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1 Introduction

The Grand Unified Theory (GUT) is an attractive framework to understand the gauge
structure of the Standard Model (SM) [1]. In the SU(5) GUT, the quarks and leptons in a
generation are unified into 5 and 10 representations. As a result, for instance, the exactly
opposite charges of the electron and the proton are manifestly explained. The SU(5) GUT
predicts the unification of the three gauge coupling constants which is consistent with the
Minimal Supersymmetric SM (MSSM) [2-9]. Due to the unification of the quarks and
leptons, the Yukawa couplings are also constrained to be consistent with the SU(5) gauge
symmetry, as we shall study in this paper.

Higher dimensional theory such as superstring theory is an interesting candidate
for the underlying theory beyond the SM. Such a theory includes a compact space,
whose geometrical aspects such as a size and shape are characterized by moduli. Yukawa
couplings as well as higher dimensional couplings depend on moduli, and hence they have a
geometrical symmetry, the so-called modular symmetry. The moduli dependencies of the
Yukawa couplings were studied in magnetized D-brane models [10-16] and heterotic orbifold
models [17-22]. For a single modulus 7, the modular symmetry corresponds to I' = SL(2, Z).
Since Yukawa couplings are functions of the modulus, they transform non-trivially under I'.
Thus, the modular symmetry may play an important role in four-dimensional low-energy
effective field theory.!

'For instance, the three-generation models based on the magnetized extra dimension invariant under the
modular flavor symmetry were studied in refs. [16, 23].



The modular flavor symmetry provides an interesting possibility to understand the
flavor structures of the three generations of quarks and leptons in the SM [24]. Under
the modular symmetry, Yukawa coupling constants are treated as the so-called modular
forms, holomorphic functions of modulus 7. The finite modular groups 'y, N € N, are
generalization of the non-Abelian discrete flavor symmetries [25], as well studied in the
literature [24, 26-44]. In fact, we can find isomorphisms 'y ~ S3, I's ~ Ay, I'y ~ Sy, and so
on. There have been many attempts to understand the flavor structures of the SM by the
finite modular flavor symmetries [45-83], especially under the GUTs [84-92].

There are the hierarchies in the masses of the SM fermions and in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. The residual Zy symmetry of the modular symmetry
induces hierarchies of Yukawa couplings if the modulus 7 has a value near a fixed point.
For instance, if 7 ~ 00, the Zy symmetry remains in the modular I'y symmetry, and
then the Yukawa couplings are suppressed by powers of ¢y := e~ 2™™7/N « 1 depending
on the charge under the Zy symmetry. This is a realization of the Froggatt-Nielson (FN)
mechanism, where the powers of the flavon field are replaced by those of ¢n. Recently, this
idea is applied for the quark sector based on the modular Ay [93, 94], A4 x Ag x Ay [95],
Sy [96] and T'g [97] symmetries, and the lepton sector is also studied in refs. [98, 99].2 In
ref. [101], the present authors constructed a model for both quark and lepton sectors based
on Iy ~ S symmetry, where I}y is the double covering of Iy symmetry.

In this work, we construct a model to explain the hierarchies of the quarks and leptons
in the SU(5) GUT. It will be turned out that the residual symmetry should be Zy with
N > 5, to realize the hierarchy of the( )up—type quark masses because the up Yukawa matrix
/
5

realize the hierarchy [28, 80| as explained later, we shall consider the I'j symmetry as the

is a symmetric matrix. Since the I's’ symmetry does not have proper representation to
minimal possibility. We consider I'y, double covering of T's, to construct a model with
non-singlet representations. We also study the neutrino sector assuming the type-I seesaw
mechanism by introducing three SU(5) singlets.

This paper is organized as follows. In section 2, we briefly review the flavor structures
of the SU(5) GUT and the modular flavor symmetry, and then discuss how to explain
the hierarchies of the masses and mixing. The explicit model is studied and our results
of numerical calculations for the charged fermions are shown in section 3, and then the
neutrino sector is discussed in section 4. Section 5 concludes. The details of the modular
'y symmetry are shown in appendix A.

2 Fermion hierarchies in SU(5) GUT

2.1 SU(5) GUT

The superpotential at the dimension-4 is given by

1 o
W, = §yij6ABCDE10%4BIO§7DHE + hijl()?Bf)jAHB, (2.1)

In ref. [100], the lepton mass hierarchies are explained by assuming the smallness of the modular form
~ 0.07 at weight 2 in the S3 modular symmetry.



where A, B,--- =1,2,3,4,5 are the SU(5) indices, and i,j = 1,2, 3 are the flavor indices.
The MSSM fields are in the SU(5) multiplets as

50 =da, B3t =caqpl’ 10" =Q% 10" =¥y, 1021 = Fe (2.2)
where a,b,c = 1,2,3 and «, 5 = 1,2 are the SU(3)¢ and SU(2), indices, respectively. In
these expressions, €’s with the indices are the complete anti-symmetric tensors. The Higgs
doublets are included in the (anti-)fundamental representations H (H) as

H3 = P H,3, Hzyo = Hyq. (2.3)

We assume that the triplets are so heavy that it will not induce too fast proton decay by a
certain mechanism [102-105].3 We also assume a discrete R symmetry, such as the R-parity,
to forbid the dimension-4 operator 1055 [107, 108]. Since the Yukawa matrices of the down
quarks and charged leptons are given by the common Yukawa matrix h;;, the dimension-4
Yukawa couplings in eq. (2.1) can not explain the realistic fermion masses.

In this work, we assume that the SU(5) gauge symmetry is broken by an adjoint field
Eﬁ whose VEV is given by

(2) = vy x diag(2,2,2, -3, —3), (2.4)

so that the GUT symmetry is broken down to the SM gauge symmetry. We shall consider
the dimension-5 interaction involving the adjoint field,

1
A
which splits the Yukawa couplings of the down quarks and the charged leptons. Here A is a

Ws > CijlofBEAqgjoﬁB, (2.5)

cutoff scale. The dimension-5 operators inserting the adjoint field to other places will not
change the flavor structure, and thus we do not write them explicitly.
The Yukawa couplings for the MSSM fields are given by

W =uYyQH, + dYyH, + €Y. lHy, (2.6)
where the Yukawa matrices are given by

Yulij = vij,  [Yal;; = hij +2RsCyy,  [Yely; = hij — 3RsCyj, (2.7)

]
where Ry := vy /A. Thus the O (Ry) splitting of the down-type Yukawa couplings is
induced via the VEV of the adjoint scalar field vy.

2.2 Modular flavor symmetry

We consider the so-called principal congruence subgroups I'(IV), N € N, defined as

I(N) := {(Z Z) € SL(2,2), (Z Z) = ((1) 2) mod N} : (2.8)

3As far as the triplet Higgses are at the GUT scale, the proton lifetime would be long enough if soft
SUSY breaking parameters are larger than O (100) TeV [106].




where I' := SL(2,Z) = I'(1) is the special linear group of 2 x 2 matrices of integers. The
modulus 7 is transformed by the group I' as

ar +b
— .
ct+d

(2.9)

The finite modular group I'y is defined as a quotient group I'y := I'/T'(NN), which can be
generated by the generators,

S:(O 1), T:<11>, R:<_1 0). (2.10)
-10 01 0 —1

One can consider the quotient group I'yy := T/T'(N), where T' := I'/Z£ with Z£ being the
Zo symmetry generated by R. I'y is the double covering of the group I'y. For N < 6, the
generators of I'y satisfy

S?=R, (ST))=R*=TN =1, TR=RT, (2.11)
and those for I'y are given by taking R = 1. At N = 6, the generators should also satisfy
ST*ST3ST*ST? =1, (2.12)

in addition to those in eq. (2.11). Under I}y, a modular form, a holomorphic function of 7,

Yr(k) with representation r and modular weight & transforms as
Y, ® = (er +d)fp(r)y, ) (7), (2.13)

where p(r) is the representation matrix of r. We assume that the chiral superfield ® with
representation r¢ and weight —kg transform as

D — (cr 4+ d)*2p(re)D. (2.14)

2mi/3 or joo, there remains a

If the modulus is stabilized near a fixed point 7 ~ i, w := e
residual symmetry Z7, ZgT or Z]TV, respectively. Here, the superscript represents a generator
associated with the residual symmetry.

The modular invariant Kéhler potential for the kinetic term is given by

TP

K> ———
(—iT +i7*)ke

(2.15)

and hence the canonically normalized chiral superfield is given by

—ko

d = (\/211117‘) ®. (2.16)

The normalization factors from v/2 Im7 will be important for 7 ~ i00, as we shall consider
in this work.



2.3 Assignments of representations

The hierarchical Yukawa matrices can be realized by the FN mechanism with a Zy
symmetry [109, 110] if the modulus field is stabilized near a fixed point. We shall consider
the FN-like mechanism by Z% symmetry, and define ¢ := V3e2™7/6 in eq. (A.24) throughout
this paper. See appendix A for more details. Since the up-type Yukawa matrix is symmetric
in the SU(5) GUT, the texture of Y, is, in general, given by

EQn 6n—‘,—m €n

Y, ~ [ ertm @moem | (2.17)

where € < 1 and n,m € N. The singular values are read as (¢2,¢*™, 1), and hence the
minimal possibility to obtain the hierarchal up quark masses is (m,n) = (1,2), so that the
singular values are given by (e*,¢2,1). Thus N > 4 is required to realize the hierarchy by a
Zy symmetry.

The Fé/) symmetry is the minimal possibility for the up quark mass hierarchy. N >4
can be realized only from the residual 7" symmetry in the modular I‘g\,,) symmetry with N > 4,
where Z% symmetry remains unbroken at 7 ~ ico. In the case of N = 5, however, there
are no such representations whose T-charges are (0, —1,—2) = (0,4,3) mod N =5 [28, 80].
Therefore, N = 6 is the minimal possibility to realize the hierarchal up Yukawa couplings.

As shown in detail in appendix A, the irreducible representations of I'g are [111]

13, 2, 3°, 6, (2.18)

where s = 0,1 and b= 0,1,2. Since I'g is isomorphic to I'y x I's ~ S5 x Ay, upper (lower)
indices can be considered as S3 (A4) indices. For the double covering I'y;, there are additional
representations,

2, 4. (2.19)

The charges under the residual Zg symmetry of the representations less than three dimensions
are given by

3s
20 35+ 2b
T(15) = 3s + 2, T(2b)=< ) T(3")=|[3s+2], T(2i)=< T )

2b+3 3s+2b+ 2
+ 3s + 4 S+ 20+
(2.20)
modulo 6.
At N = 6, the texture can be realized for,
102123 = 19 @ 23 =: 10; ® (104, 103). (2.21)

The ZﬁT—charges are (2,1,3). Since the doublet representation 23 exists only for I'f, we
should consider the double covering of T's. We can replace 25 to 13 @ 1} which exist in g,



but we do not consider this case because the model is less predictive and may need larger
modular weights to have certain modular forms [97].

Since the doublet lepton #; is in 5;, the hierarchal structures of the neutrino masses and
the PMNS matrix are determined by the representation of 5;. As € ~ (1m,,/ms)"/* ~ O (0.05)
for the charged fermion hierarchies, ¢; should have a common Z{ charge, so that there is
no hierarchy in the neutrino sector. Thus we assign

51':172,3 = 1187 D 1157 D 12 =51 D5y D 53, (2.22)

with s = 0,1 and b = 0,1,2. The values of (s,b) will be determined to have the modular
forms for a given modular weights. In this case, the singular values of the down quarks and
charged leptons are given by €4(€2 ¢, 1), where ¢ = 0, 1,2, 3 depends on (s,b). The textures
of the CKM and PMNS matrices are given by

1 €€ 111
Vekme~ | el el|l, Vepmns~|111], (2.23)
el 111

and there is no hierarchy in the neutrino masses originated from e. We discuss the neutrino
sector explicitly in section 4. We also note that the textures will also be modified by powers
of V2Imr as in eq. (2.16) depending on modular weights, as will be discussed in the next
section in which we will take v/2Im7 ~ 2.5.

3 Model

3.1 Yukawa couplings

We denote the modular weights of 101 2 and 5123 as
k1o = (k%07k%0)7 ks = (kéakgakg) (31)
The modular invariant superpotential of the Yukawa couplings are given by

1 1 2 2\
W = oy (Yfﬁ’“lo)mllol) H+ an (1/2(1’“10+ ’“10)101102) H+as <Y3(§k10)102102) H (3.2)
1 2 1 1

M 1 A M 2 iy_ _
+ Z Kﬁﬂ + A’m) <Y1(§j2+k5)5i101> + (@'2 + A%‘Q) (%(fﬁfks)f)iloz) } H,
i=1,2,3 -t 1

where the contractions of the SU(5) indices are implicit. It is assumed that 3, H and H
are trivial singlets with modular weight £ = 0. The symbol (- --); indicates that the trivial
singlet combinations inside the parenthesis. Here a;, 81; and f2; are O (1) coefficients. The



Yukawa matrices for the MSSM quarks and leptons are read as

Voo Gk 3, 'Y<2k}0+k%0> - V3 {ch%ﬁk%o)}l
Y, = \}6 V3as {Yz(;erk%O)} —\@04_3 3(02k 0)]3 a3 [ (2k 10) , (3.3)
—3as [Y;;%ﬁkio)i s Y3<2k 0>] N [Y?’(Ozkm)? 1
\/iﬁnyl(slijkm 3, _Y(kg+k§-0)_ 34, :Yz(sferkfo): 1
méme%%O@}ﬁﬁ@ gy [y (3.4)
VaBHYEET gy |V g, [y
\[ﬂﬁy(k;%}o) \[521Y(k +k10) \[B:ﬂy(k -:klo)
n:ézﬁﬁwﬁ%ﬂ @J@ﬁ%ﬂ &Jﬁﬁmﬂ | (35)
1, [ g, [ )] ﬁw[zif@di
where
= By + 2Ryyij, B = Bij — 3Rxij. (3.6)

Here, [Y}(k) ]i denotes the i-th component of the modular form Yr(k). As shown in eq. (2.7),
Yy =Y.' up to the splitting at O (Rx) because d € 5 and @ € 10 while € € 10 and £ € 5.
Note that the number of coefficients may change depending on the number of modular

forms for a given modular weight.

3.2 Assigning modular weights

The minimal choice to obtain the realistic Yukawa matrices is

k‘l() = (27 3)7 k5 = (0707 2)7 (37)
and we take (s,b) = (1,0) for 5; = 17, so that the Yukawa matrices are given by
(4) (5) (5)
, ‘/éo‘lyg) \/%Q.[YQ%J ~Viaz gz; l,

Yy = NG V3as [Y% } _\/Zaé [YBU,iT3 g ‘_Y30,i}2 ) (3.8)
ol 3" B
A I

1
Yo= NG \[/321 522 {}/2((:)3)] —B%, [ (3)}1 ; (3.9)
5 5
0 ﬁ32 [Y( )} —, [Y( )}
VaBnYyY  v2ss Yy 0
1 e 3 3 5
Y= %Mﬂ %PW %PW

_ﬁTQ [Yz(??) 1 _522 [ 283) 1 _/832 [ 20

1



There are two modular forms Yg(g )i, i = 1,2, and there is no 1} at k = 4. The Yukawa
matrices are rescaled by the canonical normalization of the kinetic terms as in eq. (2.15).
Since the top Yukawa coupling is O (1), we fix the overall factor of the Yukawa couplings,
so that the factor (v/2Im7)® is compensated. Note that the normalization of the modular
form is not fixed from the bottom-up approach.* We absorb this effect into the coefficients,

rather than the modular forms, by defining

&; = (2Im7)3 0y, /S’ij = (2Im7)3By;,  Aij = (2ImT);5. (3.10)
With the assignments of the modular weights, the texture of the Yukawa matrices are
given by
ne2 nl/2e3 pl/2e n2e 322 p3/?
Yy~ | n'/268 & 2 |, Yo~ Y~ | nke P2 32 (3.11)
nt2 & 1 0 nl/2e2 pi/?
where 1 := 1/(2Im7) is the factor from the canonical normalization. The hierarchical

structures of the quark masses and the CKM matrix is given by
(M, M, Mg, Mg, Mp) /My ~ (64,7}62,773/262,1726,771/2> (3.12)
~ (2 % 1075,7 x 10743 x 1074, 2 x 10—3,0.4) ,
(59,53, %) ~ <6/771/2,771/26,62) ~ (0.2,0.03,0.005) ,
Q

]
angles in the standard parametrization of the CKM matrix. The mass hierarchies of the

where € = 0.067 and 1 = 0.16 are used for the numerical estimations. Here, s is the mixing
charged leptons are the same as those for the down-type quarks. These values well fit to
the data shown in table 1 at the benchmark points discussed in the next section, except for
Yy and gy, which are about 10 larger than the experimental values. These differences will
be explained by the numerical factors in the modular forms and the O (1) coefficients. It
is interesting that the CKM angles in our models fit to the data after taking account the
powers of 7 from the canonical normalization, so that SQQg / s% ~mn~0.2

3.3 Benchmark points

We find the numerical values of the parameters by numerical optimization. We restrict the
parameter space to be

tan 3 € (5,60), 7, € (—0.6,0.6), |9i;] € (—=1,1). (3.13)

Here, tan 8 includes the threshold correction to the tau lepton, and 7, is that for the
bottom quark as defined in ref. [112]. In this work, we treat 7, as a parameter which
will be determined from the soft SUSY breaking parameters, see for threshold corrections
refs. [113, 114]. The threshold corrections to the light flavors, 7, and 7, are assumed to be

4We also assume that this normalization factor is universal for all of the matter fields 5; and 10;, and
hence do not change the flavor structure.



obs. ‘ value center error obs. ‘ value center error
Yu/1076 2.73 2.74 0.85 y./1076 | 2.89 2.74 0.85
y./1073 | 1.391  1.421  0.050 y./1073 | 1.450  1.421  0.050
n 0.5041  0.5033  0.0050 n 0.5008  0.5029  0.0050
yqa/107° | 5.94 5.90 0.65 Ya/107° 7.12 5.87 0.65
ys/1073 | 1.145  1.167  0.063 ys/1073 | 1.053  1.161  0.063
/1072 | 5375  5.388  0.054 /1072 | 3.977  3.983  0.040
y./107° | 2389 2389  0.014 ye/107° | 2377 2378  0.014
y,/1073 | 5.049  5.043  0.030 y,/1073 | 5.000  5.019  0.030
yr/1072 | 8611  8.622  0.086 y-/1072 | 8674 8582  0.086
s 0.22540 0.22541  0.00072 s 0.22558 0.22541  0.00072
s9/1072 | 4770 4769 0.076 59/1072 | 6.47 6.42 0.10
s2/107% | 4.13 4.15 0.15 s2/107% | 5.61 5.58 0.20
Sokm | 1.2270  1.2080  0.0540 Sckm | 1.2335  1.2080  0.0540

Table 1. The values of the Yukawa couplings of the SM fermions and the mixing angles in the
CKM matrix at the BP1 and BP2 in the left and right panels, respectively. The second column is
the value at the benchmark points, and the third (fourth) column is the experimental value (and its
error). The experimental values are given at the GUT scale calculated in ref. [112].

zero for simplicity. We take Ry, = 0.1 and restrict |9;;| < 1, so that the contribution from
the dimension-5 operator is sub-dominant.

We found the following two benchmark points. At the first benchmark point (BP1),
the inputs are given by tan 3 = 11.4643, 7, = 0.187818 7 = 0.0592 + 3.10334,

&1 2.1054 g“
as | | —1.9005 312
al ~1.5069 |7 |
a2 1.7427 22

3 B32

2.20770-176%
1.8263
—0.6111 |,
0.2838
0.1922

11 0.2568

19 0.8436

A1 | = [ —0.9999 |, (3.14)
A9 0.2433

A3 —0.8884

and at the second point (BP2), tan 8 = 11.4303, i, = 0.598145, 7 = 0.0661 + 3.07914,

A

. 1 5437 B 1.7296¢0-21341 A1 0.9997
« . A
o a0 Bz 1.2887 Ao 0.7726
Sl s | (B = om0 [an | = | —00s2|. (3.15)
42 L3019 B2 0.2484 Aoz 0.3163
’ ‘ Bsa 0.2092 432 —0.9619

These points realize the quark and charged lepton masses, and the CKM angles as shown
in table 1. At both points, all of the observables are within 20 range, and the largest
discrepancy is 0.610 (1.930) at the BP1 (BP2) for the charm (down) quark mass. The values
of the parameters are similar at both points, but 7, is relatively small (large) at the BP1



(BP2). The absolute values of the coefficients are in the range of [0.19,2, 2] and [0.20, 1.7]
at BP1 and BP2, respectively. Thus, the O (1) coefficients can explain the hierarchies with
the good accuracy.

4 Neutrino sector

We shall consider the neutrino sector in this section. We assume that the neutrinos are
Majorana, so the neutrino masses are given by the Weinberg operator W > (¢H,)? at
low-energies. With our choice of the representations and the weights of ¢ € 5, the masses of
the neutrinos and the mixing angles in the PMNS matrix are predicted to be

(ml/1’ml/27ml/3) ~ (7727772a 1) ~ (0'0370'03a 1)7 (512,3237513) ~ (1#7, 77) ~ (170-270'2)>

(4.1)
and thus the neutrino observables will have the texture
m2 —m?2
Ry = —2——21 ~ ot ~0.0007, (81,853, 513) ~ (1,7%,7°) ~ (1,0.03,0.03),  (4.2)
mg, —mg,

independently to the UV completion of the Weinberg operator. Hence, the angle s2; is
naturally explained, while the ratio of the mass squared differences R3} and s3; are predicted
to be about an order of magnitude smaller than the observed values. We will discuss how
these discrepancies are explained in an explicit model based on the type-I seesaw mechanism.

For illustration, we assume the type-I seesaw mechanism to realize the tiny neutrino
masses by introducing the three generations of singlets NV;. The superpotential is given by

W = %NTMNN + NTY,54HA > éNTMNN + NTY,¢H,. (4.3)
We choose the representations and modular weights of the right-handed neutrinos as
N=1}®20=N® Ny, ky=(0,2). (4.4)
The modular invariant superpotential is given by

M,
W = 70 [A1N1N; + 24, (Y;?NlNQ)l + A3Y1(84) (NaDNa), + Ay (Y3 (NQNQ)QO)J (4.5)

+ Z {BM (ngl)l + By; (YQ(OQ)Nggz)J H + Bos (YQ((?)N253)1 H,
1=1,2

where A; and B;; are the O (1) coefficients, and My is the overall scale of the Majorana mass
term. (N2N3)g, takes the combination of the representation 2. Here, we take Yl((?) =1.
0

There is no 1Y at k = 2. The Majorana mass matrix My and the neutrino Yukawa matrix

~10 -



Y, are given by

24, —vaa, [P, VA [17])
My =20 | v V], veay - V] A, - (46)
2) @) (4) (4)
V24, [Yz(o }1 As [YQO }2 \/§A3Y18 A4 [YQO }1
\/§B11 \/§B12 0
Y, = \2 — B {3/2(02)}2 — B {Y2(02)]2 —Bas {Y;f)k

2 2 4
o 0], o 0], ),
The neutrino mass matrix is given by
M, = vV, MYy, (4.7)

where Y;, and My are after the canonical normalization. For the neutrino observables, the
elements suppressed by € ~ O (0.05) are irrelevant, and hence the matrices are approximately

given by
Ao
A 2 _ 7z
. 17 0 5 1 . Bun* Bin? 0
My A A Y 0 0 0
[ 0 —— + = 0 y ~
Mpy(2ImT)? N (2Imr)? Bo B Bos
L O T T
2 V6 42

(4.8)

Since the neutrino mass matrix M, is rank-2, the lightest neutrino mass appears only at
O (€3).5 The ratio of the heavier two neutrinos are given by

my, _ 16(Bf) + B3,) <A3 Ay A3 ) ) (4.9)

R21 ~ _ _
32 2
My B33 A4

at the leading order in 7. Because of the hierarchy in the neutrino masses, the model
predicts the normal ordering [115]. The ratio is enhanced by (B? + B2,)/(Bas/4)? ~ O (10)
coming from the Dirac Yukawa matrix Y,, for all A, B = O(1), and thus the ratio of the
mass squared difference R}3 is enhanced by O (100), consistent with the observed value
~ 0.03. While the mild discrepancy of s3; will be explained simply by O (5) ratios of
the coefficients.

We find the values to explain the neutrino observables at the benchmark points. At
the BP1, the fitted values are My = 1.2819 x 1016 GeV,

" L8038 B —2.4174
4 3008 Bis 1.0236
w71 tonss [0 [ B | =] r02s | (4.10)
s 0367 Bas 1.0236

Bos 2.6574

5If N is assigned to be a triplet, the neutrino mass will be rank-1 for e — 0, and thus the observed
pattern is more difficult to be realized.
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obs. ‘Value center error obs. ‘Value center error

R%/1072 | 3.070 3.070 0.084 R3/1072 | 3.069 3.070 0.084
52, 0.307 0.307 0.013 52, 0.307 0.307 0.013

s34 0.544 0.546 0.021 s34 0.546  0.546 0.021
s3,/1072 | 2.200 2.200 0.070 s7,/1072 | 2.200 2.200 0.070
Spmns/10° | —3.02  —2.01  0.63 dpmns/10° | —=3.00 —2.01  0.63

Table 2. The values of the neutrino observables at the benchmark points.

and at BP2, My = 1.7775 x 10 GeV,

" L8084 By, 0.8983
Ay ~0.6240 Brz —0.7126
w | = | Zoase | By | = | 1.8984 |. (4.11)
Ay 1.1528 Baz 06480
Bos —0.3344

The values of the neutrino observables are shown in table 2. At these points, the CP phase
in the PMNS matrix is originated from that in the charged lepton Yukawa matrix, which is
common to the CKM matrix. We see that the values of the coefficients are close to 1 and
the ratio of the coefficients are at most 3.9 (5.7) at the BP1 (BP2).

5 Summary

In this work, we build a model to realize the fermion hierarchy in SU(5) GUT utilizing the
modular I'j symmetry. The residual symmetry associated with the generator 7', namely Z{
symmetry, controls the powers of the small parameter e 2™™7/6 We argue that the I§ is
the minimal possibility to realize the hierarchical masses of the up-type quarks, because
the Yukawa matrix for the up-type quarks is symmetric in the SU(5) GUT. We assign
the representations of 10 as 19 & 29 and 5 as 1 @ 1§ & 13. We have to consider the double
covering I'y to have the representations 2§. The CKM matrix is hierarchical because the
T charges of Q € 10 are different, while the PMNS matrix is not hierarchical because the
those of ¢ € 5 are the same. The representations of r and (s,b) are chosen such that the
realistic Yukawa matrices are realized for the modular weights smaller than 6. We assigned
the modular weights, so that certain modular forms exists and the Yukawa matrices are
rank 3 up to O (e%). In the model, we show that the O (1) coefficients without hierarchies
explain the observed quark and lepton masses and the CKM elements.

We assume the type-I seesaw mechanism to explain the tiny neutrino masses. The
singlet right-handed neutrinos are assigned to be 1} @ 2¢ and their modular weights are
chosen to be 0 @ 2. With these assignments, one of the three neutrinos is suppressed
by O (63) compared with the other two heavier neutrinos. The mass ratio of the heavier
two neutrinos is not suppressed by ¢, but is suppressed by (Im7/2)? ~ O (10) due to the
canonical normalization, see eq. (4.9). We showed that the O (1) coefficients can explain
the neutrino observables in the SU(5) GUT model.
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A T modular symmetry
A.1  Group theory of Ty
The algebra of Iy is given by [111]
S*?=R, TR=RT, R*=T%=(ST)®=ST*ST3ST*ST? = 1. (A1)

That for I'¢ = I'y/ZL is given by taking R = 1. The irreducible representations of 'y are
given by

15,2,,3%,6, and 25,4, (A.2)

where s = 0,1 and b =0, 1,2 correspond to the S3 and A} indices respectively, since I'y is
isomorphic to S3 x A}. The latter two representations exist only in I'y. The representation
matrices are given by

ps(1]) = (=1)°,  pr(1§) = (=1)°u’, (A.3)
for the singlet 17,
ps(2) = % <\_/% ?) . pr(2) = w’ (é _01> , (A4)
for the doublet 2,
1 -1 2 2 100
ps(3) =131 2 —1 2 ), pr(3) =17 0w 0 f, (A.5)
2 2 -1 00 w?

for the triplet 3° and

1 _pS(go) \/gp5<30) . 2 2
s(6) = = ,  pr(6) =diag (1, w,w*, -1, —w, —w~ ) , A.6
ps(6)=5 <\/§P5(30) ps(3°) (6) = div ). (@8
for the sextet 6, where w := ¢2™/3. The representation matrices of 27 and 4;, are respectively
given by
i (1 V2 10
2) = (—1)*— 2) = (—1)*w’® AT
ps(2) = ( >ﬁ<ﬂ_1>, () = ( >w<0w>, (A7)
and

_ 1 —ps(2)) V3ps(29) _(pr(2) O
p5(4b)_2<\/§ps(262) ps<22>b>’ pT(4b)‘<Tob —pT<28>>‘ (4.8)

Note that the definition of 2§ is different from that in ref. [111], where pp(25) o wb*!.
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The direct product of the singlets is given by

el =11 (A.9)

Here and hereafter, s + ¢ (b + ¢) should be understood as modulo 2 (3)

. The products
involving the singlet are given by

mmw®%w>=egfwﬂ ,
2t

afs
apy
15(e) ® 3%(B) = P§ | af3s :
0653 3r+s
afy
afs
s o
1j(0) @ 6(3) = P | 7|
afs
B/
and
apy
S S S «
e =2l e -r| 2| (A.10)
afy 4y
where
001 s b
01 0 13 P; 0 0 1o
P= Py=11 Py = , Py= .
= () (o) e (B8) (T R) - me ()
(A.11)
The products of the doublets are given by
o1 B1 1 1
® = a1+« @ 12 — asf
<@2>2b (52>2C \@( 1 262)12“ \/5( e 2 1)11%*6
o 1 (agfB2— a1
V2 \ 1B + azfh 2b+c’
a1
aq ® B - P as 1 ’ (A.12)
Q2 2 B2 % aq 32
a2 hoye
—V2a1 1
o b1 1 be 1
W] @ 5 :72(041/82_a261)121‘2+1@P3 N5 a1f2 + azf
2/ 3 2/ 2 V2as8:

33+t
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The products of the doublet and triplet are

a1/
a1 32
a b1 a133
M) elm| =ra|0) (A13
" Bs/ g azf32
a2f3)

A

a) ol g _ 1 fa1Bi+ V208 ® 1 (a1fs + V2028
o 52 V3 \V2a182 — asfh ot V3 V2a1 85 — s 2t
b 3t b b1

1 <a1,63 + \/504252)
2,73

V3 \V21 81 — asfs

and the product of the triplets is given by

aq b1
1 1
az | @[ B2 :\/§< 151+a253+@3ﬁ2)18+t@%(043ﬁ3+a152+04251)1;+t (A.14)
az/ .o \B3/ 4
. 1 201 81 — a3 — a3 B2
@%(@2ﬂ2+a361+a153)1;+t@% 20383 — a1 e —anf

2022 —azfr—a1P3) gore
S

anfl3—a3 B
D—= | a1fe—a2f
2
a?ﬁl _04153 3;+b

The product rules involving the higher dimensional representations are shown in ref. [111].

A.2 Modular forms

The modular forms at k = 1 are given by [111]

Y(l) _ Y _ 3e1 + e
20 Y2) 0 3v2e; |’
0

Y3 3v/2e3 (A.15)
v _ Yo —3e3 — e5
1 Y5 V6es — \/6eg ’
Ys), ~ \—V3es+1/v3es —1/v3es +v/3eg

where the functions are defined as

1(37)°

ei(r) = e eo(7) = N es(1) = @) (A.16)
O e e
-on(r/2)” -on@r) (72

~15 —



The modular forms with higher weights can be constructed by taking the direct products.

The modular forms at weight k = 2 are

1 (1Y, — Y5,
v® = (V3Ys — YaYs v = A7
1% ( 316 4 5)1%7 20 \/i }/1}/6—YQY5 ) ( )
1Y, + YoY3
v v
1 —/2Y1Y-
v = | vanivs |, v = — L
i fyi ? T V2 | nYs+ ey,
2 V2Y2Ys
—V2Y1Y5
At weight k = 3,
1 [(=YP+V2Y3 3 1 3Y 1YY 3 Y:
Y(3):7 1 2 ():7 2 Y():YY—YY
28 \/§< 3Y12Y2 3 28 \/g —\/51/13—)/23 ) 2% ( 316 4 5) Ys ;
V1YaYs—Y3Yy Y2Y3+2Y1Y2Y,
fo 3 ViYaYs—Y2Ys |1 M VB[ YEY:+2ViYaYs
Y3Ys—Y1YaYs —Y3Ys—V2Y?Y5
—Y12Y3+\/§YQQY4
Y(?’):L Y2Y,+2Y1Y2Y3
VB YR HV2YPYG |
Y2Ys+2Y1YaYs5
and at weight k = 4,
4 1 4
vy = Zon (vivavay). Vi = (Y- vivy)?, (A.19)
1 [(V1Ys—YaY5)2— (V1Y —YoY3)? 1 Y1 Y —Y5Y:
YQ(;L)_ MY —YoY5)" = (V1Y —Y2Y3) ’ Y2(f’=—(Y3Y6—nY5) Y5 =12Y5 )
22\ 2(Y1Y1—Y2Y3)(Y1Ys—YaY5) V2 YoY3-Y1Yy
5 Y (YE—V2Y3 V2Y1Ys
Ys(él):\/; Yo (Y2+v2YP) | Yo = (Ya¥g—Y;Ys) 1’222 :
3YPYy Yy
V2Y2 Y —(V1Yy—YoY3)Y{
—V/2Y1Y; V2MY,—Y2Y3)Y1Ys
) _ 1 Y1Ys+Y2Ys o4y 1 (V1Y1—Y2Y3)Y
VI = (V3Ys—VaYs , YA = —
o1 \@( s¥e—Ta¥s) —V2Y2Y) 02 V2 | —(MYs—YaY5)YE
V2Y1Y3 V2(Y1Y5—YaY5) V1Y,
—Y1Y,—YoY3 (V1Ys—YoY5)Y5
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e _ 1 3 3\ (V1 (5) _ B 2 (V1
Y = AN (Yl +2\/§Y2) <Y2> Yo' = (V3Ys—YaY5) <Y2 , (A20)
(5) _ 1 (=BYYs—/2Yy ()_ 1 —3NY7
y® _ 2 YO = — (V,Vs— WY,
28 3 ( 5§/12Y23—ﬂY15 ) 2% \/?:( 415 3 6) \/55/13-}-}/23 )
(5) _ 1 Y7 +V2Y5
v = = (v3Ys- VLY
21 \/3(36 45)( 3V2Y, )
Y2V +2Y1YYy Ys
1 —Y2Ys—2Y2Y: 5
YO = — (V3Ys—Y,Ys 216 15 YO = (YaYs—Y,Ys)2 | 22
40,1 \/§( 3Ys—Y,Y5) Y2ys—omYay, | Vi (Y3Ys—Y,Y5) v |
Y2Yi4v/2V2Ys Yo
—YEY5+V2Y$Ys
5)_ 1 YPYs+2Y1YoY5
v = (V3Ys— Y,V
N R RN
—Y?Y,—2Y1YsYs
Y1YaYs—Y{PYs Y3
2 Y2Ys— Y, YsYs 5 1 Y,
Y(5):\/>YY—YY 20 Y= ==y (vP+2vays
49,1 3(36 45) —Y1Y2Y$+Y12Y4 ) 49,2 \/g 1<1+\/>2) Y5
Y2V ViYaYs Ys
At weight k=6,
vy =+ f (V1Ys — Ya¥s) {B(11Y5 — Ya¥5)? — (ViYs — YaY3)?}, (A.21)
o 1
i = Y —viv)’, Vi = v (Y + 20205 (%Y - Yas)
1 YiYy — VoY
V9 = vy (VB+2veyy) (AT R
20 NG <1+ f2)<Y1Y6—Y2Y5 ;
1 YoYs — 1Yy
v — — (vaYs — YViYs)?
. ﬂ( oI yoys v
Y2(26) _ (YaYs — YaY5s) 2MYy — Y2Y3)(Y1Y6 —Y5Y5) ,
2\[ (1Y, — Y2Y3 — (Y1Ys — YoY5)
6 3v3
6 _ 1 o 1.7 fﬁyl 3
}/30,1 = \/gy <Y1 + 2\/>Y2> le.Yé 3 Y30’2 - % 2\/§Y1 }/2 - Yl }/2 ,
*4YV14YV22 + \/§Y1Y25
5 Y5 (YQ + V2V )
v¢ ) = \/g (Y3Ys — YaY5) 3YPY5 ,
Y1 (}/13 _ \@}/23)
6 2 6 2 4 6 2 4
v = Yl( Vo v®, v = Yé) ov, v —yPov®, (A.22)

The representations existing for £ < 6 are summarized in table 3.
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weight representations

k=1 20, 42

k=2 13, 20, 3%, 6

k=3 28’ 287 2%? 40: 417 42

k=4 19, 19, 20, 22, 3%, 31,6, 6

k=5 287 2(1]7 2(2), 2%7 2%7 407 407 417 427 49
k=6 |19, 13, 13, 20, 21, 29, 3°, 3°, 3%, 6, 6, 6

Table 3. The representations of modular forms at k£ < 6.

2miT

At 7 ~ io0, it is convenient to explained the modular forms by ¢ := e whose absolute

values is small. The g-expansions of the functions e; are given by

e1 = ql/3 + q4/3, er=1— 3(]1/3 + 6q — 3q4/3, (A.23)
es = 23, e = 1—3¢"/6 £ 6¢"/% — 3423 — 647/5 + 64°2,
es = 1—3¢%/%, e6 = q"/% + ¢** +24"/°,

where O (¢?) is neglected. Defining
€ :=V3q¢"/%, (A.24)

the modular forms up to O (€®) are given by

Y3 V2et
Y] 1 1 Y, 1 -3
y® (Y1) o v = ~ = A2
28 (YVQ \/562 ) 49 Y:t; 3 —3\/56 ’ ( 5)
Y6 263

at k = 1. For reference, we show the expansions of the modular forms of up to the three
dimensional representations for k < 6. At k = 2,

-1
9 2 1 -3 2

(3) 1 -1 (3) 1 Get (3) €
Y\ o ) AT p— Y.\~ —v2 . A2
20 V3 (3\/§€2> ’ 2 V3 ("ﬂ ’ 2 V2 V2e3 (A.27)

1 1 3 1) 1 (8¢t
Y(4) ~ Y(4) ~ 2 2 Y(4) ~ Y( ~ A2
19 V3 R Tz 6v2 \16¢3) 7 22 3\ 3¢)’ (A.28)
5 (1 —2¢3
}/3(51) ~ g 2¢2 , Y'B(14) ~ \/5 —9¢d
6et €

~ 18 —



5) i 1 ®) 2¢2 (5) 1 10¢*
NV (ﬁg) SR (2\/564 sl ) B
G 1 [—6126 G 1 2¢
Yo'~ —= v Yo 3
1 \/§ 2¢ 2 \/§ —6e
At k =6,
© . 1 Y~ —2v2¢8 v 2 A.30
19 12’ IF R € 1~ V3% (A.30)
(6) 1 -3 © 1 3v/2€2 6 1 16¢*
Y. Y, ~ = ) AN
20 3\/6 <8€3> ’ 21 3 (—8\@65 ) 29 6 \ —3¢ )
-1 0 —4¢3
6 1 2 © 1 2 6 1 5
Yoo ~—1|2 , Yo o,~—1| 4 , Y~ — | —-12
30,1 \/g 264 3072 \/g € ) 31 \/g €
€ —8¢ —2€
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