
Physics Letters B 785 (2018) 274–283
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Thermodynamics of novel charged dilaton black holes in gravity’s 

rainbow

M. Dehghani

Department of Physics, Razi University, Kermanshah, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2018
Received in revised form 6 August 2018
Accepted 8 August 2018
Available online 30 August 2018
Editor: N. Lambert

Keywords:
Four-dimensional black hole
Charged dilaton black hole
Maxwell’s theory of electrodynamics
Gravity’s rainbow

In the present work, we have studied the thermodynamical properties of black holes arising as the 
solutions of the four-dimensional dilaton gravity coupled to Maxwell’s electrodynamics in gravity’s 
rainbow. This theory allows three classes of asymptotically non-flat and non-AdS black hole solutions. 
We showed that the self-interacting scalar function, as the solution to the scalar field equation, can 
be written as the linear combination of three Liouville-type potentials. The thermodynamical quantities 
are identified and in particular, a generalized Smarr formula is derived. It is shown that, although 
the thermodynamic quantities are affected by the rainbow functions, the validity of the black hole 
thermodynamical first law is supported. The thermodynamic stability of the solutions have been analyzed 
through the black hole heat capacity. We have shown that, even in the presence of the rainbow functions, 
the black holes can be locally stable in the sense that there exists a range of the horizon radiuses for 
which the heat capacity is positive.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the more outstanding problems in the context of the-
oretical physics is to combine the gravity with the quantum me-
chanics and to construct the theory of quantum gravity. Despite 
the attempts made through the string theory [1,2], loop quan-
tum gravity [3], space time foam [4], Horava–Lifshitz gravity [5], 
non-commutative geometry [6] and other approaches there is cur-
rently no complete theory of quantum gravity and this problem 
is still open. A common feature of almost all of these alternative 
approaches is a strong interest on the modification of the usual 
energy-momentum dispersion relation at the Planck-scale regime 
[7,8]. It seems that this modification plays an important role in 
establishing a full theory of quantum gravity, but it leads to the vi-
olation of Lorentz invariance, as the most fundamental symmetry 
in the universe. One of the approaches to overcome this problem 
is the doubly or deformed special relativity [9,10]. The doubly spe-
cial relativity, as a modified formalism of special relativity, has 
been proposed to make the modified dispersion relation Lorentz 
invariant [11–13]. In the high energy formalism of the special rel-
ativity, known as the doubly special relativity, the speed of light 
and the Planck energy are two Lorentz invariant quantities. Also, 
the Planck energy and the speed of light are the upper bounds of 

E-mail address: m.dehghani@razi.ac.ir.
https://doi.org/10.1016/j.physletb.2018.08.045
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
the energy and velocity that a particle can attain [14]. This theory 
is accomplished based on a nonlinear Lorentz transformation in 
the momentum space in such a way that the energy-momentum 
relation appears with the corrections in the order of the Planck 
length and the Planck-scale corrected dispersion relation preserves 
a deformed Lorentz symmetry [11,15].

The doubly special relativity has now been extended to the 
curved space times and a doubly general relativity or gravity’s rain-
bow has been proposed by Magueijo and Smolin [16,17]. In the 
rainbow gravity theory, the geometry of space time depends on the 
energy of the test particle. Thus, it seems different for the parti-
cles having different amounts of energy and the energy dependent 
metrics form a rainbow of metrics. This is why the double general 
relativity is named as gravity’s rainbow. The modified dispersion 
relation can be written in the following general form [18,19]

E2 f 2(ε) − p2 g2(ε) = m2, (1.1)

where, ε = E/E P , E P is the Planck-scale energy, E is the energy 
of the test particle and the functions f (ε) and g(ε) are known 
as the rainbow functions. The rainbow functions are satisfied the 
following conditions

lim f (ε) = 1, and lim g(ε) = 1. (1.2)

ε→0 ε→0
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By these requirements one is able to reproduce the standard dis-
persion relation in the limit of ε → 0. It must be noted that the 
functional form of the rainbow functions are not unique and there 
are several expressions for them which are correspond to different 
phenomenological motivations. Some of the proposed models for 
the temporal and spatial rainbow functions are as follows [20,21]

f (ε) = 1, and g(ε) = √
1 − ηεn, (1.3)

f (ε) = eξε − 1

ξε
, and g(ε) = 1, (1.4)

f (ε) = g(ε) = 1

1 − λε
, (1.5)

where, η, n, ξ and λ, known as the rainbow parameters, are di-
mensionless constants of the order of unity.

Nowadays, gravity’s rainbow, in which the quantum gravita-
tional effects are taken into account, has attracted a lot of interest 
and many papers have been appeared in which the physical prop-
erties of the black holes are investigated in the presence of rain-
bow functions. Thermodynamics and phase transition of the modi-
fied Schwarzschild black holes via gravity’s rainbow are studied in 
refs. [19,22]. Thermal stability of nonlinearly charged BTZ and four-
dimensional rainbow black holes has been analyzed in refs. [23,24]. 
The effects of rainbow functions on the rotating BTZ black holes 
are the subject of ref. [25]. Thermodynamics of Gauss–Bonnet black 
holes in rainbow gravity has been discussed in refs. [26,27]. Also, 
thermodynamics and stability of the black holes have been studied 
in the context of massive gravity’s rainbow by Hendi et al. [28,29]. 
Study of the physics in the energy dependent space times has pro-
vided many interesting results such as: black hole remnant [30,31], 
nonsingular universe [32], etc.

Thermodynamics and thermal stability of charged dilatonic BTZ 
black holes in gravity’s rainbow have been studied in ref. [18] in 
the presence of Coulomb and modified Coulomb fields, separately. 
The impacts of thermal fluctuations, as a quantum gravitational 
phenomenon, on the thermodynamic phase transition of rainbow 
dilaton black holes have been investigated in my last work [33]. 
Here, I tend to extend my previous works to the case of electrically 
charged four-dimensional dilaton black holes. The main object is to 
obtain the new exact black hole solutions to the Einstein–Maxwell-
dilaton theory in rainbow gravity and to investigate the thermody-
namic proprieties as well as the thermal stability or phase transi-
tion of the new charged rainbow black holes.

The plan of this paper is organized as follows: Sec. 2 is devoted 
to solving the coupled gravitational, electromagnetic and scalar 
field equations in an energy dependent space time. The solution 
to the scalar field equation has been written as the linear com-
bination of three Liouville-type potentials. Three new classes of 
spherically symmetric charged dilaton black hole solutions, with 
the non flat and non A(dS) asymptotic behavior, have been ob-
tained. The thermodynamic properties of new rainbow black holes 
have been studied in Sec. 3. Through a Smarr-type mass formula in 
which the black hole mass has been written as a function of black 
hole charge Q and black hole entropy S , it has been found that 
the first law of black hole thermodynamics is still valid. In Sec. 4, 
making use of the canonical ensemble method and regarding the 
signature of the black hole heat capacity, a thermal stability anal-
ysis has been performed. The points of type-1 and type-2 phase 
transitions as well as the ranges of the black hole horizon radii 
at which the black holes are locally stable are determined, ex-
actly. Some concluding remarks and discussions are summarized 
in Sec. 5.
2. The field equations in gravity’s rainbow

The action of four-dimensional Einstein–Maxwell-dilaton grav-
ity theory can be written in the following general form [24,34]

I = 1

16π

∫ √−gd4x
[
R− V (φ) − 2(∇φ)2 −Fe−2αφ

]
. (2.1)

Here, R is the Ricci scalar, φ is a scalar field coupled to it-
self via the functional form V (φ) and the last term denotes the 
coupled scalar-electromagnetic lagrangian. The parameter α is the 
scalar-electromagnetic coupling constant and F = F μν Fμν being 
the Maxwell invariant, Fμν = ∂μ Aν − ∂ν Aμ is the Maxwell’s elec-
tromagnetic tensor and Aμ denotes the electromagnetic potential. 
By varying the action (2.1) with respect to electromagnetic, gravi-
tational and scalar fields, we get the related field equations which 
are in the following forms

∇μ

[
e−2αφ F μν

]
= 0, (2.2)

Rμν − 1

2
gμν V (φ) = 2∇μφ∇νφ + e−2αφ

(
2Fμρ F ρ

ν − 1

2
F gμν

)
,

(2.3)

4�φ = dV (φ)

dφ
− 2αFe−2αφ, φ = φ(r). (2.4)

We would like to solve the above field equations in a four-
dimensional spherically symmetric geometry with the following 
line element [18,33]

ds2 = − U (r)

f 2(ε)
dt2

+ 1

g2(ε)

[
1

U (r)
dr2 + r2 R2(r)(dθ2 + sin2 θdϕ2)

]
. (2.5)

It must be noted that the only nonvanishing component of 
electromagnetic field is Ftr . Assuming as a function of r, F =
−2 f 2(ε)g2(ε)(Ftr(r))2. In order to obtain the metric function U (r), 
we use Eq. (2.5) in the gravitational field equations (2.3). It leads 
to the following differential equations

ett = g2(ε)

2

[
U ′′(r) + 2

(
1

r
+ R ′(r)

R(r)

)
U ′(r)

]
+ 1

2
V (φ)

− f 2(ε)g2(ε)F 2
tre−2αφ = 0, (2.6)

err = ett + 2

(
R ′′(r)
R(r)

+ 2R ′(r)
rR(r)

+ (φ′(r))2
)

U (r) = 0, (2.7)

eθθ = eϕϕ =
(

1

r
+ R ′(r)

R(r)

)
U ′(r)

+
(

1

r2
+ R ′′(r)

R(r)
+ 4R ′(r)

rR(r)
+ R ′ 2(r)

R2(r)

)
U (r)

− 1

r2 R2(r)
+ 1

2g2(ε)

[
V (φ) + 2 f 2(ε)g2(ε)F 2

tre−2αφ
]

= 0, (2.8)

for the tt , rr and θθ (ϕϕ) components, respectively. Regarding 
Eqs. (2.6) and (2.7) we have

R ′′(r)
R(r)

+ 2

r

R ′(r)
R(r)

+ φ′ 2(r) = 0. (2.9)

The differential equation (2.9) can be rewritten in the following 
form
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2

r

d

dr
ln R(r) + d2

dr2
ln R(r) +

(
d

dr
ln R(r)

)2

+ (φ′(r))2 = 0. (2.10)

From Eq. (2.10), one can argue that R(r) must be an exponential 
function of φ(r). Thus, we can use exponential solution of the form 
R(r) = eβφ in Eq. (2.9), and show that φ = φ(r) satisfies the follow-
ing differential equation

βφ′′ + (1 + β2)φ′ 2 + 2β

r
φ′ = 0. (2.11)

It is easy to write the solution of (2.11) in terms of a positive con-
stant b as

φ(r) = γ ln

(
b

r

)
, with γ = β(1 + β2)−1. (2.12)

It must be mentioned that, a similar solution has been used pre-
viously for three- and four-dimensional charged and uncharged 
dilatonic black hole solutions [33,35–37].

Here, we are interested on studying the effects of the exponen-
tial solution (i.e. R(r) = eβφ ) with both β = α and β �= α on the 
thermodynamic behavior of the four-dimensional charged dilatonic 
black hole solutions. The case correspond to β = α has been stud-
ied by some authors [38,39]. Now, we proceed to solve the field 
equations, making use of the scalar fields given by Eq. (2.12).

Let us start with the electromagnetic field equation (2.2). Mak-
ing use of these solutions together with Eqs. (2.2) and (2.5), one 
can show that h(r) = Aμ(r)δμ

0 , satisfies the following differential 
equation

rB−1 (
rh′′ + Bh′) = 0, with B = 2[1 + γ (α − β)]. (2.13)

The solution to the above differential equation can be written as

h(r) = q

1 − B
r1−B , and Frt = q r−B , (2.14)

where, q is an integration constant related to the charge of black 
hole. It must be noted that, in order to the potential h(r) be phys-
ically reasonable (i.e. zero at infinity), 1 − B must be negative. It 
means that α and β must be chosen such that 2γ (α − β) > −1. 
The electric field (2.14) reduces to the inverse-square Coulomb’s 
law for β = α. In the case β �= α, Eq. (2.14) can be interpreted as 
the modified Coulomb’s electric field and electric potential [34,37].

Now, making use of these solutions in Eqs. (2.4) and (2.8) we 
arrived at

dV (φ)

dφ
− 2βV (φ) + 4 (α − β) f 2(ε)g2(ε)F 2

tre−2αφ + 4βg2(ε)

r2 R2

= 0, (2.15)

γ

βr

(
U ′ + 1 − 2βγ

r
U

)
− 1

r2 R2

+ 1

2g2(ε)

[
V (φ) + 2 f 2(ε)g2(ε)F 2

tre−2αφ
]

= 0, (2.16)

for the metric function U (r) and V (φ), respectively. The solution 
to Eq. (2.15) can be written in the following form

V (φ) =
{

2�e2θφ + 2�1e2θ1φ + 2�2e2θ2φ, β �= 1,

2(� + λ1)e2φ + 2λ2φe2φ + 2λ3e2(α+2)φ, β = 1,

(2.17)

where

�1 = −q2 f 2(ε)g2(ε)β(α − β)b−2B

2 2
, �2 = β2 g2(ε)

2 2
,

(B − αγ )(1 + β ) − β b (β − 1)
θ = β = 1

θ2
, θ1 = B

γ
− α,

λ1 = q2 f 2(ε)g2(ε)

b2(α+1)
· α − 1

α + 1
= −λ3, λ2 = −2g2(ε)

b2
.

By requirement that, in the absence of the dilaton field (i.e.
φ = 0 or equivalently β = 0 = γ ) the action (2.1) reduces to the 
action of Einstein–Maxwell gravity with cosmological constant, 
the condition V (φ = 0) = 2� = −6�−2 is fulfilled [40,41]. Also, 
Eq. (2.17) shows that the dilatonic potential can be written as the 
linear combination of three Liouville-type potentials.

Making use of Eq. (2.17) in Eq. (2.16), after some manipulations, 
we obtained the metric function U (r) as

U (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−m
r1−2βγ + 1+β2

1−β2

( r
b

)2βγ + �b2(1+β2)2

g2(ε)(β2−3)

( r
b

)2−2βγ

+ q2 f 2(ε)(1+β2)P (β)

(B−1)b2(B−1)

(
b
r

)2(B−1−αγ )

, β �= 1,
√

3, (a)

−mr
1
2 − 2

( r
b

) 3
2 − 4�b2

g2(ε)

( r
b

) 1
2 ln

( r
L

) + 8q2 f 2(ε)P (β=√
3)

(
√

3α−1)b
√

3α−1

×
(

b
r

) 1
2 (

√
3α−2)

, β = √
3,α > 1√

3
, (b)

−m + 2
[

2 − (� + λ1)
b2

g2(ε)
+ ln

(
b
r

)] ( r
b

)
+ 4q2 f 2(ε)

α(α+1)b2α

(
b
r

)α
, β = 1, α > 0 (c),

(2.18)

where, L is a dimensional constant, m is the constant of integration 
related to the black hole mass which will be determined later and

P (β) = 1 + β(β − α)

(B − αγ )(1 + β2) − β2
.

It is notable that, in the infrared limit, the solutions are just 
the dilatonic black holes obtained in ref. [34] and in the absence 
of dilaton field (i.e. β = 0 = γ ), the metric function U (r) coincides 
with that of Reissner–Nordström-A(dS).

In order to examine the existence and the number of the real 
roots of the new metric functions, we just obtained, the plots of 
the metric functions (2.18) versus r, in terms of different values 
of the rainbow functions f (ε) and g(ε), are shown in Figs. 1–6
for β = α and β �= α, cases, separately. It is notable that the plots 
show that two horizon, extreme and naked singularity black holes 
can occur provided that the parameters of the theory are fixed, 
properly.

Now, we look at the Ricci and Kretschmann scalars for consid-
ering the space–time singularities. It is a matter of calculation to 
show that the Ricci and Kretschmann scalars are finite for finite 
values of the radial component r. Also, we have

lim
r−→∞R = 0, and lim

r−→0
R = ∞, (2.19)

lim
r−→∞RμνρλRμνρλ = 0, and lim

r−→0
RμνρλRμνρλ = ∞. (2.20)

Therefore, there is an essential (not coordinate) singularity located 
at r = 0. Together, the appearance of a singularity in the Ricci 
scalars and the existence of the horizons are sufficient to ensure 
the validity of the black hole solutions. Also, the asymptotic be-
havior of the solutions, just like the case of pure dilaton black hole 
solutions, are neither flat nor A(dS).

3. Thermodynamic quantities and thermodynamical first law

After the discoveries of Hawking et al., the black holes are con-
sidered as the thermodynamic systems with the well-defined ther-
modynamic properties such as entropy and temperature. In order 
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Fig. 1. U (r) versus r for Q = 0.5, M = 5, � = −3, b = 2, α = β = 1.2, Eq. (2.18-a). (a): g(ε) = 0.8, f (ε) = 1.02 (black), 1.08 (blue), 1.14 (red), 1.2 (brown). (b): f (ε) = 1.02, 
g(ε) = 0.8 (black), 0.83 (blue), 0.86 (red), 0.89 (brown). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. U (r) versus r for Q = 0.5, M = 1.5, � = −3, b = 2, α = 2, β = 0.5, Eq. (2.18-a). (a): g(ε) = 0.8, f (ε) = 0.75 (black), 0.8 (blue), 0.85 (red), 0.9 (brown). (b): f (ε) = 1, 
g(ε) =0.55 (black), 0.6 (blue), 0.65 (red), 0.7 (brown).

Fig. 3. U (r) versus r for Q = 5, M = 1.5, � = −3, b = 1.5, β = √
3 and α = β , Eq. (2.18-b). (a): g(ε) = 0.75 and f (ε) = 0.2 (black), 0.56 (blue), 0.95 (red), 1.35 (brown). 

(b): f (ε) = 1.35 and g(ε) =0.7 (black), 0.708 (blue), 0.7166 (red), 0.725 (brown).

Fig. 4. U (r) versus r for Q = 5, M = 2.8, � = −3, b = 1.5, α = 1.65, β = √
3 Eq. (2.18-b). (a): g(ε) = 0.7, f (ε) =0.6 (black), 0.74 (blue), 0.9 (red), 1.05 (brown). (b): f (ε) = 1.3, 

g(ε) =0.707 (black), 0.714 (blue), 0.722 (red), 0.73 (brown).
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Fig. 5. U (r) versus r for Q = 0.5, M = 4, � = −3, b = 2, α = β = 1, Eq. (2.18-c). (a): g(ε) = 0.8, f (ε) =0.34 (black), 0.6 (blue), 0.9 (red), 1.2 (brown). (b): f (ε) = 1, g(ε) =0.35 
(black), 0.45 (blue), 0.54 (red), 0.64 (brown).

Fig. 6. U (r) versus r for Q = 0.5, M = 4, � = −3, b = 2, α = 2.4, β = 1, Eq. (2.18-c). (a): g(ε) = 0.8, f (ε) =1 (black), 1.32 (blue), 1.6 (red), 1.9 (brown). (b): f (ε) = 0.9, 
g(ε) =0.9 (black), 1.025 (blue), 1.15 (red), 1.27 (brown).
to check the satisfaction of the first law of black holes thermody-
namics, we first compute the conserved and thermodynamic quan-
tities. We drive the generalized Smarr mass formula and obtain the 
black hole mass as the function of the thermodynamical extensive 
parameters. Then, we compute the thermodynamical intensive pa-
rameters and show that the first law of black hole thermodynamics 
is satisfied.

The Hawking temperature associated to the black hole hori-
zon, as an important thermodynamic quantity, can be expressed 
in terms of the black hole surface gravity, κ , that is T = κ

2π from 
which one can show that

T = g(ε)

4π f (ε)r+

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + β2)

[
1

1−β2

( r+
b

)2βγ − �b2

g2(ε)

(
b

r+

)2(βγ −1)

− f 2(ε)q2 P (β)

b2(B−1)

(
b

r+

)2(B−1−αγ )
]

, β �= √
3,1,

−2
(

b
r+

)− 3
2 − 4�b2

g2(ε)

(
b

r+

)− 1
2

− 4 f 2(ε)q2 P (β=√
3)

b
√

3α−1

(
b

r+

) 1
2 (

√
3α−2)

, β = √
3, α > 1√

3
,

2r+
b

[
1 − (� + λ1)

b2

g2(ε)
+ ln

(
b

r+

)
−

(
f 2(ε)q2

b2α − λ1b2

g2(ε)

)(
b

r+

)α+1
]

, β = 1, α > 0.

(3.1)

Note that we have used the relation U (r+) = 0 for eliminating 
the mass parameter, m, from the above relations. Also, it must 
be noted that the extreme black holes (i.e. black holes with zero 
temperature) may occur if the black hole charge qext and horizon 
radius, r+ = rext , satisfy the following equations
q2
ext = b2(B−1)

f 2(ε)(1 − β2)P (β)

( rext

b

)B

×
[

1 − �b2(1 − β2)

g2(ε)

( rext

b

)2(1−2βγ )
]

, β �= √
3, 1, (3.2)

q2
ext = b

√
3α−1

2 f 2(ε)P (β = √
3)

( rext

b

) 1
2 (

√
3α+1)

×
[

6b2

�2 g2(ε)

(
b

rext

)
− 1

]
, β = √

3, α >
1√
3
, (3.3)

q2
ext =

(α + 1)
[

1 − �

g2(ε)
b2 + ln

(
b

rext

)]
b2α

f 2(ε)

[
α − 1 + 2

(
b

rext

)α+1
] , β = 1, α > 0.

(3.4)

It is too difficult to obtain the real root(s) of the equation T = 0
given by Eqs. (3.2)–(3.4), analytically. In order to investigate the 
existence and the number of real roots of these equations, the 
plots of T versus r+ , are shown in Figs. 7–12 for different values 
of the rainbow functions f (ε) and g(ε). The plots of Figs. 7 and 8, 
which are related to the cases α = β and α �= β in order, show 
that the equation T = 0 have a real root located at r+ = rext , for 
the black holes with β �= 1, 

√
3. The un-physical black holes (i.e. 

the black holes with negative temperature) are occur if r+ < rext

and the physical black holes having positive temperature can oc-
cur for r+ > rext .

In the case β = √
3, α > 1√

3
, the plots of T versus r+ are 

shown in Figs. 9 and 10 by considering α = β and α �= β , respec-
tively. The plots show that, for a suitably fixed parameters, there 
are two points at which the extreme black holes can occur. We la-
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bel them by r1ext and r2ext and suppose that r1ext < r2ext . The black 
holes with the horizon radius in the range r1ext < r+ < r2ext , hav-
ing positive temperature, are known as the physical black holes. 
The un-physical black holes, with the negative temperature, occur 
in the ranges r+ < r1ext and r+ > r2ext .

The extreme black holes with β = 1, α > 0 occur at the real 
roots of Eq. (3.4). For the cases β = α and β �= α, we have shown 
the plots of T versus r+ in Figs. 11 and 12, respectively. The point 
r+ = r3ext is the horizon radius of the extreme black holes. The
physical and un-physical black holes can exist for r+ > r3ext and 
r+ < r3ext , respectively.

The other important thermodynamic quantity is the black hole 
entropy. As a pure geometrical quantity, it can be obtained making 
use of the Hawking–Bekenstein entropy-area law. According to this 
nearly universal law, black hole entropy is equal to one-fourth of 
the black hole horizon area. Thus we have

S = A

4
= πr2+

g2(ε)
(R(r+))2 = πb2

g2(ε)

(
b

r+

)2βγ −2

, (3.5)

which is compatible with that of Reissner–Nordström-A(dS) black 
holes in the infrared limit of the solutions and in the absence of 
dilatonic field.

Now, we obtain the black hole’s electric potential on the hori-
zon by utilizing the following standard relation [42,43]

� = Aμχμ|reference − Aμχμ|r=r+ , (3.6)

where, χ = C∂t is the null generator of the horizon and C is an 
arbitrary constant to be determined. Noting Eqs. (2.14) and (3.6), 
we have

� = Cq

B − 1
r1−B+ . (3.7)

The black hole electric charge Q , as an important conserved 
quantity, can be obtained in terms of the integration constant q. To 
do so, one can calculate the total electric flux measured by an ob-
server located at infinity with respect to the horizon (i.e. r → ∞). 
It is related to the total electric charge of the black hole through 
the Gauss’s electric law which is written in the following form [44,
45]

Q = 1

4π

∫
r2[R(r)]2L′(F, φ)Fμνnμuνd�. (3.8)

Here, prime means derivative with respect to F , nμ and uν are, in 
order, the unit timelike and spacelike normals to the hypersurface 
of radius r. Now, making use of Eqs. (2.14) and (3.8) after some 
simple calculations we arrived at [23]

Q = qf (ε)

g(ε)bB−2
. (3.9)

It reduces to the charge of dilaton black holes when the infrared 
limit is taken [34].

The other conserved quantity to be calculated is the black hole 
mass. As mentioned before, it can be obtained in terms of the mass 
parameter m. Since the asymptotical behavior of the solutions ob-
tained here are not A(dS), we must use the method proposed 
originally by Brown and York. Based on the Brown and York mass 
proposal [46–48], known as the subtraction method, if the metric 
of the spherically symmetric space–time is written in the form,

ds2 = −F 2(r)dt2 + dr2

G2(r)
+ r2d�2

2, (3.10)

and the matter field contains no derivative of the metric, the 
quasilocal black hole mass can be obtained as
M = lim
r→∞ r F (r) [G(r0) − G(r)] , (3.11)

where, G(r0) is an arbitrary function which determines the zero of 
the energy for a background spacetime and r is the radius of the 
spacelike hypersurface boundary [48,49]. It is a matter of calcula-
tion to show that the total mass of the new charged rainbow black 
holes, introduced here, can be obtained as [23,33]

M = mb2βγ

2 f (ε)g(ε)(1 + β2)
, (3.12)

which is compatible with the mass of the charged dilaton black 
holes if we take its infrared limit [34,49].

Now, we are in the position to check the validity of the first law 
of black hole thermodynamics. To do so, we calculate the intensive 
thermodynamical quantities from the thermodynamical methods 
and compare them with those obtained from geometrical meth-
ods, up to now. Therefore, it is necessary to obtain the mass of 
the black holes as a function of the extensive quantities S and Q , 
through a Smarr-type mass formula.

Regarding Eqs. (3.9) and (3.12) and making use of the fact that 
the black hole horizon radiuses are the real roots of the relation 
U (r+) = 0, we arrived at the following Smarr-type mass formula

M(r+, Q ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
2 f (ε)g(ε)(1−β2)

[
r+
b − �b2(1−β4)

g2(ε)(3−β2)

(
b

r+

)4βγ −3

+ Q 2 g2(ε)(1−β2)P (β)

(B−1)b2

(
b

r+

)B−1
]
, β �= 1,

√
3,

− b
4 f (ε)g(ε)

[
r+
b + 2�b2

g2(ε)
ln

( r+
b

)
− 4g2(ε)Q 2 P (β=√

3)

(
√

3α−1)b2

(
b

r+

) 1
2 (

√
3α−1)

]
, β = √

3, α > 1√
3
,

b
2 f (ε)g(ε)

{[
2 − �b2

g2(ε)
− Q 2 g2(ε)

b2 (α−1
α+1 ) + ln

(
b

r+

)] ( r+
b

)
+ 2Q 2 g2(ε)

α(α+1)b2

(
b

r+

)α}
, β = 1, α > 0.

(3.13)

In the infrared limit (i.e. f (ε) = 1 = g(ε)) Eq. (3.13) reduces to the 
corresponding relation in ref. [34].

Now, making use of Eq. (3.13), it is easy to show that

(
∂M

∂ S

)
Q

=
(

∂M

∂r+

)
Q

(
∂ S

∂r+

)−1

Q
= T and

(
∂M

∂ Q

)
S
= �,

(3.14)

provided that the constant coefficient C be fixed as C = P (β) for 
both β = √

3, β �= √
3, 1 cases. Also, they are fulfilled for the case 

β = 1, if we set r+ = b, C = 2 − α. It is notable that we have 
C = 1, if one sets β = α. It means that, although the thermody-
namic quantities are affected by the rainbow functions, the first 
law of black hole thermodynamics remains valid for all of the three 
new charged dilaton black hole solutions, in the following form

dM(S, Q ) = T dS + �dQ , (3.15)

where T and � are known as the thermodynamical intensive pa-
rameters conjugate to the extensive parameters S and Q , respec-
tively.

4. Thermal stability of the new rainbow black holes

The thermodynamic stability or phase transition of a system 
can be considered by analyzing the sign of the heat capacity C Q
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Fig. 7. T and (∂2 M/∂ S2
)

Q versus r+ for Q = 0.5, M = 2, � = −3, b = 1.6, α = β = 0.6, Eqs. (3.1) and (4.2). (a): g(ε) = 0.85, [0.5T : f (ε) =1.2 (black), 1.4 (blue)] and 
[10 (∂2 M/∂ S2

)
Q : f (ε) =1.2 (red), 1.4 (brown)]. (b): f (ε) = 1.2, [0.5T : g(ε) =0.8 (black), 0.9 (blue)] and [10 (∂2 M/∂ S2

)
Q : g(ε) =0.8 (red), 0.9 (brown)].
at constant electric charge. The black hole heat capacity, calculated 
in the fixed black hole’s charge, is defined as

C Q = T

(
∂ S

∂T

)
Q

= T

(
∂2M

∂ S2

)−1

Q
. (4.1)

The last step in Eq. (4.1) comes from the fact that T = (∂M/∂ S)Q . 
From the view point of canonical ensemble method positivity of 
the black hole heat capacity is a necessary condition for the sys-
tem to be locally stable. The local stability of a system will be 
ensured only if there exists a range of the horizon radius for which 
the quantities T and 

(
∂2M/∂ S2

)
Q are both positives. The unsta-

ble black holes undergo phase transitions to be stabilized. Type-1 
phase transition occurs at the points where the black hole heat 
capacity vanishes. It means that the unstable black holes undergo 
type-1 phase transition at the real root(s) of T = 0. Note that the 
numerator of the black hole heat capacity is the black hole tem-
perature which is given by Eq. (3.1). In addition, unstable black 
holes undergo type-2 phase transition at the points where the 
black hole heat capacity diverges. Therefore, the points of type-2 
phase transition are the real root(s) of 

(
∂2M/∂ S2

)
Q = 0 [42,43]. 

Regarding these issues, we proceed to analyzing the thermal sta-
bility or phase transition of our new rainbow black hole solutions, 
separately.

4.1. Black holes with β �= 1, 
√

3

To perform a thermal stability analysis we need to calculate the 
black hole heat capacity. Making use of Eq. (3.13), we calculated 
the denominator of the black hole heat capacity in the following 
form(

∂2M

∂ S2

)
Q

= −g3(ε)(1 + β2)

8π2 f (ε)b3

(
b

r+

)3−4βγ

×
[

1 − �b2(β2 − 1)

g2(ε)

(
b

r+

)4βγ −2

− f 2(ε)q2 P1(β)

(
b

r+

)B
]

, (4.2)

where

P1(β) = (1 + β2)(B − 2βγ + 1)P (β)

b2(B−1)
.

The plots of 
(
∂2M/∂ S2

)
Q versus r+ , for different values of rainbow 

functions, are shown in Figs. 7 and 8 for β = α and β �= α cases, 
respectively. As it is clear from Fig. 7, black holes with β = α un-
dergo type-1 phase transition at r+ = rext where the black hole 
heat capacity vanishes. Also, the black hole heat capacity diverges 
at the point r+ = r1. This is a point of type-2 phase transition. This 
class of black holes are locally stable if their horizon radius be in 
the range r+ > rext .

The plots of Fig. 8 show that the denominator of the black hole 
heat capacity (i.e.

(
∂2M/∂ S2

)
Q ) is positive and no type-2 phase 

transition takes place. Also, they show that the temperature (or 
numerator of the heat capacity) vanishes at the point r+ = rext . 
This point is the point of type-1 phase transition. The black holes 
with the horizon radius r+ , greater than rext have positive heat 
capacity and are locally stable.

4.2. Black holes with β = √
3, α > 1√

3

It is matter of calculation to show that the denominator of the 
black hole capacity is given by(

∂2M

∂ S2

)
Q

= −g3(ε)

2π2 f (ε)b3

[
1 − 2�b2

g2(ε)

(
b

r+

)

− f 2(ε)q2 P1(β = √
3)

(
b

r+

) 1
2 (

√
3α+1)

]
. (4.3)

It is well-known that the points of type-2 phase transition are 
characterized by the real roots of Eq. (4.3). In order to explore the 
existence and number of these roots, we have plotted 

(
∂2M/∂ S2

)
Q

versus r+ for both of β = α and β �= α cases in Figs. 9 and 10, sep-
arately. The plots show that the denominator of the black hole heat 
capacity vanishes at r+ = r2 and the black hole heat capacity di-
verges at this point for both of β = α and β �= α cases. Thus there 
is a point of type-2 phase transition located at r+ = r2. The nu-
merator of black hole heat capacity (i.e. T ) vanishes at the points 
r+ = r1 ext and r+ = r2 ext with r1 ext < r2 ext . It means that the 
type-1 phase transition takes place at the points r+ = r1 ext and 
r+ = r2 ext . The heat capacity of the black holes with horizon ra-
dius in the range r1 ext < r+ < r2 is positive and they are locally 
stable.

4.3. Black holes with β = 1, α > 0

Starting from Eq. (3.13), the denominator of the black hole heat 
capacity can be calculated. It can be written in the following form:(

∂2M

∂ S2

)
Q

= −g3(ε)

2π2 f (ε)b2r+

[
1 − 2 f 2(ε)q2

b2α

(
b

r+

)α+1
]

. (4.4)

As it is shown in Figs. 11 and 12, the heat capacity of the black 
holes with β = 1, vanishes at r+ = r3 ext , where the extreme black 
holes occur. The type-1 phase transition takes place at this point 
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Fig. 8. T and (∂2 M/∂ S2
)

Q versus r+ for Q = 0.5, M = 2, � = −3, b = 2, α = 2.5, β = 0.5, Eqs. (3.1) and (4.2). (a): g(ε) = 0.85, [0.5T : f (ε) =1.35 (black), 1.6 (blue)] and 
[2 (∂2 M/∂ S2

)
Q : f (ε) =1.35 (red), 1.6 (brown)]. (b): f (ε) = 1.35, [0.5T : g(ε) =0.75 (black), 0.85 (blue)] and [2 (∂2 M/∂ S2

)
Q : g(ε) =0.75 (red), 0.85 (brown)].

Fig. 9. T and (∂2 M/∂ S2
)

Q versus r+ for Q = 0.5, � = −3, b = 0.8, α = β = √
3, Eqs. (3.1) and (4.3). (a): g(ε) = 0.9, [0.5T : f (ε) =1.4 (black), 1.7 (blue)] and [(∂2 M/∂ S2

)
Q : 

f (ε) =1.4 (red), 1.7 (brown)]. (b): f (ε) = 1.4, [0.5T : g(ε) =0.9 (black), 0.95 (blue)] and [(∂2 M/∂ S2
)

Q : g(ε) =0.9 (red), 0.95 (brown)].

Fig. 10. T and (∂2 M/∂ S2
)

Q versus r+ for Q = 0.5, � = −3, b = 0.8, α = 2, β = √
3, Eqs. (3.1) and (4.3). (a): g(ε) = 0.95, [0.5T : f (ε) =1.3 (black), 1.6 (blue)] and 

[
(
∂2 M/∂ S2

)
Q : f (ε) =1.3 (red), 1.6 (brown)]. (b): f (ε) = 1.5, [0.5T : g(ε) =0.9 (black), 1 (blue)] and [(∂2 M/∂ S2

)
Q : g(ε) =0.9 (red), 1 (brown)].

Fig. 11. T and (∂2 M/∂ S2
)

Q versus r+ for Q = 1.5, � = −3, b = 3, α = β = 1, Eqs. (3.1) and (4.4). (a): g(ε) = 0.8, [0.02T : f (ε) =1.2 (black), 1.5 (blue)] and [25 (∂2 M/∂ S2
)

Q : 
f (ε) =1.2 (red), 1.5 (brown)]. (b): f (ε) = 1.2, [0.02T : g(ε) =0.8 (black), 0.9 (blue)] and [(25∂2 M/∂ S2

)
Q : g(ε) =0.8 (red), 0.9 (brown)].
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Fig. 12. T and (
∂2 M/∂ S2

)
Q versus r+ for Q = 1.5, � = −3, b = 3, α = 2.5, β = 1, Eqs. (3.1) and (4.4). (a): g(ε) = 0.8, [0.02T : f (ε) =1.2 (black), 1.5 (blue)] and 

[25 (∂2 M/∂ S2
)

Q : f (ε) =1.2 (red), 1.5 (brown)]. (b): f (ε) = 1.2, [0.02T : g(ε) =0.8 (black), 0.9 (blue)] and [25 (∂2 M/∂ S2
)

Q : g(ε) =0.8 (red), 0.9 (brown)].
for both of the α = β and α �= β cases. Also, the denominator of 
the black hole heat capacity vanishes at r+ = r3. Thus, the black 
hole heat capacity diverges at r+ = r3 and it is a point of type-2 
phase transition. This class of new black holes with α = β and 
α �= β cases are locally stable if their horizon radiuses are in the 
range r3 ext < r+ < r3.

5. Conclusion

In the present work, we studied the thermodynamics and ther-
mal stability of the charged dilaton black holes in gravity’s rain-
bow. By varying the related four-dimensional action the equa-
tions of coupled scalar, vector and tensor fields have been ob-
tained in the presence of the rainbow functions. We introduced a 
four-dimensional spherically symmetric energy dependent geome-
try and solved the coupled field equations. As the result we ob-
tained two sets of electromagnetic solutions. One is the Coulomb’s 
inverse square electric field and the other is interpreted as a mod-
ified Coulomb’s electric field. The scalar field equation has been 
solved and the solution has been written as the linear combination 
of three Liouville-type potentials. Three new classes of charged 
dilaton black holes have been obtained as the exact solutions to 
the Einstein–Maxwell-dilaton theory in the rainbow gravity. The 
asymptotic behavior of the solutions are neither flat nor A(dS). 
Also, with the properly fixed parameters, the solutions show the 
two horizon, extreme and naked singularity black holes (Figs. 1–6). 
Existence of the horizons together with the singular Ricci scalars at 
r = 0 are in favor of the black hole interpretation of the solutions.

In order to investigate the thermodynamic properties of the 
charged dilaton black hole solutions, obtained in this work, we 
calculated the thermodynamic quantities (i.e. temperature, entropy 
and electric potential) and the conserved quantities (i.e. charge and 
mass) related to the new rainbow black holes. We showed that, for 
the properly fixed parameters, the extreme black holes having zero 
temperature can occur.

For the black holes with β �= 1, 
√

3 the black hole tempera-
ture vanishes at r+ = rext . The physical black holes, having positive 
temperature, occur for r+ > rext and the un-physical black holes 
with negative temperature are those have a horizon radius less 
than r+ = rext . The plots of T versus r+ for the cases α = β and 
α �= β are shown in Figs. 7 and 8, respectively.

The temperature of the black holes corresponding to β = √
3, 

vanishes at the points r+ = r1ext and r+ = r2ext such that r1ext <

r2ext . This kind of black holes are physically reasonable provided 
that their horizon radius be in the range r1ext < r+ < r2ext . The 
un-physical black holes (i.e. the black holes with negative tempera-
ture) appear for r+ < r1ext and r+ > r2ext . We have plotted T versus 
r+ in Figs. 9 and 10 for α = β and α �= β cases, respectively.
The horizon of the extreme black holes with β = 1 is located 
at r+ = r3ext . It is the real root of equation (3.4). As shown in 
Figs. 11 and 12, the horizon radii of the physical and un-physical 
black holes satisfy the relations r+ > r3ext and r+ < r3ext , respec-
tively.

We derived a Smarr-type mass formula which shows the black 
hole mass as a function of black hole charge Q and entropy S
named as the extensive thermodynamical parameters. Making use 
of the Smarr mass formula we proved that, even if the thermody-
namic quantities are affected by the rainbow functions, the ther-
modynamical first law is still valid for either of the new black hole 
solutions.

Finally, we have performed a thermal stability analysis for the 
new dilaton black holes obtained here. We have analyzed the sta-
bility of our new black hole solutions making use of the canonical 
ensemble method. By calculating the black hole heat capacity and 
noting its signature we have determined the points of type-1 and 
type-2 phase transitions as well as the ranges at which the black 
holes are locally stable, precisely. It has been found that: (i) For 
the black holes with β �= 1, 

√
3, if we set α = β , there is a point of 

type-1 phase transition located at the vanishing point of the black 
hole temperature. The point of type-2 phase transition is located 
at r+ = r1 where the denominator of the black hole heat capacity 
vanishes. This kind of black holes are locally stable if their horizon 
radius is in the range r+ > r1 where the black hole heat capacity 
is positive (see Fig. 7). As it is shown in Fig. 8, by setting α �= β

it is possible to fix the parameters such that the denominator of 
the black hole heat capacity be positive valued. Thus, there is no 
point of type-2 phase transition. The black holes undergo type-1 
phase transition at the vanishing point of the black hole temper-
ature located at r+ = rext . They are locally stable if their horizon 
radius is greater than rext . (ii) The black holes corresponding to 
β = √

3 undergo type-1 phase transition at the points r+ = r1ext

and r+ = r2ext . There is a point of type-2 phase transition located 
at the divergent point of the black hole heat capacity located at 
r+ = r2. These kinds of black holes with the horizon radius in the 
range r1 ext < r+ < r2 are locally stable. These facts can be seen 
in the plots of Figs. 9 and 10 for the α = β and α �= β cases, re-
spectively. (iii) The black holes with β = 1 undergo type-1 phase 
transition at the vanishing point of the black hole heat capacity 
located at r+ = r3ext . There is a point of type-2 phase transition lo-
cated at r+ = r3 where the black hole heat capacity diverges. These 
kinds of black holes are locally stable provided that their horizon 
radiuses are in the range rext < r+ < r3. Figs. 11 and 12 show the 
numerator and denominator of the black hole heat capacity for the 
cases α = β and α �= β cases, respectively.
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