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An explicit expression for the finite-volume energy shift of shallow three-body bound states for
nonidentical particles is obtained in the unitary limit. The inclusion of the higher partial waves is
considered. To this end, the method of Meifner, Rios, and Rusetsky [Phys. Rev. Lett. 114, 091602 (2015)]
is generalized for the case of unequal masses and arbitrary angular momenta. It is shown that in the S-wave
and in the equal-mass limit, the result from MeiBiner, Rios, and Rusetsky is reproduced.
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I. INTRODUCTION

In the analysis of lattice data, the Liischer formalism
is used both to evaluate the finite-volume corrections to the
stable particle masses [1] as well as to extract the two-body
scattering lengths and scattering phase shifts from the
finite-volume energy spectra of the two-particle systems
[2,3]. However, a generalization of the above finite-volume
approach from two- to three-particle case turned out to be a
rather challenging task. Only in the last few years, this issue
has been addressed extensively in the literature [4-27].
Despite the significant effort, the progress has been slow so
far. Namely, the finite-volume spectrum of the three-
particle system in some simple models has been calculated
only very recently [12,27] (see also earlier work [18-21],
where exclusively the three-body bound-state sector was
addressed). Such calculations are very useful since, at this
stage, one does not yet have enough insight into the
problem and lacks intuition to predict the behavior of
the three-particle finite-volume energy levels. Moreover,
these calculations might facilitate the interpretation of a
particular behavior of the energy spectrum in terms of
various physical phenomena in the infinite volume.
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For the reasons given above, it is very interesting to study
the few simple three-body systems for which an analytic
solution in a finite volume is available. The three-body
bound state is one of these. In Ref. [4], it has been shown
that it is possible to obtain an explicit expression for the
leading order finite-volume energy shift of the S-wave
shallow bound state of three identical bosons in the unitary
limit, i.e., when the two-particle scattering length tends to
infinity and the effective range (and higher order shape
parameters) are zero (the so-called Efimov states; see
Ref. [28]). This expression has a remarkably simple form:

AE

- C(KL)—3/2|A|2exp<—2LL>. (1)

V3

In this expression, L is the side length of the spatial cubic
box, Er and AE denote the binding energy and the shift,
respectively, k = /myEr is the bound-state momentum
(mq denotes the mass of the particle), and ¢ ~ —96.351 is
the numerical coefficient. Further, A is the so-called
asymptotic normalization coefficient for the bound state
(it is equal to one, if no derivative three-particle forces are
present). The formula is valid when xL > 1. Later, the
same formula has been obtained in Ref. [11], using the
three-particle quantization condition from Ref. [7], and in
Ref. [25] by using the finite-volume particle-dimer for-
malism, formulated in Refs. [25,26]. Moreover, in Ref. [25]
the role of the three-particle force (encoded in the asymp-
totic normalization coefficient) has been clarified, and the
condition of an infinitely large two-body scattering length
has been relaxed. By doing this, one can nicely observe a
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continuous transition from the bound state of a tightly
bound dimer and a spectator to the loosely bound three-
particle bound state.

It should be especially mentioned that the functional L
dependence of the energy shift differs from the one
predicted by the two-particle Liischer formula [1] (see
also Ref. [29] where the n-particle bound state is
considered), which would be the case, when the three-
particle bound state could be represented as a loosely
bound state of a tightly bound dimer and a spectator, as
well as from the perturbative shift of the three-particle
ground state, which has been derived, e.g., in Refs. [30,31].
In this sense, the three-body bound-state problem repre-
sents a highly nontrivial testing ground for all theories that
describe the spectrum of the three-particle system in a finite
volume.

In the present paper, we generalize the original result
of Ref. [4] to the case of nonidentical particles and
include higher partial waves. This problem is interesting
first and foremost because, to the best of our knowl-
edge, all available explicit results in the three-body
sector so far are limited to the S-wave states only.
Carrying out benchmark calculations in higher partial
waves will enable one to carry out more elaborate tests
and to understand much better the three-particle dynam-
ics in a finite volume that is important for analyzing
simulation data from lattice QCD for the three-particle
systems. This is exactly the aim of this short, technical
article. Eventually, it would be interesting to study the
same problem in moving frames and consider the
particles with spin. This, however, forms a subject of
a separate investigation and will be addressed in the
future.

II. DERIVATION OF THE ENERGY
SHIFT FORMULA
A. Notations

The wave function of three nonidentical bosons obeys
the Schrodinger equation:

{i(— 2,1,1i Vi+ Vi(xi>> + ET}W(I'1,I'2,I'3) =0, (2

i=1

where V; = 9/0r;. In the following, we always assume
that (ijk) form an even permutation, and i, j, k can take the
values 1,2,3. Also, we mainly follow the notations and
conventions of Ref. [32]. The relative coordinates are

defined as
T+ mr
M_rl), 3)

X; = pji(r; = 1), y":”’“")( m;+my
J

where

mjmk
M(m;+my)

o= = g | i)
7 o M(m;+m;+my)

Here, M denotes some normalization mass. The observables
do not depend on the choice of M. If m; = m, = m3 = my,
the choice M = mg/2 corresponds to the conventions of
Ref. [4] that makes the comparison simpler. For this reason,
we shall choose M = (m; + m, + m3)/6 in the following.
The bound-state momentum is defined as

K2

Ep=—.
= om

(5)

There are three different sets of relative coordinates. The
relation between them is given by

X;==—X;C08y;; +y;siny;;, y;=—X;siny;;—y;cosy;;, (6)

where

yi; = arctan \/mk(mi it ) —
iy ’

mimj

S]/ijﬁ

NSNS

z

2
(7)

The hyperradius R and the hyperangles «; are defined as

|Xi|:RSiIl(Xl-, |yl-|:]€(_‘/osal_7 R2:X,2+y,2 (8)

The relation between different hyperangles is given by

2 2

a; = sin

: 2 2. qin
sin“a; Q;Cc0s7y;; + cos“a;sIny;;

—2cosa;sina; cosy;;siny;;cos6;,  (9)

where 6, is the angle between the x; and y;.
The six-dimensional integration measure is written as

d*x;d’y; = R3dRsin’a;cos’a;da;dQ, dQ, . (10)

where Q. and Q, denote the solid angles in the direction of
the vectors x; and y;, respectively.

The wave function, expressed in terms of the x;, y;, takes
the form

w(ry,1p,13) :l//i(xi’Yi)~ (11)

B. The energy shift

A straightforward generalization of the energy shift
formula of Ref. [4] gives
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’;
y ' Hi(jry L *
AE = Z Z Z /d3xid3Yi <ll/’ (Xi -(p+ Q)ijL,yi + % (pmy — qmj))) Vi(x; +ﬂjkkL)
i=1 p,q.n,l k#—(l+n) m/ my
j HigikyL
X — Dy, L,y +——— —1m, 12

where p,q.k,l,n € Z3. Note that the periodic boundary
conditions are assumed.

In order to obtain the energy shift at leading order, we
use the following procedure. First, we shift the variables

HigiL

X; > X;—pu kL,
i i —Hijk mj+mk

Yi—Yi— (prme—qmy).  (13)
Next, we take into account the fact that the wave function of
the bound state decreases exponentially when the hyper-
radius becomes large. The suppression factor is given by
exp(—«R). Equation (12) contains two wave functions with
different arguments—we refer to them as the first and the
second wave functions in the following. It is immediately
seen that in the sum over p, ¢, k, 1, n the leading
contribution is given by those term(s), where the sum of
the hyperradii for the first and the second wave functions
R| + R, is minimal as L — oo. All other terms will give
contributions that are exponentially suppressed with
respect to this contribution. Writing down explicitly

R1+R2:ﬂjkL{|p+q+k|+ <(n+l+k)2

Mgy \? ) (— _
<2ﬂjk(mj+mk)> ((m; +m)(-1+q+n-p)
+(’”f‘mk>(—‘+q—n+p))2>1/2}’ (14)

one can straightforwardly check that the following choices:

n+l+k=e, p+q+k=0, -l1+q+n-p=—-e (15)
and
n+l+k=e, p+q+k=0, -l+q+n—-p=e, (16)

where e is the unit vector with |e| = 1, lead to the minimum
of R| + R,, if all relevant permutations (ijk) = (123),
(231),(312) are considered." Thus, the energy shift
formula simplifies to

'Note that the situation here is rather subtle. Namely, if we
consider a fixed choice of (ijk), for some mass ratios there exist
solutions, other than in Eqgs. (15) and (16), which lead to the
lower value of R; + R,. What we claim here is that this value of
Ry + R, is still higher than the value obtained from Egs. (15) and
(16) for another choice of (ijk). In other words, we claim that
Eq. (17) always contains a leading exponential, along with some
subleading pieces. On the other hand, one has to retain these
subleading pieces as well, if one wants to reproduce the result in
the equal-mass limit.

3
AE=)"%" / dx; Py (Wi (x;.y;)) Vi(x;)y!

e =1

X = e P N A
X —HjkLl,yi — Hi(jk) m; +my
3
+ZZ/d3xid3yi(wi(xivYi))*vi(xi>wi
e i=l
L
&) (17)

X (Xi —HjkeL.yi + pigr) m; + my
j

where the sum runs over the six possible orientations of the
unit vector e.

C. The wave function for a state with an
arbitrary angular momentum

From Ref. [32] one may read off the explicit form of the
wave function of the three-particle bound state in the
unitary limit:

3
w(r.ry.r;) = Zd)i(xi’yi)’ (18)
=1

1

where, for a given orbital momentum / and projection m,

¢5m(Xi, yi) = Nle),.zR_S/zf(R)

1) . AN
X 2 Al( x })Slnlxalcosl)alpi vz <— COS 2(11)
L,

X Z CZr;nx,lymy Yl,xmx (Qxi)yl),my (QV;)

my+my=m

(19)

Here, the Pia’h)(x) denote Jacobi functions, Y, (Q) are
spherical harmonics, the Cf:nmx.lvnu denote the Clebsch-
Gordan coefficients and f(R) is the radial function. The
wave functions, which in this paper are used in the
calculation of the energy shift, obey the Bose symmetry
in case of identical particles; see Refs. [32-34] for more
details.

The three-particle bound states in the unitary limit exist
only if the resonant interaction is in an S wave, i.e., [, =0
[32]. Then, [, = [. The coefficients Ago’l) = A; obey the
linear equations:
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P Qpn 05 A
Opn P 0Oy || A | =0 (20)
Q31 O P A;

where
sin((v +3)7)
~ sin@x)
FG)r(v+3+1
Qij=0Qji = —(2) 4 : )

LG+ DTy +3)
3
x F <—v, v+1+2, 5 + 1, COSZ}’U) (—cos Vij)l»
(21)

in terms of Gamma and hypergeometric functions. In order
to have a nontrivial solution to this homogeneous system of
linear equations, the determinant of this system must be
equal to zero. This determines the discrete values of the
parameter v. One further defines

v= ;(2+l)+ Va4 -+, A=—-4-£. (22)
The radial wave function is given by the same expression
for all I:

F(R) = RV2K ¢(xR). (23)
where K ,(z) denotes the modified Bessel function. Bound
states occur when £ is real, i.e., when 1 < —4. In the S
wave, [ = 0, this happens for all values of the masses m,
m,, mz. However, if [ # 0, one of the masses must be much
lighter than other two, in order that Efimov states can
emerge [32] (see also Ref. [35], where the properties of
Efimov states in higher partial waves are discussed).
Consequently, the treatment of bound states in higher
partial waves is not possible if only the equal-mass case
is considered.

The wave function of a bound state is always normalized
to unity. We shall in addition assume that

3
A= (24)
i=1

This is equivalent to the assumption that the asymptotic
normalization coefficient A =1 or, equivalently, only
nonderivative three-particle interactions are present in
the system. In the following, we shall stick to this
assumption.

III. RESULTS AND DISCUSSION

Before considering the case of arbitrary /, we discuss the
most interesting cases [ = 0, 1 in detail.

A. The case [=0

The wave function is given by

3 : .
Nooo2V3R/2f(R) ZA,-M,

Woo(Xi,¥i) = -
0RTE P sin(2q;)

(25)
Here, we have introduced an additional factor 2\/§ in the
normalization that allows an easier comparison with the
results of Ref. [4]. It is clear that, in the equal-mass case,
the wave function is totally symmetric with respect to the

permutation of all particles. Further, the wave function
obeys the following condition:

Vi(x)wl (x;.y;) = =69 (x;)Fo(y;). (26)

where

(7
Foly;) = N335 Kool Dsinh (3 ). (@)

The normalization condition gives
Nioo = K>co, (28)

where

B 1273¢
D= Sinh(n) {( 5”“‘1 - ) >
éz |sm 27/,1

~ |y sinh(&(x ~ |y,-,-|>>>}. (20)

- |7ij|) Sinh(§|7ij|)

Using the asymptotic behavior for R — oo of the radial

wave function
f(R x exXp KR

and calculating, as in Ref. [4], the asymptotic form of the
second wave function in Eq. (17) as L — oo, we arrive at
the following expression for the energy shift:
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AE = 653N ogor | 2L~/ sinh [ £
2K 2

Ajexp(—pikL) [ dx;d%y; . X KHki
- {Z 7o / (v (x;.57))"V(x,) exp - x;e -

i (ﬂi(jk))3/2
Ai exXpl— i(i K'L d3xid3 i
n Z P( Hi(jk) ) / y

i (ﬂi(jk))3/2 x|

x|

Using Eq. (26) and the normalization condition, we finally
arrive at the following expression for the energy shift:

AE
E_T = —28877.'2 \/%C()Sinh2 <%§> (KL)_3/2

Hral)
X ;exp (kL) G )3/2 |Sm<}/ (32)
where
105D = g5 ey COsh(Ea =) = oshielry )
(33)

It can be checked that, in the equal-mass limit, where
A, = A, = Ay = 1/+/3, the above formulas reduces to the
result of Ref. [4] with the asymptotic normalization
coefficient A = 1. For illustrative purposes, one may re-
write Eq. (32) as

AE -3/2 °
B LY CowlmarL) (39

i=1

where the coefficients C; depend on the masses in the
system but not on L and the binding energy. In Fig. 1 we

200

150

100

50

FIG. 1. The coefficients C; (solid line) and C, = C;3 (dashed
line) as a function of the mass ratio z = m;/m, = m;/ms; see
Eq. (34).

(wk(xk,yk»*vk(xk)exp(

KA (i) y‘e)
Mi(jk)(mi +my) ™

i x,e KHj(kiym

K i
yie | o. 31
pig  Hig(mi +mj) >} Gl

Hi(jk)

plot the coefficients C| and C, = Cj; for a particular choice
of the masses: m, = ms3 and m;/m, = m; /m3 = z. As can
be seen, at z =1, all C; are equal to 96.351.../3 =
32.117... (cf. with Ref. [4]).

B. The case /=1

The wave function with /, = Oand /, = [ = 11is given by

Z(p]m X Yi)»

Wi (X ¥i) (35)

' 4
(X0 ¥)) =Non RS2 f(R) A (a;) \/%YM(Q_V,)» (36)

where

#1(a)

“ssaaea (5 )
x sina — &cosh <§ (% - a)> cos a>. (37)

It can be checked that the wave function obeys the equation

V(Xj)V/{m(vaYj) = -89 (x;)F(y)). (38)
where

nEA; én Ki:(xly;|) [
Fi(y;) =——=Acosh( Z | Noy —2 222 [0y (@),
1(y;) M cos <2> 011 v 3 1m( )_,)

(39)

Next, we consider the normalization condition. Here, we
have to deal with the angular integrations of two types. First,
there are “diagonal” terms

[ xR )y, @) (@) (@)

where H(R, a;) denotes some function of the arguments R
and a;. Using Eq. (10), itis immediately seen that the angular
integrations yield the factor 476,,,,. The “nondiagonal”
terms have the following structure:
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/d3x &Py, H(R, @ ;) Y7, (Q )Y 1,0 (Q),  (41)

with some other function H(R, a;, a; ;). Using Eq. (6), it can
be shown that

X, |
vl
|Yi|

|Yj|

Yy (Qy_,-) = (_ sin 7ij)Y1m’ (‘Qx,v)

_I_

(_ €Os Yij)Ylm’(le)' (42)

Performing the angular integrations, one should take into
account the fact that, owing to Eq. (9), the variable q;
depends on the orientation of both x; and y;. Using this
equation, the integral over d cos € can be transformed into an
integral over @;. The limits on the variation of @ are given by

T T
||7ij—ai|SajS§—’§—az—|7ij| . (43)
Finally, the normalization condition takes the form
N3, = K%y, (44)
where
né 3
=2 AAL 45
Cq ZSIIlh(]Té:) ”2::1 Aty ( )

The diagonal terms can now be written as

I; =— #/2_da (sinh <Z§ (E - a))
cos’a 2
. 2
x sina — & cosh <§ (E - a)) cos a) ,  (46)

and the nondiagonal terms are given by

ij — —

7> / /2 da sin®

3|siny;j| cos?y;; Jo  sin?(2a)

()
x sina — & cosh (5 (g - a) > cos a) Jila),  (47)

where
B Pmax daj . T ,
i) = [ o (3 (¢(5-))
x sina’ — &£ cosh <§<g - a’)) cos a’)

x (cos?y;; + cos® a — sin* ') (48)

and

(49)

Qmin = ||7ij| —a

T
s amaxzz_ E_a_h/ij"

Finally, the energy shift, averaged over all values of m, is
given by’

=27’ \/grfzcosh2 <§7ﬂ> ci(kL)™3/?

AiA; 1
x ZexP(_“i(jk>’<L) ))3/2 siny

T(cosy;i), (50)
i#] (:“i(.'

where

et ()

C. Arbitrary [
The wave function in the case of arbitrary / is given by
Eq. (19) with [, =0 and [, = [ (i.e., the resonant inter-
action is in the S wave). We can write this expression as

. 4z
(X1 y:) = NOHR—5/2f(R)A,-¢, (ai)\/ 2Z—+1Y1m (Qy,),

(52)

where the Jacobi functions, entering this expression, can be
determined from certain recurrence relations. These rela-
tions can be obtained from the definition of the Jacobi
functions

IFv+a+1)

PLY(x) = Fv+DC(a+1)

1
xF(—v,v+a+b+1,a+1,§(1—x)) (53)

as well as the recurrence relations for the hypergeometric
functions F; see, e.g., Ref. [37]. The recurrence relations
for the Jacobi functions take the form

(u +4 ; b 1) (1= x) P42 (x)
P (x) = (v + )PP (x),

b
<y + % + 1) (1 +x)Pe 1 (x)

=w+a+1)

= (W+b+ 1P (x) + 4+ )P4 (x), (54)

*Note that, in higher partial waves, the energy shift depends on
m in the two-body bound states as well; see, e.g., Ref. [36].
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starting from

IFv+3/2) sin2(v+ 1)a)
Cw+1)I(3/2) (v+1)sin2a
Substituting the expression for the wave function into the

normalization condition, the diagonal integral [analog of
Eq. (46)] reads

P;/2.1/2(

cos2a) = (55)

167>

/2
i 21+1A dasin* acos* a(¢;(a))*,  (56)

whereas the nondiagonal integral [analog of Eq. (47)] is
given by

4
= ﬁ / dQ, dQ, da;sin?a,cos2a;d;(a;)i(a))

X Y}km (Q\,)Ylm (Qy/) (57)

In general, the transformation between the wave functions,
depending on different sets of Jacobi coordinates, is given
by the Raynal-Revai coefficients [38]. An explicit expres-
sion for these coefficients is known in the literature (see,
e.g., Ref. [39] and earlier references therein). However here
we do not make use of these rather voluminous formulas.
Rather, in order to calculate the angular integral, in analogy
with Eq. (41), we express the quantity ¥,,,(Q, ) as a sum of
products Y, ()Y, (€,,) with all possible I’ + 1" <[
and m’ + m” = m. In order to do this, it is useful to define
the solid harmonics:
Vin(y;) = |Yj|lYlm(Qyj)' (58)
The quantity ), (y;) is a polynomial of power / in the
components of the 3-vector y;. Writing y; = ay; + Dx;, one
immediately sees that each term in the expression of
Yim(y;) decomposes into monomials of the components
of the vectors y; and x; of power [; and /,, respectively,
with /; + [, = [. These monomials, in their turn, can be
expressed through Yy, (y;) and YVp,-(X;), respectively,
with /' <[, and I” < [,, leading to the above-mentioned
expansion.
Further, one has to calculate integrals of the type

I / 4, A, () Y (Q)F ot () ¥ s (,)-
(59)

Let us recall here that a; depends on the scalar product x;y;,
so the two angular integrations do not immediately decou-
ple. In order to achieve this decoupling, consider first the
integration over d€, , with the direction of the unit vector
X; fixed. Note that it is always possible to find a rotation R,
so that

Rii=e,  e=(001). (60)

Perform now the variable transformation y; = Rx'y!, with
dQ, = dQ, . After this transformation, we have x,y; = ey;.

Further,

Y1 (Q ZDmn (R)Y1(€2,),
n=-1
Yim / Z Dmn ])YI/"'(Q;,‘)’
n'==I
l” l”)
Yl”m”(Qxi) = Z Dm”n”(Rgl)Yl”n”(Qe)’ (61)

n'==1"

where the D() denote Wigner D matrices in the irreducible
representation of the rotation group, characterized by the
angular momentum /. It is now seen that the integration over
two solid angles decouples:

IQ—Z/dQ

nnn

« / 4, () Y (Q)) Y ot () V(@) (62)

LWR:)*DY) (R:HDY) (RTY)

mn mn

Here, the quantity «; is determined by Eq (8) with 6;
denoting the angle between the unit vectors  and e, so that
cosf; =cosf, dQ| = dcosBOdpand Y, (L, ,-) Y1, (0, 9).
The integral over d€2,. can be finally performed, yielding a
group-theoretical factor, and one is left only with the integral
over the solid angle d©;, . It does not make much sense to
present the (quite voluminous) general result here. If needed,
it can be straightforwardly derived in each particular case
along the lines described above.

Next, one needs an analog of Egs. (26) and (27) and
Egs. (38) and (39) in the case of arbitrary [ To this end,
using the explicit form of ¢,(a), it suffices to represent the
wave function ¢! (x;,y;) in Eq. (52) as

{m(xj’yj) = Fiy;) + &{m(xj’Yj)’ (63)

1
4ﬂ'| X]|
where the second term on the right-hand side is regular as
|x;| = 0. Then, the analog of Egs. (26) and (27) reads

—83(x,)Fi(y;)- (64)

With these building blocks, the leading contribution to the
energy shift expression can be straightforwardly calculated:

aB, =33 / Pxdy 5 (%) (F(y))"

X (B (%5 ¥+ €Lt 1i)) + Pl (X Vi — €Lii))).
(65)

Vi(x)wl(x;.y;) =

014508-7
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Here, we take into account the fact that the finite-volume
energy shift can explicitly depend on the projection of the
angular momentum m.

In order to proceed further, we note that, for arbitrary /,
the function ¢,;(a) is singular at & = 0:

bi(a) =— + (@), (66)

where the second term is regular at the origin. The leading
contribution in the limit L — oo comes from the singular
term. Further, in this limit, we have

AE = 3(2141 >1/2< )]/QZNOHGI/ dzP,(z )Aw

" <Aj(Lﬂj(ki))_ /2
| sin J/ij|

From the above expression, it is clear that the result for
general [ looks similar to Egs. (34) and (50). Namely, it
contains the exponentially vanishing factors together with
an overall factor (kL)~>/2. Only the numerical coefficients
depend on the angular momentum /.

IV. CONCLUSIONS

(1) In this article, we have extended the approach of
Ref. [4] and derived explicit expressions for the
energy shift of the three-particle bound state in the
unitary limit with non-equal-mass constituents and
with the total angular momentum different from
zero. All cases of physically relevant angular mo-
menta (i.e., for which the shallow bound states exist
in the unitary limit) were covered.

(ii) We show that the behavior of the leading terms in the
finite-volume energy shift is universal for all [:
namely, it contains three exponentially vanishing
terms, whose arguments are determined by the
pertinent reduced masses, i.e., by pure kinematics.
In addition, there is a common multiplicative factor
(xL)=3/ for all 1. Only the numerical coefficients,
which stand in front of these universal factors,
depend on [/ and can be calculated for each /[
explicitly, using the method described in the paper.

(iii) On several occasions already, the simple model,
considered in Ref. [4], has served as a nice testing
ground for the different types of the three-particle

exp(—xLj)) exp(k cosy;;yz) + (=1)

hm Ylm(Q ) Ylm( e)?

Jim ¥y, (Qy) = (=1)Y 1 (Q0),
(67)
where Y = y; + eLu;;) and y; = yi — €Ly
In the following, we present the averaged shift,
defined as

1 l
AE=-——>"AE,. 68
21 2 A (68)

Defining F;(y;) = Fi(|y];)Y m(
transformed into

Q, ), Eq. (65) can be finally

lAk(LMk(ij)>_3/2

—ikLiin:: : . (69
iy, exp(—« ﬂk(,_,))exp(xcosy,kyz)) (69)

quantization condition, which are available in the
literature (see, e.g., [11,25]). Moreover, a com-
parison of the results has shed more light on the
role of a three-particle force in the description of
the volume dependence of the shallow bound states
[25]. A universal formula for arbitrary / and unequal
masses, which was derived in this paper, without any
doubt, represents a further challenge for the above-
mentioned approaches, as well as an opportunity to
gain a deeper insight in the three-particle dynamics
in a finite volume.
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