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1. Introduction

The difficulty in lattice supersymmetry (SUSY) originates from the lack of the Leibniz rule [1]. Since
any local lattice difference operator does not obey the Leibniz rule [2,3], it is difficult to realize the
full SUSY within a local lattice theory [1,4–6]. Several approaches in which part of SUSY is kept
on the lattice and the full symmetry is restored at the continuum limit have been proposed so far
[7–20]. Those are, however, the same in a sense that, without getting into details about the algebraic
structure of a lattice Leibniz rule, nilpotent SUSY is realized on the lattice in various ways. The deep
understanding of the lattice Leibniz rule could help us to define a lattice model naturally keeping as
many symmetries as possible and to study higher-dimensional SUSY theories without fine tunings,
or with fewer fine tunings.

In Ref. [21], another type of lattice Leibniz rule was proposed in N = 2 SUSY quantum mechanics
(QM) [22,23], which keeps some symmetries exactly. The indices of the new rule appear cyclically1

and we refer to it as a cyclic Leibniz rule (CLR) in this paper, as did the authors of Ref. [21]. The CLR
has many solutions and the general solution for a symmetric difference operator has been studied in
Ref. [24]. N = 4 SUSY QM and the N = 2 SYK model are also defined on the lattice such that the
half SUSY is exactly kept [25,26]. For those models, the exact invariance of half symmetry naturally
leads to the CLR although there is another lattice formulation with an exact symmetry in N = 2
SUSY QM [8]. Furthermore, a kind of non-renormalization theorem holds for the CLR action of the

1 The difference between the standard Leibniz rule and the cyclic Leibniz rule is shown in Sect. 3.1. See
Eqs. (32) and (33) for the expressions as a product rule.
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N = 4 case such that any finite correction to the F-term is prohibited [25]. So we can say that the
CLR keeps various natural properties of SUSY at a perturbative level; however, its non-perturbative
property, which will be important to extend the CLR formulations to higher dimensions, is still
unknown.

In this paper, we propose a lattice action with the CLR for a backward difference operator and
study its non-perturbative property using numerical computations. We present a solution of the CLR
for any interaction term. Numerical computations are carried out for the φ6 interaction for which
SUSY is unbroken. We do not employ the standard Monte Carlo method used in previous studies of
SUSY QM [8,17,27–29] but a direct computational method on the basis of a transfer matrix [30,31];
see also Refs. [32–36] for related numerical methods. The obtained energy spectra show that the
cut-off dependence of the CLR action is smaller than another lattice action defined by Catterall and
Gregory (CG) in Ref. [8]. The numerical results of the SUSY Ward–Takahashi identities (WTIs) also
tell us that the full symmetry is restored more rapidly than the CG action for the weak and strong
couplings.

This paper is organized as follows. In Sect. 2, we introduce the continuum and the lattice theories
of N = 2 SUSY QM. The continuum theory is given in the Euclidean path integral formulation in
Sect. 2.1 and the lattice theory is introduced in Sect. 2.2. The CG lattice action is then presented in
Sect. 2.3. We formulate the CLR for the backward difference operator showing a solution for any
superpotential and mention a relation between the CLR and the standard Leibniz rule in Sect. 3.
Section 4 presents the numerical results. In Sect. 4.1, we briefly explain the computational method
with the transfer matrix [30]. Then, using computational parameters given in Sect. 4.2, we show the
numerical results of energy spectra in Sect. 4.3 and those of SUSY WTIs in Sect. 4.4. We summarize
in Sect. 5. Appendix A is devoted to further study of the CLR and Appendix B shows the results of
weak coupling expansion of several lattice actions.

2. SUSY QM and the lattice theory

N = 2 supersymmetric quantum mechanics is defined in the Euclidean path integral formulation
according to Refs. [22,23,37]. We then present a naive lattice approach to SUSY QM and introduce
a known improved lattice action [8].

2.1. N = 2 SUSY QM

With a Euclidean time t, the action of N = 2 SUSY QM is given by

S =
∫ β

0
dt
{1

2
(∂tφ)

2 + 1

2
W 2(φ)+ ψ̄∂tψ + ψ̄W ′(φ)ψ

}
, (1)

where φ(t) is a real bosonic variable and ψ̄(t),ψ(t) are one-component fermionic variables. These
variables satisfy the periodic boundary condition such as φ(β) = φ(0). The superpotential W (φ) is
any function of φ, which determines the physical behavior of this model. The partition function is
defined as

ZP =
∫

DφDψ̄Dψ e−S , (2)

which is the path integral form of the Witten index.
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The classical action is invariant under two SUSY transformations,

δφ = εψ − ε̄ψ̄

δψ = ε̄(∂tφ − W )

δψ̄ = −ε(∂tφ + W ),

(3)

where ε and ε̄ are global Grassmann parameters. The Leibniz rule is needed to show that the action
(1) is invariant under these transformations.

The Witten index � is defined by the quantum Hamiltonian Ĥ as

� ≡ Tr(−1)F̂ e−βĤ (4)

with

Ĥ = 1

2
p̂2 + 1

2
W 2(q̂)+ 1

2
W ′(q̂)

[
ψ̂†, ψ̂

]
, (5)

where q̂ and p̂ are the position and momentum operators and ψ̂† and ψ̂ are the creation and annihi-
lation operators, which satisfy [p̂, q̂] = −i and {ψ̂ , ψ̂†} = 1. Here F̂ ≡ ψ̂†ψ̂ is the fermion number
operator. The trace is a summation over all possible normalized states of the system.

We can also write

� = Tr(e−βĤ−)− Tr(e−βĤ+), (6)

where Ĥ± = 1
2 p̂2 + 1

2W 2(q̂) ± 1
2W ′(q̂) are the Hamiltonians of bosonic (−) and fermionic (+)

sectors, respectively. The Witten index does not depend on β because all non-zero eigenmodes form
pairs between Ĥ+ and Ĥ− and only β-independent zero modes contribute to�. It is well known that
� is zero (non-zero) when SUSY is broken (unbroken) in this model. We study a SUSY unbroken
case with � = 1, given by W (φ) � λφ3 for |φ| → ∞, in this paper.

2.2. Lattice theory

The lattice theory is defined on a lattice whose coordinate is given by t = na (n ∈ Z) where a is
the lattice spacing. Lattice bosonic and fermionic variables, which live on the sites, are expressed as
φn and ψn, respectively. The lattice size N is a positive integer and β = Na. It is assumed that all
variables satisfy the periodic boundary condition

φn+N = φn, ψn+N = ψn, ψ̄n+N = ψ̄n. (7)

The partition function with a lattice action S is given by the same form as Eq. (2) with well-defined
measures:

∫
Dφ ≡

N∏
n=1

∫ ∞

−∞
dφn√
2πa

, (8)

∫
Dψ̄Dψ ≡

∫ N∏
n=1

dψ̄ndψn. (9)

Here each Grassmann measure is an anti-commuting derivative as dψn ≡ ∂/∂ψn and dψ̄n ≡ ∂/∂ψ̄n.
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The difference operator ∇ acts on a lattice variable ϕn as ∇ϕn ≡ ∑
m∈Z

∇nmϕm and its transpose
is (∇T )nm ≡ ∇mn. Throughout this paper, ∇+ and ∇− denote a simple forward and a backward
difference operator, respectively:

∇+ϕn ≡ ϕn+1 − ϕn

a
, (10)

∇−ϕn ≡ ϕn − ϕn−1

a
. (11)

Note that (∇+)T = −∇−.
We now consider a naive lattice action,

Snaive = a
∑

n

{1

2
(∇−φn)

2 + 1

2
W 2(φn)+ ψ̄n∇−ψn + ψ̄nW ′(φn)ψn

}
, (12)

which is obtained by replacing φ(t), ψ(t), ψ̄(t), and ∂t of Eq. (1) by the corresponding lattice
variables φn, ψn, ψ̄n, and ∇− and replacing the integral by a summation over the lattice site. The
summation in Eq. (12) is taken from 1 to N ; hereafter the summation with a lattice site n means∑N

n=1 as well. This action is not invariant under a naive lattice SUSY transformation defined by the
same replacement of the variables for Eq. (3).

SUSY, which is broken at O(a) in Eq. (12), is classically restored in the continuum limit a → 0;
however, such a restoration does not occur at the quantum level. As seen in later sections, modifying
O(a) interactions of the lattice action, we can keep only one of the two SUSY transformations
parametrized by ε and ε̄ at a finite lattice spacing, and the full symmetry is restored in the quantum
continuum limit for such a lattice model.

2.3. Catterall–Gregory lattice model

An improved lattice action, which keeps some symmetries, is proposed by Catterall and Gregory [8]:

SCG = Snaive + a
∑

n

∇−φnW (φn), (13)

where ∇− is the backward difference operator defined in Eq. (11). Note that the added term is a kind
of surface term that vanishes in the naive continuum limit.

We can show that, in the free limit given by W (φ) = maφ, SCG is invariant under the lattice SUSY
transformations:

δφn = εψn − ε̄ψ̄n

δψn = ε̄(∇+φn − W (φn))

δψ̄n = −ε(∇−φn + W (φn)).

(14)

For interacting cases, it is not invariant under the whole transformations (14) but invariant under part
of SUSY, δε = δ|ε̄=0:

δεSCG = 0. (15)
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This is because the extra term on the right-hand side in Eq. (13) provides −δεSnaive for any finite
lattice spacing. The remaining ε̄ symmetry in Eq. (14) is restored in the quantum continuum limit as
shown in Refs. [8,17,27,30] and also in Sect. 4.4 of this paper.

3. Cyclic Leibniz rule for the backward difference operator

We propose an alternative lattice action with the cyclic Leibniz rule (CLR) for the backward difference
operator and show a solution of the CLR for any superpotential. It is straightforward to extend the
results to the case of the forward difference operator.

3.1. Lattice action with the CLR

The CLR for the symmetric difference operator is proposed in Ref. [21]. As an straightforward
extension of Ref. [21], we introduce a lattice action with the CLR for the backward operator:

SCLR = a
∑

n

{1

2
(∇−φn)

2 + 1

2
(Wn)

2 + ψ̄n∇−ψn +
∑

m

ψ̄nW ′
nmψm

}
, (16)

where Wn is a local function of the boson variables2 and W ′
nm ≡ ∂Wn

∂φm
. We now assume that Wn

satisfies the CLR:

∑
n

{
Wn(∇−)nm + ∇−φnW ′

nm

} = 0. (17)

As explained in the next section, a desirable local solution of Eq. (17) is

Wn = U (φn)− U (φn−1)

φn − φn−1
, (18)

where U (φ) = ∫ φ dφ′ W (φ′). The lattice action (16) classically reproduces the continuum one (1)
as a → 0 since Wn = W (φn)+ O(a).

The importance of CLR is understood by considering a half lattice SUSY transformation:

δεφn = εψn

δεψn = 0

δεψ̄n = −ε(∇−φn + Wn).

(19)

The lattice action (16) with any solution of Eq. (17) is invariant under Eq. (19) because

δεSCLR = εa
∑

m

Xmψm = 0, (20)

where

Xm ≡ −
∑

n

{
Wn(∇−)nm + W ′

nm∇−φn
}
, (21)

which vanishes as long as Wn satisfies the CLR (17).

2 Note that Wn �= W (φn) in general because Wn may contain φm with m �= n as long as the correlation
rapidly vanishes for |m − n| → ∞. See Eq. (A.5) of Appendix A.2 for the strict definition of the locality
condition.
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The other half transformation of N = 2 is broken on the lattice in general, which is restored at
the continuum limit as seen in Sect. 4.4. However, in the free theory, it still remains as an exact
symmetry because the free lattice action with the solution (18) is invariant under

δε̄φn = −ε̄ψ̄n

δε̄ψn = ε̄(∇+φn − Wn+1)

δε̄ψ̄n = 0.

(22)

Note that Wn+1 is used in δε̄ψn instead of Wn. We can actually show that

δε̄SCLR = ε̄

{
a
∑

n

Xnψ̄n + a
∑
n,m

Ynm(Wnψ̄m − ψ̄m∇−φn)+ a
∑
nmk

Znmk ψ̄nψ̄kψm

}
, (23)

where

Ynm ≡ W ′
m n−1 − W ′

n m

Znmk ≡ ∂2Wn

∂φk∂φm
.

(24)

Although we have Xn = 0 from the CLR, Ynm and Znmk do not vanish for a generic superpotential.
However, for the free theory with the solution (18),

Wn = m

2
(φn + φn−1), (25)

it is easy to show that Ymn, Znmk , and Eq. (23) vanish.

3.2. A solution of CLR for the backward difference operator

We show that Eq. (18) is a local and well-defined solution of Eq. (17) for a generic superpotential.
Once the solution is given, the lattice CLR action retains an exact SUSY as seen in the previous
section.

Let us first consider the free theory. For the backward operator (a∇−)nm = δnm − δn−1,m, we take
an ansatz solution within the nearest-neighbor interactions, Wn = d0φn + d1φn−1 + d2φn+1, d0 +
d1 + d2 = 1, di ∈ C. It is then found that d0 = d1 = 1/2, d2 = 0 is a solution of Eq. (17),
for which Eq. (25) is obtained. However, this straightforward technique is awkward for a generic
superpotential.

Another representation of Eq. (17) makes it easy to find a solution. Rescaling φn of Eq. (17) as
uφn with a parameter u ∈ [0, 1] and using the chain rule for ∂u, we obtain

∂

∂u

∑
n

{
u(∇−φ)nWn|φ→uφ

} = 0. (26)

Integrating Eq. (26) from u = 0 to u = 1, we find a condition that means a vanishing surface term:∑
n

(∇−φ)nWn = 0. (27)

This condition is equivalent to Eq. (17) because Eq. (17) can also be derived from Eq. (27)
differentiating Eq. (27) with respect to φm.
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The relation (27) is easily solved by a local function (18). All we have to do is check whether or not
Wn given by Eq. (18) is a well-defined function that coincides with W (φn) as a → 0. By integrating
∂uU (φn − ua∇−φn) from u = 0 to u = 1, we have

U (φn)− U (φn−1) = (φn − φn−1)

∫ 1

0
du W (φn − au∇−φn). (28)

The division in Eq. (18) is well defined because the integral on the right-hand side is well defined
for any configuration of φm. Since the integral is W (φn) up to O(a), we can immediately show that
Wn = W (φn)+ O(a).

3.3. CLR versus Leibniz rule

The difference between the CLR and the standard Leibniz rule (LR) is discussed here. In the
continuum theory, LR for ∂t is ∂tW (φ) = W ′(φ)∂tφ. So a naive lattice LR is introduced as

LR :
∑

m

{∇nmWm − W ′
nm∇φm} = 0, (29)

for Wn that is a local function of bosonic variables. Here we again use W ′
nm ≡ ∂Wn/∂φm. We find

that the CLR is different from the LR in general since

CLR :
∑

m

{−∇T
nmWm − W ′

mn∇φm} = 0. (30)

Note that W ′ in the second term is transposed.
The CLR coincides with the LR if W ′

nm = W ′
mn for ∇T = −∇ (symmetric difference operators),

which corresponds to the case in which the lattice action is invariant under both SUSY transformations
[21]. However, the no-go theorem [2] tells us that the LR does not hold for any difference operator
and any interacting cases with keeping the locality principle. It is therefore difficult to realize the full
SUSY transformation exactly on the lattice. The CLR cannot be realized with a non-trivial solution
in this case.

A similar argument holds for the backward difference operator ∇−. Suppose that Wn is a solution
of the CLR and δε̄S = 0. Using W ′

mn = W ′
n,m−1 from Ynm = 0, we can show that the CLR coincides

with the LR for ∇+ since ∇T− = −∇+ and
∑

m W ′
mn(∇−φ)m = ∑

W ′
nm(∇+φ)m. The no-go theorem

again tells us that one cannot find a solution of the CLR, for which the lattice action (16) is invariant
under both δε and δε̄ .

The lattice rules (29) and (30) can also be expressed as a product rule of lattice variables. As an
example, let us consider a lattice superpotential,

W e.g.
n ≡

∑
m,k

Mnmkφmφk , (31)

as a discretization of W e.g.(φ(x)) = φ2(x). Then the (two-body) LR can be expressed as∑
n

{
∇naMbnc − ∇bnMnca + ∇ncMban

}
= 0, (32)

while the (two-body) CLR is∑
n

{
∇naMnbc + ∇nbMnca + ∇ncMnab

}
= 0. (33)

7/26



PTEP 2019, 063B03 D. Kadoh et al.

The name of the cyclic Leibniz rule comes from the cyclicity of the indices a, b, c. In Appendix A,
an explicit solution for the m-body CLR is also given.

4. Numerical results

Numerical computation is carried out for the CLR action (16) with the periodic boundary condition
for the superpotential,

W (φ) = mφ + λm2φ3, (34)

where λ is the dimensionless coupling constant and m is the mass. Supersymmetry is kept unbroken
since the Witten index is non-zero for this potential. The energy spectra and the SUSY Ward–
Takahashi identities are evaluated at two coupling constants λ = 0.001 (weak) and λ = 1 (strong).
We compare the results with those obtained from the CG action (13) to understand the dependence
of the results on the lattice spacing.

4.1. Numerical methods

We begin with giving the CLR lattice action used in the actual computations:

SCLR = a
∑

n

{1

2
(∇−φn)

2 + 1

2
(Wn)

2 + ψ̄n∇−ψn +
∑

m

ψ̄nW ′
nmψm

}
, (35)

where

Wn = ma

2
(φn + φn−1)+ (ma)2λ

4
(φ3

n + φ2
nφn−1 + φnφ

2
n−1 + φ3

n−1), (36)

W ′
nm = A(φn,φn−1) δn,m + A(φn−1,φn) δn−1,m, (37)

with

A(α,β) ≡ ma

2
+ (ma)2λ

4
(3α2 + 2αβ + β2). (38)

As shown in Sect. 3.1, the action (35) is invariant under a single SUSY transformation (19) thanks
to the CLR (17).

It it straightforward to show that, integrating out the fermionic variables, the partition function (2)
with Eq. (35) is given as

ZP =
∫

Dφ

{
N∏

n=1

(1 + A(φn,φn−1))e
−L(φn,φn−1) − (φn ↔ φn−1, A → −A)

}
, (39)

where

L(α,β) ≡ 1

2
(α − β)2 + 1

8

(
ma(α + β)+ (ma)2λ

2
(α3 + α2β + αβ2 + β3)

)2

, (40)

because SB = ∑N
n=1 L(φn,φn−1). Note that A(α,β) and L(α,β) are infinite-dimensional matrices

since α,β ∈ R.
The partition function and the correlation functions are expressed in terms of transfer matrices.

In order to define finite-dimensional matrices, each path integral of Eq. (39) is discretized by a
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quadrature. The Gauss–Hermite quadrature formula is given by an approximation of the integral of
a function f (x):

∫ ∞

−∞
dxf (x) ≈

∑
x∈SK

gK (x)f (x), (41)

where SK is a set of roots of the K th Hermite polynomial HK and the weight gK (x) is

gK (x) = 2K−1K !√π
K2H 2

K−1(x)
ex2

. (42)

Since K is the order of the approximation, the sum of Eq. (41) is expected to reproduce the integral
on the left-hand side as K → ∞. We will check the convergence of the quadrature, which depends
on the details of the action, by observing the K dependence of the numerical results.

We can express ZP using finite-dimensional matrices T± as

ZP ≈ tr(T N− )− tr(T N+ ), (43)

where, for α,β ∈ SK ,

(T−)αβ ≡ (1 + A(α,β))Rαβ , (44)

(T+)αβ ≡ (1 − A(β,α))Rαβ , (45)

Rαβ ≡
√

gK (α)gK (β)

2π
e−L(α,β), (46)

discretizing all path integral measures (8) by the Gauss–Hermite quadrature (41). A comparison with
Eq. (6) tells us that T− and T+ are a bosonic and fermionic transfer matrix, respectively. The trace
of Eq. (43) means

tr(X ) ≡
∑
α∈SK

Xαα , (47)

where Xαβ is a matrix with α,β ∈ SK .
Similarly, any correlation function is given in terms of the transfer matrices. We basically follow

Ref. [30] to derive the expressions. The two-point correlation function of the bosonic variable is

〈φjφk〉 ≈ 1

Z
Tr
{

T N−k+j
− DT k−j

− D − T N−j+k
+ DT k−j

+ D

}
, (48)

for 0 ≤ j ≤ k ≤ N . Here D, defined as

Dαβ ≡ αδαβ , (49)

represents an operator insertion. The boson two-point function is exactly the same formula as that
of the CG action [30]. On the other hand, the fermion two-point function is slightly different:

〈ψjψ̄k〉 ≈ 1

Z
tr
{

RT k−j−1
− T N+j−k

+
}

, (50)

for 0 ≤ j ≤ k ≤ N .3

3 The formula for the CG action given in Ref. [30] is properly reproduced because T+ = R in this case.
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The transfer matrices T± can be improved by rescaling the bosonic variables before the dis-
cretization of the measures. According to Ref. [30], applying the quadrature after rescaling φ as
φ → φ/s (s ∈ R), we have

(T (s)− )αβ ≡ (
1 + A

(
αs−1,βs−1))R(s)αβ , (51)

(T (s)+ )αβ ≡ (
1 − A

(
βs−1,αs−1))R(s)αβ , (52)

R(s)αβ ≡
√

gK (α)gK (β)

2πs2 e−L(αs−1,βs−1)
. (53)

The partition function and the correlation functions are then given by the same formulas as Eqs.
(43), (48), and (50) with T (s)± and R(s) instead of T± and R. The operator insertion D is also replaced
by D(s) = D/s while the trace is still given by Eq. (47). We can obtain computational results with
high precision by tuning the rescaling parameter s such that the Witten index ZP = 1 is realized as
accurately as possible.

4.2. Computational parameters

Table 1 shows the parameters used in our computations of the CLR action. We employ two repre-
sentative coupling constants, λ = 0.001 as a weak coupling and λ = 1 as a strong coupling. The
rescaling parameter s should be tuned for each parameter set such that the Witten index ZP = 1 is
reproduced as accurately as possible, as done in Ref. [30]. The matrix sizes K used for the SUSY
WTIs are smaller than those for the mass spectra to reduce the computational cost. This is because
the SUSY WTIs are evaluated by performing the direct matrix product several times while the mass
spectra are evaluated by diagonalizing T± once. Similarly, we use the same lattice sizes with a slightly
different s for the CG action.

We take mβ = 30, which is large enough to obtain the numerical results with a negligible finite-β
effect because e−βE1 < O(10−13) for the first excited energy E1/m ≥ 1. The lattice spacing is
shown as a rounded number, which is uniquely determined from the lattice size N for fixed mβ as
ma = mβ/N (= 30/N ). For instance, ma = 0.017 964 · · · for N = 1670 is denoted as ma = 0.018
in the table but we use ma = 30/N in the actual computations without loss of digit.

Figure 1 shows the results of ZP against β for several s.Although ZP = 1 is analytically shown even
on the lattice [21], the numerical results depend on β. The deviations from ZP = 1 are systematic
errors that come from the finite-K effect. We can decrease the errors tuning s for fixed K . We find
that s = 0.68 leads to |ZP − 1| < O(10−9) for K = 150 in the case of ma = 0.01 and λ = 1. Each
parameter has a different value of s so that ZP = 1 is realized within O(10−9) as shown in Table 1.

4.3. Energy spectra

The energy spectra are read from two transfer matrices T± associated with two Hamiltonians Ĥ±
as T± ≈ e−aĤ± . The energy eigenvalues of the bosonic and fermionic states EB

n and EF
n are thus

obtained from the nth eigenvalue of T±: (T−)n = e−aEB
n and (T+)n = e−aEF

n . We use numerical
diagonalizations of T± to evaluate (T±)n. The non-zero eigenvalues are degenerate between Ĥ+ and
Ĥ− and only Ĥ− has a zero mode for the superpotential (34). We expect that T± have the same
spectra even on the lattice thanks to the exact SUSY.
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Table 1. Parameters used in the numerical computations of the CLR system. The top and bottom tables are
those for a weak coupling λ = 0.001 and for a strong coupling λ = 1, respectively.

λ = 0.001

Energy spectra SUSY WTI

ma s N K ma s N K

0.020 0.47 1500 150 0.600 1.39 50 40
0.019 0.46 1580 150 0.500 1.26 60 40
0.018 0.45 1670 150 0.400 1.13 75 40
0.017 0.44 1770 150 0.300 0.97 100 40
0.016 0.42 1880 150 0.250 0.89 120 40
0.015 0.41 2000 150 0.200 0.79 150 40
0.014 0.40 2140 150 0.150 0.68 200 40
0.013 0.38 2310 150 0.100 0.56 300 40
0.012 0.37 2500 150 0.080 0.51 375 40
0.011 0.36 2730 150 0.060 0.49 500 50
0.010 0.34 3000 150 0.050 0.44 600 50
0.009 0.33 3330 150 0.040 0.44 750 60
0.008 0.33 3750 170 0.030 0.41 1000 70
0.007 0.30 4290 170 0.025 0.34 1200 70
0.006 0.27 5000 170 0.020 0.32 1500 80
0.005 0.27 6000 200 0.015 0.33 2000 100
0.004 0.24 7500 200 0.010 0.29 3000 120

λ = 1

Energy spectra SUSY WTI

ma s N K ma s N K

0.020 0.97 1500 150 0.600 2.93 50 40
0.019 0.95 1580 150 0.500 2.68 60 40
0.018 0.92 1670 150 0.400 2.46 75 40
0.017 0.90 1770 150 0.300 2.08 100 40
0.016 0.87 1880 150 0.250 1.89 120 40
0.015 0.84 2000 150 0.200 1.69 150 40
0.014 0.81 2140 150 0.150 1.47 200 40
0.013 0.78 2310 150 0.100 1.18 300 40
0.012 0.75 2500 150 0.080 1.06 375 40
0.011 0.72 2730 150 0.060 0.91 500 40
0.010 0.68 3000 150 0.050 0.83 600 40
0.009 0.65 3330 150 0.040 0.74 750 40
0.008 0.61 3750 150 0.030 0.64 1000 40
0.007 0.57 4290 150 0.025 0.65 1200 50
0.006 0.53 5000 150 0.020 0.57 1500 50
0.005 0.48 6000 150 0.015 0.58 2000 70
0.004 0.46 7500 170 0.010 0.47 3000 70
0.003 0.40 10 000 170
0.002 0.32 15 000 170
0.001 0.23 30 000 200

4.3.1. Weak coupling results
Table 2 shows the 10 smallest energy eigenvalues obtained from the CLR action for λ = 0.001 at
a lattice spacing ma = 0.01. The central values are those obtained for K = 150 and the errors are
estimated from the largest difference among the results with K = 140, 150, . . . , 200. The spectra
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Fig. 1. Partition function with the periodic boundary condition against β for the CLR action. We use several
s with fixed K = 150 for ma = 0.01, λ = 1.

Table 2. Energy eigenvalues obtained from the CLR action for λ = 0.001 at ma = 0.01.

n EB
n /m EF

n /m

0 0.000 000 000 01(3)
1 1.001 498 936(1) 1.001 498 935 46(2)
2 2.005 980 24(3) 2.005 980 230(1)
3 3.013 4265(5) 3.013 426 35(3)
4 4.023 822(5) 4.023 8202(4)
5 5.037 16(4) 5.037 146(5)
6 6.0535(3) 6.053 40(4)
7 7.073(1) 7.0726(2)
8 8.097(5) 8.095(1)
9 9.13(2) 9.122(5)
10 10.18(4) 10.16(1)

are very similar to those of the harmonic oscillator, En = nm (n = 1, 2, . . .), since λ = 0.001 is
small enough. As we expected, EB

n and EF
n coincide with each other within the errors. The same

degeneracies are observed for the other lattice spacings.
Figure 2 shows the five lowest eigenvalues against the lattice spacing ma. Since the difference

between EB
n and EF

n is sufficiently smaller than the systematic errors from the finite-K effect, we
plotted only EF

n as En in the figure. As we can see, the cut-off dependence of the CLR action is milder
than that of the CG action.

Tables 3 and 4 show the fit results of the five lowest energy eigenvalues for the CLR and CG
actions, respectively. For the continuum extrapolation, we employ a quadratic polynomial:

E/m = a0 + a1(ma)+ a2(ma)2. (54)

Two actions reproduce the same a0, which is En/m at the continuum limit, within the errors. The CLR
action behaves similarly to the continuum theory in comparison with the CG action as suggested
from small values of a1.

The weak coupling expansion of the first excited energy is demonstrated in Appendix B, in which
the quantum corrections to the masses are evaluated from the correlation functions. We find that, for
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ma

Fig. 2. The five lowest energy eigenvalues against the lattice spacing ma for λ = 0.001. The results of CLR
(circles) show a better convergence than the CG results (triangles). The solid lines represent the fit results
shown in Tables 3 and 4.

Table 3. Fit results of En for the CLR action with λ = 0.001.

E1/m E2/m E3/m E4/m E5/m

a0 1.001 495 535(1) 2.005 973 34(3) 3.013 4165(4) 4.023 814(4) 5.0372(4)
a1 −0.000 4999(4) −0.001 01(1) −0.0017(2) −0.004(2) −0.02(2)
a2 0.084 00(4) 0.1702(9) 0.27(1) 0.5(2) 2(1)

Table 4. Fit results of En for the CG action with λ = 0.001.

E1/m E2/m E3/m E4/m E5/m

a0 1.001 4954(2) 2.005 9732(4) 3.013 4161(9) 4.023 806(1) 5.037 131(3)
a1 −0.502 21(6) −1.0089(1) −1.5202(3) −2.0357(3) −2.557(1)
a2 0.330(3) 0.667(7) 1.02(2) 1.36(2) 1.8(1)

E1 ≡ EF
1 = EB

1 , the one-loop result of the CLR action is

ECLR
1

m
= 1 + 3

2
λ− 1

2
maλ+ O((ma)2, λ2), (55)

while that of the CG action is

ECG
1

m
= 1 + 3

2
λ− 1

2
ma − 9

4
maλ+ O((ma)2, λ2). (56)

Both one-loop results coincide with that of the continuum theory, Econt/m = 1 + 3
2λ, as a → 0. The

CG action has a large discretization error due to the third term of O(ma) in Eq. (56), while the O(a)
term starts from O(λma) in the CLR action, which is much smaller than O(ma) for λ = 0.001.

Figure 3 shows the numerical results of E1 with the perturbative ones (55) and (56) for ma ≤ 0.02.
The numerical results nicely reproduce the perturbation theory shown by the dotted lines and the
relative errors are of the order of 10−6, which is the same size as λ2.Although a linear ma dependence
is seen in the CG results, the CLR results perfectly reproduce the continuum theory for this range of
ma since the third term of Eq. (55) is negligibly small for λ = 0.001.
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ma

Fig. 3. Continuum limit of E1 for λ = 0.001. The solid lines represent the fit results and the dotted lines are
the perturbative results

Table 5. Energy eigenvalues obtained from the CLR action for λ = 1 at ma = 0.01.

n EB
n /m EF

n /m

0 0.000 000 0000(2)
1 1.682 687 275(2) 1.682 687 274 859(4)
2 4.365 387 624(8) 4.365 387 623 19(6)
3 7.622 118 41(4) 7.622 118 4119(5)
4 11.364 0034(2) 11.364 003 389(3)
5 15.527 3615(7) 15.527 361 44(2)
6 20.068 372(3) 20.068 372 02(9)
7 24.954 588(9) 24.954 5871(4)
8 30.160 73(3) 30.160 725(2)
9 35.666 38(9) 35.666 371(6)
10 41.4546(3) 41.454 59(2)

4.3.2. Strong coupling results
Table 5 shows the 10 smallest energy eigenvalues obtained from the CLR action for λ = 1 at a fixed
ma = 0.01. The central values are again those evaluated for K = 150 and the errors are estimated
from the largest difference among the results for K = 140, 150, . . . , 200. The energy spectra have
large quantum corrections compared with Fig. 2 for the weak coupling λ = 0.001. EB

n and EF
n

coincide with each other within the errors as well as the case of the weak coupling.
Figure 4 shows the five lowest energy eigenvalues against ma for λ = 1. We also show Fig. 5,

which focuses on E1 for λ = 1, for a comparison with Fig. 3. The obtained EF
n is again plotted as En

since EF
n = EB

n within the sufficiently small errors of O(10−8). The cut-off dependence of the CLR
action is milder than that of CG action as well as the weak coupling shown in Fig. 2.

Tables 6 and 7 show the fit results of En with a quadratic function (54). The same a0, which is E/m
in the continuum limit, is obtained between the CLR and CG actions. As a visible difference between
Figs. 2 and 4 is seen, the coefficients a1 and a2 are systematically larger than those for the weak
coupling, which are shown in Tables 3 and 4. In the strong coupling region, we can confirm that the
O(a) dependence of E1 obtained for the CLR action is still smaller than that of the CG action.
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ma

Fig. 4. The five lowest energy eigenstates against ma for λ = 1. The results of CLR and CG are shown as
circles and triangles, respectively. The solid lines represent the fit results shown in Tables 6 and 7.

ma

Fig. 5. Continuum limit of E1 for λ = 1.

Table 6. Fit results of En for the CLR action with λ = 1.

E1/m E2/m E3/m E4/m E5/m

a0 1.686 5004(6) 4.371 816(2) 7.630 953(5) 11.374 845(7) 15.539 78(1)
a1 −0.3907(3) −0.684(1) −0.985(2) −1.282(3) −1.575(4)
a2 0.94(2) 4.08(8) 10.2(2) 19.8(2) 33.3(3)

Table 7. Fit results of En for the CG action with λ = 1.

E1/m E2/m E3/m E4/m E5/m

a0 1.686 500(3) 4.371 81(1) 7.630 95(4) 11.374 83(8) 15.5398(1)
a1 −1.898(1) −6.422(6) −13.30(2) −22.43(3) −33.75(6)
a2 3.05(9) 12.6(4) 31(1) 58(5) 95(5)

4.4. SUSY WT identities

The CLR action has an exact SUSY parametrized by ε in Eq. (19) while the other ε̄ symmetry
is broken at finite lattice spacing for any interacting case. The correct mass spectra shown in the
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Fig. 6. 〈φnφN 〉 and 〈ψnψ̄N 〉 obtained from the CLR action for λ = 1 and ma = 0.2. The x-axis denotes the
lattice site n and the y-axis shows the numerical values of the correlators on a logarithmic scale.

previous section imply that the broken ε̄ symmetry is restored in the continuum limit. Testing the
SUSY WTIs, we study the restoration of the full SUSY.

To this end, we first define the SUSY WTIs on the lattice. However, the broken ε̄ transformation
cannot be uniquely defined on the lattice because one can add any O(a) term to the transformation.
Here, for the CLR action, we employ Eq. (22) as a lattice ε̄ transformation, which is an exact symmetry
in the free theory. Correspondingly, we use Eq. (14) for the CG action, whose ε̄ transformation is
exactly kept in the free case of Eq. (13).

We can show that

〈δ(φnψ̄N + ψnφN )〉 = εRn + ε̄R̄n, (57)

where

Rn ≡ 〈ψnψ̄N 〉 − 〈φn(∇−φ)N 〉 − 〈φnWN 〉, (58)

R̄n ≡ 〈ψnψ̄N 〉 − 〈φn(∇−φ)N 〉 − 〈Wn+1φN 〉, (59)

for the CLR action. For the CG action, WN and Wn+1 of Eqs. (58) and (59) are replaced by W (φN )

and W (φn), respectively. The second term of R̄n is actually found as 〈(∇+φ)nφN 〉, which can be
written in the same form as the second term of Rn using the translational invariance. Note that the
third term is the only difference between Rn and R̄n.

For any interacting case, we have Rn = 0 since the ε transformation is an exact symmetry of the
lattice actions. However, R̄n does not vanish at any finite lattice spacing for the interacting cases
even if it vanishes for the free theory. If the ε̄ symmetry is restored at a quantum continuum limit,
R̄n should approach zero as a → 0. We evaluate R̄n numerically to confirm whether the second
SUSY WTI holds in the continuum limit or not, as already investigated for the CG action in Refs.
[17,27,30].

Figure 6 shows 〈φnφN 〉 and 〈ψnψ̄N 〉 for λ = 1 and ma = 0.2. When N is sufficiently large, as
confirmed in the figure, 〈φnφN 〉 and 〈ψnψ̄N 〉 behave as

〈φnφN 〉 ≈ C(e−anE1 + e−a(N−n)E1), (60)

〈ψnψ̄N 〉 ≈ De−anE1 , (61)
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Fig. 7. Three correlation functions in Rn (left) and R̄n (right) for the CLR action. The cancellations among
them are clearly observed.

for 1 � n � N . Here C and D are some constants that depend on the lattice spacing. Similarly,
using the translational invariance, the other correlation functions in Rn and R̄n are expected to be

〈φn∇−φN 〉 ≈ C1(e
−anE1 − e−a(N−n−1)E1), (62)

〈φnWN 〉 ≈ C2e−anE1 + C3e−a(N−n−1)E1 , (63)

〈Wn+1φN 〉 ≈ C3e−anE1 + C2e−a(N−n−1)E1 , (64)

for 1 � n � N . Here C1 = C(1 − e−aE1)/a and C2, C3 are some constants that depend on the
lattice spacing. Note that it is possible to ignore the contribution from the second excited state for
1 � n � N . We can immediately show that

C1 = C3 = D − C2 (65)

from Rn = 0 and the second WTI holds if and only if C2 → C3 as a → 0.
Figure 7 shows the cancellation among three correlation functions in Rn (left) and R̄n (right) for

λ = 1 and ma = 0.2. In Fig. 8, similar plots are shown for the CG action. As we expected, the
other correlators show the behavior of Eqs. (62), (63), and (64). The cancellation for n < N/2 is
realized in a different way from that of n > N/2. As suggested from Eqs. (61)–(64), the sum of
two bosonic correlators (denoted as crosses) cancels the fermion correlator (denoted as squares) for
1 � n � N/2 while two bosonic correlators cancel each other out for N/2 � n � N since the
fermion correlator is approximately zero compared with the others.

Since each term of Rn and R̄n is very small for n � N/2, we normalize them to observe the breaking
effect clearly:

Sn ≡ Rn

|〈ψnψ̄N 〉| + |〈φn(∇−φ)N 〉| + |〈φnWN 〉| (66)

S̄n ≡ R̄n

|〈ψnψ̄N 〉| + |〈φn(∇−φ)N 〉| + |〈Wn+1φN 〉| . (67)

Note again that WN and Wn+1 of Eqs. (66) and (67) are replaced by W (φN ) and W (φn), respectively,
for the CG action. It is immediately found that Sn = 0 for any n since Rn = 0.
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Fig. 8. Three correlation functions in Rn (left) and R̄n (right) for the CG action. The cancellations are observed
as well as the CLR case shown in Fig. 7.

Fig. 9. Sn and S̄n for the CLR action with λ = 1 and ma = 0.2.

The asymptotic behavior of S̄n can be understood from Eqs. (61), (62), and (64). For sufficiently
large N , it can be shown that S̄n behaves as constants:

Sn ≈ h1 ≡ C2 − C3

2|C3| + |D| , (1 � n � N/2) (68)

and

Sn ≈ h2 ≡ C3 − C2

|C2| + |C3| , (N/2 � n � N ). (69)

We have

h2 = −2h1 + O(h2
1), (70)

when C2 and C3 have the same sign. Similar identities to Eqs. (68), (69), and (70) hold for the CG
action.

In Figs. 9 and 10, Sn and S̄n are plotted against n. Obviously, Sn vanishes as the numerical results
while S̄n has two plateaux corresponding to h1 and h2. We should note that the scale of the y-axis for
the CLR action is rather smaller than that of the CG action. The value of S̄n rapidly changes from h1

to h2 around n = N/2 as a result of the cancellation of the three correlation functions.
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Fig. 10. Sn and S̄n for the CG action with λ = 1 and ma = 0.2.

ma

Fig. 11. Lattice spacing dependence of h1 and h2 for λ = 1. We plot h1 and h̃2 = −h2/2, which are evaluated
at n = N/5 and n = 4N/5, as circles and diamonds for the CLR action and triangles and squares for the CG
action.

Figure 11 shows the lattice spacing dependence of h1 and h2 for λ = 1 and the numerical values
are shown in Table 8 for the convenience of further studies. Figure 12 shows the same plot for
λ = 0.001. We evaluate h1 and h2 at n = N/5 and n = 4N/5, respectively. It can be seen that h1

and h2 approach zero as a → 0. Consequently, the second SUSY WTI holds in the continuum limit,
i.e., full SUSY is restored in the quantum continuum limit in the low-energy region 1 � n � N .
The breaking effects h1 and h2 of the CLR action are significantly smaller than the CG action even
for the strong coupling. Thus we can conclude that the CLR shows a good behavior that is similar
to the continuum theory at a non-perturbative level.

5. Summary and discussion

The property of the cyclic Leibniz rule has been studied in N = 2 SUSY QM beyond the perturbation
theory. We have defined the lattice action on the basis of the CLR with the backward difference
operator giving a solution for any superpotential. The numerical computations have been carried out
using the transfer matrix representation of the partition function and the correlation functions. Tuning
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Table 8. Numerical values of h1 and h2 for λ = 1.

CLR CG

ma h1 h2 h1 h2

0.600 2.993 917 82(7)×10−4 −5.986 0435(2)×10−4 −4.001 2296(2)×10−3 6.107 593 35(1)×10−3

0.500 1.727 581(1)×10−4 −3.454 565(2)×10−4 −3.468 6833(2)×10−3 5.440 243 40(3)×10−3

0.400 8.8385(4)×10−5 −1.7675(1)×10−4 −2.828 3733(2)×10−3 4.578 249 26(3)×10−3

0.300 3.667 16(2)×10−5 −7.33404(4)×10−5 −2.077 5005(1)×10−3 3.490 8132(8)×10−3

0.250 2.068 870(6)×10−5 −4.13765(1)×10−5 −1.666 9089(1)×10−3 2.861 5897(1)×10−3

0.200 1.008 226(2)×10−5 −2.01643(1)×10−5 −1.243 420 44(8)×10−3 2.185 8056(1)×10−3

0.150 3.871 90(2)×10−6 −7.7438(4)×10−6 −8.236 2334(4)×10−4 1.486 6210(1)×10−3

0.100 9.512 90(6)×10−7 −1.90258(8)×10−6 −4.365 2327(1)×10−4 8.116 901(1)×10−4

0.080 4.2875(1)×10−7 −8.575(1)×10−7 −3.010 5156(6)×10−4 5.671 0394(7)×10−4

0.060 1.501 27(2)×10−7 −3.003(1)×10−7 −1.830 1692(4)×10−4 3.495 123(2)×10−4

0.050 7.6345(2)×10−8 −1.527(1)×10−7 −1.322 9006(2)×10−4 2.544 4813(8)×10−4

0.040 3.3033(3)×10−8 −6.607(1)×10−8 −8.820 5996(4)×10−5 1.709 075(1)×10−4

0.030 1.1062(6)×10−8 −2.21(2)×10−8 −5.174 1110(6)×10−5 1.010 147(1)×10−4

0.025 5.49(2)×10−9 −1.10(4)×10−8 −3.670 7175(4)×10−5 7.194 15(1)×10−5

0.020 2.318(6)×10−9 −4.6(1)×10−9 −2.400 6488(8)×10−5 4.723 49(1)×10−5

0.015 7.56(4)×10−10 −1.5(4)×10−9 −1.380 3022(8)×10−5 2.726 72(4)×10−5

0.010 1.5(1)×10−10 −3(1)×10−10 −6.272 57(1)×10−6 1.244 15(2)×10−5

ma

Fig. 12. Lattice spacing dependence of h1 and h2 for λ = 0.001. We plot h1 and h̃2 = −h2/2, which are
evaluated at n = N/5 and n = 4N/5, as circles and diamonds for the CLR action and triangles and squares
for the CG action.

the rescaling parameter, the energy spectra and SUSY Ward–Takahashi identities are obtained to high
accuracy. We have compared them with those of the Catterall–Gregory action.

Although the number of exact symmetry is the same between the CLR and the CG actions, the CLR
action provides a milder cut-off dependence of energy spectra for both weak and strong couplings.
In the weak coupling limit, the O(a) term does not appear in the energy spectra for the CLR action
but does for the CG action. Even for the strong coupling, we have observed that the coefficient of
the O(a) term for the CLR action is smaller than the CG action. The lattice SUSY WTIs have shown
the same tendency in the cut-off behavior.

There is a wider class of solutions for the CLR and actually Refs. [21,24] investigated it for a
symmetric difference operator. By using a different solution, there is a possibility of eliminating an
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O(a) SUSY breaking term in Eq. (57) keeping some SUSY on the lattice. However, to find such
an O(a)-improved CLR action, further detailed studies between the quantum corrections and the
solutions of the CLR are necessary.

In the N = 4 case with the CLR, the number of exact SUSY is greater than the other lattice
formulation. We can expect that a lattice theory with the CLR is highly improved and behaves very
similar to the continuum theory. The results shown in this paper could be useful to construct the
SUSY action with a modified Leibniz rule in higher dimensions.
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Appendix A. More about the CLR
A.1. Solutions for other difference operators

The solutions of the CLR for the forward difference operator and a symmetric difference operator
∇S = 1

2(∇+ − ∇−) are presented. For any difference operator ∇, the CLR is defined in the same
manner as Eq. (30). By repeating the same procedures as in Sect. 3.2, we find that Eq. (30) can be
written as

∑
n

∇φnWn = 0. (A.1)

It is then easy to find a local solution of Eq. (A.1):

Wn =
⎧⎨
⎩

U (φn+1)−U (φn)
φn+1−φn

for ∇ = ∇+
U (φn+1)−U (φn−1)

φn+1−φn−1
for ∇ = ∇S .

(A.2)

The same discussions as mentioned in Sect. 3.2 tell us that the solutions in Eq. (A.2) are well-defined
local functions that reproduce W (φn) up to O(a).

A.2. The m-body CLR

We now consider a case of W (φ) = ∑∞
m=0 cmφ

m with coupling constants cm. Then the lattice
superpotential Wn is also expressed as an expansion:

Wn ≡
∞∑
=0

c[φ]n (A.3)
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with4

[φ]n ≡
∑

m1,m2,...,m

Mn,m1,m2,...,mφm1φm2 · · ·φm . (A.4)

Here we assume that Mn,m1,m2,...,m is totally symmetric for m1, m2, . . . , m except for the first index
n and [1]n = 1 as an overall normalization. The locality condition is strictly defined as

|Mn,m1,m2,...,m | < Cexp{−ρ|n − mk |} for all k = 1, . . . ,  (A.5)

where C and ρ > 0 are some positive constants. The summation in Eq. (A.4) is well defined because
it is absolutely convergent for Eq. (A.5).

The CLR in Eq. (17) is shown to be

∑
n

{
∇nm0Mn,m1,m2,...,m−1,m + ∇nm1Mn,m2,m3,...,m,m0 +

· · · + ∇nmMn,m0,m1,...,m−2,m−1

}
= 0, (A.6)

which is referred to as the m-body CLR. It is easy to show that Eq. (A.6) is equivalent to Eq. (17).
We should note that the indices m0, m1, m2, . . . , m cyclically appear in Eq. (A.6). This is the reason
why we called Eq. (17) the cyclic Leibniz rule.

The solutions of the m-body CLR for the backward difference operator can be read from Eq. (18)
using

Mn,m1,m2,...,m = 1

!
∂Wn

∂φm1∂φm2 · · · ∂φm

∣∣∣∣
cm=1,φ=0

. (A.7)

We have

Mn,m = 1

2

(
δnm + δn−1,m

)
, (A.8)

Mn,m,k = 1

6

(
2δnmδnk + δn−1,mδnk + δnmδn−1,k + 2δn−1,mδn−1,k

)
, (A.9)

Mn,m,k ,l = 1

12
(3δn,mδnkδnl + δn−1,mδnkδnl + δnmδn,k+1δnl + δnmδnkδn−1,l

+ δn−1,mδn−1,kδnl + δn−1,mδnkδn−1,l + δnmδn−1,kδn−1,l + 3δn−1,mδn−1,kδn−1,l),

(A.10)

and so on.
The explicit forms of a solution Mn,m1,m2,...,m for the forward difference operator are obtained by

replacing the lattice site n − 1 by n + 1 in Eqs. (A.8), (A.9), and (A.10). Those for the symmetric
difference operator ∇S = 1

2(∇+ + ∇−) are also obtained by similar replacement of the lattice site.

4 The simplest example of M (but it is not a solution of the CLR) is Mn,m1,m2,...,m = δnm1δnm2 · · · δnm . Then
the lattice action (16) coincides with the naive one owing to Wn = W (φn) and W ′

nm = W ′(φn)δnm. We can
express a scattering of lattice variables around the site n by Mn,m1,m2,...,m .
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Appendix B. Weak coupling expansion

The weak coupling expansion of the first excited energy is presented at one-loop order for the naive,
CG, and CLR actions. We perform the lattice perturbation theory on the infinite volume lattice.
The first excited energies are evaluated as effective masses obtained from the two-point correlation
functions. In this section, we assume that m > 0 and take a = 1 for simplicity.

B.1. Perturbative calculation on the infinite volume lattice

The free part of a lattice action S can be expressed in the momentum space as

Sfree =
∫ π

−π
dp

2π

{
1

2
D−1

0 (p)φ(−p)φ(p)+ S−1
0 (p)ψ̄(−p)ψ(p)

}
, (B.1)

where D0(p) and S0(p) are bare propagators of the boson and the fermion, respectively. The concrete
form of D0(p) and S0(p), which depends on Sfree, are obtained by the Fourier transformation for a
lattice variable ϕn:

ϕ(p) =
∑
n∈Z

eipnϕn, (B.2)

ϕn =
∫ π

−π
dp

2π
e−ipnϕ(p) (B.3)

with useful identities δn0 = ∫ π
−π

dp
2π eipn (n ∈ Z) and ϕ(p + 2πn) = ϕ(p) for n ∈ Z.

The two-point correlation functions are defined as

Dnl ≡ 〈φnφl〉 =
∫ π

−π
dp

2π
D(p)e−ip(n−l), (B.4)

Snl ≡ 〈ψnψ̄l〉 =
∫ π

−π
dp

2π
S(p)e−ip(n−l), (B.5)

where D(p) and S(p) are the full propagators. We have Dnl = Dn−l,0 and Snl = Sn−l,0 as a result of
the translational invariance. The free two-point correlation functions (D0)nl and (S0)nl are calculated
from Eqs. (B.4) and (B.5) with D0(p) and S0(p) using the complex integral with z = eip.

The full propagators can be evaluated in the weak coupling expansion from D0, S0, and the boson
and fermion self-energies �nl and �nl . As is well known, Dnl is given by an infinite series:

Dnl = (D0)nl − (D0�D0)nl + (D0�D0�D0)nl − · · · . (B.6)

Thus we have

Dnl =
(

1

D−1
0 +�

)
nl

. (B.7)

Similarly,

Snl =
(

1

S−1
0 +�

)
nl

. (B.8)

Once �nl and �nl are evaluated at the n-loop level, Dnl and Snl are obtained at the same order.
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The effective masses mB
eff and mF

eff are read from the large distance behavior of Dnl and Snl . For
|n − l| � 1,

Dnl ≈ Ce−mB
eff |n−l|, (B.9)

Snl ≈ C ′θn,le
−mF

eff |n−l| (B.10)

with

θn,l ≡
{

1 for n ≥ l
0 for n < l.

(B.11)

At the one-loop level, the self-energies provide the shifts of masses �m in D−1
0 (p) and S−1

0 (p) via
Eqs. (B.7) and (B.8). The one-loop effective masses mB,F

eff are actually obtained from the formulas
of tree-level effective masses mB,F

0,eff with m → m +�m.

B.2. The naive action

We begin with the case of the naive action (12) whose D0(p) and S0(p) are given by

D0(p) ≡ 1

2(1 − cos p)+ m2 , (B.12)

S0(p) ≡ 1

1 − eip + m
. (B.13)

The free boson propagator in the position space is evaluated from Eq. (B.4):

(D0)nl = − 1

2π i

∮
dz

z−n+l

z2 − (m2 + 2)z + 1
, (B.14)

where the contour is a unit circle with the center at the origin with z = eip. It is easily shown that

(D0)nl = e−mB
0,eff |n−l|

√
m4 + 4m2

, (B.15)

where

mB
0,eff = −log

(
1 + m2

2
− 1

2

√
m4 + 4m2

)
. (B.16)

Similarly,

(S0)nl = θn,l
e−mF

0,eff |n−l|

1 + m
, (B.17)

where

mF
0,eff = log (1 + m), (B.18)

and θk ,l is given by Eq. (B.11). Note that mB
0,eff and mF

0,eff are positive for m > 0 and coincide for
m � 1.

At the one-loop level, the boson and fermion self-energies are obtained as

�(p) = 6λm2(
2√

4 + m2
− 1

1 + m
), (B.19)
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�(p) = 3λm√
4 + m2

. (B.20)

The one-loop self-energies provide different corrections to the mass m → m +�mB,F where �mB

and �mF are identified from Eqs. (B.19) and (B.20), respectively.
The one-loop effective masses are obtained by inserting m +�mB,F into Eqs. (B.16) and (B.18):

EB
1

m
= 1 + 3mλ− 1

24
m2 − 27

8
m2λ+ O(λ2, m3), (B.21)

EF
1

m
= 1 + 3

2
λ− 1

2
m − 3

2
mλ+ 1

3
m2 + 21

16
m2λ+ O(λ2, m3). (B.22)

We should note that EB
1 is different from EF

1 even in the continuum limit ma → 0 as a result of the
one-loop effect.

B.3. The CG action

The free propagators of the CG action (13) are

D0(p) = 1

2(1 − cos p)+ m2 + 2m(1 − cos p)
, (B.23)

S0(p) = 1

1 − eip + m
. (B.24)

Note that the fermion propagator is the same as that of the naive action. A similar calculation to that
done around Eq. (B.14) tells us that the effective masses at the tree level are degenerated as

mB
0,eff = mF

0,eff = log(1 + m), (B.25)

which is positive for m > 0.
The self-energies are calculated at the one-loop level as

�(p) = �m[2m + 2(1 − cos p)], (B.26)

�(p) = �m, (B.27)

where

�m ≡ 3λm

2 + m
. (B.28)

These give the same correction to the boson mass and the fermion mass up to O(λ). The one-loop
effective masses are evaluated from Eq. (B.25) with m +�m. We thus obtain that

E1

m
= 1 + 3

2
λ− 1

2
m − 9

4
mλ+ 1

3
m2 + 21

8
m2λ+ O(λ2, m3), (B.29)

for E1 ≡ mB
eff = mF

eff owing to an exact SUSY.

B.4. The CLR action

The free propagators of the CLR action (35) are given by

D0(p) ≡ 1

2(1 − cos p)+ m2(1 + cos p)/2
, (B.30)
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S0(p) ≡ 1

1 − eip + m(1 + eip)/2
. (B.31)

The tree-level effective masses are degenerated as

mB
0,eff = mF

0,eff = log
(

1 + m
2

1 − m
2

)
, (B.32)

which is positive for m > 0.
The one-loop self-energies are given by

�(p) = m�m(1 + cos p), (B.33)

�(p) = �m

(
1 + eip

2

)
, (B.34)

where

�m = λm(m + 6)

2(m + 2)
. (B.35)

The one-loop effective masses are read from Eq. (B.32) with m +�m. The first excited energies for
the bosonic and fermionic states are thus obtained as E1 ≡ mB

eff = mF
eff :

E1

m
= 1 + 3

2
λ− 1

2
mλ+ 1

12
m2 + 5

8
m2λ+ O(λ2, m3), (B.36)

owing to an exact SUSY.
The results above are obtained for the backward difference operator ∇− and Eq. (18) for a solution

of Wn. The CLR action with the forward difference operator ∇+ and Eq. (A.2) for Wn gives the same
effective masses (B.32) and (B.36).
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