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An explicit expression for the finite-volume energy shift of shallow three-body bound states for
nonidentical particles is obtained in the unitary limit. The inclusion of the higher partial waves is
considered. To this end, the method of Meißner, Rìos, and Rusetsky [Phys. Rev. Lett. 114, 091602 (2015)]
is generalized for the case of unequal masses and arbitrary angular momenta. It is shown that in the S-wave
and in the equal-mass limit, the result from Meißner, Rìos, and Rusetsky is reproduced.
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I. INTRODUCTION

In the analysis of lattice data, the Lüscher formalism
is used both to evaluate the finite-volume corrections to the
stable particle masses [1] as well as to extract the two-body
scattering lengths and scattering phase shifts from the
finite-volume energy spectra of the two-particle systems
[2,3]. However, a generalization of the above finite-volume
approach from two- to three-particle case turned out to be a
rather challenging task. Only in the last few years, this issue
has been addressed extensively in the literature [4–27].
Despite the significant effort, the progress has been slow so
far. Namely, the finite-volume spectrum of the three-
particle system in some simple models has been calculated
only very recently [12,27] (see also earlier work [18–21],
where exclusively the three-body bound-state sector was
addressed). Such calculations are very useful since, at this
stage, one does not yet have enough insight into the
problem and lacks intuition to predict the behavior of
the three-particle finite-volume energy levels. Moreover,
these calculations might facilitate the interpretation of a
particular behavior of the energy spectrum in terms of
various physical phenomena in the infinite volume.

For the reasons given above, it is very interesting to study
the few simple three-body systems for which an analytic
solution in a finite volume is available. The three-body
bound state is one of these. In Ref. [4], it has been shown
that it is possible to obtain an explicit expression for the
leading order finite-volume energy shift of the S-wave
shallow bound state of three identical bosons in the unitary
limit, i.e., when the two-particle scattering length tends to
infinity and the effective range (and higher order shape
parameters) are zero (the so-called Efimov states; see
Ref. [28]). This expression has a remarkably simple form:

ΔE
ET

¼ cðκLÞ−3=2jAj2 exp
�
−
2κLffiffiffi
3

p
�
: ð1Þ

In this expression, L is the side length of the spatial cubic
box, ET and ΔE denote the binding energy and the shift,
respectively, κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m0ET
p

is the bound-state momentum
(m0 denotes the mass of the particle), and c ≃ −96.351 is
the numerical coefficient. Further, A is the so-called
asymptotic normalization coefficient for the bound state
(it is equal to one, if no derivative three-particle forces are
present). The formula is valid when κL ≫ 1. Later, the
same formula has been obtained in Ref. [11], using the
three-particle quantization condition from Ref. [7], and in
Ref. [25] by using the finite-volume particle-dimer for-
malism, formulated in Refs. [25,26]. Moreover, in Ref. [25]
the role of the three-particle force (encoded in the asymp-
totic normalization coefficient) has been clarified, and the
condition of an infinitely large two-body scattering length
has been relaxed. By doing this, one can nicely observe a
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continuous transition from the bound state of a tightly
bound dimer and a spectator to the loosely bound three-
particle bound state.
It should be especially mentioned that the functional L

dependence of the energy shift differs from the one
predicted by the two-particle Lüscher formula [1] (see
also Ref. [29] where the n-particle bound state is
considered), which would be the case, when the three-
particle bound state could be represented as a loosely
bound state of a tightly bound dimer and a spectator, as
well as from the perturbative shift of the three-particle
ground state, which has been derived, e.g., in Refs. [30,31].
In this sense, the three-body bound-state problem repre-
sents a highly nontrivial testing ground for all theories that
describe the spectrum of the three-particle system in a finite
volume.
In the present paper, we generalize the original result

of Ref. [4] to the case of nonidentical particles and
include higher partial waves. This problem is interesting
first and foremost because, to the best of our knowl-
edge, all available explicit results in the three-body
sector so far are limited to the S-wave states only.
Carrying out benchmark calculations in higher partial
waves will enable one to carry out more elaborate tests
and to understand much better the three-particle dynam-
ics in a finite volume that is important for analyzing
simulation data from lattice QCD for the three-particle
systems. This is exactly the aim of this short, technical
article. Eventually, it would be interesting to study the
same problem in moving frames and consider the
particles with spin. This, however, forms a subject of
a separate investigation and will be addressed in the
future.

II. DERIVATION OF THE ENERGY
SHIFT FORMULA

A. Notations

The wave function of three nonidentical bosons obeys
the Schrödinger equation:

�X3
i¼1

�
−

1

2mi
∇2

i þ ViðxiÞ
�
þ ET

�
ψðr1; r2; r3Þ ¼ 0; ð2Þ

where ∇i ¼ ∂=∂ri. In the following, we always assume
that ðijkÞ form an even permutation, and i, j, k can take the
values 1,2,3. Also, we mainly follow the notations and
conventions of Ref. [32]. The relative coordinates are
defined as

xi¼ μjkðrj− rkÞ; yi ¼ μiðjkÞ

�
mjrjþmkrk
mjþmk

− ri

�
; ð3Þ

where

μjk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mjmk

MðmjþmkÞ
r

; μiðjkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðmjþmkÞ

MðmiþmjþmkÞ

s
: ð4Þ

Here,M denotes some normalizationmass. The observables
do not depend on the choice ofM. Ifm1 ¼ m2 ¼ m3 ¼ m0,
the choice M ¼ m0=2 corresponds to the conventions of
Ref. [4] that makes the comparison simpler. For this reason,
we shall choose M ¼ ðm1 þm2 þm3Þ=6 in the following.
The bound-state momentum is defined as

ET ¼ κ2

2M
: ð5Þ

There are three different sets of relative coordinates. The
relation between them is given by

xj¼−xicosγijþyisinγij; yj¼−xisinγij−yicosγij; ð6Þ

where

γij ¼ arctan

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkðmi þmj þmkÞ

mimj

s 1
A; −

π

2
≤ γij ≤

π

2
:

ð7Þ

The hyperradius R and the hyperangles αi are defined as

jxij ¼Rsinαi; jyij ¼Rcosαi; R2¼x2
i þy2i : ð8Þ

The relation between different hyperangles is given by

sin2αj ¼ sin2αicos2γij þ cos2αisin2γij

− 2 cos αi sin αi cos γij sin γij cos θi; ð9Þ

where θi is the angle between the xi and yi.
The six-dimensional integration measure is written as

d3xid3yi ¼ R5dRsin2αicos2αidαidΩxidΩyi ; ð10Þ

whereΩxi andΩyi denote the solid angles in the direction of
the vectors xi and yi, respectively.
The wave function, expressed in terms of the xi, yi, takes

the form

ψðr1; r2; r3Þ ¼ ψ iðxi; yiÞ: ð11Þ

B. The energy shift

A straightforward generalization of the energy shift
formula of Ref. [4] gives
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ΔE ¼
X3
i¼1

X
p;q;n;l

X
k≠−ðlþnÞ

Z
d3xid3yi

�
ψ i

�
xi − ðpþ qÞμjkL; yi þ

μiðjkÞL
mj þmk

ðpmk − qmjÞ
���

Viðxi þ μjkkLÞ

× ψ i

�
xi − ðnþ lÞμjkL; yi þ

μiðjkÞL
mj þmk

ðnmk − lmjÞ
�
; ð12Þ

where p;q;k; l;n ∈ Z3. Note that the periodic boundary
conditions are assumed.
In order to obtain the energy shift at leading order, we

use the following procedure. First, we shift the variables

xi→xi−μjkkL; yi→ yi−
μiðjkÞL
mjþmk

ðpmk−qmjÞ: ð13Þ

Next, we take into account the fact that the wave function of
the bound state decreases exponentially when the hyper-
radius becomes large. The suppression factor is given by
expð−κRÞ. Equation (12) contains two wave functions with
different arguments—we refer to them as the first and the
second wave functions in the following. It is immediately
seen that in the sum over p, q, k, l, n the leading
contribution is given by those term(s), where the sum of
the hyperradii for the first and the second wave functions
R1 þ R2 is minimal as L → ∞. All other terms will give
contributions that are exponentially suppressed with
respect to this contribution. Writing down explicitly

R1þR2¼ μjkL

�
jpþqþkjþ

�
ðnþ lþkÞ2

þ
�

μiðjkÞ
2μjkðmjþmkÞ

�
2

ððmjþmkÞð−lþqþn−pÞ

þðmj−mkÞð−lþq−nþpÞÞ2
�

1=2
�
; ð14Þ

one can straightforwardly check that the following choices:

nþlþk¼e; pþqþk¼0; −lþqþn−p¼−e ð15Þ
and

nþlþk¼e; pþqþk¼0; −lþqþn−p¼e; ð16Þ

where e is the unit vector with jej ¼ 1, lead to the minimum
of R1 þ R2, if all relevant permutations ðijkÞ ¼ ð123Þ;
ð231Þ; ð312Þ are considered.1 Thus, the energy shift
formula simplifies to

ΔE ¼
X
e

X3
i¼1

Z
d3xid3yiðψ iðxi; yiÞÞ�ViðxiÞψ i

×

�
xi − μjkeL; yi − μiðjkÞ

mjeL

mj þmk

�

þ
X
e

X3
i¼1

Z
d3xid3yiðψ iðxi; yiÞÞ�ViðxiÞψ i

×

�
xi − μjkeL; yi þ μiðjkÞ

mkeL
mj þmk

�
; ð17Þ

where the sum runs over the six possible orientations of the
unit vector e.

C. The wave function for a state with an
arbitrary angular momentum

From Ref. [32] one may read off the explicit form of the
wave function of the three-particle bound state in the
unitary limit:

ψðr1; r2; r3Þ ¼
X3
i¼1

ϕiðxi; yiÞ; ð18Þ

where, for a given orbital momentum l and projection m,

ϕi
lmðxi; yiÞ ¼ NlxlylR

−5=2fðRÞ
×
X
lxly

A
ðlxlyÞ
i sinlxαicoslyαiP

1
2
þlx;

1
2
þly

ν ð− cos 2αiÞ

×
X

mxþmy¼m

clmlxmx;lymy
Ylxmx

ðΩxiÞYlymy
ðΩyiÞ:

ð19Þ

Here, the Pða;bÞ
ν ðxÞ denote Jacobi functions, YlmðΩÞ are

spherical harmonics, the clmlxmx;lymy
denote the Clebsch-

Gordan coefficients and fðRÞ is the radial function. The
wave functions, which in this paper are used in the
calculation of the energy shift, obey the Bose symmetry
in case of identical particles; see Refs. [32–34] for more
details.
The three-particle bound states in the unitary limit exist

only if the resonant interaction is in an S wave, i.e., lx ¼ 0

[32]. Then, ly ¼ l. The coefficients Að0;lÞ
i ≐ Ai obey the

linear equations:

1Note that the situation here is rather subtle. Namely, if we
consider a fixed choice of ðijkÞ, for some mass ratios there exist
solutions, other than in Eqs. (15) and (16), which lead to the
lower value of R1 þ R2. What we claim here is that this value of
R1 þ R2 is still higher than the value obtained from Eqs. (15) and
(16) for another choice of ðijkÞ. In other words, we claim that
Eq. (17) always contains a leading exponential, along with some
subleading pieces. On the other hand, one has to retain these
subleading pieces as well, if one wants to reproduce the result in
the equal-mass limit.
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0
B@

P Q12 Q31

Q12 P Q23

Q31 Q23 P

1
CA
0
B@

A1

A2

A3

1
CA ¼ 0; ð20Þ

where

P ¼ sinððνþ 3
2
ÞπÞ

sinð3
2
πÞ ;

Qij ¼ Qji ¼
Γð3

2
ÞΓðνþ 3

2
þ lÞ

Γð3
2
þ lÞΓðνþ 3

2
Þ

× F

�
−ν; νþ lþ 2;

3

2
þ l; cos2γij

�
ð− cos γijÞl;

ð21Þ

in terms of Gamma and hypergeometric functions. In order
to have a nontrivial solution to this homogeneous system of
linear equations, the determinant of this system must be
equal to zero. This determines the discrete values of the
parameter ν. One further defines

ν ¼ −
1

2
ð2þ lÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
4þ λ

p
; λ ¼ −4 − ξ2: ð22Þ

The radial wave function is given by the same expression
for all l:

fðRÞ ¼ R1=2KiξðκRÞ; ð23Þ

where KμðzÞ denotes the modified Bessel function. Bound
states occur when ξ is real, i.e., when λ < −4. In the S
wave, l ¼ 0, this happens for all values of the masses m1,
m2,m3. However, if l ≠ 0, one of the masses must be much
lighter than other two, in order that Efimov states can
emerge [32] (see also Ref. [35], where the properties of
Efimov states in higher partial waves are discussed).
Consequently, the treatment of bound states in higher
partial waves is not possible if only the equal-mass case
is considered.
The wave function of a bound state is always normalized

to unity. We shall in addition assume that

X3
i¼1

A2
i ¼ 1: ð24Þ

This is equivalent to the assumption that the asymptotic
normalization coefficient A ¼ 1 or, equivalently, only
nonderivative three-particle interactions are present in
the system. In the following, we shall stick to this
assumption.

III. RESULTS AND DISCUSSION

Before considering the case of arbitrary l, we discuss the
most interesting cases l ¼ 0, 1 in detail.

A. The case l = 0

The wave function is given by

ψ i
00ðxi; yiÞ ¼ N0002

ffiffiffi
3

p
R−5=2fðRÞ

X3
i¼1

Ai
sinhðξðπ

2
− αiÞÞ

sinð2αiÞ
:

ð25Þ

Here, we have introduced an additional factor 2
ffiffiffi
3

p
in the

normalization that allows an easier comparison with the
results of Ref. [4]. It is clear that, in the equal-mass case,
the wave function is totally symmetric with respect to the
permutation of all particles. Further, the wave function
obeys the following condition:

VjðxjÞψ jðxj; yjÞ ¼ −δð3ÞðxjÞF0ðyjÞ; ð26Þ

where

F0ðyjÞ ¼ N000

ffiffiffi
3

p 2π

M

Aj

jyjj
KiξðκjyjjÞ sinh

�
πξ

2

�
: ð27Þ

The normalization condition gives

N2
000 ¼ κ2c0; ð28Þ

where

c−10 ¼ 12π3ξ

sinhðπξÞ
��

1

2ξ
sinhðπξÞ − π

2

�X3
i¼1

A2
i

−
1

ξ

X
i≠j

AiAj

jsinð2γijÞj
ððπ − jγijjÞ sinhðξjγijjÞ

− jγijj sinhðξðπ − jγijjÞÞÞ
�
: ð29Þ

Using the asymptotic behavior for R → ∞ of the radial
wave function

fðRÞ ∼
ffiffiffiffiffi
π

2κ

r
expð−κRÞ ð30Þ

and calculating, as in Ref. [4], the asymptotic form of the
second wave function in Eq. (17) as L → ∞, we arrive at
the following expression for the energy shift:

MENG, LIU, MEIßNER, and RUSETSKY PHYS. REV. D 98, 014508 (2018)

014508-4



ΔE ¼ 6
ffiffiffi
3

p
N000

ffiffiffiffiffi
π

2κ

r
L−3=2 sinh

�
ξπ

2

�

×

�X
i

Ai expð−μiðjkÞκLÞ
ðμiðjkÞÞ3=2

Z
d3xid3yi

jxij
ðψ jðxj; yjÞÞ�VjðxjÞ exp

�
κμki
μiðjkÞ

xje −
κμjðkiÞmi

μiðjkÞðmi þmkÞ
yje

�

þ
X
i

Ai expð−μiðjkÞκLÞ
ðμiðjkÞÞ3=2

Z
d3xid3yi

jxij
ðψkðxk; ykÞÞ�VkðxkÞ exp

�
κμij
μiðjkÞ

xkeþ
κμjðkiÞmi

μiðjkÞðmi þmjÞ
yke

��
: ð31Þ

Using Eq. (26) and the normalization condition, we finally
arrive at the following expression for the energy shift:

ΔE
ET

¼ −288π2
ffiffiffi
π

2

r
c0sinh2

�
πξ

2

�
ðκLÞ−3=2

×
X
i≠j

expð−μiðjkÞκLÞ
AiAj

ðμiðjkÞÞ3=2
IðjγijjÞ

jsinð2γijÞj
; ð32Þ

where

IðjγijjÞ¼
π

ξsinhðπξÞðcoshðξðπ− jγijjÞÞ−coshðξjγijjÞÞ:

ð33Þ
It can be checked that, in the equal-mass limit, where
A1 ¼ A2 ¼ A3 ¼ 1=

ffiffiffi
3

p
, the above formulas reduces to the

result of Ref. [4] with the asymptotic normalization
coefficient A ¼ 1. For illustrative purposes, one may re-
write Eq. (32) as

ΔE
ET

¼ −ðκLÞ−3=2
X3
i¼1

Ci expð−μiðjkÞκLÞ; ð34Þ

where the coefficients Ci depend on the masses in the
system but not on L and the binding energy. In Fig. 1 we

plot the coefficients C1 and C2 ¼ C3 for a particular choice
of the masses: m2 ¼ m3 and m1=m2 ¼ m1=m3 ¼ z. As can
be seen, at z ¼ 1, all Ci are equal to 96.351…=3 ¼
32.117… (cf. with Ref. [4]).

B. The case l = 1

Thewave function with lx ¼ 0 and ly ¼ l ¼ 1 is given by

ψ i
1mðxi; yiÞ ¼

X3
i¼1

ϕi
1mðxi; yiÞ; ð35Þ

ϕi
1mðxi;yiÞ¼N011R−5=2fðRÞAiϕ1ðαiÞ

ffiffiffiffiffiffi
4π

3

r
Y1mðΩyiÞ; ð36Þ

where

ϕ1ðαÞ ¼
1

2 sinð2αÞ cos α
�
sinh

�
ξ

�
π

2
− α

��

× sin α − ξ cosh

�
ξ

�
π

2
− α

��
cos α

�
: ð37Þ

It can be checked that the wave function obeys the equation

VðxjÞψ j
1mðxj; yjÞ ¼ −δð3ÞðxjÞF1ðyjÞ; ð38Þ

where

F1ðyjÞ¼−
πξAj

2M
cosh

�
ξπ

2

�
N011

KiξðκjyjjÞ
jyjj

ffiffiffiffiffiffi
4π

3

r
Y1mðΩyjÞ:

ð39Þ

Next, we consider the normalization condition. Here, we
have to deal with the angular integrations of two types. First,
there are “diagonal” terms

Z
d3xid3yiHðR; αiÞY�

1mðΩyiÞY1m0 ðΩyiÞ; ð40Þ

where HðR; αiÞ denotes some function of the arguments R
andαi. UsingEq. (10), it is immediately seen that the angular
integrations yield the factor 4πδmm0. The “nondiagonal”
terms have the following structure:

0 1 2 3 4 5 6
z

0

50

100

150

200

C
1

C
2

FIG. 1. The coefficients C1 (solid line) and C2 ¼ C3 (dashed
line) as a function of the mass ratio z ¼ m1=m2 ¼ m1=m3; see
Eq. (34).
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Z
d3xid3yiH̃ðR; αi;αjÞY�

1mðΩyiÞY1m0 ðΩyjÞ; ð41Þ

with some other function H̃ðR; αi; αjÞ. Using Eq. (6), it can
be shown that

Y1m0 ðΩyjÞ ¼
jxij
jyjj

ð− sin γijÞY1m0 ðΩxiÞ

þ jyij
jyjj

ð− cos γijÞY1m0 ðΩyiÞ: ð42Þ

Performing the angular integrations, one should take into
account the fact that, owing to Eq. (9), the variable αj
depends on the orientation of both xi and yi. Using this
equation, the integral over d cos θ can be transformed into an
integral over αj. The limits on the variation of αj are given by

jjγijj − αij ≤ αj ≤
π

2
−
���� π2 − αi − jγijj

����: ð43Þ

Finally, the normalization condition takes the form

N2
011 ¼ κ2c1; ð44Þ

where

c−11 ¼ πξ

2 sinhðπξÞ
X3
i;j¼1

AiAjIij: ð45Þ

The diagonal terms can now be written as

Iii ¼
π2

3

Z
π=2

0

dα
cos2α

�
sinh

�
ξ

�
π

2
− α

��

× sin α − ξ cosh

�
ξ

�
π

2
− α

��
cos α

�
2

; ð46Þ

and the nondiagonal terms are given by

Iij ¼ −
π2

3jsin γijj cos2 γij

Z
π=2

0

dα sin2 α
sin2ð2αÞ

×

�
sinh

�
ξ

�
π

2
− α

��

× sin α − ξ cosh

�
ξ

�
π

2
− α

��
cos α

�
JijðαÞ; ð47Þ

where

JijðαÞ ¼
Z

αmax

αmin

dα0

cos2 α0

�
sinh

�
ξ

�
π

2
− α0

��

× sin α0 − ξ cosh

�
ξ

�
π

2
− α0

��
cos α0

�
× ðcos2 γij þ cos2 α − sin2 α0Þ ð48Þ

and

αmin ¼ jjγijj − αj; αmax ¼
π

2
−
���� π2 − α − jγijj

����: ð49Þ

Finally, the energy shift, averaged over all values of m, is
given by2

ΔE
ET

¼−2π2
ffiffiffi
π

2

r
ξ2cosh2

�
ξπ

2

�
c1ðκLÞ−3=2

×
X
i≠j

expð−μiðjkÞκLÞ
AiAj

ðμiðjkÞÞ3=2
1

sinγji
TðcosγjiÞ; ð50Þ

where

TðαÞ ¼ 1

α

Z
∞

0

Kiξ

�
y
α

�
d
dy

�
sinh y
y

�
: ð51Þ

C. Arbitrary l

The wave function in the case of arbitrary l is given by
Eq. (19) with lx ¼ 0 and ly ¼ l (i.e., the resonant inter-
action is in the S wave). We can write this expression as

ϕi
lmðxi; yiÞ ¼ N0llR−5=2fðRÞAiϕlðαiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
YlmðΩyiÞ;

ð52Þ

where the Jacobi functions, entering this expression, can be
determined from certain recurrence relations. These rela-
tions can be obtained from the definition of the Jacobi
functions

Pa;b
ν ðxÞ¼ Γðνþaþ1Þ

Γðνþ1ÞΓðaþ1Þ

×F

�
−ν;νþaþbþ1;aþ1;

1

2
ð1−xÞ

�
; ð53Þ

as well as the recurrence relations for the hypergeometric
functions F; see, e.g., Ref. [37]. The recurrence relations
for the Jacobi functions take the form�

νþ aþ b
2

þ 1

�
ð1 − xÞPaþ1;b

ν ðxÞ

¼ ðνþ aþ 1ÞPa;b
ν ðxÞ − ðνþ 1ÞPa;b

νþ1ðxÞ;�
νþ aþ b

2
þ 1

�
ð1þ xÞPa;bþ1

ν ðxÞ

¼ ðνþ bþ 1ÞPa;b
ν ðxÞ þ ðνþ 1ÞPa;b

νþ1ðxÞ; ð54Þ

2Note that, in higher partial waves, the energy shift depends on
m in the two-body bound states as well; see, e.g., Ref. [36].
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starting from

P1=2;1=2
ν ðcos 2αÞ ¼ Γðνþ 3=2Þ

Γðνþ 1ÞΓð3=2Þ
sinð2ðνþ 1ÞαÞ
ðνþ 1Þ sin 2α : ð55Þ

Substituting the expression for the wave function into the
normalization condition, the diagonal integral [analog of
Eq. (46)] reads

Iii ¼
16π2

2lþ 1

Z
π=2

0

dα sin2 α cos2 αðϕlðαÞÞ2; ð56Þ

whereas the nondiagonal integral [analog of Eq. (47)] is
given by

Iij ¼
4π

2lþ 1

Z
dΩxidΩyidαisin

2αicos2αiϕlðαiÞϕlðαjÞ

× Y�
lmðΩyiÞYlmðΩyjÞ: ð57Þ

In general, the transformation between the wave functions,
depending on different sets of Jacobi coordinates, is given
by the Raynal-Revai coefficients [38]. An explicit expres-
sion for these coefficients is known in the literature (see,
e.g., Ref. [39] and earlier references therein). However here
we do not make use of these rather voluminous formulas.
Rather, in order to calculate the angular integral, in analogy
with Eq. (41), we express the quantity YlmðΩyjÞ as a sum of
products Yl0m0 ðΩyiÞYl00m00 ðΩxiÞ with all possible l0 þ l00 ≤ l
and m0 þm00 ¼ m. In order to do this, it is useful to define
the solid harmonics:

YlmðyjÞ ¼ jyjjlYlmðΩyjÞ: ð58Þ

The quantity YlmðyjÞ is a polynomial of power l in the
components of the 3-vector yj. Writing yj ¼ ayi þ bxi, one
immediately sees that each term in the expression of
YlmðyjÞ decomposes into monomials of the components
of the vectors yi and xi of power l1 and l2, respectively,
with l1 þ l2 ¼ l. These monomials, in their turn, can be
expressed through Yl0m0 ðyiÞ and Yl00m00 ðxiÞ, respectively,
with l0 ≤ l1 and l00 ≤ l2, leading to the above-mentioned
expansion.
Further, one has to calculate integrals of the type

IΩ¼
Z

dΩxidΩyiϕlðαjÞY�
lmðΩyiÞYl0m0 ðΩyiÞYl00m00 ðΩxiÞ:

ð59Þ

Let us recall here that αj depends on the scalar product xiyi,
so the two angular integrations do not immediately decou-
ple. In order to achieve this decoupling, consider first the
integration over dΩyi, with the direction of the unit vector
x̂i fixed. Note that it is always possible to find a rotation Rx
so that

Rxx̂i ¼ e; e ¼ ð0; 0; 1Þ: ð60Þ
Perform now the variable transformation yi ¼ R−1

x y0i, with
dΩyi ¼ dΩ0

yi . After this transformation, we havexiyi ¼ ey0i.
Further,

YlmðΩyiÞ ¼
Xl

n¼−l
DðlÞ

mnðR−1
x ÞYlnðΩ0

yiÞ;

Yl0m0 ðΩyiÞ ¼
Xl0
n0¼−l0

Dðl0Þ
m0n0 ðR−1

x ÞYl0n0 ðΩ0
yiÞ;

Yl00m00 ðΩxiÞ ¼
Xl00

n00¼−l00
Dðl00Þ

m00n00 ðR−1
x ÞYl00n00 ðΩeÞ; ð61Þ

where the DðlÞ denote Wigner D matrices in the irreducible
representation of the rotation group, characterized by the
angular momentum l. It is now seen that the integration over
two solid angles decouples:

IΩ ¼
X
nn0n00

Z
dΩxiðDðlÞ

mnðR−1
x ÞÞ�Dðl0Þ

m0n0 ðR−1
x ÞDðl00Þ

m00n00 ðR−1
x Þ

×
Z

dΩ0
yiϕlðαjÞY�

lmðΩy0i
ÞYl0m0 ðΩy0i

ÞYl00m00 ðΩnÞ: ð62Þ

Here, the quantity αi is determined by Eq. (8) with θi
denoting the angle between the unit vectors ŷ0i and e, so that
cosθi ¼ cosθ, dΩ0

yi ¼ d cos θdφ andYlmðΩ0
yiÞ ¼ Ylmðθ;φÞ.

The integral over dΩxi can be finally performed, yielding a
group-theoretical factor, and one is left only with the integral
over the solid angle dΩ0

yi . It does not make much sense to
present the (quite voluminous) general result here. If needed,
it can be straightforwardly derived in each particular case
along the lines described above.
Next, one needs an analog of Eqs. (26) and (27) and

Eqs. (38) and (39) in the case of arbitrary l. To this end,
using the explicit form of ϕlðαÞ, it suffices to represent the
wave function ϕi

lmðxi; yiÞ in Eq. (52) as

ϕj
lmðxj; yjÞ ¼

1

4πjxjj
FlðyjÞ þ ϕ̃j

lmðxj; yjÞ; ð63Þ

where the second term on the right-hand side is regular as
jxij → 0. Then, the analog of Eqs. (26) and (27) reads

VjðxjÞψ jðxj; yjÞ ¼ −δð3ÞðxjÞFlðyjÞ: ð64Þ
With these building blocks, the leading contribution to the
energy shift expression can be straightforwardly calculated:

ΔEm¼−
X3
i¼1

X
e

Z
d3xid3yiδ3ðxiÞðFlðyiÞÞ�

× ðϕj
lmðxj;yjþeLμjðkiÞÞþϕk

lmðxk;yk−eLμkðijÞÞÞ:
ð65Þ
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Here, we take into account the fact that the finite-volume
energy shift can explicitly depend on the projection of the
angular momentum m.
In order to proceed further, we note that, for arbitrary l,

the function ϕlðαÞ is singular at α ¼ 0:

ϕlðαÞ ¼
Gl

α
þ ϕ̃lðαÞ; ð66Þ

where the second term is regular at the origin. The leading
contribution in the limit L → ∞ comes from the singular
term. Further, in this limit, we have

lim
L→∞

YlmðΩy0j
Þ¼YlmðΩeÞ; lim

L→∞
YlmðΩy00k

Þ¼ð−1ÞlYlmðΩeÞ;
ð67Þ

where y0j ¼ yj þ eLμjðkiÞ and y00k ¼ yk − eLμkðijÞ.
In the following, we present the averaged shift,

defined as

ΔE ¼ 1

2lþ 1

Xl

m¼−l
ΔEm: ð68Þ

Defining FlðyiÞ ¼ F̄lðjyjiÞYlmðΩyiÞ, Eq. (65) can be finally
transformed into

ΔE ¼ −3
�

4π

2lþ 1

�
1=2

�
π

2κ

�
1=2 X3

i¼1

N0llGl

Z
1

−1
dzPlðzÞ

Z
∞

0

ydyðF̄ðyÞÞ�

×

�
AjðLμjðkiÞÞ−3=2

j sin γijj
expð−κLμjðkiÞÞ expðκ cos γijyzÞ þ ð−1Þl AkðLμkðijÞÞ−3=2

jsin γikj
expð−κLμkðijÞÞ expðκ cos γikyzÞ

�
: ð69Þ

From the above expression, it is clear that the result for
general l looks similar to Eqs. (34) and (50). Namely, it
contains the exponentially vanishing factors together with
an overall factor ðκLÞ−3=2. Only the numerical coefficients
depend on the angular momentum l.

IV. CONCLUSIONS

(i) In this article, we have extended the approach of
Ref. [4] and derived explicit expressions for the
energy shift of the three-particle bound state in the
unitary limit with non-equal-mass constituents and
with the total angular momentum different from
zero. All cases of physically relevant angular mo-
menta (i.e., for which the shallow bound states exist
in the unitary limit) were covered.

(ii) We show that the behavior of the leading terms in the
finite-volume energy shift is universal for all l:
namely, it contains three exponentially vanishing
terms, whose arguments are determined by the
pertinent reduced masses, i.e., by pure kinematics.
In addition, there is a common multiplicative factor
ðκLÞ−3=2 for all l. Only the numerical coefficients,
which stand in front of these universal factors,
depend on l and can be calculated for each l
explicitly, using the method described in the paper.

(iii) On several occasions already, the simple model,
considered in Ref. [4], has served as a nice testing
ground for the different types of the three-particle

quantization condition, which are available in the
literature (see, e.g., [11,25]). Moreover, a com-
parison of the results has shed more light on the
role of a three-particle force in the description of
the volume dependence of the shallow bound states
[25]. A universal formula for arbitrary l and unequal
masses, which was derived in this paper, without any
doubt, represents a further challenge for the above-
mentioned approaches, as well as an opportunity to
gain a deeper insight in the three-particle dynamics
in a finite volume.
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