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We compute the next-to-leading-order corrections to soft-gluon radiation differentially in the one-
emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a
modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte Carlo
integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full
phase space. We present two independent implementations of the new algorithm in the two event generators
Pythia and Sherpa, and we compare the resulting fully differential simulation to the Catani–Marchesini–
Webber (CMW) scheme.
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I. INTRODUCTION

Experiments at high-energy particle colliders have been
integral to unraveling the structure of our Universe and
have confirmed the validity of the Standard Model of
particle physics at an unprecedented accuracy. Going
beyond the current level of precision and possibly revealing
new fundamental particles and forces will require ever
more detailed experimental analyses and theoretical cal-
culations. Monte Carlo simulations by means of event
generators play a vital role in this context, as they link
experiment and theory through the detailed description of
fully exclusive final states [1,2]. They are required to
describe the dynamics of a large number of hadrons
originating from QCD bremsstrahlung, which is modeled
in the simulation through so-called parton showers. Modern
parton showers are typically based on a unified description
of QCD radiative effects in a dipole picture, which
encompasses both the leading-order spin-averaged collin-
ear radiation pattern and the leading-order color-averaged
soft radiation pattern. The predictions generated by such
algorithms accurately describe many experimental mea-
surements. A notable exception to the success of the
parton-shower method arises from its limited phase-space
coverage. This problem is alleviated by the matching and
merging techniques that allow one to correct parton
showers to any known fixed-order result at limited final-
state multiplicity and that have been in the focus of interest

of the theoretical particle physics community in the past
decade [3,4].
Currently the most pressing problem in the context of

parton-shower simulations is the lack of options to assess
the intrinsic uncertainty of the method itself. The precision
of fixed-order perturbative QCD calculations is conven-
tionally quantified by varying the renormalization and
factorization scales, and the dependence on these scales
is reduced at higher orders in the perturbative expansion if
the perturbative series converges. No such technique is
currently available for parton showers, essentially because
parton showers at higher precision do not yet exist or their
practical implementation is incomplete. First steps towards
the construction of next-to-leading-order (NLO) parton
showers have been made in [5–14], but no method has
yet been presented that is capable of simulating fully
exclusive final states at hadron colliders. At the same time,
it should be expected that a difference exists between
parton showers and analytical resummation. While it
should be reduced at higher perturbative precision, it cannot
be completely eliminated due to differences in the treatment
of momentum and probability conservation [15].
In this publication we address one of the most important

aspects of next-to-leading-order parton showers, namely
the simulation of the higher-order corrections to soft-gluon
radiation, and we show how to implement these corrections
in a fully differential form in practice. In integrated form,
they lead to the well-known two-loop cusp anomalous
dimension [16–19], which is included in improved leading-
order parton showers by means of redefining the strong
coupling. This is known as the CMW method [20]. At the
differential level, the corrections to soft-gluon radiation
induce spin correlations and subleading-color corrections
that are not included in leading-order parton showers.
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As part of the extension to the next-to-leading order, we
adapt the algorithm in [21] to include these effects.
Moreover, the construction of a local modified subtraction
procedure as anticipated in [13] mandates the computation
of the two-loop cusp anomalous dimension as an end point
contribution corresponding to the iterated soft times col-
linear limit. The resulting algorithm will be a key ingredient
in the construction of a fully differential technique for
matching parton showers to next-to-next-to-leading-order
calculations.
This paper is organized as follows: Section II present an

analytic calculation of the local K factor due to NLO
corrections to soft-gluon radiation. Based on this calcu-
lation, Sec. III introduces the modified subtraction method
and presents our approach to implementing the required
changes in the dipolelike parton shower. Section IV
presents a numerical validation of the new Monte Carlo
techniques and an assessment of the effect of the fully
differential simulation compared to the CMW method.
A summary is given in Sec. V.

II. ANALYTIC COMPUTATION OF
DOUBLE-SOFT CORRECTIONS

We employ the formalism for the construction of parton
showers at next-to-leading-order accuracy originally pro-
posed in [13]. This technique is based on a modified
subtraction method combined with a new algorithm for
mapping n-particle on-shell momentum configurations to
nþ 2-particle on-shell momentum configurations and the
replacement of explicit symmetry factors by appropriate
light-cone momentum fractions that can be identified as
“tags” for evolving partons. The extension of this method to
soft evolution at next-to-leading order requires the removal
of overlap between the explicitly included higher-order
corrections in the CMW scheme [20] and the potentially
included triple-collinear splitting functions [13]. In this
section we will first derive analytic results for the double-
soft corrections at next-to-leading order. We define the
kinematics in Sec. II A, present the individual corrections in
Sec. II B and collect the results in Sec. II C. Based on this
calculation, Sec. III introduces a modified subtraction
technique and addresses the overlap removal.
The leading-order contributions to the soft function,

which described the interaction between two hard jets of
collinear particles through soft-gluon exchange [22–24],
are shown in Fig. 1. The double solid lines represent the
hard legs, and the dashed line indicates the cut. The virtual
correction is given by a scaleless integral and vanishes in
dimensional regularization [25]. The diagram in Fig. 1(b)
and its mirror conjugate generate the eikonal factor

Sð0Þ
ij ðqÞ ¼ −TiTjS

ð0Þ
ij ðqÞ; where

Sð0Þ
ij ðqÞ ¼ g2sμ2ε

pipj

2ðpiqÞðqpjÞ
¼ g2sμ2ε

sij
siqsjq

: ð1Þ

Here and in the following we will label the Wilson lines by
i and j, while the soft momenta will be denoted by 1 and
possibly 2. We also refer to the combined soft momentum
as q, where q ¼ p1 and q ¼ p1 þ p2 in one- and two-
emission configurations, respectively. We restrict our
analysis to the improved leading-color approximation
typically used in parton-shower simulations. In processes
with n possibly color-connected partons, the eikonal term,
Eq. (1), is first partial-fractioned [26], and subsequently
the color-insertion operator TiTj is approximated by
assuming independence of the kinematics. This leads to
the replacement

Xn
i¼1

j¼iþ1

Sð0Þ
ij ðqÞ ¼ −

Xn
i;j¼1
j≠i

TiTjD
ð0Þ
i;j ðqÞ →

Xn
i;j¼1
j≠i

Ci

n
Dð0Þ

i;j ðqÞ;

where Dð0Þ
i;j ðqÞ ¼ g2sμ2ε

1

siq

sij
siq þ sjq

: ð2Þ

As the partial fraction Di;jðqÞ can be matched to the
collinear limit unambiguously, the corresponding color
Casimir operator Ci should indeed be associated with
the emission in the soft-collinear limit. This approximation
proves to be very accurate in practice. We therefore
postpone the exact treatment of the color-insertion oper-
ators to future work and perform our analysis based on

Sð0Þ
ij ðqÞ. We also point out that including the full next-to-

leading-order corrections to Eq. (2) requires that the first
subleading-color correction be implemented in the parton
shower if the two-loop cusp anomalous dimension is to be
recovered in the fully differential calculation. These terms
are related to color factors of the form CF − CA=2, where
the first contribution is absorbed into the exponentiated
leading-order soft result and the second term becomes part
of the genuine two-loop result [27,28]. This will be
discussed in detail in Sec. III, and related numerical
comparisons will be made in Sec. IV.
The virtual corrections to the single emission have been

computed in [29,30]. They are given by

(a) (b)

FIG. 1. Leading-order contributions to dipole-shower evolution
in the soft limit. The double solid lines represent hard (identified)
partons, i.e., Wilson lines.
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SðvirtÞ
ij ðqÞ ¼ −CA

g4s
8π2

ð4πμ4Þε
ε2

Γ4ð1 − εÞΓ3ð1þ εÞ
Γ2ð1 − 2εÞΓð1þ 2εÞ

×

�
sij

siqsjq

�
1þε

: ð3Þ

The diagrams contributing to the gluonic real-emission
corrections are schematically displayed in Figs. 2(a)–2(e),
while the quark contribution is shown in Fig. 2(f). The
vacuum polarization diagrams with gluons have corre-
sponding ghost diagrams, and all terms also occur in the
mirror symmetric configuration. Their sum is given by the
soft insertion operators computed in [31]:

Sðqq̄Þ
ij ð1;2Þ ¼ TR

si1sj2 þ si2sj1 − s12sij
s212ðsi1 þ si2Þðsj1 þ sj2Þ

;

SðggÞ
ij ð1;2Þ ¼ CA

ð1− εÞ½si1sj2 þ si2sj1�− 2s12sij
s212ðsi1 þ si2Þðsj1 þ sj2Þ

þSðs:o:Þ
ij ð1;2ÞCA

2

�
1þ si1sj1 þ si2sj2

ðsi1 þ si2Þðsj1 þ sj2Þ
�
:

ð4Þ

In the limit of strongly ordered soft emissions, SðggÞ
ij ð1; 2Þ

reduces to CAS
ðs:o:Þ
ij ð1; 2Þ, where

Sðs:o:Þ
ij ð1; 2Þ ¼ sij

si1s12sj2
þ sij
sj1s12si2

−
s2ij

si1sj1si2sj2
: ð5Þ

The full real-emission corrections are obtained by adding the
cut vacuum polarization diagrams displayed in Figs. 2(g)
and 2(h), as well as the corresponding terms with the gluons
attached to the other Wilson line. They are given by [25]

Cðqq̄Þij ð1; 2Þ ¼ −
TR

s212

�
si1si2

ðsi1 þ si2Þ2
þ sj1sj2
ðsj1 þ sj2Þ2

�
;

CðggÞij ð1; 2Þ ¼ −ð1 − εÞCA

s212

�
si1si2

ðsi1 þ si2Þ2
þ sj1sj2
ðsj1 þ sj2Þ2

�
:

ð6Þ
To simplify the integration, we define the soft remainder as
well as two collinear coefficients:

SðremÞ
ij ð1; 2Þ ¼ Sðs:o:Þ

ij ð1; 2Þ si1sj2 þ si2sj1
ðsi1 þ si2Þðsj1 þ sj2Þ

;

SðcollÞ
ij;B ð1; 2Þ ¼ sij

ðsi1 þ si2Þðsj1 þ sj2Þ
1

s12
;

SðcollÞ
ij;A ð1; 2Þ ¼ SðcollÞ

ij;B ð1; 2Þ4z1z2cos2ϕij
12;

where 4z1z2cos2ϕ12;ij ¼
ðsi1sj2 − si2sj1Þ2

s12sijðsi1 þ si2Þðsj1 þ sj2Þ
: ð7Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Next-to-leading-order real-emission contributions to dipole-shower evolution in the soft limit. The double solid lines represent
hard (identified) partons, i.e., Wilson lines.
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The precise meaning of z and ϕ will be discussed in Sec. III C. In terms of the above functions we can write

Sðqq̄Þ
ij ð1; 2Þ þ Cðqq̄Þij ð1; 2Þ ¼ TRðSðcollÞ

ij;A ð1; 2Þ − SðcollÞ
ij;B ð1; 2ÞÞ;

SðggÞ
ij ð1; 2Þ þ CðggÞij ð1; 2Þ ¼ CA

�
ð1 − εÞSðcollÞ

ij;A ð1; 2Þ − 2SðcollÞ
ij;B ð1; 2Þ þ Sðs:o:Þ

ij ð1; 2Þ − 1

2
SðremÞ
ij ð1; 2Þ

�
: ð8Þ

A. Kinematics

We perform the calculation in a scheme that is applicable
to both initial- and final-state evolution. We parametrize the
final-state momenta using two lightlike momenta l and n as

pμ ¼ αplμ þ βpnμ þ pμ
T; where αp ¼ pn

ln
; βp ¼ pl

ln
:

ð9Þ

The component along l is denoted as pþ and the compo-
nent along n as p−. The reference momenta for the
Sudakov decomposition are defined in terms of rescaled
hard momenta:

lμ ¼ pμ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − αq − βq − q2=Q2
q and

nμ ¼ pμ
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − αq − βq − q2=Q2
q ; ð10Þ

where q ¼ p1 in configurations with one and q ¼ p1 þ p2

in configurations with two soft gluons and where
Q2 ¼ ðpi þ pj þ qÞ2. This implies in particular that
2ln ¼ Q2, irrespective of the number of gluons in the final
state, and that 0 < α, β < 1 for any of the final-state
momenta. We parametrize the integrations over the soft
momenta p1 and p2 as follows [25]:

dDp ¼ 1

2
dpþdp−dD−2pT ¼ Q2

2
dαpdβpdD−2pT: ð11Þ

The transverse momentum integrals can be written as

Z
dD−2pT1δ

þðp2
1Þ ¼ Ωð2 − 2εÞQ−2εðα1β1Þ−ε ð12Þ

and

Z
dD−2pT1dD−2pT2δ

þðp2
1Þδþðp2

2Þ

¼ Ωð2 − 2εÞQ−4εðα1β1α2β2Þ−εΩð1 − 2εÞ
Z

π

0

ðsin2ϕÞ−εdϕ;

ð13Þ

where ΩðnÞ ¼ 2πn=2=Γðn=2Þ and where we have used the
relation p2 ¼ Q2αpβp − p2T to perform the integrals over
the magnitudes of the transverse momenta. The remaining
angular integral has to be carried out differently for
different powers of the invariant s12 ¼ Q2ðα1β2 þ α2β1 −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1β1α2β2

p
cosϕ12Þ that appears in the expressions of the

soft current.
To parametrize the measurement as well as the mapping

from four- to three-particle topologies, we introduce the
observables

F ijð1Þ ¼ δðα − 2np1=Q2Þδðβ − 2lp1=Q2Þ;
F ijð1; 2Þ ¼ δðα − 2np12=Q2Þδðβ − 2lp12=Q2Þ: ð14Þ

B. Contributions at leading and
next-to-leading order

The leading-order momentum space soft function is
given by the integral of Eq. (1):

Sð1Þij ðqÞ ¼
Z

dDp1

ð2πÞD−1 δ
þðp2

1ÞSð0Þ
ij ð1ÞF ijð1Þ

¼ Ωð2 − 2εÞ
ð2πÞ3−2ε

Q2

2
ðQ2αβÞ−εg2sμ2ε

1

Q2αβ

¼ α0sð4πÞε
2πΓð1 − εÞ

�
μ

κ

�
2εQ2

κ2
: ð15Þ

To simplify the notation we have defined κ2 ¼ Q2αβ. Next
we replace the bare coupling α0s by the renormalized one in
the MS scheme:

α0s ¼ αsðμÞ
eεγE

ð4πÞε
�
1 −

1

ε

αsðμÞ
2π

β0 þOðα2sÞ
�
;

where β0 ¼
11

6
CA −

2

3
TRnf: ð16Þ

Thus the leading-order soft function in the dipole shower
scheme reads

Sð0Þij ðqÞ ¼
ᾱs
2π

Q2

κ2
; where ᾱs ¼ αsðμÞ

eεγE

Γð1 − εÞ
�
μ

κ

�
2ε

:

ð17Þ
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Similarly, the contribution from the virtual corrections, Eq. (3), to the next-to-leading-order soft dipole evolution is given by

SðvirtÞij ðqÞ ¼
Z

dDp1

ð2πÞD−1 δ
þðp2

1ÞSðvirtÞ
ij ð1ÞF ijð1Þ

¼ −
Ωð2 − 2εÞ
ð2πÞ3−2ε

Q2

2
ðQ2αβÞ−εCA

g4s
8π2

ð4πμ4Þε
ε2

Γ4ð1 − εÞΓ3ð1þ εÞ
Γ2ð1 − 2εÞΓð1þ 2εÞ

�
1

Q2αβ

�
1þε

¼ −CA
ᾱ2s

ð2πÞ2
1

ε2
Γ5ð1 − εÞΓ3ð1þ εÞ
Γ2ð1 − 2εÞΓð1þ 2εÞ

Q2

κ2
: ð18Þ

The calculation of the real-emission contributions is straightforward but tedious. We discuss the details in Appendix A. The
contribution from the strong ordering approximation, Eq. (5), reads

SðsoÞij ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

�
1

ε2
−
2

3
π2 − 14εζ3 þOðε2Þ

�
: ð19Þ

The contributions from the soft remainder and the collinear terms, Eq. (7), are given by

SðremÞ
ij ðqÞ ¼ ᾱ2s

ð2πÞ2
Q2

κ2

�
−
2

ε
−4−

π2

3
þ ε

�
2

3
π2−8−10ζ3

�
þOðε2Þ

�
;

SðcollÞij;gg ðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2

�
5

6ε
þ31

18
þ ε

�
94

27
−

5

18
π2
�
þOðε2Þ

�
;

SðcollÞij;qq̄ ðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2

�
2

3ε
þ10

9
þ ε

�
56

27
−
2

9
π2
�
þOðε2Þ

�
: ð20Þ

In Sec. III we will devise a modified subtraction method that allows us to compute the coefficients of the above functions in
four dimensions. The results obtained here are used as a cross-check on the new technique.

C. Complete next-to-leading-order corrections

The complete Born-local next-to-leading-order corrections to the soft function in the dipole approach are given by the
sum of Eqs. (18)–(20). The coupling renormalization, Eq. (16), contributes an additional counterterm

SðrenÞij ðqÞ ¼ −
α2sðμÞ
ð2πÞ2

eεγE

Γð1 − εÞ
�
μ

κ

�
2εQ2

κ2
β0
ε
: ð21Þ

We finally obtain the fully differential two-loop momentum space soft function

Sð2Þij ðqÞ ¼ SðvirtÞij ðqÞ þ SðrenÞij ðqÞ þ CA

�
Sðs:o:Þij ðqÞ − SðremÞ

ij ðqÞ
2

þ SðcollÞij;gg ðqÞ
�
− TRnfS

ðcollÞ
ij;qq ðqÞ

¼ α2sðμÞ
ð2πÞ2

Q2

κ2
e2εγE

Γð1 − εÞ2
�
μ

κ

�
4ε
�
β0

�
1

ε

�
1 −

Γð1 − εÞ
eεγE

�
κ

μ

�
2ε
�
− ε

π2

6

�
þ Γð2Þ

cusp þ 2εΓð2Þ
soft þOðε2Þ

�
: ð22Þ

Note that Eq. (22) only depends on α and β through κ2, which is a consequence of rescaling invariance in the soft limit

[32,33]. The constant Γð2Þ
cusp is the well-known two-loop cusp anomalous dimension [16–19]

Γð2Þ
cusp ¼

�
67

18
−
π2

6

�
CA −

10

9
TRnf; ð23Þ

and the constant Γð2Þ
soft is the two-loop soft anomalous dimension computed in [34,35]:

LEADING-COLOR FULLY DIFFERENTIAL TWO-LOOP … PHYS. REV. D 98, 074013 (2018)

074013-5



Γð2Þ
soft ¼

�
101

27
−
11

72
π2 −

7

2
ζ3

�
CA −

�
28

27
−
π2

18

�
TRnf: ð24Þ

Using Eq. (33) to expand Eqs. (17) and (22) about the poles in the light-cone momenta qþ and q−, defined according to
Eq. (9), we obtain

Sð1Þij ðqÞ ¼
αsðμÞ
2π

Q2

�
L0;0

�
1

ε2
−
π2

12

�
þ L0;1

ε
þ ðL0;2 þ L1;1Þ þOðεÞ

�
ð25Þ

and

Sð2Þij ðqÞ ¼
α2sðμÞ
ð2πÞ2 Q

2

�
L0;0

2

�
−
3β0
2ε3

þ Γð2Þ
cusp

2ε2
þ Γð2Þ

soft

ε
−
π2

12
Γð2Þ
cusp þ ζ3

3
β0

�

þ L0;1

2

�
−
β0
ε2

þ Γð2Þ
cusp

ε
þ 2Γð2Þ

soft −
π2

6
β0

�
þ ðL0;2 þ L1;1ÞΓð2Þ

cusp þ ðL0;3 þ L1;2Þβ0 þOðεÞ
�
: ð26Þ

In this context we have defined the functions

L0;0 ¼ δðqþÞδðq−Þ;

L0;n ¼
ð−1Þn
μ

�
lnn−1ðqþ=μÞ

qþ=μ

�
þ
δðq−Þ þ

ð−1Þn
μ

�
lnn−1ðq−=μÞ

q−=μ

�
þ
δðqþÞ;

Ln;m ¼ ð−1Þnþm

1þ δnm

�
1

μ2

�
lnn−1ðqþ=μÞ

qþ=μ

�
þ

�
lnm−1ðq−=μÞ

q−=μ

�
þ
þ 1

μ2

�
lnn−1ðq−=μÞ

q−=μ

�
þ

�
lnm−1ðqþ=μÞ

qþ=μ

�
þ

�
: ð27Þ

Note that only the two terms proportional to L1;n in Eq. (26)
contribute to the differential radiation pattern as κ > 0.
They correspond to a next-to-leading-order K factor modi-
fying the soft eikonal, such that the soft-gluon emission
probability becomes

Sð2Þij ðqÞjκ>0 ¼
α2sðμÞ
ð2πÞ2

Q2

κ2

�
β0 ln

μ2

κ2
þ Γð2Þ

cusp þOðεÞ
�
: ð28Þ

In the CMW scale scheme [20] the Γð2Þ
cusp contribution is

absorbed into the definition of the strong coupling as

αsðμÞ → αsðμÞ
�
1þ αsðμÞ

2π
Γð2Þ

�
: ð29Þ

Upon setting μR ¼ κ we can further eliminate the explicit
β0 term in Eq. (28) [36]. In this scheme, which is
commonly used in parton showers and dipole showers
[2], the Monte Carlo simulation correctly accounts for the
effects of next-to-leading-order soft QCD corrections at the
inclusive level, i.e., integrated over all real-emission con-
figurations. This approximation is valid in principle only
for finite κ, whereas in the double-soft limit additional
corrections arise from the L0;0 and L0;n terms in Eq. (26).
However, we will detail in the following that the net effect
of implementing two-loop soft corrections fully differ-
entially in the parton-shower phase space indeed reduces to

generating Eq. (28) at the inclusive level, thereby confirm-
ing the findings of [20]. The connection to analytic soft-
gluon resummation is established in Appendix B.

III. IMPLEMENTATION OF THE
CALCULATION IN FOUR DIMENSIONS

A general scheme to implement higher-order corrections
in parton showers in the form of a modified local sub-
traction method was suggested in [13]. Here we proceed to
work out the details of the method in the double-soft limit.
Regarding the divergence structure of the full double-real
corrections, this is one of the most demanding regions due
to the overlap between various singular configurations, and
it can be viewed as a part of the complete solution which
will include the simulation of higher-order corrections also
in all triple-collinear limits.

A. Modified subtraction method

Our technique is based on the modified subtraction
method discussed in [37]. We identify the parton-shower
splitting kernels with generalized factorization terms in the
MS scheme. These terms can be computed by expanding
the differential cross section for a particular final state of
interest in terms of plus distributions corresponding to
light-cone singularities along the directions of the fast
partons. Schematically, for a process with no infrared
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divergences at the leading order, we can use the next-to-
leading-order factorization formula [26] for real-emission
corrections:

dσnþ1 ¼ dΦðnÞX
i<j;k

Dij;kðΦðnÞÞ; ð30Þ

where

Dij;kðΦðnÞÞ¼dΦðþ1Þ
ij;k jMij;k

n ðΦðnÞ;Φðþ1Þ
ij;k Þj2 αs

2π

1

sij
V̂ij;kðΦðþ1Þ

ij;k Þ:

ð31Þ
In this context, jMij;k

n j2 are the color-correlated Born matrix
elements for the n-particle final state, and dΦðnÞ is the
corresponding differential phase-space element. The V̂ij;k

are the dipole insertion operators defined in [26]. They

reduce to −TijTkS
ð0Þ
ik ðjÞ in the soft limit; cf. Eq. (2). The

corresponding one-emission differential phase-space

element is given by dΦðþ1Þ
ij;k . The Monte Carlo integration

of NLO real-emission corrections in four dimensions can
now be performed by subtracting Eq. (30) from the real-
emission corrections and computing only the remainder,
while the subtraction termsDij;k are usually integrated over

dΦðþ1Þ
ij;k analytically to extract the poles in ε. We will instead

perform these integrals in a Monte Carlo fashion. We first
parametrize the emission phase space in the collinear limit
sij → 0 in terms of the virtuality t ¼ sij and the light-cone
momentum fraction z ¼ sik=ðsik þ sjkÞ for final-state radi-
ation and z ¼ 1 − sjk=sik for initial-state radiation:

dΦðþ1Þ;F=I
ij;k ¼ Ωð1 − 2εÞdtdzt−εð1 − zÞ−εz∓εðsin2ϕiÞ−ε:

ð32Þ

Note the sign of the exponent of the z∓ε term, which
is negative for emissions from final-state particles and

positive for initial-state radiation. The integrand in Eq. (31)
can now be expanded in powers of the dimensional
regularization parameter ε, using the relation

1

v1þε ¼ −
1

ε
δðvÞ þ

X∞
i¼0

εn

n!

�
lnnv
v

�
þ
; ð33Þ

which is applied to both the t and the z integral. The 1=ε
poles generated in this manner will cancel against the
virtual corrections and renormalization terms. This produ-
ces a nonlocality of the finite remainder which is corrected
by the resummation, as the first-order expansion of the
parton shower generates the complementary distribution
of the real-emission corrections in phase space [37]. In
order to compute the finite remainder, we simply need to
compute the Oðε0Þ terms of Eq. (33) applied to Eq. (31).
This can be done fully differentially in the remaining phase-
space variables; however, we need to take into account that
the underlying n-particle phase space and matrix element
have an ε dependence that contributes finite terms when
combined with the poles from real and virtual corrections.
This technique was used in [13] to obtain the matching
coefficients for the flavor-changing splitting functions. In
the following we will describe how it is implemented in the
context of the two-loop soft corrections.

B. Separation of iterated
double-collinear end points

First, we must account for the fact that there is no
equivalent of Ln;m in the parton shower. The factorized
plus distributions are instead replaced by a double-plus
distribution and two related end point terms. We define the
double-plus distribution by its action on a test function

½fðx; yÞ�þþgðx; yÞ ¼ fðx; yÞðgðx; yÞ − gð0; 0ÞÞ: ð34Þ

Using this relation, we can write Eqs. (25) and (26) as

Sð1Þij ðqÞ ¼
αsðμÞ
2π

Q2

�
L0;0

ε2
þ L0;1

ε
−
π2

12
L0;0 þ ðL0;2 − L0;1Þ þ L̃1;1 þOðεÞ

�
;

Sð2Þij ðqÞ ¼
α2sðμÞ
ð2πÞ2 Q

2

�
L0;0

2

�
−
3β0
2ε3

þ Γð2Þ
cusp

2ε2
þ Γð2Þ

soft

ε

�
þ L0;1

2

�
−
β0
ε2

þ Γð2Þ
cusp

ε

�
þ L0;0

2

�
−
π2

12
Γð2Þ
cusp þ ζ3

3
β0

�

þ L0;1Γ
ð2Þ
soft þ

�
L0;3 − L0;2 −

π2

12
L0;1

�
β0 þ ðL0;2 − L0;1ÞΓð2Þ

cusp þ L̃1;2β0 þ L̃1;1Γ
ð2Þ
cusp þOðεÞ

�
; ð35Þ

where

L̃n;m ¼ ð−1Þnþm

1þ δnm

1

μ2

�
μ2

qþq−

�
lnn−1

qþ
μ
lnm−1 q−

μ
þ lnm−1 qþ

μ
lnn−1

q−
μ

��
þþ

: ð36Þ
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Note that because L0;n is located at either q− ¼ 0 or
qþ ¼ 0, the corresponding terms are not included in a
standard parton shower. In order to add these contributions
we will need to implement end point terms in the (iterated)
double-collinear limit. The relevant kinematical configu-
rations are depicted in Fig. 3. They can be explained as
follows: Suppose that a single soft momentum q is emitted
off the two lightlike partons i and j as in Fig 3(a). As
q− ¼ 0 or qþ ¼ 0, Eqs. (9) and (10) imply qkpi or qkpj,
and hence all terms L0;n are related to single soft-gluon
radiation in the collinear limit. In the case of double-soft
radiation of momenta p1 and p2, depicted in Fig. 3(b), the
situation is similar but slightly more involved. Because the
radiated partons are both in the final state, si1 and si2 must
have the same sign. The limit q− ¼ 0 then implies that
si1 þ si2 ¼ 0, which can only be fulfilled if si1 ¼ si2 ¼ 0.
Therefore, pikp1 and pikp2, which leads to p1kp2, such
that s12 ¼ 0 and si12 ¼ 0. The conclusion is that all L0;n

terms correspond to the regions where soft emissions are
collinear to one of the Wilson lines. If there are two
emissions, they must be collinear to the same Wilson line.
The change in color flow generated by the soft radiation
then reduces the phase space available to subsequent gluon
radiation by a factor proportional to the light-cone momen-
tum fraction of the gluon that is color adjacent to the
anticollinear Wilson line. Let us assume that the corre-
sponding dipole is spanned by pj and p1, and then the

phase space for subsequent gluon radiation is α1Q2. As we
are interested in the soft-gluon limit α1 → 0, the remaining
phase space is typically close to zero. Any further QCD
radiation from the j1 dipole will be suppressed by α1, and
radiation from the remaining dipoles cannot occur because
si1 ¼ si2 ¼ s12 ¼ 0. It follows that the effect of the collinear
configurations corresponding to L0;n is to generate a radiator
of reduced invariant mass, oriented along the light-cone
directions of the original Wilson lines. The phenomenologi-
cally relevant branching probability for such configurations
cannot be determined in the double-soft limit alone but
requires in addition the computation of end point contribu-
tions in the triple-collinear limit. We therefore postpone the
discussion of these terms to a forthcoming publication.

C. Differential subtraction terms

Wewill now derive the modified subtraction terms needed
for implementing the two-loop soft corrections in the parton
shower. Due to the non-Abelian exponentiation theorem
[27,28] it is sufficient to consider the gluon splitting
functions and include the complete soft eikonal instead of
the partial-fractioned term, Eq. (2). However, we must
include subleading-color configurations, corresponding to
double-soft-gluon radiation off the hardWilson lines in order
to account for coherence effects. The subtraction terms
related to the functions L̃n;m in Eq. (35) can be defined as

Sðqq̄Þct
ij ð1; 2Þ ¼ TRðSðcollÞ;2

ij ð1; 2Þ − 2SðcollÞ;1
ij ð1; 2ÞÞ;

SðggÞct
ij ð1; 2Þ ¼ CA

�
Sðs:o:Þ
ij ð1; 2Þ − 1

2
SðremÞ
ij ð1; 2Þ − 2SðcollÞ

ij;B ð1; 2Þ þ ð1 − εÞSðcollÞ;1
ij ð1; 2Þ

�
: ð37Þ

where Sðs:o:Þ
ij , SðremÞ

ij and SðcollÞ
ij are given by Eqs. (5) and (7), respectively. In the collinear limit, Eqs. (37) reduce to

Sct
ijð1; 2Þ ¼ gμρgνσJ

μ
ijð1; 2ÞJ�νij ð1; 2Þ

Pρσðz1Þ
s12

; ð38Þ

where z1 is the light-cone momentum fraction of p1 in the direction of p1 þ p2 − s12=ðsn1 þ sn2Þn, with n an auxiliary
lightlike vector satisfying ðp1 þ p2Þn ≠ 0. The spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting functions
PμνðzÞ are given by

Pμν
gqðzÞ ¼ TR

�
−gμν þ 4zð1 − zÞ k

μ
⊥kν⊥
k2⊥

�
;

Pμν
ggðzÞ ¼ 2CA

�
−gμν

�
z

1 − z
þ 1 − z

z

�
− 2ð1 − εÞzð1 − zÞ k

μ
⊥kν⊥
k2⊥

�
: ð39Þ

(a) (b)

FIG. 3. Illustration of the kinematical configurations corresponding to the end point contributions L0;n in Eq. (35) in one-particle (left)
and two-particle (right) emissions. Note in particular that all partons in the two-particle configuration are forced to be collinear to the
same Wilson line; cf. the explanation in Sec. III B.
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The soft-gluon current Jμij is given by the standard expres-
sion in the eikonal limit:

JμijðqÞ ¼
pμ
i

2piq
−

pμ
j

2pjq
: ð40Þ

Note the minus sign in this expression, which arises
from color conservation along the hard Wilson line, i.e.,
Ti ¼ −Tj. In processes with a nontrivial color structure this
condition holds only at leading color. We rewrite Eq. (40)
such that the transversality of the current becomes manifest:

JμijðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pipj

2ðpiqÞðpjqÞ
r

jμij;⊥ðqÞ;

where jμij;⊥ðqÞ ¼
ðpjqÞpμ

i − ðpiqÞpμ
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðpipjÞðpiqÞðpjqÞ
p : ð41Þ

The transverse momentum in Eq. (39) can be parametrized
as kμ⊥ ¼ jμ12;⊥ðnÞ. We can now prove that ϕij

12 defined in

Eq. (7) is indeed an azimuthal angle, as cosϕij
12 ¼

k⊥jij;⊥ðp1 þ p2Þ, and we can replace z1z2 → sn1sn2=
ðsn1 þ sn2Þ2. In order to obtain the correct differential
radiation pattern in the leading-order simulation, we imple-
ment 2cos2ϕij

12 as a correction factor applied to the purely
collinear parts of the g → qq̄ and g → gg splitting functions;
see Sec. III D for details.
The pure soft terms of Eq. (37) can be rewritten as

SðsctÞ
ij ð1; 2Þ ¼ 1

2
ðSðsctÞ

ij;A ð1; 2Þ þ Sðs:o:Þ
ij ð1; 2ÞÞ; ð42Þ

where

SðsctÞ
ij;A ð1; 2Þ ¼ Sðs:o:Þ

ij ð1; 2Þ − SðremÞ
ij ð1; 2Þ

¼ sij
ðsi1 þ si2Þðsj1 þ sj2Þ

×
�

si2
si1s12

þ sj2
sj1s12

−
sij

si1sj1

�
þ ð1 ↔ 2Þ:

ð43Þ

The first contribution in Eq. (43) can be interpreted as the
eikonal expression for emission of the combined soft-gluon
cluster 12 from the hard Wilson lines i and j and the
subsequent radiation of gluon 2 off the leading-color
dipoles spanned by i1, j1 or the subleading-color dipole
spanned by ij. The second term describes the same
situation with the two gluons interchanged. The last
term is a negative contribution arising from the dipole
spanned by i and j. This contribution is subleading in the
global 1=Nc expansion, but it contributes at leading color
in the double-soft limit and must therefore be included in
the parton-shower simulation as the first correction to

leading-color evolution. Partial fractioning Eq. (43) follow-
ing the approach in [26], we find

SðsctÞ
ij;A ð1;2Þ¼SðsctÞ

i;j;Að1;2Þþð1↔ 2Þþði↔ jÞþ
�
1↔ 2

i↔ j

�
;

ð44Þ

where

SðsctÞ
i;j;Að1; 2Þ ¼

sij
ðsi1 þ si2Þðsj1 þ sj2Þ

�
1

s12

si2
si1 þ s12

þ 1

si1

�
si2

si1 þ s12
−

sij
si1 þ sj1

��
: ð45Þ

Equation (45) can be interpreted as the soft enhanced
part of the dipole shower splitting function in the limit
where partons i, 1 and 2 become triple collinear, with
parton j defining the anticollinear direction. Note that in the
i1-collinear limit, Eq. (45) develops an integrable singu-
larity that vanishes upon azimuthal integration. This prob-
lem will be discussed in Sec. III D. The only remaining
two-particle singularity is approached as partons 1 and 2
become collinear.
The integrals of Eq. (43) have been computed in

Eqs. (19) and (A19). They combine to give

SðsctÞij;A ðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2

×

��
11

6ε
þ 67

18
−
π2

3
þ ε

�
202

27
−
11

18
π2 − 4ζ3

��
CA

−
�
2

3ε
þ 10

9
þ ε

�
56

27
−
2

9
π2
��

TRnf þOðε2Þ
�
:

ð46Þ

Upon defining approximate virtual corrections as

ᾱ2s
ð2πÞ2

Q2

κ2
CA

�
−

1

ε2
þ π2

6
− 3εζ3

�
; ð47Þ

we would readily obtain the desired result, Eq. (22), at
OðεÞ. We have verified that the corresponding subtrac-
ted real-emission contribution could be computed directly
in four dimensions and cross-checked the finite term
against the difference between Eqs. (22) and (46).

Nevertheless, SðsctÞ
ij;A is not a suitable local subtraction term

for Monte Carlo simulation, because the difference to
the full real-emission correction contains integrable
singularities. In the following section, we will therefore
devise a technique to simulate the complete soft sub-
traction term, Eq. (42), by reweighting the leading-order
parton shower.
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D. Monte Carlo implementation details

We employ the techniques described in [13,21] to generate the final-state momenta, and we evaluate the splitting
functions directly in terms of the kinematic invariants snm with n;m ∈ f1; 2; i; jg. The kinematics mapping in 2 → 3
branchings is based on [26,38] and is summarized in Appendix A of [21]. The kinematics mapping and (D-dimensional)
phase-space factorization in 2 → 4 splittings was derived in [13], Appendix A. Note that in both cases we use the Lorentz-
invariant and numerically stable technique of [13] to construct the transverse components of the momenta.
In order to simulate Eq. (45) in the parton shower, we must correct the leading-order soft radiation pattern. First we need

to account for the fact that the eikonal generated by the leading-order parton shower is not identical to sij=ððsi1 þ
si2Þðsj1 þ sj2ÞÞ if the soft-gluon emission is followed by a subsequent branching of any of the emerging momenta. In the

transition ðf{12; |̃Þ → ð{̃;f12; jÞ followed by ðf12; {̃Þ → ð1; 2; iÞ, we obtain instead the following probability for the emission of
the final soft cluster f12:

p̃ipj

2ðp̃ip̃12Þðp̃12pjÞ
¼

�
pipj

pip1 þ pip2 � p1p2

pip1 þ pip2

��
2ðpip1 þ pip2 � p1p2Þ

�
pjp1 þ pjp2 −

p1p2

pip1 þ pip2

pipj

��
−1

¼ sij
ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12

: ð48Þ

The similarity of the kinematics mapping in final-state splittings with a final- and initial-state spectator [21,26] implies that
Eq. (48) holds for both final- and initial-state Wilson lines, i (corresponding to the � sign). Note that the term proportional
to s12 in the denominator cannot be neglected in the double-soft limit. We can correct the mismatch between Eq. (48) and
the target distribution sij=ððsi1 þ si2Þðsj1 þ sj2ÞÞ in Eq. (43) by applying a reweighting factor in the branching of the soft

gluon ðf12; {̃Þ → ð1; 2; iÞ:

w12
ij ¼ 1 −

sijs12
ðsi1 þ si2Þðsj1 þ sj2Þ

: ð49Þ

In the transition ðf{12; |̃Þ → ðe{1; 2̃; jÞ followed by ðe{1; 2̃Þ → ði; 1; 2Þ, with i in the final state, we obtain the following
probability for the emission of the final soft cluster f12:

p̃i1pj

2ðp̃i1p̃2Þðp̃2pjÞ
¼

�
pipj þ p1pj −

pip1

pip2 þ p1p2

p2pj

��
2ðpip2 þ p1p2 þ pip1Þ

�
pip2 þ p1p2 þ pip1

pip2 þ p1p2

p2pj

��
−1

¼ ðsij þ sj1Þðsi2 þ s12Þ − si1sj2
ðsi1 þ si2 þ s12Þ2sj2

: ð50Þ

If the radiator e{1 is in the initial state, we obtain instead Eq. (48) with � → −. The weight factor arising from Eq. (50)
generates pseudosingularities in the parton-shower phase space, which is undesirable in a Monte Carlo simulation. We will
therefore choose to implement a different strategy in the leading-order parton shower. The kinematics in the soft enhanced
part of the i1-collinear emission will be chosen according to the identified particle prescription of [26]. Note that due to our
definition of the evolution and splitting variable in final-state evolution with a final-state spectator [21], the Jacobian factor
related to this modification is unity. Eventually, all kinematical correction factors are then given by Eq. (49).
Upon including the phase-space correction factors, the collinear terms in the gluon-splitting functions implementing the

spin correlations present in Eq. (38) read

PðcollÞ
gg;ij ð1; 2Þ ¼ 2CAzð1 − zÞ2w12

ij cos
2ϕij

12;

PðcollÞ
gq;ij ð1; 2Þ ¼ −TR2zð1 − zÞ2w12

ij cos
2ϕij

12: ð51Þ
The remaining phase-space effects leading to SðsctÞ

i;j;A are taken into account by multiplying the 1-soft parts of the
i1- and 12-collinear splitting functions by w12

ij . Finally, we need to account for the additional strongly ordered term in
Eq. (42). This is achieved by means of the identities

sij
si1s12sj2

¼ si2
si1s12

�
sij

si2sj2 þ si1sj1

�
þ sj1
sj2s12

�
sij

si2sj2 þ si1sj1

�
;

s2ij
si1sj1si2sj2

¼ sij
si1sj1

�
sij

si1sj1 þ si2sj2

�
þ sij
si2sj2

�
sij

si1sj1 þ si2sj2

�
: ð52Þ
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Using Eq. (48) we can then write

SðsctÞ
i;j ð1; 2Þ ¼ sij

ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12

�
1

s12

si2
si1 þ s12

þ 1

si1

�
si2

si1 þ s12
−

sij
si1 þ sj1

��
w12
ij þ w̄12

ij

2
; ð53Þ

where we have defined the weight factor

w̄12
ij ¼ ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12

si1sj1 þ si2sj2
: ð54Þ

Note that the negative contribution in Eq. (53) does not have a parton-shower correspondence. At the same time, we have so
far omitted the squared leading-order contribution arising from Eq. (1). We can correct for both mismatches by adding a
subleading-color contribution to the i1-collinear terms of the splitting function of the Wilson lines. This term reads

PðslcÞ
ij;A ð1; 2Þ ¼

2sij
si1 þ sj1

w12
ij þ w̄12

ij

2
ðC̄ij − CAÞ; where C̄ij ¼

�
2CF if i and j quarks;

CA else:
ð55Þ

The weight factor of the C̄ij term in Eq. (55) was derived by
considering its diagrammatic representation, which arises
from the Abelian parts of Figs. 2(a) and 2(b) [25]. We
may also consider the result of the integration in Sec. II
and its Fourier transform in impact parameter space;
cf. Appendix B. In fact, Eqs. (A10) and (A18) generate
the exact same result up to Oð1Þ as the square of the
leading-order term, Eq. (B4), hence proving that Eq. (55) is
a valid form in the double-soft region that will allow us to
reproduce the squared leading-order term at the integrated
level. In our numerical implementation we include Eq. (55)
in the i1-collinear sector with spectator 2. This means that
we misidentify in principle the related evolution variable,
which should be κ2 in the notation of [21] and hence

proportional to si1s1j instead of si1s12. We correct for this
effect by reweighting with a ratio of strong couplings, taken
at the current vs the correct evolution variable, and by
setting Eq. (55) to zero as the evolution variable falls below
the parton-shower cutoff. A second subleading-color con-
tribution is given by the difference

PðslcÞ
ij;B ð1; 2Þ ¼

2si2
si1 þ s12

w12
ij þ w̄12

ij

2
ðCA − C̄ijÞ: ð56Þ

It accounts for the fact that the second soft emission off
the Wilson lines occurs with the color charge CA due to the
interference with a color octet. We can now define the
combined subleading-color contribution to the parton-
shower evolution as

PðslcÞ
ij ð1; 2Þ ¼ PðslcÞ

ij;A ð1; 2Þ þ PðslcÞ
ij;B ð1; 2Þ ¼ ðCA − C̄ijÞ

�
2si2

si1 þ s12
−

2sij
si1 þ sj1

�
w12
ij þ w̄12

ij

2
: ð57Þ

Note that PðslcÞ
ij vanishes in the i1-collinear limit, such that the correct color factor is recovered in collinear evolution.

The remaining parts of the improved leading-order, fully differential splitting functions related to the 12-collinear, 1-soft
final-state singularities are given by the leading-color expressions

ðPqqÞk2ð1; iÞ ¼ CF

�
2si2

si1 þ s12

w1i
2k þ w̄1i

2k

2

�
;

ðPggÞijð1; 2Þ ¼ CA

�
2si2

si1 þ s12

w12
ij þ w̄12

ij

2
þ w12

ij ð−1þ zð1 − zÞ2cos2ϕij
12Þ

�
;

ðPgqÞijð1; 2Þ ¼ TRw12
ij ð1 − 4zð1 − zÞcos2ϕij

12Þ: ð58Þ

Note that we omitted the collinear parts of the splitting
functions related to the Wilson lines i and j, as these are
unchanged by the double-soft corrections. The notation is
such that the subscripts indicate the partons which are color
adjacent to the splitting products, while the superscript
indicates one that is color adjacent to the adjacent parton. In
particular, the color connection in ðPqqÞk2ð1; iÞ would be

2 ↔ 1 ↔ i ↔ k. Note that the ordering of the arguments
and lower indices is important. This is apparent in the 12-
collinear limit, where the gluon-to-gluon kernel receives a
second contribution, ðPggÞljið2; 1Þ, which is related to a
different evolution variable in the dipole shower approach
because it corresponds to the 12-collinear, 2-soft singularity
[21]. The leading-order g → gg splitting function in the

LEADING-COLOR FULLY DIFFERENTIAL TWO-LOOP … PHYS. REV. D 98, 074013 (2018)

074013-11



collinear limit is recovered only upon adding ðPggÞkijð1; 2Þ
and ðPggÞljið2; 1Þ. The pure collinear term in ðPqqÞki ð1; 2Þ
could in principle be modified by the weight, Eq. (49), but
there is no indication, based on the double-soft limit, as to
whether this would constitute an improvement of the parton
shower or not. We postpone the analysis of this term to a
future publication.

We emphasize that, despite the reweighting of the
leading-order parton shower to the full real-emission
pattern of the double-soft limit, a hard correction remains
to be computed using the techniques of [13]. This correc-
tion arises because the leading-order parton shower does
not fill the complete two-emission phase space; see for
example [39]. The correction is given by

S̃ðggÞ
ij ð1; 2Þ ¼ 2sij

ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12
½ðPggÞijð1; 2Þ þ ðPiiÞijð1; 2Þ þ PðslcÞ

ii ð1; 2Þ�

×

�
1 − Θ

�ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12
Sij;12

−
si1s12
Si;12

��
Θ
�ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12

Sij;12
− tc

�

þ ð1 ↔ 2Þ þ ði ↔ jÞ þ
�
1 ↔ 2

i ↔ j

�
;

S̃ðqqÞ
ij ð1; 2Þ ¼ 2sij

ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12
ðPgqÞijð1; 2Þ

×

�
1 − Θ

�ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12
Sij;12

−
si1s12
Si;12

��
Θ
�ðsi1 þ si2Þðsj1 þ sj2Þ − sijs12

Sij;12
− tc

�

þ ð1 ↔ 2Þ þ ði ↔ jÞ þ
�
1 ↔ 2

i ↔ j

�
; ð59Þ

where tc is the infrared cutoff of the parton shower. The two terms in the Θ function correspond to the ordering variables in
the first and second emission, respectively. To simplify the notation we have defined Si;12, which is given as si12 in the case
of final-state Wilson lines and 2piðp1 þ p2Þ in the case of initial-state Wilson lines. Correspondingly, Sij;q is given by Q2

for two final-state Wilson lines, 2pipj for two initial-state Wilson lines, and 2piðpj þ qÞ if i is in the initial and j is in the
final state [21].
Following the discussion in Sec. III A, the Oð1Þ remainder in Eqs. (35) is implemented as an end point contribution at

s12 ¼ 0 and si1 ¼ 0, si2 ¼ 0, sj1 ¼ 0, sj2 ¼ 0 for all κ > 0. This allows us to simulate the radiation pattern fully
differentially at the next-to-leading order. The related end point terms are given by

S̃ðcuspÞ
gq;ij ð1; 2Þ ¼ δðs12Þ

2sij
si12sj12

TRð2zð1 − zÞ þ ð1 − 2zð1 − zÞÞ lnðzð1 − zÞÞÞ;

S̃ðcuspÞ
gg;ij ð1; 2Þ ¼ δðs12Þ

2sij
si12sj12

2CA

�
ln z
1 − z

þ lnð1 − zÞ
z

þ ð−2þ zð1 − zÞÞ lnðzð1 − zÞÞ
�
;

S̃ðcuspÞ
wl;ij ð1; 2Þ ¼ −δðsi1Þ

1

2

CA

2

2sij
si12sj12

�
ln zi
1 − zi

þ lnð1 − ziÞ
zi

�
þ ð1 ↔ 2Þ þ ði ↔ jÞ þ

�
1 ↔ 2

i ↔ j

�
: ð60Þ

The factor 1=2 in S̃ðcuspÞ
gq;ij removes the double counting of

soft-collinear regions when swapping the role of i and j. It
would in principle be desirable to work with partial
fractions of the eikonals sij=ðsi1sj1Þ and sij=ðsi2sj2Þ.
However, these partial fractions cannot be defined unam-
biguously in the exact limits si1 → 0, sj1 → 0, si2 → 0, and
sj2 → 0. One possible solution would be to introduce an
additional rapidity regulator, similar to [40] or [41,42]. We
leave the investigation of this possibility to future work. We
implement the contributions proportional to the beta
function as a double end point which contributes an

additional term to the soft enhanced parts of the leading-
order splitting functions1:

S̃ðcollÞ
gg;ij ðqÞ ¼ δðq2Þ 2sij

siqsjq
ln

μ2sij
siqsjq

β0: ð61Þ

1We could in principle implement the terms proportional to β0
in the same manner as Eq. (60) by splitting them into real and
virtual contributions, corresponding to uncanceled infrared
and ultraviolet singularities. When μ ≈ κ, the impact on the
Monte Carlo predictions will be minor, and we will therefore
leave the investigation of this possibility to future work.
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IV. NUMERICAL RESULTS

In this section we present numerical cross-checks of our
algorithm, and we compare the magnitude of the correc-
tions generated by the double-soft splitting functions to the
leading-order parton-shower result in the CMW scheme
[20]. We restrict the analysis to pure final-state evolution,
but we stress that the formulas relevant to initial-state
evolution have also been presented in Sec. III D. We have
implemented our algorithm into the DIRE parton showers,
which implies two entirely independent realizations within
the general purpose event generation frameworks Pythia
[43,44] and Sherpa [45,46] that are cross-checked point by
point and in the full simulation at high statistical precision.
We use the strong coupling according to the CT10nlo PDF
set [47]. The process under investigation is eþe− →
hadrons at LEP I energy (91.2 GeV). We choose to
exemplify the effects of the double-soft corrections using
the kT jet rates y23 and y34 in the Durham algorithm [48]
and the angle α34 between the two softest jets [49].
Figure 4 shows the impact of the phase-space weights

w12
ij and w̄12

ij , defined in Eqs. (49) and (54). These weights
generate a strong suppression of the radiation probability.
The effect is eventually compensated by other corrections
(see Fig. 8), such that a fairly good agreement with the
leading-order approximation is obtained. The lower panels

in Fig. 4 show a comparison between the results from
Pythia against those from Sherpa. The two predictions
agree up to statistical fluctuations, providing a strong cross-
check on the consistency of our implementation. Figure 5
shows the impact of the spin correlations implemented by
the cos2 ϕij

12 dependence of Eq. (7) compared to a spin-
averaged simulation. While the related effects are striking
when investigating the zð1 − zÞ-dependent parts of the
splitting functions in isolation, they are greatly diminished
in the complete calculation. Figure 6 displays the impact of
the generic subleading-color corrections in Eq. (57). The
effects are generally smaller than expected based on a naive
estimate [i.e.,Oð1=2NcÞ], because Eq. (57) is suppressed in
the collinear region; cf. the discussion in Sec. III D.
Figure 7 shows the impact of the subtracted real-emission
corrections, Eq. (59), and the end point terms, Eq. (60), on
the radiation pattern in q → qðggÞ, q → qðq0q̄0Þ and q →
qðqq̄Þ splittings, where the particles in parentheses are the
soft emissions. We have verified that exact agreement
between our implementations is obtained also in the case
of g → gðggÞ and g → gðqq̄Þ. The numerical impact of
these corrections is similar to the quark-induced case. Note
that the 3 → 4 jet rates receive corrections from the
subtracted real emission only, while the 2 → 3 jet rates
are impacted by both the subtracted real-emission and the
end point terms.

FIG. 4. The effect of the phase-space weights w12
ij and w̄12

ij , defined in Eqs. (49) and (54), on the leading-order parton-shower evolution,
limited to two emissions. We show the differential jet rate y34 in the Durham algorithm [48] as a proxy for the rate change and the angle
defined in Eq. (7) as a proxy for the impact on differential distributions. The process considered is eþe− → hadrons at LEP I energies.
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FIG. 5. The effect of spin correlations in SðcollÞ
ij;A compared to uncorrelated parton-shower evolution, including the phase-space

suppression investigated in Fig. 4. All simulations are limited to two emissions. The left and middle panels show the impact on the pure
zð1 − zÞ contribution (top panels) and on the complete g → gg and g → qq̄ splitting function (bottom panels). In both cases the
production of the gluon is described by the eikonal part of the q → qg splitting function only. The right panel shows the effect of spin
correlations on the complete two-emission pattern. In order for the results to be as similar as possible, the weight w12

ij from Eq. (49) is
included. The process considered is eþe− → hadrons at LEP I energies.

FIG. 6. The impact of the generic subleading-color corrections, Eq. (57), on the radiation pattern in eþe− → hadrons at LEP I energies.
The reference result (red line) includes all next-to-leading-order effects investigated in Figs. 4 and 5. All simulations are limited to two
emissions. Note that the simulation results of the subleading-color corrections alone (green line) and the baseline (red line) do not add up
to the full result because of the different Sudakov factors.
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Figure 8 compares the results from a leading-order
simulation according to [21] to our complete next-to-
leading-order prediction. In the leading-order case we
present the calculation with and without the CMW scheme
[20]. We observe that the CMW prediction matches the
rates of the full next-to-leading-order result for the Durham
jet rate y23 fairly well in the intermediate-y region, but there
are some discrepancies in the low- and high-y region. In
addition, there is a considerable rate change in y34. The
angular observable α34 shows deviations between the
CMW prediction and the full next-to-leading-order result
at very small and very large values. In all cases, the scale
uncertainty is greatly reduced at the next-to-leading order,
and the next-to-leading-order predictions lie within the
leading-order uncertainty bands. Note in particular that our

result presents the first genuine estimate of the perturbative
uncertainty in a parton-shower simulation. Some earlier
attempts, despite generating variations of the same order,
treated the problem in an approximate manner [50]. Other
techniques [14,51] assumed the scale variations on collin-
ear parts of the splitting functions to be identical to the soft
parts and therefore generate artificially small uncertainty
bands, which may not reflect the true perturbative precision
at the order to which the computation is performed.

V. CONCLUSIONS

We have presented a calculation of the next-to-leading-
order corrections to soft-gluon radiation, differentially in
the one-emission phase space. This is a crucial ingredient in
the construction of a next-to-leading-order parton shower.

FIG. 7. The impact of subtracted real-emission corrections, Eq. (59), and end point terms, Eq. (60) on the radiation pattern in
eþe− → hadrons at LEP I energies. We show the contributions from q → qgg (left) and q → qq0q̄0 (right) to the differential 2 → 3 (red
lines) and 3 → 4 (right) jet rates in the Durham algorithm.

FIG. 8. Scale variations in the leading-order and next-to-leading-order (soft) parton-shower simulation of eþe− → hadrons at LEP I
energies at parton level. We compare to both the plain leading-order predictions (green curve) and the result in the CMW scheme
(blue curve).

LEADING-COLOR FULLY DIFFERENTIAL TWO-LOOP … PHYS. REV. D 98, 074013 (2018)

074013-15



We have demonstrated, for the first time, that the soft next-
to-leading-order contribution to the evolution of color
dipoles can be obtained in a modified subtraction scheme,
such that both one- and two-emission terms are amenable to
Monte Carlo integration in four dimensions. The two-loop
cusp anomalous dimension emerges naturally in this
method. We observe fair agreement between the results
of the fully differential simulation and the approximate
treatment using the CMW scheme, where the two-loop
cusp anomalous dimension is included in an inclusive
manner. The similarity of the results is reassuring, because
the individual higher-order contributions have kinematical
dependencies that can differ strongly from the iterated
leading-order result. Our calculation can be seen as a
confirmation that the existing leading-order parton showers
developed over the past decades have been amended by the
dominant effects arising from the higher-order soft correc-
tions, but it also confirms that the higher-order corrections
do have an impact beyond a simple K factor. We are now in
place to compute these effects without the need for
approximations and to include them in phenomenological
studies as well as experimental analyses at the particle

level. This allows us in particular to obtain meaningful
estimates of the renormalization scale uncertainty.
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APPENDIX A: REAL-EMISSION CORRECTIONS
TO SOFT-GLUON RADIATION

This Appendix details the computation of the real-
emission corrections listed in Eqs. (19) and (20). We
perform the calculation separately in the strong ordering
approximation, for the soft remainder term, and for the two
collinear contributions in Eqs. (7).

1. Strong ordering approximation

The real corrections in the strong ordering approxima-
tion, Eq. (5), lead to one nontrivial integral over transverse
momenta, which is given by

Ωð1 − 2εÞ
Z

π

0

dϕ
ðsin2ϕÞ−ε

s12
¼ Ωð1 − 2εÞ

Q2ðα1β2 þ α2β1Þ
Z

1

0

dχ
4−εðχð1 − χÞÞ−1

2
−ε

1þ K

�
1 −

2Kχ
1þ K

�
−1

¼ Ωð2 − 2εÞ
Q2ðα1β2 þ α2β1Þ

2F1ð1; 12 − ε; 1 − 2ε; 2K=ð1þ KÞÞ
1þ K

¼ Ωð2 − 2εÞ
Q2

�ðα1β2Þ2εΘðα1β2 − α2β1Þ
ðα1β2 − α2β1Þ1þ2ε 2F1

�
−ε;−2ε; 1 − ε;

α2β1
α1β2

�
þ ð1 ↔ 2Þ

�
: ðA1Þ

Here we have defined the intermediate variables χ ¼ ð1þ cosϕÞ=2 andK ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1β1α2β2

p
=ðα1β2 þ α2β1Þ. The last line was

introduced in [52].2 It is obtained by the following three transformations of the hypergeometric function:

2F1

�
2a; c −

1

2
; 2c − 1;

2z
zþ 1

�
¼

�
1þ zÞ2a2F1

�
a; aþ 1

2
; c; z2

�
;

2F1

�
a
2
;
aþ 1

2
; a − bþ 1;

4z
ð1þ zÞ2

�
¼ ð1þ zÞa2F1ða; b; a − bþ 1; zÞ; if jzj < 1;

2F1ða; b; c; zÞ ¼ ð1 − zÞ−a−bþc
2F1ðc − a; c − b; c; zÞ: ðA2Þ

Using Eq. (A1), the full integral of the first term in the strong ordering approximation, Eq. (5), reads

SðsoÞij;AðqÞ ¼
Z

dDp1

ð2πÞD−1
dDp2

ð2πÞD−1 δ
þðp2

1Þδþðp2
2ÞF ijð1; 2Þg4sμ4ε

sij
si1s12s2j

¼ ᾱ2s
ð2πÞ2

�
κ

Q

�
4ε
Z

dβ1
β1þε
1

dα2
α1þε
2

�ðα1β2Þ2εΘð1 − α2β1
α1β2

Þ2F1ð−ε;−2ε; 1 − ε; α2β1α1β2
Þ

ðα1β2Þεðα1β2 − α2β1Þ1þ2ε þ ð1 ↔ 2Þ
�
: ðA3Þ

2Note that in contrast to [52] the subsequent integrals have a divergence at α2β1 → α1β2 and vice versa; hence we cannot replace
2F1ð−ε;−2ε; 1 − ε; zÞ by its leading term in ε.
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Here we have split the integration range in applying the second transformation in Eq. (A2) in order to guarantee that the
argument of the hypergeometric function is between zero and one in the entire range of integration. Light-cone momentum
conservation takes the form α ¼ α1 þ α2 and β ¼ β1 þ β2. This suggest the parametrization α2 ¼ αs and β1 ¼ βt, with s
and t ranging from zero to one. We remap the integration variables to the unit hypercube using the additional
transformations

u ¼ t
1 − s

; v ¼ s
1 − t

and u ¼ 1 − s
t

; v ¼ 1 − t
s

ðA4Þ

in the first and second integral, respectively. We obtain

SðsoÞij;AðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2

Z
du
u1þε

dv
v1þε

ð1þ uvÞð1 − uvÞ2ε
ðð1 − uÞð1 − vÞÞ1þ2ε 2F1ð−ε;−2ε; 1 − ε; uvÞ; ðA5Þ

where we have defined κ2 ¼ Q2αβ. Changing variables to x ¼ uv and y ¼ ð1 − vÞ=ð1 − uvÞ we can write

SðsoÞij;AðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2

Z
dx
x1þε

dy
y1þ2ε

ð1þ xÞð1 − yð1 − xÞÞ2ε
ðð1 − xÞð1 − yÞÞ1þ2ε 2F1ð−ε;−2ε; 1 − ε; xÞ: ðA6Þ

We first perform the y integration and obtain

SðsoÞij;AðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2
Γð−2εÞ2
Γð−4εÞ

Z
dx
x1þε

1þ x
ð1 − xÞ1þ2ε 2F1ð−2ε;−2ε;−4ε; 1 − xÞ2F1ð−ε;−2ε; 1 − ε; xÞ: ðA7Þ

The last integral can be solved by expanding the two hypergeometric functions up to Oðε3Þ and expanding the result up to
the finite term. We use HypExp [53,54] and obtain

SðsoÞij;AðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2

�
3

ε2
−
4

3
π2 − 22εζ3 þOðε2Þ

�
: ðA8Þ

The integral of the second term in the strong ordering approximation can be obtained exploiting the symmetry in p1 and p2.
The final term is given by

SðsoÞij;BðqÞ ¼
Z

dDp1

ð2πÞD−1
dDp2

ð2πÞD−1 δ
þðp2

1Þδþðp2
2ÞF ijð1; 2Þg4sμ4ε

s2ij
si1s1jsi2s2j

¼ ᾱ2s
ð2πÞ2

Q2

κ2

Z
dβ1
β1þε
1

dα2
α1þε
2

1

ðα1β2Þ1þε : ðA9Þ

We use again the parametrization α2 ¼ αs and β1 ¼ βt, with s and t ranging from zero to one. The integral can be evaluated
in terms of beta functions and we obtain

SðsoÞij;BðqÞ ¼
ᾱ2s

ð2πÞ2
Q2

κ2

�
4

ε2
−
4

3
π2 − 16εζ3 −

4

45
ε2π4 þOðε3Þ

�
: ðA10Þ

The complete symmetrized result in the strong ordering approximation is

SðsoÞij ðqÞ ¼ 1

2
ð2SðsoÞij;Að1; 2Þ − SðsoÞij;Bð1; 2ÞÞ ¼

ᾱ2s
ð2πÞ2

Q2

κ2

�
1

ε2
−
2

3
π2 − 14εζ3 þOðε2Þ

�
: ðA11Þ

2. Soft remainder function

The full integral of the first term in the remainder function, Eq. (7), reads

SðremÞ
ij;A ðqÞ ¼

Z
dDp1

ð2πÞD−1
dDp2

ð2πÞD−1 δ
þðp2

1Þδþðp2
2ÞF ijð1; 2Þg4sμ4ε

si1sj2 þ si2sj1
ðsi1 þ si2Þðsj1 þ sj2Þ

sij
si1s12s2j

: ðA12Þ
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Again we use the parametrization α2 ¼ αs and β1 ¼ βt, with s and t ranging from zero to one. Performing the change of
variables as in the strongly ordered case, Eq. (A4), we can again remap the integration to the unit hypercube and obtain

SðremÞ
ij;A ðqÞ ¼ ᾱ2s

ð2πÞ2
Q2

κ2

Z
du
u1þε

dv
v1þε

ð1þ uvÞ2ð1 − uvÞ−2þ2ε

ðð1 − uÞð1 − vÞÞ2ε 2F1ð−ε;−2ε; 1 − ε; uvÞ: ðA13Þ

Changing variables to x ¼ uv and y ¼ ð1 − vÞ=ð1 − uvÞ we can write

SðremÞ
ij;A ðqÞ ¼ ᾱ2s

ð2πÞ2
Q2

κ2

Z
dx
x1þε

dy
y2ε

ð1þ xÞ2ð1 − yð1 − xÞÞ−1þ2ε

ð1 − xÞ1þ2εð1 − yÞ2ε 2F1ð−ε;−2ε; 1 − ε; xÞ: ðA14Þ

We first perform the y integration and obtain

SðremÞ
ij;A ðqÞ ¼ ᾱ2s

ð2πÞ2
Q2

κ2
Γð1 − 2εÞ2
Γð2 − 4εÞ

Z
dx
x1þε

ð1þ xÞ2
ð1 − xÞ1þ2ε

× 2F1ð1 − 2ε; 1 − 2ε; 2 − 4ε; 1 − xÞ2F1ð−ε;−2ε; 1 − ε; xÞ: ðA15Þ

The last integral can be solved by expanding the two hypergeometric functions up to Oðε3Þ and expanding the result up to
the finite term. We use HypExp [53,54] and obtain

SðremÞ
ij;A ðqÞ ¼ ᾱ2s

ð2πÞ2
Q2

κ2

�
1

ε2
−
2

ε
− 4 −

2

3
π2 þ ε

�
2

3
π2 − 8 − 14ζ3

�
þOðε2Þ

�
: ðA16Þ

The integral of the second remainder term can be obtained by symmetry. The final term is given by

SðremÞ
ij;B ðqÞ ¼

Z
dDp1

ð2πÞD−1
dDp2

ð2πÞD−1 δ
þðp2

1Þδþðp2
2ÞF ijð1; 2Þg4sμ4ε

si1sj2 þ si2sj1
ðsi1 þ si2Þðsj1 þ sj2Þ

s2ij
si1s1jsi2s2j

¼ ᾱ2s
ð2πÞ2

Q2

κ2

Z
dβ1
β1þε
1

dα2
α1þε
2

α2β1 þ α1β2
αβðα1β2Þ1þε : ðA17Þ

The integral can again be evaluated in terms of beta functions and we obtain

SðremÞ
ij;B ðqÞ ¼ ᾱ2s

ð2πÞ2
Q2

κ2

�
2

ε2
−
2

3
π2 − 8εζ3 −

2

45
ε2π4 þOðε3Þ

�
: ðA18Þ

The complete symmetrized soft remainder is

SðremÞ
ij ðqÞ ¼ 1

2
ð2SðremÞ

ij;A ð1; 2Þ − SðremÞ
ij;B ð1; 2ÞÞ

¼ ᾱ2s
ð2πÞ2

Q2

κ2

�
−
2

ε
− 4 −

π2

3
þ ε

�
2

3
π2 − 8 − 10ζ3

�
þOðε2Þ

�
: ðA19Þ

3. Collinear terms

The integral of the first collinear term, Eq. (7), reads

SðcollÞij;A ðqÞ ¼
Z

dDp1

ð2πÞD−1
dDp2

ð2πÞD−1 δ
þðp2

1Þδþðp2
2ÞF ijð1; 2Þg4sμ4ε

1

s212

ðsi1sj2 − si2sj1Þ2
ðsi1 þ si2Þ2ðsj1 þ sj2Þ2

: ðA20Þ

This term contains a new type of integral over transverse momenta, which gives
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Ωð1 − 2εÞ
Z

π

0

dϕ
ðsin2ϕÞ−ε

s212
¼ Ωð1 − 2εÞ

Q4ðα1β2 þ α2β1Þ2
Z

1

0

dχ
4−εðχð1 − χÞÞ−1

2
−ε

ð1þ KÞ2
�
1 −

2Kχ
1þ K

�
−2

¼ Ωð2 − 2εÞ
Q4ðα1β2 þ α2β1Þ2

�
1þ 2ε

1 − K2
2F1ð1; 12 − ε; 1 − 2ε; 2K=ð1þ KÞÞ

1þ K
−

2ε

1 − K2

�

¼ −2ε
Ωð2 − 2εÞ

Q4ðα1β2 − α2β1Þ2
þ ð1þ 2εÞΩð2 − 2εÞ

Q4
ðα1β2 þ α2β1Þ

×

�ðα1β2Þ2εΘðα1β2 − α2β1Þ
ðα1β2 − α2β1Þ3þ2ε 2F1

�
−ε;−2ε; 1 − ε;

α2β1
α1β2

�
þ ð1 ↔ 2Þ

�
; ðA21Þ

where we have again used the transformations in Eq. (A2). To perform the remaining integrations we use again the
parametrization α2 ¼ αs and β1 ¼ βt, with s and t ranging from zero to one. The first term in Eq. (A21) is evaluated in terms
of beta functions, and we obtain

SðcollÞij;A ðqÞ ¼ −
ᾱ2s

ð2πÞ2
Q2

κ2
2εΓð1 − εÞ4
Γð2 − 2εÞ2 þ S̃ðcollÞij;A ð1; 2Þ: ðA22Þ

The second term, S̃ðcollÞij;A ð1; 2Þ, is evaluated by performing the same change of variables as in the strongly ordered case,
Eq. (A4). The two contributions are identical and can be combined. We obtain

S̃ðcollÞij;A ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

Z
du
uε

dv
vε

ð2þ 4εÞð1þ uvÞð1 − uvÞ−4þ2ε

ðð1 − uÞð1 − vÞÞ−1þ2ε 2F1ð−ε;−2ε; 1 − ε; uvÞ: ðA23Þ

Changing variables to x ¼ uv and y ¼ ð1 − vÞ=ð1 − uvÞ we can write

S̃ðcollÞij;A ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

Z
dx
xε

dy
y−1þ2ε

ð2þ 4εÞð1þ xÞð1 − yð1 − xÞÞ−2þ2ε

ð1 − xÞ1þ2εð1 − yÞ−1þ2ε 2F1ð−ε;−2ε; 1 − ε; xÞ: ðA24Þ

We first perform the y integration and obtain

S̃ðcollÞij;A ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2
Γð2 − 2εÞ2
Γð4 − 4εÞ

Z
dx
xε

ð2þ 4εÞð1þ xÞ
ð1 − xÞ1þ2ε

× 2F1ð2 − 2ε; 2 − 2ε; 4 − 4ε; 1 − xÞ2F1ð−ε;−2ε; 1 − ε; xÞ: ðA25Þ

The last integral can be solved by expanding the two hypergeometric functions up to Oðε2Þ and expanding the result up to
the finite term. The integrals are evaluated to the required accuracy with the help of HypExp [53,54]. The final result is

SðcollÞij;A ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

�
−

1

3ε
−
8

9
− ε

�
52

27
−
π2

9

�
þOðε2Þ

�
: ðA26Þ

The integral of the second collinear term is given by

SðcollÞij;B ðqÞ ¼
Z

dDp1

ð2πÞD−1
dDp2

ð2πÞD−1 δ
þðp2

1Þδþðp2
2ÞF ijð1; 2Þg4sμ4ε

1

s12

sij
ðsi1 þ si2Þðsj1 þ sj2Þ

: ðA27Þ

Again we use the parametrization α2 ¼ αs and β1 ¼ βt, with s and t ranging from zero to one, to obtain

SðcollÞij;B ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

Z
ds
sε

dt
tε
ðð1 − sÞð1 − tÞÞε
ð1 − s − tÞ1þ2ε

× Θð1 − s − tÞ2F1

�
−ε;−2ε; 1 − ε;

st
ð1 − sÞð1 − tÞ

�
þ
�
s ↔ 1 − s

t ↔ 1 − t

�
: ðA28Þ

LEADING-COLOR FULLY DIFFERENTIAL TWO-LOOP … PHYS. REV. D 98, 074013 (2018)

074013-19



The two terms are identical and can be combined. To perform the remaining integrations we use again the change of
variables as in the strongly ordered case, Eq. (A4). We obtain

SðcollÞij;B ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

Z
du
uε

dv
vε

2ð1 − uvÞ−2þ2ε

ðð1 − uÞð1 − vÞÞ2ε 2F1ð−ε;−2ε; 1 − ε; uvÞ: ðA29Þ

Changing variables to x ¼ uv and y ¼ ð1 − vÞ=ð1 − uvÞ we can write

SðcollÞij;B ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

Z
dx
xε

dy
y2ε

2ð1 − yð1 − xÞÞ−1þ2ε

ð1 − xÞ1þ2εð1 − yÞ2ε 2F1ð−ε;−2ε; 1 − ε; xÞ: ðA30Þ

We first perform the y integration and obtain

SðcollÞij;B ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2
Γð1 − 2εÞ2
Γð2 − 4εÞ

Z
dx
xε

4

ð1 − xÞ1þ2ε

× 2F1ð1 − 2ε; 1 − 2ε; 2 − 4ε; 1 − xÞ2F1ð−ε;−2ε; 1 − ε; xÞ: ðA31Þ

The last integral can be solved by expanding the two hypergeometric functions up to Oðε2Þ and expanding the result up to
the finite term. The integrals are evaluated to the required accuracy with the help of HypExp [53,54]. The final result is

SðcollÞij;B ðqÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

�
−
1

ε
− 2þ ε

�
π2

3
− 4

�
þOðε2Þ

�
: ðA32Þ

The complete symmetrized collinear term in the two soft-gluon final state is

SðcollÞij;gg ðqÞ ¼
1

2
ðð1 − εÞSðcollÞij;A ð1; 2Þ − 2SðcollÞij;B ð1; 2ÞÞ ¼ ᾱ2s

ð2πÞ2
Q2

κ2

�
5

6ε
þ 31

18
þ ε

�
94

27
−

5

18
π2
�
þOðε2Þ

�
: ðA33Þ

The complete collinear term in the soft quark-antiquark final state is

SðcollÞij;qq̄ ðqÞ ¼ ðSðcollÞij;A ð1; 2Þ − SðcollÞij;B ð1; 2ÞÞ ¼ ᾱ2s
ð2πÞ2

Q2

κ2

�
2

3ε
þ 10

9
þ ε

�
56

27
−
2

9
π2
�
þOðε2Þ

�
: ðA34Þ

APPENDIX B: RELATION TO SOFT-GLUON RESUMMATION

This Appendix will establish the connection between our parton-shower simulation and soft-gluon resummation
formalism developed in [55,56]. According to the resummation formalism we can express the soft part of the factorized
Drell-Yan cross section as

1

σð0ÞDY

dσDYðz;Q2Þ
d lnQ2

¼ jHDYðQ2Þj2W̃DYðzÞ; ðB1Þ

whereHDYðQ2Þ is the hard matrix element and W̃DY is the Fourier transform of the vacuum expectation value of the Wilson
loop, which accounts for the eikonal emission of soft gluons,

W̃DYðzÞ ¼
Z

∞

−∞

dy0
2π

eiy0Qð1−zÞh0jP exp

�
ig
Z
CDY

dxμAμ

�
j0i; ðB2Þ

and Qð1 − zÞ is the total soft-gluon energy. The Wilson loop, Eq. (B2), is related to Eqs. (17) and (22) in momentum space
by the Fourier transform at b⊥ ¼ 0, as derived in [34,35]

Z
∞

−∞

dDp
ð2πÞD−1 e

−ibpδð2Þðb⊥Þ
�
pþp−

μ2

�
−1−kε

¼ 1

8π2
ð4πÞε

Γð1 − εÞ
Γð1 − kεÞ2
ε2k2e2kεγE

Lkε; ðB3Þ
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where we have defined L ¼ −bþb−=ð4b20Þ and b0 ¼ e−γE=μ. Applying this transformation to Eqs. (17) and (22), we derive
the unrenormalized one- and two-loop soft functions

Sð1Þij ðbþb−Þ ¼
αsðμÞ
2π

Q2bþb−
4

Γð1 − εÞ
ε2eεγE

Lε ¼ αsðμÞ
2π

Q2bþb−
4

�
1

ε2
þ 1

ε
lnLþ 1

2
ln2Lþ π2

12
þOðεÞ

�
ðB4Þ

and

Sð2Þij ðbþb−Þ ¼ −
α2sðμÞ
ð2πÞ2

Q2bþb−
4

�
β0
6
ln3Lþ Γð2Þ

cusp

2
ln2Lþ lnL

�
−

β0
2ε2

þ Γð2Þ
cusp

2ε
þ Γð2Þ

soft þ
π2

12
β0

�
þ � � �

�
; ðB5Þ

where the dots stand for nonlogarithmic contributions. After

renormalization, Eq. (B5) yields the coefficients wð2Þ
3 ¼

β0=6, wð2Þ
2 ¼ Γð2Þ

cusp=2 and wð2Þ
1 ¼ Γð2Þ

soft þ ðπ2=12Þβ0 com-
puted in [34]. Upon implementing the NLO corrections
computed in Sec. II in the parton shower, we could in
principle claim the same formal accuracy in the resummation
of soft-gluon effects. However, we need to take into account
that, in contrast to Eq. (B3), the phase-space volume in
parton-shower simulations is not infinite but limited by the
hadronic center-of-mass energy of the collider.
In Ref. [57], an improved framework to assess the

accuracy of parton showers at a fixed number of branchings
was proposed. As shown above, our approach satisfies
these criteria up to the second emission. In addition, the
weight defined in Eq. (54) generalizes to higher particle
multiplicity and can be used to correct for the kinematical
mismatches in the single strong ordering region identified
in Sec. III C of [57]. Nevertheless, the color structure
beyond two gluon emissions will not be accurately
reflected. Therefore, the problems identified in Sec. III.

B of [57] remain at higher particle multiplicity. They can be
solved by employing full-color parton-shower algorithms
that are valid for an arbitrary number of emissions, such as
those proposed and implemented in [58,59].

APPENDIX C: OVERLAP BETWEEN DOUBLE-
SOFT AND TRIPLE-COLLINEAR SPLITTING

FUNCTIONS

In this Appendix we compute the overlap between the
double-soft splitting functions, Eqs. (8), and the triple-
collinear splitting functions of [31]. The triple-collinear
splitting functions can be included in the parton shower
using the techniques described in [13]. The results pre-
sented in this Appendix will allow us, in a future pub-
lication, to remove double-counted contributions and
construct splitting functions that are valid in the full
parton-shower phase space. In terms of the collinear
variables zk ¼ skj=ðsj1 þ sj2 þ sijÞ [31], the (12) double-
soft enhanced qq̄ and gg emission parts of a (i12) triple-
collinear splitting function can be written as

PðdsÞ
q̄1q2ai ¼ −Ca

TR

2

s2i12
ðsi12 − s12Þ2

��
t12;i
s12

−
z1 − z2
z1 þ z2

�
2

þ 4zi
z1 þ z2

�
1 −

si12
s12

��
;

PðdsÞ
ḡ1g2ai ¼ PðpsÞ

ḡ1g2ai þ Ca
CA

2

s2i12
ðsi12 − s12Þ2

�
ð1 − εÞ

�
t12;i
s12

−
z1 − z2
z1 þ z2

�
2

þ 8zi
z1 þ z2

�
1 −

si12
s12

��
; ðC1Þ

where the pure soft contribution is given by

PðpsÞ
ḡ1g2ai ¼ Ca

CA

2

si12
ðsi12 − s12Þ

�
si12
si1

�
si2
s12

−
1

z1

�
1 − zi þ z2
z2ð1 − ziÞ

þ si12
s12

�
1

z1
þ 1

z2
−

1

z1 þ z2

��
þ ð1 ↔ 2Þ ðC2Þ

and where [31]

t12;i ¼ 2
z1si2 − z2si1

z1 þ z2
þ z1 − z2
z1 þ z2

s12: ðC3Þ

The above terms may occur multiple times in each triple-collinear splitting function, as required by the symmetry of the
final state.

LEADING-COLOR FULLY DIFFERENTIAL TWO-LOOP … PHYS. REV. D 98, 074013 (2018)

074013-21



[1] B. Webber, Annu. Rev. Nucl. Part. Sci. 36, 253 (1986).
[2] A. Buckley et al., Phys. Rep. 504, 145 (2011).
[3] J. Alwall et al., Eur. Phys. J. C 53, 473 (2008).
[4] P. Nason and B. Webber, Annu. Rev. Nucl. Part. Sci. 62, 187

(2012).
[5] K. Kato and T. Munehisa, Phys. Rev. D 36, 61 (1987).
[6] K. Kato and T. Munehisa, Phys. Rev. D 39, 156 (1989).
[7] K. Kato and T. Munehisa, Comput. Phys. Commun. 64, 67

(1991).
[8] K. Kato, T. Munehisa, and H. Tanaka, Z. Phys. C 54, 397

(1992).
[9] W. T. Giele, D. A. Kosower, and P. Z. Skands, Phys. Rev. D

84, 054003 (2011).
[10] L. Hartgring, E. Laenen, and P. Skands, J. High Energy

Phys. 10 (2013) 127.
[11] H. T. Li and P. Skands, Phys. Lett. B 771, 59 (2017).
[12] Z. Nagy and D. E. Soper, Phys. Rev. D 98, 014034 (2018).
[13] S. Höche and S. Prestel, Phys. Rev. D 96, 074017 (2017).
[14] S. Höche, F. Krauss, and S. Prestel, J. High Energy Phys. 10

(2017) 093.
[15] S. Höche, D. Reichelt, and F. Siegert, J. High Energy Phys.

01, (2018) 118.
[16] J. Kodaira and L. Trentadue, Phys. Lett. 112B, 66 (1982).
[17] C. Davies and W. J. Stirling, Nucl. Phys. B244, 337 (1984).
[18] C. Davies, B. Webber, and W. Stirling, Nucl. Phys. B256,

413 (1985).
[19] S. Catani, E. D’Emilio, and L. Trentadue, Phys. Lett. B 211,

335 (1988).
[20] S. Catani, B. R. Webber, and G. Marchesini, Nucl. Phys.

B349, 635 (1991).
[21] S. Höche and S. Prestel, Eur. Phys. J. C 75, 461 (2015).
[22] G. F. Sterman, Nucl. Phys. B281, 310 (1987).
[23] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys.

B308, 833 (1988).
[24] J. C. Collins, D. E. Soper, and G. Sterman, Adv. Ser. Dir.

High Energy Phys. 5, 1 (1988).
[25] P. F. Monni, T. Gehrmann, and G. Luisoni, J. High Energy

Phys. 08 (2011) 010.
[26] S. Catani and M. H. Seymour, Nucl. Phys. B485, 291

(1997).
[27] J. M. Cornwall and G. Tiktopoulos, Phys. Rev. D 13, 3370

(1976).
[28] J. Frenkel and J. C. Taylor, Nucl. Phys. B116, 185 (1976).
[29] Z. Bern, V. Del Duca, W. B. Kilgore, and C. R. Schmidt,

Phys. Rev. D 60, 116001 (1999).
[30] S. Catani and M. Grazzini, Nucl. Phys. B591, 435 (2000).
[31] S. Catani and M. Grazzini, Nucl. Phys. B570, 287 (2000).
[32] E. Gardi and L. Magnea, J. High Energy Phys. 03 (2009)

079.
[33] T. Becher and M. Neubert, Phys. Rev. Lett. 102, 162001

(2009).
[34] A. V. Belitsky, Phys. Lett. B 442, 307 (1998).

[35] Y. Li, S. Mantry, and F. Petriello, Phys. Rev. D 84, 094014
(2011).

[36] D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini, and G.
Veneziano, Nucl. Phys. B173, 429 (1980).

[37] S. Frixione and B. R. Webber, J. High Energy Phys. 06
(2002) 029.

[38] S. Catani, S. Dittmaier, M. H. Seymour, and Z. Trocsanyi,
Nucl. Phys. B627, 189 (2002).

[39] N. Fischer and S. Prestel, Eur. Phys. J. C 77, 601 (2017).
[40] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys.

B175, 27 (1980).
[41] J.-y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, Phys. Rev.

Lett. 108, 151601 (2012).
[42] Y. Li, D. Neill, and H. X. Zhu, arXiv:1604.00392.
[43] T. Sjöstrand, Phys. Lett. B 157, 321 (1985).
[44] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,

P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, Comput. Phys. Commun. 191, 159 (2015).

[45] T. Gleisberg, S. Höche, F. Krauss, A. Schälicke, S. Schu-
mann, and J. Winter, J. High Energy Phys. 02 (2004) 056.

[46] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S.
Schumann, F. Siegert, and J. Winter, J. High Energy Phys.
02 (2009) 007.

[47] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J.
Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).

[48] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock, and
B. R. Webber, Phys. Lett. B 269, 432 (1991).

[49] P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 255,
466 (1991).

[50] J. R. Andersen et al., in Proceedings of the 10th Les
Houches Workshop on Physics at TeV Colliders (PhysTeV
2017), Les Houches, France, 2017 (2018), http://arxiv.org/
abs/arXiv:1803.07977.

[51] J. R. Andersen et al., in Proceedings of the 9th Les Houches
Workshop on Physics at TeV Colliders (PhysTeV 2015), Les
Houches, France, 2015 (2016), http://arxiv.org/abs/arXiv:
1605.04692.

[52] G. Kramer and B. Lampe, J. Math. Phys. (N.Y.) 28, 945
(1987).

[53] T. Huber and D. Maître, Comput. Phys. Commun. 175, 122
(2006).

[54] T. Huber and D. Maître, Comput. Phys. Commun. 178, 755
(2008).

[55] G. P. Korchemsky and G. Marchesini, Nucl. Phys. B406,
225 (1993).

[56] G. P. Korchemsky and G. Marchesini, Phys. Lett. B 313,
433 (1993).

[57] M. Dasgupta, F. A. Dreyer, K. Hamilton, P. F. Monni, and
G. P. Salam, J. High Energy Phys. 09 (2018) 033.

[58] J. Isaacson and S. Prestel, arXiv:1806.10102.
[59] R. Á. Martínez, M. De Angelis, J. R. Forshaw, S. Plätzer,

and M. H. Seymour, J. High Energy Phys. 05 (2018) 044.

DULAT, HÖCHE, and PRESTEL PHYS. REV. D 98, 074013 (2018)

074013-22

https://doi.org/10.1146/annurev.ns.36.120186.001345
https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.1140/epjc/s10052-007-0490-5
https://doi.org/10.1146/annurev-nucl-102711-094928
https://doi.org/10.1146/annurev-nucl-102711-094928
https://doi.org/10.1103/PhysRevD.36.61
https://doi.org/10.1103/PhysRevD.39.156
https://doi.org/10.1016/0010-4655(91)90051-L
https://doi.org/10.1016/0010-4655(91)90051-L
https://doi.org/10.1007/BF01559457
https://doi.org/10.1007/BF01559457
https://doi.org/10.1103/PhysRevD.84.054003
https://doi.org/10.1103/PhysRevD.84.054003
https://doi.org/10.1007/JHEP10(2013)127
https://doi.org/10.1007/JHEP10(2013)127
https://doi.org/10.1016/j.physletb.2017.05.011
https://doi.org/10.1103/PhysRevD.98.014034
https://doi.org/10.1103/PhysRevD.96.074017
https://doi.org/10.1007/JHEP10(2017)093
https://doi.org/10.1007/JHEP10(2017)093
https://doi.org/10.1007/JHEP01(2018)118
https://doi.org/10.1007/JHEP01(2018)118
https://doi.org/10.1016/0370-2693(82)90907-8
https://doi.org/10.1016/0550-3213(84)90316-X
https://doi.org/10.1016/0550-3213(85)90402-X
https://doi.org/10.1016/0550-3213(85)90402-X
https://doi.org/10.1016/0370-2693(88)90912-4
https://doi.org/10.1016/0370-2693(88)90912-4
https://doi.org/10.1016/0550-3213(91)90390-J
https://doi.org/10.1016/0550-3213(91)90390-J
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://doi.org/10.1016/0550-3213(87)90258-6
https://doi.org/10.1016/0550-3213(88)90130-7
https://doi.org/10.1016/0550-3213(88)90130-7
https://doi.org/10.1142/9789814503266_0001
https://doi.org/10.1142/9789814503266_0001
https://doi.org/10.1007/JHEP08(2011)010
https://doi.org/10.1007/JHEP08(2011)010
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1103/PhysRevD.13.3370
https://doi.org/10.1103/PhysRevD.13.3370
https://doi.org/10.1016/0550-3213(76)90320-5
https://doi.org/10.1103/PhysRevD.60.116001
https://doi.org/10.1016/S0550-3213(00)00572-1
https://doi.org/10.1016/S0550-3213(99)00778-6
https://doi.org/10.1088/1126-6708/2009/03/079
https://doi.org/10.1088/1126-6708/2009/03/079
https://doi.org/10.1103/PhysRevLett.102.162001
https://doi.org/10.1103/PhysRevLett.102.162001
https://doi.org/10.1016/S0370-2693(98)01249-0
https://doi.org/10.1103/PhysRevD.84.094014
https://doi.org/10.1103/PhysRevD.84.094014
https://doi.org/10.1016/0550-3213(80)90012-7
https://doi.org/10.1088/1126-6708/2002/06/029
https://doi.org/10.1088/1126-6708/2002/06/029
https://doi.org/10.1016/S0550-3213(02)00098-6
https://doi.org/10.1140/epjc/s10052-017-5160-7
https://doi.org/10.1016/0550-3213(80)90003-6
https://doi.org/10.1016/0550-3213(80)90003-6
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1103/PhysRevLett.108.151601
http://arXiv.org/abs/1604.00392
https://doi.org/10.1016/0370-2693(85)90674-4
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1088/1126-6708/2004/02/056
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.1103/PhysRevD.82.074024
https://doi.org/10.1016/0370-2693(91)90196-W
https://doi.org/10.1016/0370-2693(91)90796-S
https://doi.org/10.1016/0370-2693(91)90796-S
http://arxiv.org/abs/arXiv:1803.07977
http://arxiv.org/abs/arXiv:1803.07977
http://arxiv.org/abs/arXiv:1803.07977
http://arxiv.org/abs/arXiv:1803.07977
http://arxiv.org/abs/arXiv:1605.04692
http://arxiv.org/abs/arXiv:1605.04692
http://arxiv.org/abs/arXiv:1605.04692
http://arxiv.org/abs/arXiv:1605.04692
https://doi.org/10.1063/1.527586
https://doi.org/10.1063/1.527586
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/0550-3213(93)90167-N
https://doi.org/10.1016/0550-3213(93)90167-N
https://doi.org/10.1016/0370-2693(93)90015-A
https://doi.org/10.1016/0370-2693(93)90015-A
https://doi.org/10.1007/JHEP09(2018)033
http://arXiv.org/abs/1806.10102
https://doi.org/10.1007/JHEP05(2018)044

