks in figure 9, eq. (7.1)) map the ground state from IR to UV
(with RG step j* = 1 being the fixed point): UJ|W), UIU|®), USUIUT|W), ..., generating
thereby the EHM tensor network.

An essential feature of the EHM network is that it can be represented entirely as
a product of two-qubit disentangling gates [48]. Such a decomposition will allow us to
interpret the URG as a quantum circuit renormalization group [38]. For the present EHM
network shown in figure 9, we show some aspects of the equivalent quantum circuit in
figure 10. The second last yellow block Us (connecting states |Us) and |¥3) = Ug‘\l’2>) can
be decomposed as follows

Us = Ui79U178U7,19U7,18U7 17, (7.2)

where U; ; disentangles the pair of pseudospins |i7) and |j) (orange block in figure 10). Note
that in the parent Hamiltonian for the RG analysis (eq. (6.8)), we have only accounted for
the backscattering diagrams that couple pairs of electronic states with opposite helicity (7).
In the second last RG step, the collection of unitary disentanglers Uz 19U718U7 17 decouple
the pseudospin |7) with helicity n = +1 from the pseudospins |17), |18), |19) of opposite
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helicity n = —1. This is followed by the next set of unitary maps Uy79U17g that disentangle
pseudospin [17) of helicity n = —1 from |8) and |9) with helicity n = +1. The depth d of the
orange block equals the number of U, operations carried out sequentially (in eq. (7.2)) to
complete the disentanglement operation U;. For Us, as shown in figure 10, the circuit depth
d = 5. The form of the individual qubit disentanglers U, in eq. (7.2) are constrained by
the analytical form of the complete unitary map U; (eq. (6.4)) determined by the renormal-

ized Hamiltonian H ;). Many-body states Uz 17|W3), U7 18U717|W3), ... generated at each

)
sublayer of the circuit) composing Us (see figure 10) involve the vanishing of mutual infor-
mation I(i:j) = S(i)+ S(j) — S(i,7) [48, 115] for the pair of qubits (7,17), (7,18) and so
on [38]. S(i),S(j) is the entanglement entropy associated with isolating qubit ¢ and j from
the system and S(i, j) is the joint entropy associated with the isolating pair of qubits (3, j).
Upon implementing the reverse URG, we isolate at each RG step j momentum-space
blocks of increasing lengths (9),(9,8), (9,8,7), ...(9,8,...,0), and obtain therefrom the

EE S;(1)
Si(l) = =Tr(pj(l)log p;(1)), pj(l) =Tro,...10-1(1L ) (¥ (5l (7.3)

where | € [1,10] is the size of the momentum-space block and p;(l) is the reduced den-
sity matrix. For this, the state [W(;)) is generated from |¥;)) by doing reverse URG:
W) = U}U;Ll .. Up|¥(j+)). We also provide a reverse URG formulation for the TLL
phase starting from the state |[Uo) = |42, = 3,47, = 1) (eq. (6.27)). This allows us to
construct a EHM quantum circuit realization of the URG for the TLL similarly to figures 9

and 10 given above, generating the URG flow for the block entanglement entropy of the
TLL. The left and right panels of figure 11 show the entanglement entropy RG flow for
different momentum-space block sizes in the LE and TLL phases respectively. Along the
forward RG flow, the successive disentanglement of pseudospins leads to a gradual reduc-
tion of block EE: the disentanglement of UV degrees of freedom reduces the entanglement
sharing between IR and UV degrees of freedom. It is important to note, however, that in
the left panel of figure 11 the EE for the lowest block size 9 at the Fermi point increases
along the RG flow, terminating at a final value of S = log2. This shows that the entan-
glement between Fermi points at the IR fixed pointis enchanced, leading to formation of
the maximally entangled state |U,) = vV2-1[| fy1d—1) — | {41f—1)]. On the other hand,
for the TLL phase, the momentum-space block EE is observed to decrease monotonically
to zero along the RG flow for all block sizes, suggesting perfect disentanglement of the
pseudospins. In this way, we observe distinct scaling features for the TLL and LE phases.
Finally, we turn to display the holographic feature of the EHM: when computed from
the bulk of the EHM tensor network, the EE associated with region R possesses an upper
bound related to the number of degrees of freedom in R (n(R)) that are entangled [48, 64,
114]. To compute the upper bound, we multiply n;(R) with the maximum one-pseudospin
entanglement entropy S;(i) at RG step j, such that
S5(R) < ny(R) x max(,(0)). (7.4)
This leads to the Ryu-Takyanagi formula for entanglement entropy [62, 63]. The grey block
ranging from pseudospin 0 to 9 in figure 9 represents the region R at UV, while the dotted
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Figure 11. Entanglement Entropy S(I) renormalization for varying sizes of momentum-space
blocks (9),(9,8),(9,8,7),...,(9,8,...,0) (i.e.g, block size [ ranging from 1 to 10) for (a) the LE
and (b) the TLL phases. See discussion in main text.
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Figure 12. Blue and orange curves show the RG scaling of the holographic entanglement entropy
bound and the entropy scaling of the momentum-space block (9,...,0). Left panel represents the
curves for the LE phase, and right panel for the TLL phase. The legend S(9) is the entanglement
entropy generated by isolating block of size 9 units, Smax(1) is the maximum single-pseudospin
EE and n the size of the minimal surface in the bulk of the EHM (varies with the RG step). See
discussion in main text.

blue line is the minimal surface, or, equivalently, the number of links cut to isolate R from
deep within the EHM. Evidently, the minimal surface shrinks as we proceed deeper into the
bulk of the EHM such that n;(R) reduces. In the present case of figure 9, nj_1(R) = n;(R)—
1. In figure 12, we confirm the holographic entanglement entropy relation (eq. (7.4)) with
R ={0,1,...,9} for both the LE and TLL phases. The blue curve shows the holographic
entropy upper bound, while the orange curve shows the entropy computed for the region
R from the bulk of the EHM. Importantly, the distinct holographic entanglement entropy
scaling features imply that it is a witness to the entanglement phase transition between the
critical TLL phase (blue dots in the phase diagram figure 7) and the gapped LE phase (red
dots of figure 7). First, we note that the Smax(1) leading to the EE upper bound for the
LE and TLL phases are distinct: while it arises entirely from the degree of freedom at the
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Fermi surface (pseudospin 9) along the RG trajectory (step 9 to step 0) for the LE phase,
it shifts gradually from UV (pseudospin 0) to the IR (Fermi surface pseudospin 9) for the
TLL as the RG proceeds. Second, the shape of the upper bound for the two phases is quite
different: while it scales linearly with the logarithmic RG step size for the LE phase, it is
clearly non-linear for the TLL phase. While the latter is reminiscent of the rapid expansion
of holographically generated entanglement spacetime expected for a gapless phase (i.e., the
AdS-CFT conjecture for continuum field theories [116, 117], and its discrete counterpart
in lattice field theories [65]), this will need further investigation and will be presented
elsewhere. Though we have not shown the analysis here, precisely similar results to those
shown for the LE phase are also obtained for the gapped ML phase described earlier.

8 Observing the instability of the Fermi surface

Dynamical spectral weight transfer. We recall that a topological constraint
(eq. (4.3)) ensured that the FS backscattering vertex acts on the 2-electron subspace

NF:/OO dﬁw:l (8.1)

oo I ow

where Gy is the non-interacting Greens’ function given in eq (3.3). The vertex is described
by Hp, (eq. (5.4)), and satisfies the criterion [18]

Npy =2, y=2nv, 218 =, (8.2)

where v = /27 = 1/2 and S = 1/2 are the Luttinger sum for the charge and spin
excitations (eq. (3.17), in the presence of p-h and TRS symmetries) respectively. As seen
earlier, backscattering leads to the formation of composite objects with spectral weight
given by Friedel’s sum rule [118], relating the scattering phase-shift (d) to the scattering
matrix (Sr,)
. A A H
25 = 2Trp, (In(Sk)), Sk =1 — 2nGop —— (8.3)
1-— GOFl I‘IF1

where Hp, is given in (eq. (5.4)). The scattering matrix S'Fl has the following matrix

representation in the basis (1/v/2) [| Tradre) £ | LFaTro)]

. 05 0
Sp, = {6 , (8.4)

0 et

where the pseudospin singlet/triplet scattering phase shifts are given respectively by ds =
tan~1(37.J/4),6; = tan~!(—7J/4). We recall that the change in center of mass momentum
under twist via a full flux-quantum is related to the Luttinger sum ~/27 (eq. (3.17)),
AP, = v/2r. Due to Kohn’s theorem [119], this relation holds even in the presence
of electronic interactions. Thus, in the presence of a putative instability of the FS, the
total spectral weight associated with the FS subspace F} within the window L, (i.e., of
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the composite objects, together with that of any remnant fermionic degrees of freedom) is
given by a generalized Luttinger’s sum rule [120, 121],

27

. Tr(in(Gr, (0+in))) = Tr(in(Gr, (0 — i) + Tr(In((S)r,)) , (8.5)

where the fermionic single-particle Greens’ function is given by G, (E) = (Gor, (E)™' —
Hp,)~!. The RG equation for the pseudo-spin singlet scattering phase-shift &, along the
WZNW line J) = J = J is then given by

ds er=1)/2 4|
dlnA 14+ %tﬂ dln A~

(8.6)

This relation shows that the Friedel’s phase shift changes non-analytically across the critical
point J = 0 for the WZNW flows as <, changes from —v to . Further, for v, = 7,
unitarity dictates that the increasing dynamical spectral weight transfer between fermions
and composite degrees of freedom within the LEB be obtained from

In(Gp,)) =0. (8.7)

Tr(in((8)r)) + o T

dln A
The dynamical spectral weight transfer stops eventually at the IR fixed point J* = 4,
where the scattering phase shift % = tan~!(37J*/4) = tan~!(37). For the Np = 2
particle subspace at the Fermi surface, we define a quantity N; [122] that tracks spectral
weight redistribution in terms of Ny and the Friedel’s scattering phase shift (d5) [121]

=Np——==Np (8.8)

—oo T Oow T T

N, — /oo dw OTr g, (In(G)) 205 _ o 2Tr(ln§F1)'

Measuring full counting statistics for Fermi surface electrons. We have seen
in earlier sections that the electronic degrees of freedom at the FS possess topological
attributes that track the two- particle scattering induced instabilities. In this spirit, we
now propose a “two-path” thought experiment for a ring-like geometry of the interacting 1D
electronic system. This gedanken aims to measure the various moments of the spin/charge
backscattering dynamics of FS electrons (full counting statistics (FCS)) in the presence of
a putative instability. As shown in figure 13, the setup has two open identical 1D systems
that are tunnel coupled to injectors I'1 and 12 and detectors D1 and D2 in a ring geometry
enclosing a flux A = ®/®(. The injectors and detectors are momentum resolved, such
that they inject and extract electrons in a resonant manner at the Fermi energy Er, and
with well defined helicity/chirality. Further, the injection and extraction events involve
1-particle superpositions across the two arms of the ring.

In order to track the BCS instability in the two 1D systems, injectors 11 and /2 simul-
taneously inject an electron each with a given helicity n = +1, but with oppositely directed
momenta —kpr and +kp respectively. The injectors are switched off immediately after the
injection, and the detectors are switched on simultaneously. The injected electrons suffer
backscattering in each of the arms, and reach the two detectors through trajectories that
involve two-particle interfering pathways between the two arms that together enclose the
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AB flux A. This two-particle interference thus provides information related to the correla-
tions accrued from the backscattering processes in the two arms. For the Mott instability,
two electrons are instead injected from I1 in superposition between the two arms and are
extracted at D2 (while 12, D1 are deactivated). This thought experiment is, therefore,
a two-particle fermionic Hanbury-Brown-Twiss setup whose purpose is to expose the
interplay of interparticle correlations and Fermi surface topology. An Andreev scattering
variant of this gedanken would involve injection of electrons and extraction of holes.

The two-electron scattering matrix at the Fermi surface eq. (8.3) in the basis F} =
{l Tralrs),| {Falrp)} of the composite pseudospin instability operator (see section 5) is

§F1:; [”] , (8.9)

tr

given by

where dg,d; are the pseudospin singlet/triplet phase shifts defined earlier for the Fermi

ds

surface electrons, and r = e + €% t = ¢ — ¢ are the reflection and transmission

coefficients respectively. The r and ¢ coefficients can be represented as follows

= |25 it = /277*%6@'9t7
2w 2T

sin 4 —|—Si1’15t> sin O —sin5t>

0, = arctan
" (cosés + cos 0, cos 05 — COS Oy

0; = arctan ( (8.10)
where the two-electron wavefunction upon scattering in projective Hilbert space F acquires

a geometric phase
vs = (1 — cos(ds — d¢)) (8.11)

associated with the monopole of charge 25 = ~/m (see discussion in section 5). The
geometric phase s is acquired as follows. The initial state | Tpqlrp) of the injected
electrons is an equal amplitude superposition of the two arms 1 and 2. For instabilities in
the two arms and in the absence of the AB flux A, this initial state scatters to

[Y(w)) = Sk | Trabrs) = € (I7]| Tradrs) + €|t LraTr)) - (8.12)

This scattered state then traverses a closed loop over w = 6; — 6, € [0,27), acquiring a
scattering berry-phase v, computed from the berry potential A = ig(1h(w)|d, |1 (w)) as
follows,

'ys:fdw-A,w:wqg. (8.13)

We define flux-resolved momentum space Wilson loop operators that encode the
amount of effective flux observed by charge/spin degrees of freedom

QA ey A)\ oy Q)\
Zc/s = C/SOC/STCJr sOc/Ts’
22 = exp [ivAM (et + Ay — 1)] 4 Z} = exp [i9A (gt — )] - (8.14)
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Figure 13. Thought experiment for probing the entanglement entropy related to two-particle
scattering through transport measurements. Two open 1D systems 1 and 2 (at the brink of LE/Mott
instability) are coupled to electron injectors 11,72 and detectors D1, D2 via Y junctions. The ring
geometry encloses a flux A. The Y junctions of injectors Il and I2 feed two electrons (| 1, and
L)) to either system 1 or 2. This results in a superposition state £ ()\) created by the scattering
process described by matrices Sg, (A/2) and Sp, (—A/2). See main text for discussions.

In the above expressions for Z 3‘/8, we have used the spin (T;) and charge (7,) translation
operators given by

Ts = exp ) Z k(ﬁkT — ﬁkJ,)

k| <|kr|

. T, —exp lz S k(g i — 1)), (8.15)
Ikl <Jkr |

A

and the spin ((33) and charge (O.) twist operators defined as

A A

O, = exp[z’Xcm] , Og = exp[i(N/Ne)X'cm] ) (8.16)
These Wilson loop operators are the momentum-space duals of the real-space variants
shown in eq. (3.14) (and which led to the first Chern class v eq (3.17)). Further, they track
boundary condition changes at the Fermi surface for the spin/charge degrees of freedom.
In the scattering problem between the two Fermi points (£kr), backscattering processes
can be visualized on the ring in terms of interfering clockwise (1) and a anticlockwise (2)
paths (see fig 13). Along path-1, a flux is accrued by FS electrons via the Wilson loop
operator é 22 eading to the modified S-matrix

Sk (M2) = 20251 2. (8.17)

This leads to a scattered two-particle wavefunction: [ (A/2)) = Sr (A/2)| Tralrs)-
Along path-2, the modified S-matrix is

Sk (-)2) = Z20)°Sp 2)7 (8.18)
and the scattered state is given by |¢f/s(—)\/2)) = Sk, (—=A/2)| TFadFp). Superposing these
two scattered wavefunctions gives the total wavefunction as ]\Iff/ SA) = ]@bf}s()\/Q)) +
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]1/15/ s(—=A/2)), and leads to the following two-particle interference pattern for spin/charge
currents carried by the pseudospin composite degrees of freedom (see section 4)

(WeysMITE(N) = 2+ 2Re(ty (=A/2)[1z4(A/2)))
= 2+ 2|r* + 2t|* cos y\. (8.19)

We can now define a moment generating function, M 5 s(A), containing the FCS for the
two-particle back-scattering at the FS

The real part of the moment generating function, Re(M o/ F.(\)), can be determined from the
two-electron interference pattern (eq. (8.19)). Alternatively, the quantity <\I/f/ NeyIN %S / s(A)
is a measure of the expectation value of the charge operator

e

ACF/S()\) = S\I/C/S()\)\Ifc/s()\), (S =1/2)

(Q2)s) = Re(My,(\) = 2|r[* + 2/t cosyA, (8.21)
where \I/f/];()\) is given by

Whoss(N) = S5 (V2) AL, + S (=M /2) AT, (8.22)

and, as shown earlier, AL, = CLFTClkFi, Ajgb = CT—kFTCIFkFi' Similarly, Im(MCf;S()\)) is

evaluated from the expectation value of the composite current operator (fc /5(A)) defined as

o= 51 () () - (D) . ()

(15,(N) = Im(MZ, (X)) = 2/t sinyA. (8.23)

Thus, in terms of the charge (<QFC/S(>\)>) and current (<fFC/S(A)>) observables, the
two-particle FCS generating function can be written as

M (N) = (Qe (W) + i1, (V) - (8.24)

A cumulant generating function can now be constructed from the moment generating
function: GF(\) = InM 5 <(A). By varying the counting field A, we can generate all
cumulants of the spin or charge distributions at the F'S. Further, using the Klich-Levitov
formula [123] together with eq. (8.11), the even cumulants yield the entanglement entropy
Srs between the helicity/chirality sectors (see section 4)

Qom d2m 7

S MC <1—%)1 <1—%)
2r 27 2T 2
¢

2 2 cos(s, — % =
= 127T+2 cos(ds — 0;) In tan 5 (8.25)
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where we have used eq (8.11) in the final line. The first piece of this entanglement entropy
is purely topological, i.e., Siop = —In - = In2 depends purely on the first Chern class
~ and accounts for dimension of projective Hilbert space F; (d = 2). We will see in the
next section that this topological piece of the entanglement entropy (Siop) reappears in
the center of mass Hilbert space. The second piece (Sgy,) is a function of the pseudospin
singlet and triplet scattering phase shifts, and is dependent on the geometry of the
projective Hilbert space Fj. This reflects on the additional entanglement content of the
many-body wavefunction arising from the dynamical spectral weight transfer. This second
piece renormalizes incrementally as the instability hits the Fermi surface (7, = =, and
d|J]|/dIn X > 0), leading to a value at the IR stable fixed point (J* = 4) given by

Sayn = % cos(¢) In { tan Z)} , ¢ =tan (31) —tan" ' (—n). (8.26)

Note that Spg — 0 as §s = 7/2 = —¢; (unitary limit). Interestingly, for J = 4/(1/37),
ds — 0; = m/2, such that Spg = —In 5= is purely topological. In this way, a measurement
of the FCS should enable that of the associated many-particle entanglement entropy [123].

9 Topological order and its observables

We begin by clarifying how the center of mass Hilbert space topology is shaped by the
instability. Recall that for Jjj < 0, sgn(r) jumps across the SU(2) WZNW lines from —1 to
+1, together with a jump in the Berry phase v, = (7/2)(1+sgn(r)) from 0 — 7 (eq. (5.11)).
These changes are associated with a modification of the center of mass Hamiltonian from
HY = P2 /2M to

m
2

P 27
H., = 2;\21 + AE;), cos <7XC/S> , (9.1)

where M is the total mass of the system, and Pem = >J|zj<p+ o (PhF + RA)fig 0 o is the

center of mass momentum of the electronic states within the emergent momentum space
window [—A*, A*]. The cosine potential arises from the backscattering term A} A, +h.c. in
the fixed point Hamiltonian (eq. (6.25), see also eq. (5.3)). AFE, /. is the gap in the center
of mass spectrum between the low-energy singlet A, + Ay = 0 and the high-energy triplet
states A, + Ay = 1. AFE,,. depends on the renormalized coupling JT at the RG fixed
point (see table 1) and will be quantified in the next section. This is in clear contrast with
the gap obtained from 1-loop RG (and where the coupling diverges at the strong coupling
fixed point). We will quantify AE,,. in the section below.

The precence of the cosine potential changes the gauge symmetry of the state manifold
from Zy >~ S1 (in the thermodynamic limit N — o0o) to Zz (where Z3 is the X/, : 0 — 7
symmetry of the cosine potential). The translation- and gauge-invariant wavefunction
basis B,,—o for the metal (described by H2,)) and basis B,,— for the (spin/charge) gapped
insulator (described by H.y,) are given by

1 iki . 21y
By = {’k> = ﬁzek]p(c/s =j)k= N}’ Br = {|Pern = 0,m)}
J

[Pem = 0,7) = /7/27 || Xefs = 0) £ | Xeps = 7] (9.2)
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where | P, = 0, 7) represents the two degenerate singlet states in center of mass spectrum,
protected by the gap AE, . from the triplet of excited states. That this degeneracy is

not lifted due to tunneling (via the kinematic term P2

= /2M) arises from the destructive

interference in the manifold of quantum states within B, (eq. (9.8)). The Hamiltonian Hep,
projected onto the basis B, vanishes, where the projection operator P = |Peyy = 0)(Peyy =
0| + |Pen = m){(Pern = 7|. Thus, PrHenPr = 0 leads to purely topological dynamics
governed by a 0+ 1D WZNW term (of the form shown in eq. (5.10)) with Chern coefficient
Cem = 1 for v = . The two-fold ground state degeneracy (d = 2) is directly related to the
Chern coefficient as d = C' + 1. We will shortly see how this establishes topological order.

Two spectral gaps and topological order. We have seen already that the ©-term,
Y = 7, leads to an increasing J| coupling under RG, eventually ending at an asymptotically
safe stable fixed point Jj|(An«) = 4 (eq. (6.18)) in the IR. This should be contrasted with
the one-loop RG result [2], where the coupling diverges under RG flow towards strong
coupling: Jj(A) — oo. The fixed point theory resides in the low-energy window L« :
[—hvpAns, hupAyy], with the many-body gap (AExy g [2])

A* T\ 11
AFEyp = 4tA0 4t ( 1 ) exp |‘4 JO] , (9.3)

I
where J| |(|) is the bare coupling, 4t is the bandwidth and A* /A is the ratio of the renormalized
and bare energy window cutoffs. Within the many body gap, a pseudospin A, , is formed
for every pair of electronic states, and compose the effective Hamiltonian eq. (6.25). In
this manner, all single particle excitations within L,+ are gapped. This gap is the analogue
of that obtained from the one-loop BKT RG for the 1D superconducting Luther-Emery
liquid and 1D Mott insulator [1, 2], AE}\/}IE,OP = 4texp[—-1/ Jﬁ)] .

Along-with the many body gap for single particle excitation discussed above, we find
a substructure associated with the spectrum of the center of mass Hamiltonian (see dis-
cussion below eq. (9.1)). The gap in the center of mas spectrum is determined from the
spin/charge gap (AFE,,, = J|/Nj-) between the pseudospin singlet and triplet states
(|AA,.a + An,.b> =0,1) as,

4 1/4( J|T)2+r2 1 1

I I
where Jl"l‘ is determined from the table 1 for the MI and LE phases. The spin/charge gap at

the intermediate-coupling fixed point (Jn*H = 1/5?) is equivalent to the gap between the
states |A,+Ap = 1) and |[A,+ A, = 0) at the FS, and can be attributed to the fact that the
Hamiltonians eq. (5.9) and eq. (4.15) possess the same couplings. Following Ambegaokar
et al. [124], we can now define the coherence length & .., for the BKT transition in terms
of the RG invariant

Eeon(J7) = Lo/ VT = 1,677 (9.5)

where [. is the vortex core size and we have used the relation between the RG invariant r
and the final fixed point coupling J7 .
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Figure 14. Constructive interference phenomenon for scattering processes on the center of mass
Hilbert space described by basis B, in eq. (9.2)(left). The interference shows up between two
opposing trajectories involving the twist (O2?) and translation (T) operations of the center of mass
position X, with phases 4 respectively. This leads to a spin/charge gap (AEy,.) around the
Fermi energy Er between |0) and |1) along with the standard many-body gap AE)/p demarcating
the low energy window L, (right). The green curve within the left figure corresponds to the
interaction induced potential (AE,,. cos(2X)) within the center of mass Hamiltonian. See main
text for discussions.

The modified center of mass projective Hilbert space has a emergent Z, symmetry and
associated doubly-degenerate ground states

’Pcm - OaAa+b - 0) 5 OAc/s‘Pcm - OyAaer = O> - |Pcm - 'Y,Aaer = O> 5
02| Pem = 0, Aqsp = 0) = [Pama = 2, A3 = 0, (9.6)

Nyl

separated from the lowest-lying excited states with |A,4, = 1) by the (spin/charge) gap

A

AE. given above. We recall that the commutation relation between the twist (O,/,) and

A

translation (7") operators was shown in section 3 to be
O )T = 10,y et Pon], 0.7)

where [ X, /s, Pem] = 4, 7 = 7. This leads to destructive interference in a multiply-connected
geometry (S' = [0,2n)) involving path-1 (X,/; = [0,7] traversed in clockwise sense) and
path-2 (X./, = [0, 7] traversed in anti-clockwise sense ) between the two degenerate states
’\I’1> = ’Xc/s = O,Aa+b = 0> and ’\I/2> = ’Xc/s = W,Aa+b = 0>,

| W12 + | W) + 2|0 || Wy| cosy =0, (9.8)

where ¥; = €Wy, The Aharonov-Bohm phase ¢/7 arises from charge e/2 objects encircling
the Dirac string in the FS projective Hilbert space. Indeed, the finding of topological
degeneracy with a gap AE. for v = 7 corresponds to one of the possible conclusions of the
LSM-type criterion [18] discussed in section 5. The zero mode of the square-root of the ver-

2

tex operator OC /s [19] is a nonlocal gauge transformation with an associated Zy Wilson loop
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given by eq. (3.14). This Wilson loop operator reveals the presence of a vortex condensed
topological state of matter at the intermediate coupling fixed point J} [125, 126]. The
modified Hilbert space B, topological degeneracy, topological excitations and spin/charge
gap are depicted pictorially in figure 14. On the other hand, for v, = 0, the gapless TLL
metal corresponds to the second conclusion of the LSM-type criterion (see section 5).

Observables for changes in Hilbert space geometry and topology. We now iden-
tify observables associated with the center of mass twist operator OC/S (eq. (3.11)) that
probe changes in Hilbert space geometry and topology across the RG phase diagram. The
modification in center of mass Hilbert space as the sign of the RG invariant sgn(r) changes
from —1 to +1 can be tracked by the cumulants C, of the center of mass position operator
Xc/s- The cumulants C,, are defined as the nth derivative of the gauge-invariant cumulant
generating function G(\)

GO =m(0Y,), o= S0 gy (9.9)
= 1In = 11m -0 - .
s/el > =T 9m)n Lo dAn M0
The first cumulant,
Vb 2

C = o = E(l + sgn(r))sgn(J))) (9.10)
is related to the ©-term associated with the Dirac string in the projective Hilbert space [19,
127]. Now, for 7 > 0, as J|| changes sign, 7 : v — —7. Nelson and Kosterlitz [128] have
shown that for crossover RG flows r > 0, the superfluid stiffness x for the classical 2D XY
model is related to the coupling Jj in the Hamiltonian eq. (5.9)

mzszT . s
h2p$ N ﬂ'JH -2

X = (9.11)
They then employ the asymptotically free nature of the weak coupling perturbative RG
for the BKT transition to show that for » > 0, J) : 0 — oo, there exists a universal
jump in the superfluid stiffness across the transition given by Ax = x(J;; = 0) — x(J); —
o0) = 7/2 [128]. Our asymptotically safe RG equations eq. (6.18) show that for r > 0,
Jy 0= 4r?/y* =4 =1/5% and Ay = x(J;; = 0) — x(J;; = 1/5%) = 7/(47r —2). In
this light, the asymptotic safety of our RG results arise from the intermediate coupling
fixed point at S = 1/2 discussed earlier and are indicative of fermionic criticality, while the
asymptotically free BKT RG equations are obtained for the limit of S — 0. Importantly, we
see that the crossover RG flow is also associated with a jump in the Berry phase Ay, = 27,
as well as a jump in the first cumulant C;

_ Ay
AC; = 5 = L (9.12)

The second cumulant Cs is related to the localization length (£) [127]
Cy =& = (X)) = (Xepa)® (9.13)

For J)| < 0, the change in the localization length is § : co — (7/27), as the change in sgn(r)
depicts the transition from a metal to a (spin/charge) gapped state. The localization length
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£ has an interpretation as a geometric distance on the center of mass Hilbert space. To see
this, we define the quantum metric of the center of mass Hilbert space as

g = (TN ]NT (V) — [(T(N)]OxT(A) [, (9.14)
where [¥U()\)) € OBy or [¥(\)) € OBy. By performing an average over the gauge \, we
obtain ) L

de? = —d\? =— [ d\/gm- 1
&= 13 9n= 8= ; 2% (9.15)

We can now relate the imaginary part of the (spin/charge) conductivity at zero frequency
limg, 0 Im 0,/.(w) to the fluctuations encoded in the quantum metric [129] gxy via the
fluctuation-dissipation and Kramers-Kronig relations

/Re 0y/e(w')

[e.@]
I = uljl{)%hn os/e(w) = /0 dw " (9.16)

Thus, the drastic jumps in both ¢ and Im o,/.(w = 0) are both topological in origin. The
cumulant generating function G(\) in the (spin/charge) gapped phase J; < 0,7 < 0 is
given by G(\) = In(y/27) + In(1 + €27*). In the light of the arguments presented above,
we can conclude that all cumulants (M,,) are functions of the quantum metric gy) and
Berry phase v of the center of mass Hilbert space. Further, they will all show universal
jumps across the transition.

Entanglement entropy and noise in the center of mass Hilbert space. The center
of mass Hilbert space Hcp for 4, = 7 is spanned by a SU(2),.S = 1/2 representation basis
Br (eq. (9.2)) embedded on a circle (S1) Sem : X¢/s = [0,27). In order to compute the
entanglement entropy, the circle Sey, is cut at diametrically opposite points

Sem = S1em @ S2em s Stem = {7/2,...,0,...,37/2], Soem =[7/2y...,m,...,37/2].
(9.17)
This results in a surgery of the center of mass Hilbert space Hen = SU(2) into Hi ® Ha,
where

Hi:Bi = {|0x,-0), |1x,=0), X1 € Stem}, Ho:B2={|0xy=n);|1x0=x), X2 € Socm},

(9.18)
where |0g x),|1o,x) are labelled by eigenvalues of the number operators fpand 7. As both
‘Hi and Ho represent two-level systems (SU(2),S = 1/2), the combined Hilbert space
H1 ® Hsz is isomorphic to SU(2) ® SU(2). The center of mass coordinate in Hi ® Hso is
represented as X'C /s = X1+ Nz Xo = Y. Within this formalism, the basis B, C By X Bo
is subject to the constraint 7ig + 7, = 1. The basis B, can then be represented in terms of
entangled states

2m — 7y
| Pen = 0, ) ,/ |1X10X2 \OX11X2). (9.19)

Recall that v = 7 is the first Chern class on the center of mass torus 72 (eq. (3.17)). Now,
by partial tracing over Hs, the reduced density matrix for H; is given by

i Y
s = 91030+ (1= 55 ) L)L . (9.20)
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The entanglement entropy, S = —Tr(py, In py, ), is thus dependent on the center of mass
Hilbert space topology and is given by

S:_llogl_ <1_'Y> log (1—7> . (921)
27 2m

Clearly, the entanglement entropy is Siop = In2 [130] for v = 7, where the 2 within the log
refers to the two-fold topological degeneracy (d = 2) on the torus 73 observed earlier. We
recall that the same topological entanglement entropy was derived in an earlier section by
the scattering dynamics at the Fermi surface. As seen earlier, there exists a relation [123]
between the even cumulants Cay, in eq. (9.9) (i.e. fluctuation associated with the center of
mass position vector) and the entanglement entropy

Q2m
Stop - Z mCQm, (922)

m>0

where ag,, = (27)?"|Bay|, and Ba,, are the Bernoulli numbers. The cumulant generating
function (eq. (9.9)) can therefore be written in terms of basis states of eq. (9.19)

G(A) = In(exp [iAyni]) . (9.23)

This shows that changing boundary conditions via operator O* tracks the number fluctu-
ations associated with the state of the center of mass position X/, = .

10 Discussions and outlook

In summary, we have applied the unitary renormalization group (URG) technique to the
problem of interacting electrons in 1D, unveiling thereby the role played by emergent topo-
logical features in guiding the RG flow towards critical (TLL) and stable (LE and MI)
fixed points. While the nature of critical RG flows comprising the BKT RG phase diagram
is preserved, the nonperturbative nature of the URG formalism shows the emergence of
non-Abelian constraints leading to a family of gapped intermediate coupling fixed points.
We also perform a quantum mechanical analysis of scattering processes at the Fermi sur-
face, and compute topological terms induced by interactions. In doing so, we obtain a
skeletal phase diagram that shares the essential features characteristic of the BK'T phase
diagram. This skeletal phase diagram highlights regions possessing different symmetries,
and which are separated by transitions involving changes in topological quantities related
to the projected Hilbert space at the Fermi surface. In this way, we observe an interaction
driven Fermi surface topology-changing (Lifshitz) transition of the 1D metal across the
critical point, similar to the transitions observed in the 2D Hubbard [36, 37] and other
models of correlated lattice electrons [39, 40]. Given the simplicity of the two-point Fermi
surface at hand, we expect that these insights into the nature of fermionic criticality are
universal, i.e., they shed light also on the instabilities of regular connected [40], as well as
Dirac point-like [52], Fermi surfaces in higher dimensions. In this sense, fermionic critical-
ity appears to be shaped by the global (topological) features of the Fermi surface. It will
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be interesting to test these conclusions for one dimensional systems of interacting electrons
in the presence of disorder [131] or incommensuration [132].

The many-particle entanglement renormalization comprising the EHM tensor network
show distinct features for the critical and gapped phases. Thus, the topological phase tran-
sition across the critical point of the BKT phase diagram also corresponds to a entangle-
ment phase transition. By verifying the Ryu-Takayanagi holographic entropy bound for the
EHM network, we demonstrate the emergence of two distinct spacetimes across the critical
point in the dual gravity theory (i.e., corresponding to the gapless TLL and gapped LE/MI
phases respectively), such that the critical point appears to act as a horizon in the holo-
graphic dual spacetime generated from entanglement RG flow [133]. We also demonstrate
the important role played by the degrees of freedom at the Fermi surface in guiding the en-
tanglement RG flows from UV to IR for both the gapped and gapless phases. It is tempting
to speculate that these are again universal findings, and will be explored in future works.

The MI and LE phases emerge respectively from the charge gapping and spin gapping
of the Fermi surface and its neighbourhood. We find that these phases possess the essential
features of topological order: ground state degeneracy (for the system placed on a periodic
manifold) protected by a many body gap, charge fractionalization etc. An important fea-
ture of emergent phases is the phenomena of dynamical spectral weight transfer between
the emergent pairs of electronic states and the fundamental electrons. Using the URG anal-
ysis of the scattering phase shift, we compute nonperturbatively the net Friedel phase shift
and quantify the dynamical spectral weight transferred from UV to IR. Finally, by treating
the degrees of freedom at the two-point Fermi surface as a “quantum impurity” coupled
to other (“bath”) degrees of freedom at higher energies, we present a scattering matrix
thought-experiment for the topological and entanglement features of the Fermi surface. In
this way, we track the entanglement entropy generated by isolating the Fermi surface from
the rest of the system. We also suggest ways of measuring this entanglement entropy by
studying the quantum noise and higher order cumulants generated by two-electron scat-
tering between the Fermi surface and the excitations. An experimental verification of the
results obtained from our gedanken would pave the way towards systematic studies of
many-particle entanglement and the Fermi surface.
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A RG equation for the BCS instability

Starting from the Hamiltonian RG flow eq. (6.6), and accounting only for two-particle
vertices in the Hamiltonian given in eq. (6.8), we obtain the renormalisation of the
Hamiltonian as
(K9 (0))* T () T 1)
R . K(])(p)vu)(p)Tﬁj(Pﬁ—n)Tn;(p,—n) ]
(i) ! () (o) e (=) [Gjpl™t = VO (P)Tm(p,—n)Tn;(pv—n)

T T
AH(j) - Z Cn(p,n)Cn’(p,n)cﬁ/l(pyn)cﬂl(pﬂ) [G

H’Hl 7p7/'7

(A1)

Here,

1 _
Gip =W = €x;Th;(p—n) — ! T (p, 1) - (A2)

Importantly, we note that in obtaining the denominator of the above RG equation, we have
limited the study of the quantum fluctuation scale &;) to only the one-particle dispersion

N i N 1 (- R 1 R 1
W(]) = Z(Ez + EEJ 1)) <’I’Ll — 2) + Zbrigj 1) (na — 2) (nb — 2) + ...+ AH();)

(2
i 1

~ ) (e + EEJ 1)) (ﬁz - 2) . (A.3)

i
We interpret the various quantum fluctuation eigenvalues w of the operator & as an
inherent quantum parameter arising out of the renormalization of the interaction vertices,
and study thereby the RG equations as a function of w.

The vertex RG flow equations for the forward (K) and backscattering (V') vertices are
then obtained as

AKD (p)vY (P) T, (p,—m) T (0, —m)

) ,
AKY (p) = : J ,
(®) (Gipl ™" = VO B)To;(p,—0) T, (0, -1)

4K D (D)) 7oy (py-) ot (. —n)

AV (p) = , . (A4)
([Gipl ™" = VO B)To; (p,—0) T, (0,-1)
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