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We study the chiral phase transition of the two-flavor Nambu–Jona-Lasinio model in a sphere with the
MIT boundary condition. We find that the spherical MIT boundary condition results in stronger finite size
effects than the antiperiodic boundary condition. Our work may be helpful to study the finite size effects in
heavy-ion collisions in a more realistic way.
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I. INTRODUCTION

The finite size effects in quantum chromodynamics
(QCD) have caused much theoretical interest for more than
two decades. The relevant study is important for the high-
energy heavy-ion collision (HIC) experiments. It is believed
that these experiments could produces the quark-gluon
plasma (QGP), a phase of matter believed to exist in the
early Universe. However, the QGP systems produced by
HIC are always in a finite volume. For instance, the sizes of
QGP are estimated to be between 2 and 10 fm in [1],
although the volume of Au-Au and Pb-Pb before freeze-out
is about 50–250 fm3 [2,3]. The finite size effects can modify
the phase structure of strong interaction, dislocating critical
lines and critical points, and also affect the dynamics of
phase conversion [1,4–17]. The finite size effects have been
investigated by different methods including chiral pertur-
bation theory [18,19], quark-meson model [11,13,20,21],
Dyson-Schwinger approach [22–25], Polyakov loop
extended Nambu–Jona-Lasinio (NJL) model [26–28], and
other nonperturbative renormalization group methods [29].
A review of finite size effects can be found in [30].
In most existing studies of finite size effects in QCD, the

systems are usually treated as a box. However, we know
that the QGP in HIC is more like a sphere than a box, so for
a more realistic calculation, the shape effect should be

considered. There are several studies [6,7,31–33] treating
the system as a sphere, and the multiple reflection expan-
sion (MRE) method [34] is used. But the MRE method is
essentially an asymptotic expansion method which
becomes invalid for very small volume. So, we want to
find a better method to deal with the finite size effects in a
sphere, which is one of the major subjects of this work.
To give a brief introduction to our method, let us first

recall how we deal with finite size effects in a box. Usually,
we put the system into a box and a spatial boundary
condition is required, which results in discretized momenta
in the spatial direction. To consider finite size effects, we
replace the integral over spatial momenta with a sum over
discrete momentum modes. This “brute force method” has
no difficulty to be applied for the sphere case, though the
calculation is more complicated. In this work, we will use
this method to study the chiral phase transition of NJL
model in a sphere.
This paper is organized as follows: In Sec. II, the gap

equation of NJL model in a sphere with the MIT boundary
condition is derived. The chiral phase transition of the
model is presented in Sec. III and a summary is given
in Sec. IV.

II. NJL MODEL IN A SPHERE WITH THE
MIT BOUNDARY CONDITION

NJL model is a low-energy effective theory of QCD. It
has the feature of dynamical chiral symmetry breaking. The
Lagrangian of the two-flavor NJL model is

L ¼ ψ̄ðiγμ∂μ −mÞψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

whereG is the effective coupling andm is the current quark
mass. Here, we consider u and d quarks with exact isospin
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symmetry. In the mean field approximation, the gap
equation is given as (only consider the Hartree term) [35]

M ¼ m − 2Ghψ̄ψi: ð2Þ

At zero temperature, the condensation

hψ̄ψi ¼ iNcNf

Z
d4p
ð2πÞ4 trSðpÞ; ð3Þ

where Nc ¼ 3 is the number of colors, Nf ¼ 2 is the
number of flavors, and

SðpÞ ¼ =pþM
p2 −M2

: ð4Þ

The trace is taken over the Dirac indices. Since the NJL
model is nonrenormalizable, regularization is needed. A
widely used regularization scheme is the three momentum
cutoff regularization [35], which ignores the high-
frequency modes. We think it is not very suitable for
dealing with finite size effects because in a finite volume
only high-frequency modes can exist. So, in this paper, we
adopt the proper time regularization [35], which takes into
account the contribution of all the modes. With this
regularization, the condensation in the infinite volume at
zero temperature can be written as

hψ̄ψi ¼ −4NcNfM
Z

d4p
ð2πÞ4

Z
∞

τUV

dτe−τðp2þM2Þ

¼ −
3M
2π2

Z
∞

τUV

dτ
e−τM

2

τ2
: ð5Þ

At finite temperature, the integration of p0 is replaced
by a sum of all fermion Matsubara frequencies ωk ¼
ð2kþ 1ÞπT. Then, the condensation at finite temperature
can be written as

hψ̄ψi¼−4NcNfM
Z

∞

τUV

dτe−τM
2

×T
X∞
k¼−∞

Z
d3p⃗
ð2πÞ3e

−τðp2þω2
kÞ

¼−
3MT

π3=2

Z
∞

τUV

dτ
e−τM

2

τ3=2
θ2ð0;e−4π2τT2Þ; ð6Þ

where θ2ð0; qÞ ¼ 2
ffiffiffi
q4

p P∞
n¼0 q

nðnþ1Þ. Then, the gap equa-
tion at finite temperature is

M ¼ mþ 6GMT

π3=2

Z
∞

τUV

dτ
e−τM

2

τ3=2
θ2ð0; e−4π2τT2Þ: ð7Þ

Equation (7) is the usual gap equation of NJL model
in infinite volume. For finite size system, it should be
modified. As we stated in the Introduction, three momenta
will be discretized by the boundary condition. For example,
the allowed values of momentum modes in a box under
antiperiodic boundary condition are

p⃗2
APBC ¼ 4π2

L2

X3
i¼1

�
ni þ

1

2

�
2

; ni ¼ 0;�1;�2;…: ð8Þ

To modify the gap equation, we replace the integral over
momentum with a sum over all allowed momentum
modes, i.e.,

Z
d3p⃗
ð2πÞ3 →

1

V

X
pk

; ð9Þ

where pk stands for jp⃗kj. This replacement has been used in
many works, e.g., [1,25,29,36]. Here we note that the finite
size effects are not fully accounted for by the replacement
of the integral by sum over discrete modes. The condensa-
tion is inhomogeneous in a finite system in general. For
simplicity, we neglect the inhomogeneous effects and treat
hψ̄ψi as a constant here. The modified gap equation in
finite volume under antiperiodic boundary condition at
finite temperature is

M ¼ mþ 48GMT
V

Z
∞

τUV

dτe−τM
2

θ2ð0; e−4π2τT2Þ
X
pk

e−τp
2
k :

ð10Þ
Here we want to note that the above method to deal with the
finite size effects in NJL model and the regularization
scheme are the same as that in [36]. There are other
methods and regularization schemes employed in different
studies [7,8,37].
Now, we want to follow the above procedure to get the

gap equation of NJL model in a sphere. First, we should
select a proper boundary condition. In the past studies of
finite size effects, periodic and antiperiodic boundary
conditions are usually selected. However, it is hard to
define periodic and antiperiodic on a sphere. Dirichlet
boundary condition can be defined on a sphere, but for
fermions, it is so strict that no solution exists [38]. Here we
select the MIT boundary condition, first proposed in the
MIT bag model [39,40]. For a sphere, it can be written as

−ir̂ · γ⃗ψðt; r; θ;ϕÞjr¼R ¼ ψðt; r; θ;ϕÞjr¼R; ð11Þ
where r̂ is the unit vector normal to the sphere surface,
and γ⃗ ¼ ðγ1; γ2; γ3Þ. This boundary condition confines the
fermions inside the cavity since it forces the normal
component of the fermionic current ψ̄γμψ to be zero at
the surface of the cavity [39]. We think the MIT boundary
condition is more suitable for the finite size effects study
in HICs than (anti)periodic boundary conditions for its
confinement character. Note the authors of [41] already
investigated the NJL model in a cylinder with the MIT
boundary condition. Here we investigate the NJL model in
a sphere with also the MIT boundary condition.
Once the boundary condition Eq. (11) has been selected,

the discrete values of the momentum can be obtained by
solving the equation of motion of the NJL model with
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Eq. (11). The NJL model after mean field approximation
can be seen as a model of free particle with massM, and its
equation of motion is the free Dirac equation. Under
spherical MIT boundary condition, the allowed momentum
values are given by the following eigen equations [42]:

jlκðpRÞ ¼ −sgnðκÞ p
EþM

jl̄κðpRÞ; ð12Þ

where

lκ ¼
�−κ − 1 for κ < 0

κ for κ > 0
;

l̄κ ¼
� −κ for κ < 0

κ − 1 for κ > 0
;

κ ¼ �1;�2;… and jlðxÞ is the lth ordered spherical
Bessel function. The p stands for jp⃗j. With the following
replacement:

Z
d3p⃗
ð2πÞ3 →

1

2V

� X
pk;κ>0

þ
X
pk;κ<0

�
: ð13Þ

We can get the gap equation of NJL model in a sphere with
the MIT boundary condition. The factor 2 in Eq. (13)
comes from the nondegeneracy of κ and −κ states. The final
gap equation in a sphere at finite temperature is

M ¼ mþ 24GMT
V

Z
∞

τUV

dτe−τM
2

θ2ð0; e−4π2τT2Þ

×

� X
pk;κ>0

e−τp
2
k þ

X
pk;κ<0

e−τp
2
k

�
: ð14Þ

III. CHIRAL PHASE TRANSITION
OF THE NJL MODEL IN A SPHERE

Solving the modified gap equation (14) at zero temper-
ature with different radii, we can find how the finite size
influences the constituent quark mass at zero temperature.
It is well known that spontaneous symmetry breaking can
only occur in infinitely large systems in principle [43,44].
So, in our cases, we expect the small size will lead to the
restoration of chiral symmetry. In fact, the decrease of the
volume has a similar effect to the increase of the temper-
ature, so we expect the constituent quark mass will decrease
when the volume decreases. Note these statements have
been confirmed in [30,36,37]. Figure 1 presents the
constituent quark mass M as a function of the radius R
at zero temperature. The result under antiperiodic boundary
condition is also presented for comparison. The parameters
are chosen as m ¼ 5 MeV, τUV ¼ 1=10802 MeV−2,
G ¼ 3.26 × 10−6 MeV−2. For the spherical MIT boundary
condition case, we find when the radius reaches about
14 fm, the constituent quark mass gets very close to that in
an infinite system. That is to say, a system whose size is
above 14 fm can be regarded as an infinitely large system.

FIG. 1. Constituent quark massM as a function of radius R and
box size L at zero temperature. We set the x-axis to be R for the
MIT boundary condition case and ð3=4πÞ1=3L for the antiperiodic
boundary condition case so that they have the same volume. The
red dashed line is the constituent quark mass in infinite volume.

FIG. 2. The integrated number of modes as a function of
the single particle momentum of quarks per volume, calculated
under spherical MIT boundary condition with R ¼ 0.985 fm and
R ¼ 1.97 fm at zero temperature. The solid line is the infinite
volume limit.
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But for antiperiodic boundary condition case, when
L > 3 fm, the box is already large enough to be regarded
as an infinite system. We think the stronger finite size
effects induced by the spherical MIT boundary condition
may be due to the confinement character of this boundary
condition.
We know the number of modes of quarks is essential to

cause the spontaneous breaking of the chiral symmetry. In
Fig. 2,we show the integrated number ofmodes as a function
of the single particle momentum of quarks per volume in
finite volume, and the infinite limit is shown for comparison.
We can observe that the integrated number of modes at finite
volume fluctuates around the large volume limit.
To show the influence of the finite size on the chiral phase

transition of the NJL model, we solve the gap equation (14)
at finite temperature with different radii. Figure 3 presents
the constituentmasses as functions of temperature in spheres
with different radii. We find at the same temperature, the
constituent quark mass in small volume is smaller than that
in large volume because the finite size partially restores the
chiral symmetry. Figure 4 compares the results under the
spherical MIT boundary condition and antiperiodic

boundary condition at finite temperature, which also shows
the spherical MIT boundary condition leads to stronger
finite size effect than antiperiodic boundary condition.
Figure 5 shows the chiral susceptibility χm ¼ −∂hψ̄ψi=
∂m under MIT boundary condition; we find the finite size
smoothes the peaks of the chiral susceptibility, which is a
well-known finite size effect.
Since the sizes of QGP systems are estimated to be

between 2 and 10 fm according to [1], our results indicate
these systems have considerable finite size effects. In some
previous work in which periodic or antiperiodic boundary
condition is adopted, e.g., [11,37], the finite size effects are
weaker than our results, which is consistent with our
finding in this paper that antiperiodic boundary condition
leads to weaker finite size effects than spherical MIT
boundary condition. Thus, we want to call attention to
the importance of boundary conditions when studying
finite size effects. In fact, the importance of boundary
conditions had been noticed by some previous work [5].

IV. SUMMARY

In this work, we apply the widely used brute force
method to study the finite size effects of the NJL model in a
sphere with the MIT boundary condition. The chiral phase
transition is investigated in this model. We find the
spherical MIT boundary condition leads to stronger finite
size effects than antiperiodic boundary condition. Since we
believe the systems we deal with here are more close to the
QGP systems in HIC, we think the finite size effects in HIC
may be stronger than former estimations, so it deserves
careful study in the future.
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FIG. 3. Constituent quark mass M as functions of temperature
in spheres with different radii.

FIG. 4. MðTÞ=Mð∞Þ under MIT boundary condition and
antiperiodic boundary condition.

FIG. 5. Chiral susceptibility under MIT boundary condition
with different radii.
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