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Abstract Problems with the concordance cosmology �C
DM as the cosmological constant problem, coincidence prob-
lems and Hubble tension has led to many proposed alterna-
tives, as the �(t)CDM, where the now called � cosmological
term is allowed to vary due to an interaction with pressure-
less matter. Here, we analyze one class of these proposals,
namely, � = α′a−2 + βH2 + λ∗, based on dimensional
arguments. Using SNe Ia, cosmic chronometers data plus
constraints on H0 from SH0ES and Planck satellite, we con-
strain the free parameters of this class of models. By using
the Planck prior over H0, we conclude that the λ∗ term can
not be discarded by this analysis, thereby disfavouring mod-
els only with the time-variable terms. The SH0ES prior over
H0 has an weak evidence in this direction. The subclasses of
models with α′ = 0 and with β = 0 can not be discarded
by this analysis. Finally, by using distance priors from CMB,
the � time-dependence was quite restricted.

1 Introduction

The concordance cosmological model �CDM (� plus Cold
Dark Matter) is very successful in explaining a variety of
cosmological observations as, for instance, the accelerating
expansion of the Universe and the power spectrum of the
cosmic microwave background radiation (CMB). However,
the model suffers several theoretical and observational dif-
ficulties. Some remarkable examples are the cosmological
constant problem, the coincidence problem, and the Hubble
tension (see, e.g., [1] for a review).

a e-mail: ha.macedo@unesp.br (corresponding author)
b e-mail: lucas.s.brito@unesp.br
c e-mail: jf.jesus@unesp.br
d e-mail: marcio.alves@unesp.br

In the last decades, we have seen an increasing number
of alternatives to the �CDM model aiming to alleviate such
difficulties. These alternatives range from the quest for dark
energy models to extended theories of gravity. In this context,
it is natural to investigate if � is a function of the cosmic
time t .

Models with a time-varying � or Vacuum-decay models
have been conceived in different contexts. In several models,
some ad hoc time dependence for �(t) is assumed. Some
of the most common examples were addressed in Refs. [2,3]
(see [4] and references therein for a list of phenomenological
decay laws of �(t)). The functional form of �(t) can also
be derived, for instance, by geometrical motivations [5,6] or
from Quantum Mechanical arguments [7]. The interaction
of vacuum with matter has also been considered in different
approaches and confronted with recent cosmological data
(see, e.g., [8–11]).

A promising approach to overcome the puzzles of the
�CDM model is known as the ‘running vacuum model’
(RVM). It emerges when one uses the renormalization group
approach of quantum field theory in curved spaces to renor-
malize the vacuum energy density. It is possible to show that
vacuum energy density evolves as a series of powers of the
Hubble function H and its derivatives with respect to cosmic
time: ρvac(H, Ḣ , . . .). The leading term of the expansion is
constant, but the next-to-leading one evolves as H2. There
are other terms in the expansion that can be relevant for the
early Universe cosmology, but the term H2 can affect the
current evolution of the scale factor. Initially, the RVM was
introduced in a semi-qualitative way through the renormal-
ization group approach. Some of the first motivations of this
model can be found, e.g., in the Refs. [12–15] (see also [16]
for an old review on the subject). However, in recent years,
the RVM was derived from a rigorous analysis within the
Quantum Field Theory in curved spacetime. The derivation
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of the final form of RVM can be found in the Refs. [17–20]
(see [21] for a review on recent theoretical developments).
Moreover, such a class of models can be more favored than
the �CDM model when a fit with the cosmological observ-
ables is performed [22–28].

To answer the conundrum of why the cosmological con-
stant is so small today, one could also propose models with
� ∝ a−m , where a is the scale factor and m is a positive
constant to be determined. From dimensional arguments by
quantum cosmology, it is natural to choose m = 2 [29,30].
Therefore, in this perspective, � has the same decay behav-
ior as the curvature term. Such an evolution of � was first
proposed by özer and Taha [31,32] as a way to solve the
cosmological problems of the eighties decade.

On the other hand, following similar phenomenological
arguments, in Ref. [33], the authors parametrized the time
evolution of � as the sum of a term proportional to a−2 to
a term proportional to H2, i.e., the same term that emerges
from the RVM. In the present article, we follow this approach,
but we add a “bare” cosmological term λ∗. Specifically, we
consider four models of a time-varying �(t) in the class

�g = α′

a2 + βH2 + λ∗, (1)

with α′, β and λ∗ constants. Three models are chosen by
selecting one of these constants to vanish identically (these
three models are depicted in Table 1) and the fourth model is
the complete one for which the three constants are non-null.

The phenomenological model described by the complete
model presents a smooth transition from the early de Sitter
stage to the radiation phase. Such a transition is independent
of the curvature parameter and solves naturally the horizon
and the graceful exit problem [34].

To put constraints on the free parameters of the models,
we use the SNe Ia sample consisting of 1048 SNe Ia apparent
magnitude measurements from the Pantheon sample [35] and
a compilation of 32 cosmic chronometers data of the Hubble
parameter, H(z) [36]. We have also considered the most up-
to-date constraints on H0, namely, the ones from SH0ES [37]
and Planck [38].

We organized the article as follows. We describe the Fried-
mann equations with a time-dependent �(t)-term in Sect. 2
(neglecting radiation) and Sect. 3 (including radiation). We

Table 1 Here we summarise the three models considered in the article

Model � Fixed parameter

�1
α′
a2 + βH2 λ∗ = 0

�2
α′
a2 + λ∗ β = 0

�3 βH2 + λ∗ α′ = 0

obtain analytical solutions for H(z) in the class of models
given by Eq. (1) in Sects. 2.1 and 3.1. In Sect. 4, we con-
strain the parameters of the models using SNe Ia data, cos-
mic chronometers data and CMB. In the analysis, we consider
separately the constraints on H0 from Planck (Sect. 4.1) and
from SH0ES (Sect. 4.2). Finally, we present our conclusions
and final remarks in Sect. 5.

2 Cosmological equations for a varying �L term,
neglecting radiation

From the Cosmological Principle and the Einstein Field
Equations, we have the so-called Friedmann equations, given
by

H2 = 8πGρT

3
− k

a2 , (2)

ä

a
= −4πG

3
(ρT + 3pT ), (3)

where ρT is the total density of the Universe matter-energy
content, pT is total pressure and k is the curvature scalar. As
we are mainly interested in the late-time Universe, we shall
neglect the radiation contribution, in such a way that ρT is
given by

ρT = ρM + ρ�, (4)

where ρM corresponds to the total pressureless matter (dark
matter+baryons) and ρ� corresponds to the time-varying
�(t)-term. In the present article we assume the equation of
state (EoS) of vacuum to be exactly wvac = −1 such that
p� = −ρ�. However, a recent result for the RVM is that the
EoS of vacuum evolves with the cosmic history [19]. This
would change our results and may be considered in future
works. From the continuity equation, we have

ρ̇M + 3HρM = Q, (5)

ρ̇� = −Q, (6)

where Q is the interaction term between pressureless matter
and vacuum. With these components, the Friedmann equa-
tions (3) now read

H2 = 8πG(ρM + ρ�)

3
− k

a2 , (7)

ä

a
= −4πG

3
(ρM − 2ρ�). (8)

By multiplying the Eq. (8) by 2, we have

2
ä

a
= −8πG

3
(ρM − 2ρ�) = −8πG

3
ρM + 16πG

3
ρ�, (9)
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and summing the Eq. (7) with the Eq. (9), we have

H2 + 2ä

a
= 8πGρ� − k

a2 . (10)

Since � = 8πGρ�, Eq. (10) reads

H2 = −2ä

a
+ � − k

a2 . (11)

By replacing ä
a = Ḣ + H2, we find

3H2 = −2Ḣ + � − k

a2 . (12)

In order to perform cosmological constraints, let us now
change to derivatives with respect to the redshift

d

dt
= −H(1 + z)

d

dz
. (13)

Thus, the equation

2Ḣ = −3H2 + � − k

a2 , (14)

now reads

− 2H(1 + z)
dH

dz
= −3H2 + � − k

a2 , (15)

and by replacing k = −�k0H2
0 we have

dH

dz
= 3H

2(1 + z)
− �k0H2

0 (1 + z)

2H
− �

2H(1 + z)
. (16)

If we further use the definition E ≡ H
H0

the above equation
reads

dE

dz
= 3E

2(1 + z)
− �k0(1 + z)

2E
− �

2EH2
0 (1 + z)

. (17)

From now on, we shall assume that the Universe is spa-
tially flat (k = 0), as indicated by inflation and CMB. There-
fore, we finally obtain the equation

dE

dz
= 3E

2(1 + z)
− �

2EH2
0 (1 + z)

. (18)

For a given �(a, H) (or �(z, H)), Eq. (18) can be solved
in order to obtain the universe evolution E(z). In the next sub-
section, we shall assume a fair general �(a, H) dependence
in order to solve this equation and compare the assumed mod-
els with cosmological observations.

2.1 � = α′a−2 + βH2 + λ∗ class of models, neglecting
radiation

Dimensional arguments have led to the proposals of � ∝
a−2, � ∝ H2 models in the literature. Here we test a com-
bination of these proposals together with a constant term, in
order to find which of these terms may contribute the most
to the evolution of the universe as indicated by observations.

So, the models we study here are derived from the following
� dependence

�g = α′

a2 + βH2 + λ∗. (19)

We shall not consider this general �g as a model to be con-
strained by observations, as it has too many free parameters,
and it may be penalized in a Bayesian criterion. Actually, we
choose to work with particular cases of this �g dependence,
where, in each case, one parameter contribution is neglected,
as summarised in Table 1.

Let us now obtain the evolution of this class of models.
From Eq. (19), we have the values today

�0 = α′ + βH2
0 + λ∗. (20)

As �� ≡ �0
3H2

0
, we may also write

�� = α

3
+ β

3
+ λ∗

3H2
0

= α

3
+ β

3
+ �λ∗, (21)

where we have defined �λ∗ ≡ λ∗
3H2

0
and the dimensionless

α ≡ α′
H2

0
, for mathematical convenience. From this, we may

write for α

α = 3

(
�� − β

3
− �λ∗

)
. (22)

As already mentioned, we choose to work with a spatially
flat Universe, such that from Eq. (7), we have the normaliza-
tion condition

�� = 1 − �m . (23)

Now, with these dimensionless parameters (�m, β,�λ∗),
an analytical solution for the Eq. (18) can be obtained. The
general solution is given by

E2(z) =
[

6�λ∗ + (3 − β)(1 − 3��)

(1 − β)(3 − β)

]
(1 + z)3−β

+ 3�λ∗
3 − β

+
[−3�λ∗ + 3�� − β

1 − β

]
(1 + z)2. (24)

The solutions for each one of the three models depicted
in the Table 1 are particular cases of this solution obtined by
the appropriate choice of parameters. They are given by

• Model �1 = α′
a2 + βH2, (λ∗ = 0)

E(z) =
√

1 − 3��

1 − β
(1 + z)(3−β) + 3�� − β

1 − β
(1 + z)2; (25)

• Model �2 = α′
a2 + λ∗, (β = 0)

E(z) =
√

(1 + 2�λ∗ − 3��)(1 + z)3 + �λ∗ + 3(−�λ∗ + ��)(1 + z)2;
(26)
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• Model �3 = βH2 + λ∗, (α′ = 0)

E(z) =
√[

6�λ∗ + (3 − β)(1 − 3��)

(1 − β)(3 − β)

]
(1 + z)3−β + 3�λ∗

3 − β
. (27)

It is worth noticing that, for the �2 model, the E(z) given
by Eq. (26) is similar to the �CDM model with spatial cur-
vature. This is due to the fact that the term ∝ a−2 mimics a
curvature term in this case.

The functions E(z) we have obtained are all we need in
order to constrain the three models with observational data
in the next section. We can also obtain the interaction term
for each model, in order to analyze its behavior later. For the
general case (19), we have the following interaction term

Q(z) ≡ 8πG

H3
0

Q(z) = 2α(1 + z)2E(z)

+βE(z)(1 + z)
dE2(z)

dz
. (28)

3 Cosmological equations for a varying � term,
including radiation

Taking radiation into account, the Friedmann equations (3)
are the same, but now we have ρT and pT given by:

ρT = ρM + ρr + ρ� (29)

pT = pr + p� = ρr

3
− ρ� (30)

where ρr is radiation density and ρM = ρd +ρb (dark matter
(d)+baryons (b)). The continuity equations now read

ρ̇b + 3Hρb = 0, (31)

ρ̇r + 4Hρr = 0, (32)

ρ̇d + 3Hρd = Q, (33)

ρ̇� = −Q, (34)

where Q is the interaction term between dark matter and
vacuum. It is interesting to note that Eqs. (31) and (33) can be
combined to write a continuity equation for total pressureless
matter:

ρ̇M + 3HρM = Q (35)

With these components, the Friedmann equations (3) now
read

H2 = 8πG(ρM + ρr + ρ�)

3
− k

a2 , (36)

ä

a
= −4πG

3
(ρM + 2ρr − 2ρ�). (37)

It can be shown, that following the same steps as in Sect.
2, we may arrive at the general result, with spatial curvature:

dE

dz
= 3E

2(1 + z)
− �k0(1 + z)

2E
+ �r0(1 + z)3

2E
− �

2EH2
0 (1 + z)

.

(38)

And, by assuming that the Universe is spatially flat (k =
0), as indicated by inflation and CMB, we obtain the equation:

dE

dz
= 3E

2(1 + z)
+ �r0(1 + z)3

2E
− �

2EH2
0 (1 + z)

. (39)

For a given �(a, H) (or �(z, H)), Eq. (39) can be solved
in order to obtain the universe evolution E(z). In the next sub-
section, we assume the same �(a, H) dependence as before
(19) in order to solve this equation and compare the assumed
models with cosmological observations.

3.1 � = α′a−2 + βH2 + λ∗ class of models, including
radiation

For this class, including radiation, the normalization condi-
tion now reads:

�� = 1 − �m − �r . (40)

Now, with the dimensionless parameters (�m,�r , α, β,

�λ∗), an analytical solution for the Eq. (18) can be obtained.
The general solution is given by

E2(z) = (1 + z)3−β

3 − β

(
2α

β − 1
+ 3�m0 + 4β�r0

1 + β

)

+ �r0(1 + z)4

(1 + β)
+ α(1 + z)2

(1 − β)
+ 3�λ∗

3 − β
(41)

which is a general solution in the cases that β /∈ {−1, 1, 3}.

4 Analysis and results

For this analysis, we use 3 variations of the general equation,
being first with λ∗ = 0, second with β = 0, and last we take
α = 0, as described in Table 1.

In order to constrain the models in the present work, we
have used as observational data, the SNe Ia sample consisting
of 1048 SNe Ia apparent magnitude measurements from the
Pantheon sample [35] and a compilation of 32 Hubble param-
eter data, H(z) [36], obtained by estimating the differential
ages of galaxies, called Cosmic Chronometers (CCs).

The 32 H(z) CCs data is a sample compiled by [36], con-
sisting of H(z) data within the range 0.07 < z < 1.965. In
the Ref. [36], the authors have estimated systematic errors for
these data, by running simulations and considering effects
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Fig. 1 SNe Ia, H(z) and Planck H0 constraints for λ∗ = 0 (�1 model), at 1 and 2σ c.l., H0 units are km/s/Mpc. Left: SNe Ia, H(z)+Planck H0
and SNe Ia+H(z)+Planck H0 constraints. Right: joint constraints from SNe Ia+H(z)+Planck H0

such as metallicity, rejuvenation effect, star formation his-
tory, initial mass function, choice of stellar library etc.1

The Pantheon compilation consists of 1048 data from SNe
Ia, within the redshift range 0.01 < z < 2.3, contain-
ing measurements of SDSS, Pan-STARRS1 (PS1), SDSS,
SNLS, and various HST and low-z datasets.

In order to better constrain the models, besides SNe
Ia+H(z) data, we have also considered the most up-to-
date constraints over H0, namely, the ones from SH0ES
(73.2 ± 1.3) km/s/Mpc [37] and Planck (67.36 ± 0.54)

km/s/Mpc [38]. As it is well known, these constraints are
currently in conflict, generating the so-called “H0 tension”
[39]. It is important to mention that these constraints are
obtained from quite different methods. While the SH0ES
H0 is obtained simply from local constraints, following the
distance ladder built from Cepheid distances and local SNe
Ia, the Planck H0 is obtained from high redshift constraints,
assuming the flat �CDM model. Given this tension, we pre-
ferred to make two separate analyses, one considering the
H0 from Planck and one taking into account the H0 from
SH0ES.

Below, we show the results of our analyses, first show-
ing the constraints from SNe Ia+H(z)+H0 from Planck, and
later showing the constraints from SNe Ia+H(z)+H0 from
SH0ES.

In all the analyses that we have made, we have assumed
the flat priors over the free parameters: α ∈ [−2, 2], β ∈
[−5, 15], �m ∈ [0, 1], H0 ∈ [55, 85] km/s/Mpc. It is impor-
tant to note that while SNe Ia data constrain {�m , α, β}, H(z)

1 The method to obtain the full covariance matrix, together with jupyter
notebooks as examples are furnished by M. Moresco at https://gitlab.
com/mmoresco/CCcovariance.

Table 2 SNe Ia+H(z)+Planck H0 constraints for λ∗ = 0 (�1 model)

Parameter 95% limits

H0 (km/s/Mpc) 67.4 ± 1.1

�m 0.15+0.16
−0.15

β 7.5+3.2
−3.1

data constrain {H0,�m, α, β}. However, H(z) data alone do
not provide strong constraints over the free parameters, so we
choose to work with H(z)+SNe Ia data combination. Further-
more, we have added constraints over H0 from Planck and
SH0ES in order to probe the H0 tension and also because
they consist of strong constraints over H0.

4.1 SNe Ia+H(z)+Planck H0 analysis

We start with the �1 model (see Table 1). As one may see
in Fig. 1 (left), H0 is well constrained by H(z)+Planck H0

data, but �m and β are poorly constrained. In fact, one may
see that �m is constrained by the prior in its inferior limit,
while β is constrained by the prior in its superior limit. H0

can not be constrained by SNe Ia, but β is well constrained
by this data. �m is better constrained by SNe Ia, but also is
constrained inferiorly by the prior. In Fig. 1 (right), we can
see the result for the joint analysis, where �m and β are better
constrained, although �m yet is constrained inferiorly by the
prior. We show the best-fit values for the parameters of the
�1 model in Table 2.

In Fig. 2 we show the analysis for the �2 model (β =
0). As one can see in the left panel, H(z)+Planck H0 data
constrains well H0 and α, but not �m , which is constrained

123

https://gitlab.com/mmoresco/CCcovariance
https://gitlab.com/mmoresco/CCcovariance


1144 Page 6 of 13 Eur. Phys. J. C (2023) 83 :1144

Fig. 2 SNe Ia, H(z) and Planck H0 constraints for β = 0 (�2 model), at 1 and 2σ c.l., H0 units are km/s/Mpc. Left: SNe Ia, H(z)+Planck H0
and SNe Ia+H(z)+Planck H0 constraints. Right: joint constraints from SNe Ia+H(z)+Planck H0

Table 3 SNe Ia+H(z)+Planck H0 constraints for β = 0 (�2 model)

Parameter 95% limits

H0 (km/s/Mpc) 67.4 ± 1.1

�m 0.278+0.088
−0.086

α −0.16+0.44
−0.45

by the prior in its inferior limit. As SNe Ia does not constrain
H0, but �m and α are well constrained by this data, it is
interesting to combine SNe Ia and H(z) data. One may see

in Fig. 2 (right) and Table 3, the result for the joint analysis,
where H0, �m and α are better constrained.

Next, we analyze the �3 model (α = 0) for which we
also put constraints on the parameters {H0,�m, β}. In Fig. 3
(left), we can see that H0 and β are well constrained by
H(z)+Planck H0 data, while �m is weakly constrained. �m

and β are well constrained by SNe Ia, thus complementing
the H(z)+Planck H0 data constraints. In Fig. 3 (right) and
Table 5, we highlight the result for the joint analysis, where
H0, �m , and β are better constrained.

From Fig. 4 (upper panel), one may notice that in the past
(z � 0.3) the interaction term was positive, meaning a vac-

Fig. 3 SNe Ia, H(z) and Planck H0 constraints for α = 0 (�3 model), at 1 and 2σ c.l., H0 units are km/s/Mpc. Left: SNe Ia, H(z)+Planck H0
and SNe Ia+H(z)+ Planck H0 constraints. Right: SNe Ia+H(z)+Planck H0 joint constraints

123
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Fig. 4 Interaction term Q(z) for the best fit parameters from SNe Ia+H(z)+H0 from Planck. Upper panel: λ∗ = 0 (�1 model). Bottom left: β = 0
(�2 model). Bottom right: α = 0 (�3 model)

Fig. 5 SNe Ia+H(z)+H0 from SH0ES for λ∗ = 0 (�1 model), at 1 and 2σ c.l., H0 units are km/s/Mpc. Left: SNe Ia, H(z)+SH0ES H0 and SNe
Ia+H(z)+H0 from SH0ES constraints. Right: SNe Ia+H(z)+H0 from SH0ES joint constraints

uum decaying into DM. However, it is interesting that, for
this model (�1), the interaction term changes sign at low
redshift, indicating that now we have decaying of DM into
�. This is due to the fact that β > 0 and α < 0 in the best fit,

leading to a change of sign of Q(z), as one may see from Eq.
(28). For �2 and �3 models, however, the interaction term
is always negative, thus indicating a decaying of DM into �.
We may conclude that, at least for the best-fit models, that
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Table 4 SNe Ia+H(z)+SH0ES H0 constraints for λ∗ = 0 (�1 model)

Parameter 95% limits

H0 (km/s/Mpc) 73.0+2.4
−2.4

�m 0.16+0.16
−0.15

β 7.1+3.0
−2.9

Table 5 SNe Ia+H(z)+Planck H0 constraints for α = 0 (�3 model)

Parameter 95% limits

H0 (km/s/Mpc) 67.4 ± 1.1

�m 0.290+0.076
−0.067

β −0.16+0.64
−0.61

�1 is the only model that alleviates or solves the Cosmolog-
ical Constant Problem (CCP). However, as one can see from
Tables 2 and 3, α and β may have positive values within 95%
c.l., thus allowing also for decaying of � into DM. For �1,
however, there is not such a change of tendency when we
change the values of α and β within 95% c.l.

4.2 SNe Ia+H(z)+SH0ES H0 analysis

In Fig. 5, we may see the constraints from SNe Ia, H(z) data
and H0 from SH0ES over the model �1 (with λ∗ = 0).

As one may see in Fig. 5 (left), H(z)+SH0ES H0 data
constrains well H0, but not �m , as it is being constrained by
the prior in its inferior limit, while β is constrained by the
prior in its superior limit. H0 is not constrained by SNe Ia,
but �m and β are better constrained by this data. In Fig. 5

Table 6 SNe Ia+H(z)+ SH0ES H0 constraints for β = 0 (�2 model)

Parameter 95% limits

H0 (km/s/Mpc) 72.7+2.5
−2.5

�m 0.289+0.085
−0.084

α −0.03+0.42
−0.43

(right), we can see the result for the joint analysis, where �m

and β are better constrained, although �m still is constrained
by the prior in its inferior limit. The best-fit values for the �1

model in this case are shown in Tables 4 and 5.
In Fig. 6, we may see the constraints from SNe Ia, H(z)

data and H0 from SH0ES over the model �2 (with β = 0).
In Fig. 6 (left), H(z) data constrains well H0 and α, but

not �m , which is constrained by the prior in its inferior limit.
H0 is not constrained by SNe Ia, but �m and α are well
constrained by this data. In Fig. 6 (right) and in Table 6, we
can see the result for the joint analysis, where �m and β are
better constrained. We may see that H0, �m and α are well
constrained by this analysis.

Below, in Fig. 7, we may see the constraints from SNe
Ia, H(z) data and H0 from SH0ES over the model �3 (with
α = 0).

We can see in Fig. 7 (left), H(z)+SH0ES H0 data con-
straints well H0 andβ, but not�m , which is being constrained
by the prior in its inferior limit. H0 is not constrained by SNe
Ia, but �m and β are well constrained by this data. One may
see in Fig. 7 (right), the result for the joint analysis, where
H0, �m , and β are well constrained. In Table 7 we show the
best-fit values for this model.

Fig. 6 SNe Ia+H(z)+H0 from SH0ES for β = 0 (�2 model), at 1 and 2σ c.l., H0 units are km/s/Mpc. Left: SNe Ia, H(z)+SH0ES H0 and SNe
Ia+H(z)+SH0ES H0 constraints. Right: SNe Ia+H(z) joint constraints
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Fig. 7 SNe Ia+H(z)+H0 from SH0ES for α = 0 (�3 model), at 1 and 2σ c.l., H0 units are km/s/Mpc. Left: SNe Ia, H(z)+SH0ES H0 and SNe
Ia+H(z)+SH0ES H0 constraints. Right: SNe Ia+H(z) joint constraints

Table 7 SNe Ia+H(z)+SH0ES H0 constraints for α = 0 (�3 model)

Parameter 95% limits

H0 (km/s/Mpc) 72.7+2.5
−2.5

�m 0.296+0.078
−0.069

β 0.03+0.65
−0.61

As one may see from Fig. 8, the interaction term has quite
similar behavior to Fig. 4. That is, Q(z) changes sign for the
model �1 and it is negative for models �2 and �3, increasing
its absolute value with redshift. However, the best-fit param-
eters from the analysis with the SH0ES H0 prior indicate
less interaction in the past than in the case with the Planck
H0 prior.

We can see from the figures above, that the most stringent
constraints from the data are in the context of the model �3,
followed by the constraints over the model �2. While the
worst constraints over the parameters are in the case of the
model �1. One reason for that is that, as one may see, the
contours from SNe Ia and H(z) + H0 are misaligned in the
cases �3 and �2 while being aligned in the case of �1. Then,
we may say that in the context of the models, �3 and �2,
the SNe Ia and H(z) + H0 observations nicely complement
each other.

Finally, in order to make a more quantitative compari-
son among the models analyzed here, we use the Bayesian
Information Criterion (BIC) to conclude which model bet-
ter describes the analyzed data. It is important to mention
that the BIC takes into account not only the goodness of fit
but also penalizes the excess of free parameters, in agreement
with the notion of theOckham’s razor. Therefore, BIC favors

simpler models. BIC can be written as [40,41]

BIC = −2 lnLmax + p ln N , (42)

where N is the number of data, Lmax is the maximum of
likelihood and p is the number of free parameters. In the
model comparison, the model with achieves the lowest BIC
is favored. The likelihood has some normalization, such that
instead of using the absolute BIC value, what really is impor-
tant to consider is the relative BIC among models, which is
given by


BIC = −(BICi − BIC j ). (43)

The level of support for each model depends on the value
of the 
BIC and is explained at [42]. As BIC is a model
comparison, in Table 8 below, we calculated 
BIC relative
to �3, which has the lowest BIC in the case of the Planck
H0 prior and relative to �2, which has the lowest BIC in the
case of the SH0ES H0 prior. The level of support can be seen
in the last column of this table.

We may see that the analysis with the Planck prior over
H0 indicates strong evidence against model �1, while the
SH0ES prior indicates moderate evidence against model �1.
Both priors, however, can not distinguish between models
�2 and �3. We can see that the models �2 and �3 have a
better fit in the case of the Planck H0 prior than in the case
of the SH0ES H0 prior. The situation is inverted, however, in
the case of model �1 because the analysis with the Planck
H0 prior discards this model, while the SH0ES H0 prior has
only weak evidence against �1.

Finally, we have analyzed the full �(t)CDM model, as
described by Eq. (19). In this case, as it has 1 more free
parameter than the subclasses, SNe Ia+H(z)+H0 data were
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Fig. 8 Interaction term Q(z) for the best fit parameters from SNe Ia+H(z)+SH0ES H0. Upper panel: λ∗ = 0 (�1 model). Bottom left: β = 0 (�2
model). Bottom right: α = 0 (�3 model)

Table 8 BIC values for the different analysed models, with different H0 priors. 
BIC was calculated in comparison with model �3 for each prior,
as explained on the text

Model Data χ2
min n par ndata BIC 
BIC Support

�g SNe Ia+H(z)+Planck H0 1043.085 4 1080 1071.027 6.984 Decisive

�1 (λ∗ = 0) SNe Ia+H(z)+Planck H0 1047.614 3 1080 1068.571 4.528 Strong to very strong

�2 (β = 0) SNe Ia+H(z)+Planck H0 1043.091 3 1080 1064.048 0.005 Not significant

�3 (α = 0) SNe Ia+H(z)+Planck H0 1043.086 3 1080 1064.043 0.000 Not significant

�g SNe Ia+H(z)+SH0ES H0 1044.451 4 1080 1072.393 7.333 Decisive

�1 (λ∗ = 0) SNe Ia+H(z)+SH0ES H0 1046.570 3 1080 1067.527 2.067 Weak

�2 (β = 0) SNe Ia+H(z)+SH0ES H0 1044.503 3 1080 1065.460 0.000 Not significant

�3 (α = 0) SNe Ia+H(z)+SH0ES H0 1044.507 3 1080 1065.464 0.004 Not significant

not enough to constrain its free parameters. Then, we choose
to work with CMB constraints, in combination with SNe Ia
Pantheon and H(z) in order to constrain its free parameters.
In order to include the CMB constraints we have used the so
called “distance priors” from Planck, as explained in [43].
It includes constraints from Planck over quantities like shift
parameter R, acoustic scale lA and baryon density ωb ≡
�bh2, where h ≡ H0

100 . [43] present distance priors in the
context of 4 models, namely, �CDM, wCDM, �CDM+�k

and �CDM+AL . As these priors bring strong constraints

from Planck over models which are distinct of �(t)CDM,
we choose to work with the prior that yields the weakest
constraints, namely, �CDM+�k , weakening the prior bias.
In order to speed up the convergence of chains, we have
chosen to work with baryon density ωb instead of baryon
density parameter �b. The results can be seen on Fig. 9.

As can be seen on Fig. 9, there are strong correlations
between the parameters α − H0 and α − β. One can also see
that α and β are strongly constrained by this analysis. More
details can be seen on Table 9.
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Fig. 9 SNe Ia + H(z) + CMB Planck 2018 distance priors constraints for full �g model, at 1 and 2σ c.l., H0 units are km/s/Mpc

Table 9 Constraints over �g , �2 and �3 free parameters with 95% limits, from SNe Ia+H(z)+CMB

Parameter �g �2 (β = 0) �3 (α = 0)

H0 (km/s/Mpc) 68.6+7.2
−7.0 68.5+3.0

−2.7 68.6+1.7
−1.5

ωb 0.02260 ± 0.00034 0.02260 ± 0.00034 0.02261+0.00033
−0.00034

�m 0.303+0.039
−0.037 0.303+0.040

−0.038 0.303+0.036
−0.035

α −0.001+0.043
−0.047 −0.001+0.021

−0.022 0

β 0.001+0.036
−0.033 0 0.000+0.017

−0.016

As can be seen on Table 9, the parameters α and β, which
dictate the � time dependence, are strongly constrained by
CMB, leaving only small windows for � variation. In fact,
we may see that −0.048 < α < 0.042 and −0.032 < β <

0.037 at 95% c.l. This result has to be read with care, as

we did not make a full CMB power spectrum analysis in
the context of �(t)CDM. We have used, instead, distance
priors which depend on models where the DM and DE are
separately conserved. With that said, the results for the other
parameters are similar to the ones obtained from Planck [38]
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in the context of �CDM, where it was found that H0 =
67.4 ± 0.5 km/s/Mpc, ωb = 0.0024 ± 0.0001 and �m =
0.315 ± 0.007. This is expected, as the values obtained for
α and β are compatible with the �CDM model.

In Table 9 we show, for completeness, the results for the
subclasses of models which include a bare cosmological con-
stant λ∗ term, �2 and �3. As it can be seen, the parameters
are in general more constrained in the subclasses than in
the general model, which is expected, as they have less free
parameters. Again, these results shall be taken with care, as
we have used an approximated treatment of the CMB results,
but we may conclude that the interaction terms are quite con-
strained in the context of this analysis.

5 Conclusion

We have analyzed 3 classes of �(t)CDM models against
observations of SNe Ia, cosmic chronometers, and priors over
the Hubble constant from Planck and SH0ES. We may con-
clude that 1 class of models, namely, �1, may be discarded
by this analysis, mainly in the case of the Planck H0 prior.
In the case of the SH0ES H0 prior, there is weak evidence
against this. Models �2 and �3 can not be distinguished by
this analysis.

At this point, it is important to mention that �1 is the only
considered model that does not have the standard �CDM
model as a particular case, once that λ∗ = 0. It seems that
the data disfavor �(t)CDM models with this feature, at least
for the classes of models analyzed here.

However, as one may see in Tables 2, 3, 5, 4, 6, 7 and Figs. 4
and 8, the current analysis does not discard the possibility
of an interaction between pressureless matter and vacuum.
We also have seen in the current analysis, that the decaying
of pressureless matter into a vacuum is in general favoured
against vacuum decay, at least for the recent evolution of the
Universe. The �1 model is the only one where this situation
changes in the past, allowing for a decay of the vacuum into
pressureless matter.

This would indicate an obstacle for the classes of�(t)CDM
models analysed here in order to alleviate the cosmological
constant problem. On the other hand, a decaying of matter
into vacuum may explain why only recently the vacuum den-
sity has become non-negligible.

As a final analysis, in the case of the more general model,
�g , it was necessary to combine SNe Ia+H(z) with CMB
in order to constrain its free parameters. In this case, the �

time-dependence was quite constrained, but, as we have used
an approximate method, a full analysis with the CMB power
spectrum is needed in order to give the final verdict about
this model.

We emphasize that in the present article, we have assumed
the EoS of vacuum to be exactly wvac = −1. However, a

recent result for the RVM is that the EoS of vacuum evolves
with the cosmic history [19]. This would change our results
and may be considered in future works.

Further analysis, considering other observational data,
such as BAO, growth factor and full CMB power spectrum,
in the lines of [23], for instance, in order to better constrain
these models should be done in a forthcoming issue.
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