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We consider the von Neumann entropy of a thermal mixed state in quantum systems derived from 
mirror curves, where the kinetic terms are exponential functions of the momentum operators. Using the 
mathematical results on the asymptotics of the energy eigenvalues, we compute the asymptotic entropy 
in high temperature limit and compare with that of the conventional models. We discuss the connections 
with some folklores in quantum gravity, particularly on the finiteness of entropy.
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1. Introduction

Entropy has played a significant role in recent developments 
in our understandings of holography and quantum gravity. Since 
the seminal proposal of holographic entanglement entropy in [1], 
there have been many generalizations and applications. In particu-
lar, a generalized version of the entropy may follow the Page curve 
of the black hole entropy during the Hawking radiation process, 
as reviewed in [2]. These significant progress appear to be getting 
close toward a consensus on the resolution of the famous black 
hole information paradox.

The thermal mixed state in a quantum system can be obtained 
as the reduced state by tracing over one party in a thermofield 
double (TFD) state, which is a pure quantum state entangled be-
tween two similar systems. The von Neumann entropy of the ther-
mal state is the entanglement entropy of the TFD state. The use of 
TFD states has been instrumental in our understandings of holog-
raphy with two boundaries e.g. in [3], as well as in the study of 
von Neumann algebra e.g. in [4]. Thus it is well motivated to con-
sider the entropy of a thermal mixed state in various interesting 
quantum systems.

We will consider quantum systems derived from mirror curves, 
where the kinetic terms are exponential functions of the momen-
tum operators, with both exponential and polynomial potentials 
for the position operators respectively in Sections 2 and 3. The 
Hamiltonians derived from toric Calabi-Yau geometries are expo-
nential function of the position and momentum operators. The 
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most well studied models are the local P 1 × P 1 model and the 
local P 2 model

Ĥ = ex̂ + e−x̂ + ep̂ + e−p̂, P 1 × P 1 model,

Ĥ = ex̂ + ep̂ + e−x̂−p̂, P 2 model.
(1.1)

The perturbative quantization conditions are given by the Nek-
rasov-Shatashvili limit of refined topological string theory [5,6]. 
Furthermore, based on some earlier works on numerical calcula-
tions of the quantum spectrum [7,8], the exact quantization con-
ditions including all non-perturbative effects were conjectured in 
[9,10], where the two seemingly different proposals turned out 
to be related by the blowup equations [11]. Now known as the 
TS/ST (Topological String/Spectral Theory) correspondence, it has 
attracted the attentions of many mathematicians as well. For ex-
ample, some promising partial results toward a proof of the con-
jecture are obtained in the recent papers [12,13]. In particular, 
some nice mathematical results on the asymptotics of the energy 
eigenvalues were proven in [14,15], which we will use to study the 
asymptotic entropy in high temperature limit.

As a warm up exercise and a standard to compare, we first con-
sider the simple case of a harmonic oscillator. It is well known that 
one can couple two harmonic oscillators together with a quadratic 
interaction, then the ground state of the combined system is a TFD 
state [16]. Some strategies to build TFD states in more general sys-
tems were studied e.g. in [17]. For a harmonic oscillator

Ĥ = p̂2

2
+ ω2 x̂2

2
, (1.2)

it is not difficult compute the von Neumann entropy of a thermal 
state

S = βω
βω

− log(1 − e−βω), (1.3)

e − 1
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where we have set h̄ = 1 and the parameter β ≡ 1
kB T is defined 

in terms of the Boltzmann constant and the temperature. At zero 
temperature, the thermal state is just the pure ground state so the 
entropy is zero. We will instead be interested in the high tem-
perature limit where the probability is more evenly distributed 
between all excited states, so the entropy should be maximized. 
In this simple case the asymptotic behavior is

S ∼ log(T ), T ∼ ∞. (1.4)

More generally, let 0 < λ1 ≤ λ2 ≤ · · · denote the eigenvalues of 
a Hamiltonian. We will use the number of states defined by

N(λ) = #{ j ∈N : λ j < λ}. (1.5)

For a thermal state, the probability at an excited state is pi =
1
Z e−βλi , where Z = ∑

i e−βλi is the partition function. The von 
Neumann entropy can be written as

S = −
∞∑

i=1

pi log(pi) = log(Z) + β

Z

∑
i

λie
−βλi

= log(Z) + T ∂T log(Z).

(1.6)

The partition function can be computed by

Z =
∞∫

0

e−βλdN(λ). (1.7)

To compute the asymptotic behavior of the entropy, we only need 
the asymptotic behavior of N(λ). For the harmonic oscillator, the 
number of states goes like N(λ) ∼ λ, so we have Z ∼ T in the high 
temperature limit and the first term in (1.6) dominates. We recover 
the result (1.4).

For a non-relativistic quantum system with a standard kinetic 
term as in (1.2) but a general polynomial potential, it is expected 
that the number of states grows like a power law N(λ) ∼ λc with 
a positive number c. In this case it is easy to see that the partition 
function scales like Z ∼ T c and the first term in (1.6) dominates. 
So the thermal entropy also scales like S ∼ log(T ) in the high tem-
perature limit.

2. Calabi-Yau quantum mechanics

As we mentioned, the simplest examples of such quantum 
models are (1.1). Some more general models were considered in 
[14], including a deformation the P 1 ×P 1 model, and a more gen-
eral operator e−mx̂−np̂ for arbitrary natural numbers m, n in the P 2

model. A common feature is that the number of states grows like

N(λ) ∼ log2(λ), λ ∼ ∞ (2.1)

where we have neglected the coefficient factor which depends 
on specific models. We see that the logarithmic growth is much 
slower than the linear growth of the harmonic oscillator. As a re-
sult, the inverse Hamiltonian Ĥ−1 is a trace class operator for the 
Calabi-Yau models, which was first proven by other method in [18], 
while it is not for the harmonic oscillator.

In the high temperature limit, the partition function is

Z ∼ f (β) ≡
∞∫

1

e−βλ log(λ)

λ
dλ. (2.2)

The integral f (β) is convergent for �(β) > 0 and can be analyt-
ically continued to the complex plane with potential branch cuts. 
Using the Mathematica program, we find that it can be written in 
2

terms of a Meijer G-function and it has the following series expan-
sion around β ∼ 0

f (β) = G3,0
2,3

(
1,1

0,0,0

∣∣∣∣ β

)

= 1

2
log2(β) + γ log(β) + γ 2

2
+ π2

12
− β

+ β2

8
− β3

54
+O(β4),

(2.3)

where γ is the Euler-Mascheroni constant. Here the Meijer G-
function is a very general function including as particular cases 
many known special functions, such as generalized hypergeomet-
ric functions, Bessel functions.

Motivated by the series expansion (2.3), we can provide a more 
elementary computation of the integral by the use of differential 
equation

d

dβ
[β f ′(β)] =

∞∫
1

e−βλ(−1 + βλ) log(λ)dλ

= − 1

β

∞∫
1

d[e−βλ(1 + βλ log(λ))] = e−β

β
.

(2.4)

Expanding the simple function e−β

β
and integrating twice, we can 

recover the series expansion (2.3) except for the integration con-

stant terms γ log(β) + γ 2

2 + π2

12 .
We can further give an alternative simple elementary derivation 

of the leading scaling behavior. Suppose 0 < β < 1, the integral can 
be dissected into two parts

f (β) =
1
β∫

1

e−βλ log(λ)

λ
dλ +

∞∫
1
β

e−βλ log(λ)

λ
dλ. (2.5)

The second part will be subdominant and is evaluated as

∞∫
1
β

e−βλ log(λ)

λ
dλ =

∞∫
1

e−λ log(λ) − log(β)

λ
dλ ∼ log(T ). (2.6)

The first part can be estimated as

1
β∫

1

e−βλ log(λ)

λ
dλ > e−1

1
β∫

1

log(λ)

λ
dλ = 1

2e
log2(β),

1
β∫

1

e−βλ log(λ)

λ
dλ <

1
β∫

1

log(λ)

λ
dλ = 1

2
log2(β).

(2.7)

Without concerning about the constant factor, we confirm the 
leading scaling behavior f (β) ∼ log2(β) in this way. The precise 
factor is actually 1

2 from the series expansion for the Meijer G-
function (2.3), coinciding with the upper bound in the above esti-
mates.

So we find the leading asymptotic behavior of the partition 
function

Z ∼ log2(T ), T ∼ ∞. (2.8)

As in the harmonic oscillator case, the first term in (1.6) dominates 
and we have
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S ∼ log(Z) ∼ log(log(T )), T ∼ ∞. (2.9)

We see that the entropy grows much slower than the harmonic 
oscillator in the high temperature limit.

3. Difference operators with polynomial potentials

In this section we consider the case of polynomial potentials, 
e.g.

Ĥ = ep̂ + e−p̂ + W (x̂), (3.1)

where W (x) = x2N +· · · is chosen to be an even degree 2N polyno-
mial, so that we have a confining potential and an infinite discrete 
spectrum. This class of Hamiltonians comes from the quantizations 
the 4d Seiberg-Witten curves, which are obtained in a special scal-
ing limit of the geometrically engineering Calabi-Yau mirror curves. 
The exact quantization condition in this case can be obtained from 
the 4d Nekrasov partition function of Seiberg-Witten theories and 
was studied in [19]. The mathematical result [15] for the asymp-
totics of the number of states is

N(λ) ∼ λ
1

2N log(λ), λ ∼ ∞. (3.2)

The growth is faster than the Calabi-Yau models in the previous 
section, but slower than the standard harmonic oscillator. The in-
verse Hamiltonian Ĥ−1 is still a trace class operator.

Using the similar method as the previous section, we find the 
asymptotic behavior of the partition function is Z ∼ T

1
2N log(T )

and check that the first term in (1.6) dominates. So the asymp-
totics of the entropy is

S ∼ log(Z) ∼ log(T ), T ∼ ∞. (3.3)

So the scaling behavior is actually the same as the standard har-
monic oscillator.

4. No finite bound for entropy

As a related question to the discussions in the next section, 
we consider whether it is possible to have a finite upper bound 
for thermal entropy in the infinite temperature limit T → ∞ for 
some quantum systems. Here we show that under reasonable as-
sumptions this is impossible. We assume that the Hilbert space is 
infinite dimensional where the energy eigenvalues can be shifted 
to be all positive. Further assume the sum in the partition function 
is convergent for any finite temperature, so the partition function 
Z(T ) is well defined for any T , i.e. there is no exponential growth 
of the number of states N(λ) as in string theory. It is easy to check 
by taking derivative that both Z(T ) and S(T ) are monotonically in-
creasing functions of T . Using (1.6), we find

S(T ) = log(Z) + T ∂T log(Z) > log(Z). (4.1)

Since the Hilbert space is infinite dimensional, the partition func-
tion Z(T ) tends to infinity as T → ∞, therefore the entropy also 
tends to infinity and there is no finite upper bound.

5. Discussions

We have found that the thermal entropy of Calabi-Yau quan-
tum mechanics (2.9) grew much slower than that of the standard 
harmonic oscillator in the high temperature limit, while the case 
of polynomial potential had the same growth (3.3). Although we 
focus on simple quantum systems, our study may provide some 
useful experience for relevant questions in quantum gravity. In 
particular, in the context of the influential Swampland Program 
3

[20], some recent works have studied the species scale, the emer-
gence string proposal and their thermodynamics, see e.g. [21–23]. 
In certain limit e.g. near boundary of the moduli space, a tower of 
infinite number of string states may become light. Another way to 
explore such emergence is the high temperature limit considered 
here, where the highly excited states become equally probable. Of 
course, it is well known that string theory has a Hagedorn temper-
ature, inverse proportional to the string length, where the partition 
function diverges. In those contexts, the high temperature limit 
should probably mean a temperature approaching the Hagedorn 
temperature. Our study may provide some useful techniques to un-
derstand the asymptotic behavior near the emergence.

A folklore of quantum gravity is the finiteness of entropy, in 
contrast to its divergence in generic calculations in quantum field 
theory. An important source of motivation comes from the finite 
horizon area of de Sitter space, which appears to be the current 
state of our universe. See e.g. [24–26] for earlier discussions related 
to de Sitter space and e.g. [27,28] for some recent discussions. Of 
course, the dimension of Hilbert space is infinite in perturbative 
string theory but this is not necessarily in conflict with the folk-
lore. In a countable (separable) infinite dimensional Hilbert space, 
the von Neumann entropy of a mixed state of trace class would be 
generically still finite except in some very contrived circumstances. 
For example, for a probability distribution that scales as power law 
pn ∼ n−α among an orthogonal basis of states, the convergence of 
the sum 

∑∞
n=1 pn is equivalent to α > 1, in which case the von 

Neumann entropy − 
∑∞

n=1 pn log(pn) is also finite. We may con-
sider a more contrived probability distribution pn ∼ 1

n logα(n)
. For 

α ≤ 1 the sum 
∑∞

n=1 pn is divergent, while for α > 2 both sums ∑∞
n=1 pn and − 

∑∞
n=1 pn log(pn) are convergent. So in this case in 

a limited range 1 < α ≤ 2 we can have a probability distribution 
where the entropy is infinite.

In the quantum models we studied, the entropy is indeed finite 
at a finite temperature, but tends to infinity in the infinite temper-
ature limit. A similar situation appeared in our earlier study of the 
entropy of Berenstein-Maldacena-Nastase (BMN) strings [29]. In 
that case, the pp-wave spacetime background is infinitely curved, 
the strings become effectively infinitely long and tensionless with 
degenerate spectra, so the Hagedorn temperature is zero. Instead, 
a real non-negative genus counting parameter in the dual BMN 
double scaling limit becomes the effective string coupling g , play-
ing a similar role of temperature as in the current context. Due to 
the structure of dual free CFT correlators, we are only accessing a 
countable infinite dimensional subspace of the whole Hilbert space 
of excited string states. It was found that at finite coupling g , the 
entropy is indeed also finite, while it is naively expected that as 
g → ∞, the probability would be evenly distributed among the in-
finite dimensional Hilbert subspace, so the entropy should likely 
tend to infinity, which by itself does not seem to violate any fun-
damental principle of quantum gravity. Nevertheless, it would be a 
pleasant surprise if it turns out that the entropy of BMN strings in 
[29] does have a finite upper bound as g → ∞, strongly confirm-
ing a folklore of quantum gravity in an implausible fashion. Such a 
bound may be related to the entropy of our current universe, thus 
could provide a natural estimate of the cosmological constant. An 
encouraging hint is that for the Calabi-Yau models, which are re-
lated to topological string theory, a toy version of quantum gravity, 
the entropy does grow much slower (2.9) than the conventional 
models. It would be interesting to settle this issue in the future.
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