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In the collider phenomenology of extensions of the Standard Model with partner particles, cascade
decays occur generically, and they can be challenging to discover when the spectrum of new particles is
compressed and the signal cross section is low. Achieving discovery-level significance and measuring the
properties of the new particles appearing as intermediate states in the cascade decays is a long-standing
problem, with analysis techniques for some decay topologies already optimized. We focus our attention on
a benchmark decay topology with four final state particles where there is room for improvement and where
multidimensional analysis techniques have been shown to be effective in the past. We apply machine
learning techniques in order to identify effective human-level kinematic observables for discovery, spin
determination, and mass measurement. We quantify the performance of these analyses as a function of the
signal size. In agreement with past work, we confirm that the kinematic observable Δ4 is highly effective.
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I. INTRODUCTION

While the Standard Model (SM) of particle physics is
extremely successful in describing the known particles and
their interactions, it is also known to be an incomplete
description of fundamental physics. Some of the best-
studied extensions of the Standard Model that aim to
stabilize the electroweak scale or explain the observed
dark matter (DM) relic abundance hint at the existence of
new degrees of freedom at roughly the TeV scale.
Unfortunately, collider searches for such new particles
have yielded only null results until now. Therefore, as
the Large Hadron Collider (LHC) is getting ready to start its
third run, even if new physics is finally discovered, the
signal will in all likelihood either have low statistics or be
difficult to distinguish from backgrounds, or possibly both.
This makes it all the more crucial that LHC searches be
optimized for maximal efficiency with these challenges in
mind. Similarly, postdiscovery, the measurement of the
properties of the new particles, such as their masses, will be
challenging for the same reasons.
Among possible final states for new physics at the LHC,

supersymmetry (SUSY)-like production and decay chan-
nels of color-neutral particles, especially with a compressed
spectrum for the new particles, offer good examples for the
type of signatures mentioned above, as electroweak-only

charged particles have low production cross sections, and
compressed spectra result in soft momenta in the final state,
so backgrounds cannot be reduced by using hard cuts. Our
definition of a SUSY-like channel is that new particles can
be produced only in pairs due to a Z2 symmetry and that
each one decays to a lighter new particle plus SM particles,
until the lightest new particle is reached, which is collider
stable and a DM candidate and which cannot be detected.
Note that this definition applies equally well to scenarios
where the new particles have the same spin as their SM
partners, such as in the case of extra dimensional models
and others. Since there is an invisible particle at the end of
any decay chain in such final states, no resonance can be
reconstructed from any subset of visible particles.
For short decay chains, very little kinematic information

is available event by event. Observables such as missing
transverse energy (MET) and transverse mass variables
such as mT and mT2 [1–9] fully use this available
information and provide the best chance for discovery
and for the mass measurement of the unknown particles. As
a result, all available information can be extracted from
one-dimensional distributions of a small number of kin-
ematic variables. In the other extreme, for sufficiently long
decay chains, there is sufficient kinematic information
available in the events for the determination of the complete
spectrum by algebraic methods [10–30]. Both of these
possibilities have been well studied, and there is little room
for improvement. For an extensive review of kinematic
variables used in collider phenomenology, we direct the
reader to Ref. [31].
There are, however, final states that lie between these

extremes, where algebraic methods cannot be used, but
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there are sufficiently many kinematic observables such that
their correlations also contain crucial information that
cannot be extracted by plotting only commonly used
one-dimensional distributions such as kinematic edges
and end points. It was shown in Ref. [32] that a decay
chain that proceeds via three consecutive two-body decays
has this property (see Fig. 1), and subsequent papers
[33,34] explored how an analysis based on the full
dimensionality of the Lorentz-invariant observables can
be used to enhance discovery prospects as well as to
improve the precision of mass measurements. In other
words, in these event topologies there are features of the
phase space distribution that reveal themselves only with
a multidimensional study but not in the standard one-
dimensional projections. In particular, it was shown that the
variable Δ4, to be reviewed in the next section, is a highly
effective observable for measuring not only the mass
differences between successive particles in the cascade
decay, but also the overall mass scale along the “flat
direction,” where the locations of kinematic edges and
end points in each step of the cascade remain fixed. In this
paper, we also adopt the same decay chain as the bench-
mark case for our study. The decay chain that we consider
in this paper has been previously studied using end points
in kinematic observables [35]. The effectiveness of a
number of kinematic observables for spin determination
has also been studied [27,36–38].
Since we are considering SUSY-like collider signatures,

the new particles need to be pair produced. However, if the
decay chain in Fig. 1 appears on both sides of the event,
then this event topology would, in fact, contain sufficiently
many visible final state particles that algebraic methods
could be used. We instead focus on scenarios where the
associated production of X-χ is the dominant production
channel (or possibly the next-to-dominant channel, after
χ-χ production, but, for sufficiently heavy χ, this channel
is challenging to observe). One can, for instance, consider a
t-channel production diagram, where the mediator in the
t channel couples more strongly to χ than it does to X. This
is illustrated in Fig. 2 for two choices of particle spins,
which we will introduce in Sec. IV. All the visible
information in the event is then coming from the X side
of the event, and the χ on the other side of the event affects
only the total MET vector among the observables.
Recently, advances in machine learning techniques have

led to significant improvements in multidimensional data

analysis, and in this paper we evaluate the effectiveness of
these techniques for the discovery, spin determination, and
mass measurement in this benchmark decay chain, as a
representative of SUSY-like decays that have sufficiently
many kinematic observables to warrant a multidimensional
analysis but not enough for a full reconstruction via
algebraic techniques. In this study, we first consider how
well a deep neural network (DNN) can achieve these goals
without human guidance, that is, by taking the final state
momenta in the events as its only input. We then proceed to
interpret the DNN in terms of human-level (HL) kinematic
variables, and we show that an analysis based on the HL
variables results in performance comparable to that of the
detector-level (DL) inputs. In particular, our results confirm
that Δ4 is highly correlated with the output of the DNN, in
agreement with the conclusions of Refs. [32–34].
Supervised machine-learning-based analyses have been

previously applied for the discovery of exotic collider
events in Refs. [39,40]. In Ref. [41], the authors have
proposed methods for discovery across a range of model
parameters. Applications also include resolution of combi-
natorics in complex topologies [42] and parameter
inference [43,44].
The visible particles p1;2;3 can be chosen among a large

set of SM final states. In order to keep our analysis as
simple as possible, we adopt a benchmark scenario that is
as clean as possible in terms of its collider signatures. Once
the proof of concept for the methods we present has been
established, additional analyses can be performed to adapt
these methods to more challenging final states as well. To
be specific, we choose p1 and p2 to be same-flavor,
opposite-charge leptons, such as μ�-μ∓, and we choose
p3 to be a photon. This final state can arise, for example, if
Y is a muon partner, while X, Z, and χ are partners to gauge
bosons. We emphasize that we are not promoting this to be
a particularly plausible scenario of beyond-the-SM physics.
It is meant only to provide a relatively clean example of our

FIG. 1. Feynman diagram for our benchmark decay chain. X, Y,
Z, and χ are all new particles, while p1;2;3 are SM particles.

FIG. 2. The Feynman diagrams for the production of the new
particles in our benchmark event topology with the two spin
configurations we consider. Fermions are represented by solid
lines, while scalars are represented by dotted lines.
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benchmark event topology, to study the effectiveness of the
methods we are proposing. X, Z, and χ can all be fermions
and Y a boson, or the other way around, and we, in fact,
study both assignments to address the questions not only of
discovery and mass measurement, but of spin determina-
tion as well.
With these choices, the final state we focus on in this

study is μþμ−γ þMET. Since there is no reason to expect a
resonant structure in the μþμ− system in the signal, we
impose a Z veto in the analysis to eliminate the leading
backgrounds. We also veto any significant hadronic activ-
ity. With these choices, there are two SM backgrounds
contributing to this final state. The first is Z-γ pair
production, with the Z decaying to taus, and both taus
decaying to muons. The second is triboson production,
such as WþW−γ (with both W’s decaying to muons) and
ZZ�γ (with the on-shell Z decaying invisibly and the off-
shell Z decaying to muons). These are the backgrounds we
include in our analysis.
Given the signal and the background described above, a

problem that needs to be dealt with early on is the
following: Since information about the masses of the
new particles and their spins is not known prior to their
discovery, we cannot train the neural networks using
Monte Carlo events generated with the correct signal
spectrum and the correct spin assignments. As a possible
resolution to this problem, we study the effectiveness of
“scanning” over the parameter space using a performance
metric that quantifies discovery (S=

ffiffiffiffi
B

p
in our case). A full

scan over the parameter space is computationally very
expensive, and we will perform only a local scan in order to

demonstrate that the true spectrum is at least a local
maximum.
First, we perform the scan using networks trained solely

on the final state momenta, which we will refer to as the DL
variables. We show that, over the region of this local scan,
the discovery metric is maximized for the networks trained
using mass spectra for which the mass differences or, more
precisely, the kinematic edges and end points in the three
mij variables have the correct values. Then, we proceed to
identify a set of HL variables that match the DNN. In
particular, we show that performing the scan using the HL
variables rather than the final state momenta results in an
improved resolution for the mass gap measurement. As we
will see, both the DL and the HL variable-based scans do
not perform well in measuring the spins and the overall
mass scale. We show that analyses based on ensemble
methods using HL kinematic variables can be used to
determine the spins and the overall mass scale. Figure 3
shows a schematic representation of our procedure.
This paper is organized as follows: We start with a short

review of the relevant kinematic observables in Sec. II and a
review of the relevant machine learning techniques in
Sec. III. Then, in Sec. IV, we study the prospects for
discovery and mass measurement relying on the final state
momenta of the visible particles and a deep neural network
trained on individual events. We then proceed to interpret
the DNN in terms of HL variables in Sec. V, and we
perform the second, ensemble-based stage of the analysis in
order to determine the spins of the new particles (in
Sec. VI) and their masses (in Sec. VII) much more
accurately. We conclude in Sec. VIII.
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FIG. 3. Flow chart detailing the overall procedure for discovery, mass gap determination, spin determination, and overall mass scale
determination.
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II. REVIEW OF PHASE SPACE AND
KINEMATIC OBSERVABLES

In this section, we review important properties of
kinematic observables that are used in the analysis of
the next few sections. Using the notation of Fig. 1, we label
the four-momenta of the new particles in a given event as
pμ
X, etc., and those of the visible final states as pμ

1, etc.
Very generally, the distribution of events in phase space is
given by

dΓ ¼ dΠPSjMj2; ð2:1Þ

where dΠPS stands for the phase space volume element
and jMj2 for the amplitude squared. While the latter
contains valuable information about the spins of the
particles and the angular correlations of the final state
particles, the information about the spectrum of the new
particles and about the boundary of the kinematically
available phase space is entirely contained in the phase
space factor. As mentioned in the introduction, we
consider two possible spin assignments for the new
particles. In our analysis of discovery and mass meas-
urement prospects, we consider both possibilities, and we
look for commonalities as well as differences in the list of
the optimal HL variables in these two cases.
The simplest way to characterize the data is, of course,

through the momentum vectors p⃗1;2;3 of the three visible
final state particles and that of the transverse missing
energy ðMETÞ. As usual in collider analyses, we express
these vectors in terms of pT, the pseudorapidity η (except in
the case of the MET), and the azimuthal angle ϕ of the final
state particles. Considering boost invariance along the
beam direction, differences Δη and Δϕ between any two
particles are very useful observables, as is the combination
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

p
. The fully Lorentz-invariant observ-

ables include the pair invariant masses m2
ij ¼ ðpμ

i þ pμ
j Þ2,

as well as the total invariant mass of all three visible
particles m2

123. One less well-known Lorentz-invariant
observable is Δ4, which we define below. This completes
the list of kinematic observables that we consider in our
paper.
The maximum values of the m2

ij and m2
123 variables for

this final state topology are well known [2,8,19,35,45,46]
and often used for mass (difference) measurements in this
event topology. They are given by

ðm2
23Þmax ¼ ðM2

Y −M2
ZÞðM2

Z −M2
χÞ=M2

Z; ð2:2Þ

ðm2
12Þmax ¼ ðM2

X −M2
YÞðM2

Y −M2
ZÞ=M2

Y; ð2:3Þ

ðm2
13Þmax ¼ ðM2

X −M2
YÞðM2

Z −M2
χÞ=M2

Z; ð2:4Þ

ðm2
123Þmax ¼

8>>>>>>>><
>>>>>>>>:

ðM2
X−M

2
Y ÞðM2

Y−M
2
χÞ

M2
Y

MX
MY

> MY
MZ

MZ
Mχ

;

ðM2
XM

2
Z−M

2
YM

2
χÞðM2

Y−M
2
ZÞ

M2
YM

2
Z

MY
MZ

> MZ
Mχ

MX
MY

;

ðM2
X−M

2
ZÞðM2

Z−M
2
χÞ

M2
Z

MZ
Mχ

> MX
MY

MY
MZ

;

ðMX −MχÞ2 otherwise:

ð2:5Þ

It is straightforward to see that these formulas are sensitive
to differences of masses; however, there exists a flat
direction along which the masses can be varied such that
the end points of all m2

ij variables remain constant. The
kinematic variable Δ4 we are about to describe has been
shown to be useful for measurements of the mass spectrum
along this challenging direction [32–34].
For each decaying X particle, the momenta of the final

states p1;2;3 and χ can be represented as a point in four-body
phase space. While it is not commonly used, there is an
elegant description of four-body phase space [47] that is
manifestly Lorentz invariant. Consider the 4 × 4matrix Zij

whose elements are given by pi · pj (where we are taking χ
to be the fourth particle). Define the functions Δi of these
momenta as the coefficients in the characteristic polyno-
mial of Z, namely,

Det½λI4×4 − Z�≡ λ4 − λ3Δ1 − λ2Δ2 − λΔ3 − Δ4: ð2:6Þ

The kinematically allowed region in phase space for X
decay can be shown [47] to be defined by the conditions
Δi > 0 for all i ¼ 1;…; 4, with the boundary of the region
defined by Δ4 ¼ 0 (with Δ1;2;3 still positive). As already
mentioned, Δ4 has been shown to be a powerful observable
for analyzing this decay chain, both for discovery and for
mass measurement purposes [32–34,48,49]. There is one
subtlety that needs to be mentioned. Using the definition
above, calculating Δ4 requires knowledge of all final state
momenta, including that of χ, which is invisible. However,
if the masses fMX;MY;MZ;Mχg in the spectrum are
assumed known, then all dot products pi · pχ (and, there-
fore, Δ4) can be calculated from only the visible particle
momenta, by using the on-shell conditions for the inter-
mediate particles.
The reason that Δ4 is such a useful variable is that the

volume element of four-body phase space, expressed in the
differentials dm2

ij, is given byΔ
−1=2
4 , up to a constant and an

energy-momentum-conserving delta function. As a result,
in the Lorentz-invariant coordinates m2

ij, the distribution
of signal events is strongly clustered near Δ4 ¼ 0.
Background events, on the other hand, do not arise from
X decays, and their Δ4 distribution has no similar sharp
feature at Δ4 ¼ 0. As a result, if the spectrum were
somehow known, then an excess of signal events over
background can be easily discovered due to the sharp peak
in the Δ4 distribution near zero. Of course, discovery must

HAQ, KILIC, LAWRENCE-SANDERSON, and SUDHA PHYS. REV. D 108, 035002 (2023)

035002-4



precede a knowledge of the spectrum; however, Δ4 can be
used to accomplish both goals simultaneously. In principle,
one can scan over the possible spectra fMX;MY;MZ;Mχg
and look for an excess near Δ4 ¼ 0. This feature will be
most significant when the correct spectrum is used, so the
presence of the excess will serve both as a discovery
variable and as a way to measure the unknown particle
masses. Of course, in practice, it is computationally
prohibitive to perform a scan in all four mass variables.
Fortunately, the well-known kinematic edges and end
points in the m2

ij distributions already provide good
sensitivity for the mass differences, and, therefore, they
can be used first, leaving only the overall mass scale
undetermined (parametrized by Mχ, say) along the flat
direction. Then, one can perform a one-dimensional scan
over Mχ and use Δ4 to fix the spectrum completely. Our
analysis in the rest of this paper will demonstrate that neural
network techniques based on Δ4 do indeed result in a
high-precision measurement of the masses along the flat
direction.

III. REVIEW OF MACHINE LEARNING TOOLS

For the results presented here, all neural networks were
implemented using the Keras [50] package with the
TensorFlow [51] back end. Wherever we implement neural
networks in our analysis, we provide details about the
number of nodes, layers, and activation functions within the
respective section.
In the initial phase of our analysis focused on discovery,

we implement fully connected deep networks as binary
classifiers, the two target classes being the signal and the
background. We use the binary cross-entropy as the loss
function.
Unlike the first stage of the analysis described in

Secs. IV and V, where the neural network analyzes one
event at a time and assigns each event an output in the range
[0, 1], where 0 corresponds to background and 1 corre-
sponds to signal, we will see in Secs. VI and VII that the
spin determination and the measurement of the overall
mass scale are more challenging, and an ensemble-based
analysis is required. In the ensemble-based analysis, the
entire dataset is considered as a single input. We also
identify the HL variables whose distributions are particu-
larly effective in separating the different hypotheses.
Histograms in these variables are then used for the training
and evaluation of the networks. Specific details about the
histogram binning are provided in the respective sections of
the paper.
In our case, postdiscovery, the determination of the mass

spectrum reduces to determining a single mass value along
the flat direction, which we parametrize by Mχ. We treat
this as a regression problem, and we use the mean squared
error loss function for training the network.

The average decision ordering (ADO) metric introduced
in Ref. [52] is very useful for quantifying the correlation
between two functions, one of which may be the neural
network output and the other an analytic function defined in
terms of the inputs. ADO is constructed to quantify the
degree to which two functions f and g rank pairs of events
belonging to the two classes A and B in the same order.
We use the following discrete version of the ADO:

ADO½f; g� ¼
X
x∈A

X
x0∈B

ΘððfðxÞ − fðx0ÞÞðgðxÞ − gðx0ÞÞÞ;

ð3:1Þ

where Θ is the Heaviside function.

IV. ANALYSIS BASED SOLELY
ON FINAL STATE MOMENTA

In this section, we start by studying how well a “black
box” DNN can discriminate between signal and back-
ground based on detector-level variables alone, by which
we mean the momenta of the final state particles, in other
words, without using any guidance in the form of human-
level variables. Since the DL variables represent all the
available information at the detector, the DNN learns an
approximation of the optimal discriminating function,
namely, the ratio of signal and background distributions.
In the next section, we will identify a small combination of
HL variables that are sufficient to approximate the optimal
discriminator, relying on ADO as a metric. Finally, in
Secs. VI and VII, we will combine the strength of these HL
variables with ensemble-based analysis to tackle the more
challenging problems of spin determination and the meas-
urement of the overall mass scale. Figure 3 provides a
visual overview of the stages of the analysis.
We treat the signal cross section essentially as a free

parameter varying in a range consistent with the new
particles having electroweak couplings and masses of a
few hundred GeV. In order to work on a specific example,
we choose the following signal spectrum as a benchmark:

MX ¼ 390 GeV; MY ¼ 360 GeV;

MZ ¼ 330 GeV; Mχ ¼ 300 GeV: ð4:1Þ

This will be denoted as the truth spectrum for the rest of the
paper. For the background cross sections, we use the leading-
order values obtained from Monte Carlo simulations.
For the spin assignments of the new particles, we work

with two possibilities, denoting these as the fDM and sDM
models, based on whether χ is a fermion or boson (see
Fig. 2). In these two models, the new particles are taken to
be as follows.

(i) fDM.—X, Z, and χ are neutral fermions, while Y is a
charged scalar.
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(ii) sDM.—X, Z, and χ are neutral scalars, while Y is a
charged fermion.

We begin by describing the details of Monte Carlo methods
we use in our analysis.

A. Monte Carlo methods and selection cuts

As mentioned in the introduction, the production mecha-
nism of interest to us is pp → Xχ. We take the production
to proceed via a heavy t-channel mediator Δ [which is a
scalar (fermion) for the fDM (sDM) signal model]. We take
this mediator to couple to up-type quarks. This choice is
mostly arbitrary andmotivated by the fact that the constraints
on newphysics from flavor violation areweaker compared to
new particles coupling to down-type quarks. Since the
analysis below is based entirely on the decay of X, we treat
the signal cross section as a free parameter, with our results
parametrized by this parameter. For the background, we
generate pp → μþμ−γνlν̄l and pp → μþμ−γνlν̄lνlν̄l events,
with all possible neutrino flavor combinations. These contain
the diboson and triboson processes (including off-shellW=Z
bosons) discussed in the introduction. Signal and back-
ground events are all generated using MadGraph [53].
The final state can be described by nine momentum

components of the three observable particles. We remind
the reader that any significant hadronic activity will be
vetoed—as a result, the MET does not carry additional
information to the momenta of the visible particles. There is
a combinatorial ambiguity in the final state, since p1 can be
a μþ and p2 a μ− or the other way around (see Fig. 1).
Therefore, it is useful to denote the final state momenta by
their charges, namely, pþ, p−, and pγ .
In Monte Carlo generation, we use relatively loose cuts,

demanding only pT;γ > 4 GeV to avoid singularities in the
matrix element, and we impose the acceptance cut of
jηj < 2.5. In order to simulate the detector energy reso-
lution for muons and photons, we use the parameters
estimated by ATLAS for the high-luminosity run. For
muons, these are given by [54]

σðEÞ
E

¼ 1.61 × 10−2 ⊕ 2.76 × 10−3 GeV−1=2
ffiffiffiffi
E

p
; ð4:2Þ

and for photons they are given by [55]

σðEÞ
E

¼ 9.84 × 10−3 ⊕
9.41 × 10−2 GeV1=2

ffiffiffiffi
E

p ⊕
1.19 GeV

E
:

ð4:3Þ

There are two (nonprescaled) ATLAS triggers that
are relevant for our final state: a dimuon trigger requiring
pT > 14 GeV for both muons and a μμγ trigger requiring
pT > 10 GeV for both muons and pT > 15 GeV for the
photon. We include both trigger paths in our event
selection. Since our main interest in this paper is in signal
spectra with small mass splittings, the invariant mass values

take on relatively small values, and a Z veto can be applied
to the μþ-μ− system to eliminate the large backgrounds
with on-shell Z’s. In order to also avoid the increased
background at low invariant mass due to photon conver-
sions, we impose the selection cut

15 GeV < mþ− < 65 GeV: ð4:4Þ

After all selection cuts, the background cross section is
given by 2.88 fb.
We will work with event samples that correspond to the

full HL-LHC luminosity of 3000 fb−1, and we report on the
performance of the analysis as a function of the signal
strength, quantified by S=B, where S and B are defined
as the number of signal and background events after the
selection cuts listed above.

B. Measurement of mass differences

We start our analysis using a DNN trained on DL
variables. As mentioned before, the questions of discovery
and mass measurement are linked, since the DNN needs to
be trained without prior knowledge of the spectrum. We
will see below that the first phase of our analysis is efficient
in measuring the mass differences between the new
particles but not the overall mass scale.
As mentioned in Sec. I, it is beyond our computational

resources to scan over all possible spectra. We settle for a
less ambitious goal of at least demonstrating that the correct
mass differences present an optimal point in a local scan of
a “testing spectrum” (M0) given by

M0 ¼ ðMX;MY;MZ;MχÞ ¼ ð691; 660; 631; 600Þ GeV;
ð4:5Þ

which has the correct mass differences but is displaced
from the truth spectrum [Eq. (4.1)] along the flat direction,
which corresponds approximately to the vector (1, 1, 1, 1)
in the ðMX;MY;MZ;MχÞ space. We set up the local scan
around this testing spectrum, using the following orthogo-
nal basis:

v1 ¼
1

2
ð0; 1; 0;−1Þ; v2 ¼

1

2
ð1; 0;−1; 0Þ;

v3 ¼
1

2
ð1;−1; 1;−1Þ; v4 ≈ ð1; 1; 1; 1Þ;

where v4 is taken along the true flat direction, which
deviates slightly from the vector (1, 1, 1, 1). The spectra
over which we perform the scans are parametrized as

M ¼ M0 þ ðαv1 þ βv2 þ γv3 þ δv4Þ: ð4:6Þ

For each of the spectra M, we generate two sets of
Monte Carlo signal events: one with the spins assigned
according to the fDM hypothesis and the other according to
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the sDM hypothesis. Then, we train an ensemble of DNNs,
two for each M, corresponding to the two possible spin
assignments, to distinguish the respective signal from the
background. Based on the events used to train the network,
we refer to these networks as the fDM network and the
sDM network, respectively.

Each DNN is made up of three hidden layers containing
200 hidden nodes. Nodes in the intermediate layers are
assigned ReLu activation functions, and the output node is
assigned the sigmoid activation function. The input layer
contains nine nodes corresponding to the 3 × 3 ¼ 9 observ-
able momentum components. Additionally, we implement
an early stopping monitor, which has a patience of 20
epochs on the validation set. Each network is trained using
1 000 000 events each for the signal and the background.
Once the DNNs are trained, we study their output on the

benchmark sample (signal at the truth spectrum plus
background). In order to infer the dependence of the
performance on the signal cross section, we list our results
below for three values of S=B, namely, 1.0, 0.1, and 0.01.
In order to provide context for these values of S=B, Fig. 4

shows how S=B depends on the mass of the mediator (MΔ)
in the sDM and fDM spin assignments, with the couplings
at all vertices in Fig. 2 taken to have the numerical value 1.
We quantify the performance by ϵS=

ffiffiffiffiffi
ϵB

p
, defined as the

enhancement in S=
ffiffiffiffi
B

p
after applying a cut on the output of

the network, compared to the selection cuts in Sec. IVA.
The choice of ϵS=

ffiffiffiffiffi
ϵB

p
(as opposed to ϵS=ϵB) as the

performance metric is motivated by the expectation that
statistical uncertainties will dominate over systematic ones.

sDM
fDM

2 4 6 8 10

0.01

0.10

1

10

100

FIG. 4. Cross sections for the sDM (red line) and fDM (blue
line) signal (at the truth spectrum) as a function of the mediator
mass. All relevant couplings are taken to be 1.

FIG. 5. For the local mass scan around the testing spectrum with S=B ¼ 1.0, the parameters α, β, and γ favor the correct mass
differences in the spectrum, and stronger cuts give rise to better performance. In contrast, the scan along the flat direction shows no
preference for the true value of the overall mass scale. The discovery cut we impose corresponds to a background rejection of 0.995. In
each panel, the solid green contour corresponds to the true value of the parameter.
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In Fig. 5, we plot ϵS=
ffiffiffiffiffi
ϵB

p
for S=B ¼ 1.0. It can be seen that

the performance continues to improve toward stronger cuts
on the network output. Here, we plot only the metric with
the correct spin assignment for simplicity. However, the
trend remains the same even if the incorrect spin assign-
ment is used. In order to preserve sufficient signal statistics
for the later stages of the analysis, in each network, we
apply a cut on the network output that results in ϵB ¼ 0.005
(this tends to correspond to ϵS ≈ 0.5 for the best-performing
networks in our analysis). Hereafter, this will be referred to
as the “discovery cut.” The value of the discovery cut is
inferred from Monte Carlo samples at each mass point.
With the discovery cut, the minimum value of S=B such
that the signal statistical significance is boosted above 5σ
with the discovery cut is ðS=BÞmin ∼ 6.7 × 10−3. We will,
therefore, focus on the range S=B > 0.01 for the rest of our
analysis.
We perform one-dimensional scans using the paramet-

rization of Eq. (4.6). The winning mass hypothesis is
chosen to be the one that results in the highest ϵS=

ffiffiffiffiffi
ϵB

p
on

the benchmark sample, with the discovery cut, setting ϵB to
0.005. To account for statistical uncertainties, we run 50
iterations of the scan. From the example scan in Fig. 5, it
can be seen that this procedure results in an accurate
measurement of the parameters α, β, and γ, thereby fixing
the mass gaps. In contrast, we find that the ϵS=

ffiffiffiffiffi
ϵB

p
metric

(at a fixed background rejection) fluctuates randomly as δ is
varied, and, therefore, the value of δ maximizing the metric
is uncorrelated with the true value.
To most efficiently utilize our computing resources, we

limit the local mass scan to the following range around the
testing spectrum: α; β; γ ∈ ð−20; 20Þ GeV and δ ∈ ð−500;
500Þ GeV, with spacings of Δα ¼ Δβ ¼ Δγ ¼ 0.5 GeV
and Δδ ¼ 20 GeV. Note that, with these choices, the
mass hierarchy MX > MY > MZ > Mχ is automatically
preserved.
Table I summarizes the results of the scans (averaged

over the scan iterations). As expected, we find that the mass

differences are determined to a precision of a few GeV by
this procedure, while the overall mass scale is left essen-
tially unconstrained. Note that for high values of S=B there
is a bias in the results for α, β, and γ. As we will see in the
next section, when HL variables are used, these biases are
eliminated.

V. IDENTIFICATION OF OPTIMIZED VARIABLES

After the DNN analysis based on the DL inputs, our next
goal is to search for HL variables which match the
performance of this analysis. We employ the ADO-guided
method prescribed in Ref. [52] for identifying the set of HL
variables that have the highest correlation with respect to
the DL network. The definition of ADO was given in
Sec. III. For our purposes here, the ADO is calculated from
the fraction of pairs of events (one drawn from the signal
generated at the testing spectrum and the other drawn from
the background) which are ranked in the same order by
both the deep network operating on the DL inputs and a
given set of HL variables.
To summarize the method presented in Ref. [52], one

picks the HL variable with the highest ADO with respect to
the DL network (say, f1) in the first iteration. In the next
iteration, only the pairs of events for which f1 and the DL
network result in dissimilar orderings are considered.

TABLE I. The average values and uncertainties of the scan
parameters obtained over 50 scan iterations along each direction
(all numbers in GeV).

S=B α β γ

(a) sDM
1.0 −1.6� 1.4 5.5� 0.4 1.5� 0.3
0.1 −3.7� 3.3 4.7� 2.2 −0.1� 1.9
0.01 −4.0� 9.2 3.4� 5.7 −0.4� 4.5

S=B α β γ

(b) fDM
1.0 −12.4� 3.4 4.8� 1.1 −4.8� 2.2
0.1 −10.1� 6.0 4.1� 2.3 −3.2� 3.0
0.01 −9.0� 9.9 4.0� 8.0 −2.4� 5.5

TABLE II. HL variables with the leading ADOs for the sDM
and the fDM networks. The ADOs have been computed over
pairs of signal events at the testing spectrum and the background.
We consider 20 000 events each of signal and background.

Variable ADO

(a) sDM network
MET 0.835
Δ4 0.812
pTγ

0.724
pTþ 0.702
pT−

0.699
m−γ 0.631
mþγ 0.631
mþ−γ 0.622
mþ− 0.568

Variable ADO

(b) fDM network
MET 0.880
Δ4 0.827
pTþ 0.739
pT−

0.721
pTγ

0.711
m−γ 0.617
mþγ 0.632
mþ− 0.558
mþ−γ 0.552
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The second HL variable f2 is then picked to be the one with
the highest ADO over these subset of pairs and so on. We
terminate the process when the additional HL variable does
not lead to a significant improvement in the area under the
ROC curve (AUC), where ROC stands for receiver operat-
ing characteristic.
As we described in Sec. II, we will consider the

following list of HL variables:
(i) the transverse momenta of the three visible final

state particles, ðpTþ; pT−; pTγÞ;
(ii) the transverse missing energy, MET;
(iii) the invariant masses of the three visible final state

particle pairs, ðmþ−; mþγ; m−γÞ;

(iv) the total invariant mass of the three visible final state
particles, mþ−γ;

(v) Δ4 computed assuming the testing spectrum; and

(vi) ΔRij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2ij þ Δϕ2

ij

q
for all pairs of final state

particles.
Tables II(a) and II(b) show the ADOs of individual HL

variables for the two spin models generated at the testing
spectrum. The AUC that is obtained by combining triplets
of these variables is listed in Table III. The HL networks
have three hidden layers containing 50 nodes each. The
combination of the variables (MET, Δ4, and mþ−γ) is the
most effective when both spin models are considered, and it
effectively matches the AUC of the DNN based on DL
inputs. We also illustrate this visually in Fig. 6, showing the
performance of the HL variables (MET, Δ4, and mþ−γ) (in
green) and the DL-based neural network (in red). For
comparison, we also show the leading HL triplet that does
not include Δ4 (in blue). Our results confirm the power of
Δ4 as a kinematic variable in analyzing this decay chain, in
accordance with prior studies. In Fig. 7, we show the
distributions of the HL variables for the two signal models
and for the background.
Next, we turn our attention to studying the performance of

the HL variables for determining the spectrum, namely,
fixing the parametersα,β, γ, and δ. Figure 8 is the counterpart
of Fig. 5, made using the leading triplet of HL variables.
Similarly, Table IV is the counterpart of Table I.
Given the relatively large dimensionality of the DL

inputs, combined with finite training samples and network
parameters, it is hard for the DL network to converge
toward the global minimum of the loss function. Within the
limitations of our analysis, we find that identification of the
optimal set of HL variables leads to a better convergence
toward the global minimum. This is evident from compar-
ing the resolution for mass differences (Tables I and IV).
The overall mass scale, however, still remains unresolved.
In the next two sections, we will further improve the
performance of the neural networks in order to determine

TABLE III. Triplets of HL variables with and without Δ4

having the highest AUCs over the benchmark dataset. For
simplicity, we list only the numbers for when the training dataset
uses the correct spin model.

Variables AUC

DL 0.9686

(a) sDM
(MET, Δ4, mþ−γ) 0.9618
(MET, Δ4, mþ−) 0.9572
(MET, Δ4, mþγ) 0.9401

(MET, mþ−, mþ−γ) 0.9448
(MET, mþγ , m−γ) 0.9401
(MET, mþ−γ , mþγ) 0.9361

Variables AUC

DL 0.9580

(b) fDM
(MET, Δ4, pTγ

) 0.9505
(MET, Δ4, mþ−γ) 0.9492
(MET, Δ4, mþ−) 0.9445

(MET, mþγ , m−γ) 0.9285
(MET, mþ−, mþ−γ) 0.9265
(MET, mþγ , mþ−γ) 0.9187

FIG. 6. ROC curves for both spin models, for the DNN trained DL inputs (in red) and the HL variables (in green). For comparison, we
also present the performance of the leading triplet of HL variables that does not contain Δ4 (in blue).
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the spins of the new particles and measure the overall mass
scale at amuch higher precision. In order to achieve this goal,
we will first purify the signal in the data by passing the data
through the HL classifier network (trained at the testing
spectrum) and apply the discovery cut, which eliminates
99.5% of background events in each network. Since this
corresponds to roughly 50% efficiency for signal events, it
results in an enhancement in S=B by a factor of ∼100.
We can also estimate S=B, without prior knowledge of

the overall mass scale. This will be used in the second stage
of the analysis, where we employ ensemble-based methods.
We have

ðS=BÞest ¼
ϵSþB − ϵB
ϵS − ϵSþB

; ð5:1Þ

FIG. 8. Local scans around the testing spectrum as in Fig. 5 but using the leading triplet of HL variables.

FIG. 7. Distributions of the leading triplet of HL variables for pure benchmark signal in the sDM (red line) and fDM (blue line) models
and for background (green line). Δ4 is calculated using the testing spectrum.

TABLE IV. The average values and uncertainties of the scan
parameters (all numbers in GeV), as in Table I, using the leading
triplet of HL variables.

S=B α β γ

(a) sDM
1.0 −0.7� 0.3 1.2� 0.5 −0.2� 0.2
0.1 −0.6� 1.3 1.1� 0.9 −0.5� 0.8
0.01 2.3� 6.0 2.0� 2.7 −0.5� 2.9

S=B α β γ

(b) fDM
1.0 0.0� 0.8 1.3� 0.3 −0.6� 0.8
0.1 0.0� 1.5 0.9� 0.8 −0.8� 0.8
0.01 1.6� 7.1 3.0� 3.2 −1.3� 5.4
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where ϵS is evaluated in the network with the highest
ϵS=

ffiffiffiffiffi
ϵB

p
after applying the discovery cut, using signal

events generated at the testing spectrum. ϵSþB is the
efficiency of the discovery cut on the actual data. In other
words, ϵB and ϵS are parameters obtained from simulations,
while ϵSþB is measured from data. Figure 9 shows the
accuracy of this procedure.

VI. SPIN DETERMINATION

We now turn our attention to determining the spins of the
new particles. We treat this as a binary classification
problem. We start by introducing an ensemble-based
analysis method which will also allow us to determine
the overall mass scale in the next section. With the
ensemble-based method, we assess the performance of
DL variables first, and we then identify the HL variables
that result in a similar performance.

A. Ensemble-based method

Consider binary classification of ensembles containing
N events each, fxig ∈ EN , where each event xi ∈ E ¼ Rk.
In our case, the ensemble corresponds to the entire dataset.
A neural network performing this classification task must
have k × N nodes in the input layer. Also, one must take
into account the permutational invariance of the input
vectors (in other words, the ordering of events within an
ensemble should not affect the outcome). This can be
achieved either by having a special architecture for the
neural network or by considering all the allowed permu-
tations of the input vectors during training. Given the size
of the event samples in our case and the dimensionality of
the final state (k ¼ 9 for DL inputs), we will not attempt to
do this. We instead apply the method introduced in
Ref. [56], to build an ensemble-based classifier based on
an event-by-event classifier. We first build a simple event-
by-event classifier operating on events xi represented by the
complete set of DL variables. Then, using the output of the

event-by-event classifier yðxiÞ, the ensemble-based classi-
fication function yNðfxigÞ is generated:

yNðfxigÞ ¼
Q

iyðxiÞQ
iyðxiÞ þ

Q
ið1 − yðxiÞÞ

: ð6:1Þ

B. Performance with DL variables

The event-by-event network is made up of three hidden
layers containing 100 nodes each. We use 1 000 000 events
of each spin model to train the networks. Since our analysis
so far has not allowed us to measure the overall mass scale,
we continue generating the training samples at the testing
spectrum. The network is trained using the labels ŷðxiÞ ¼ 1
if xi ∈ sDM and ŷðxiÞ ¼ 0 if xi ∈ fDM. We use 100 000
ensembles of each spin model.
We remind the reader that we are performing the spin

determination analysis after the first stage of the analysis
described in the previous sectionhas alreadybeenperformed.
With the amount of signal purificationwegained by applying
the discovery cut, even in the most conservative cases
(S=B≳ 0.01 needed for discovery), the signal fraction in
the events passing the cut has been boosted to an Oð1Þ
number. In Fig. 10, we present the ROC curves for repre-
sentative values of S=B, for an integrated luminosity of
3 ab−1. As can be seen in that figure, the spin determination is
very accurate and starts to degrade only near the lowest S=B
values of interest.

C. Performance with HL variables

Next, we identify the HL variables that match the
performance of the event-by-event DL spin determination
network and then use those to perform the ensemble-based
analysis in terms of these variables.
As before, we compute the ADOs of the HL variables (at

the testing spectrum). The variables with the highest ADOs
for spin determination are shown in Table V. Replacing
the DL variables with ðmþ−;METÞ results in a similar

FIG. 9. The estimated value of S=B for the benchmark sDM and fDM data samples (red points), plotted against the true S=B (green
curve), based on the formula in Eq. (5.1). The results were obtained over 5000 pseudoexperiments in each case, using the HL networks.
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performance for event-by-event spin determination. mþ− is
identified by the ADO method to be very effective in spin
determination, matching the results presented in Ref. [36].
The HL network we use has two hidden layers contain-

ing 30 units each. Using the output of this event-by-event
HL classifier network, we construct ensemble-based clas-
sifiers as we did for the DL variables. Figure 11 shows the
performance of the HL ensemble-based classifiers.
Comparing Figs. 10 and 11 shows that, with an ensem-
ble-based analysis, just the two HL variables (mþ− and
MET) are sufficient to match the performance of the DL
network.
It is worth spending some time looking into how the spin

information is encoded in the variables mþ− and MET. In
Fig. 12, we show the distribution of events in these two
variables within the sDM and fDM signal models after the
discovery cut. Note that the discovery cut eliminates almost

all events with MET < 100 GeV, as that region of phase
space is background dominated. We also show in Fig. 13
the contours of the event-by-event HL network in the (mþ−,
MET) space. The shape of these contours can be under-
stood with the following observations. The matrix element
squared of the decay process X → μþμ−γχ is proportional
to a factor of m2þ− in the sDM model, but not in the fDM
model, resulting in a significant difference in the mþ−
distributions in the two models, which can also be seen in
Fig. 12. In fact, at low mþ−, the network output is basically
purely based on mþ−, as can be seen on the left side in
Fig. 13. As mþ− approaches its maximum value, most of
the kinetic energy from the decay in the X frame is taken by
the muons, leaving the χ with little kinetic energy. As a
result, there is a boost imbalance between this softer χ
produced in the X decay and the one produced directly
from the initial state and recoiling against the X (see Fig. 2).
In this region, the MET and mþ− variables are correlated,
which leads to the contours on the right side in Fig. 13
bending toward the diagonal.

D. Optimizing the cut thresholds

For the ensemble-based method described above, AUC
quantifies the separation between the two spin models
achieved by the output function yNðfxigÞ. However, we are
ultimately interested in finding the optimal value of the cut
on the output that maximizes the classification accuracy.
Note that the HL variables of interest do not include Δ4; it
is, therefore, sufficient to use the correct mass gaps, and the
overall mass scale is not needed. This being the case, we
can use the testing spectrum for the determination of the
optimal cut values.
For a given cut y0N on the output function yNðfxigÞ, we

define the overall accuracy rate (AR) as the sum of the
accuracy rates of sDM and fDM ensembles, as a function of
S=B. Then, scanning through the range of the output
function, the cut y�N that maximizes the overall AR is

TABLE V. (a) HL variables with the highest ADOs for spin
determination. (b) Comparison of AUCs (for an event-by-event
network) for the DL and HL inputs for spin determination. The
values shown are computed for pure signal sDM and fDM events
passing the discovery cut.

Variable ADO

(a)
mþ− 0.721
ΔRþ− 0.663
MET 0.656
mþ−γ 0.631

Variables AUC

(b)
DL 0.6727
mþ− 0.6487
(mþ−, MET) 0.6614

FIG. 11. The same as Fig. 10 but using the HL variables
(mþ− and MET).

FIG. 10. ROC curves for the ensemble-based spin determina-
tion using DL variables. The given S=B numbers denote the ratio
before the first stage of the analysis. The corresponding AUCs are
given in brackets.
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found. The accuracy rates for spin determination of the
benchmark signal, using HL variables, are shown in Fig. 14.

VII. MASS SCALE DETERMINATION

Having fixed the mass differences in the earlier stage of
the analysis (Sec. V), the spectrum hypotheses between
which we are trying to distinguish at this stage are labeled
in terms of a single variable, which we can take to beMχ . It
was shown in Refs. [32,34] that using Δ4 as a kinematic

observable helps break the degeneracy along the flat
direction and determine the overall mass scale, and we
therefore expect Δ4 to be a powerful variable when
performing a neural-network-based analysis as well.
Even so, we saw at the end of Sec. V that the overall
mass scale still has a large uncertainty when analyzing the
data event by event, even with Δ4 as one of the HL
variables. In this section, we combine the power of Δ4 with
an ensemble-based analysis to pin down the overall
mass scale.
We remind the reader that a histogram of Δ4 depends on

not only the true value of Mχ in the data, but also the input
value Mχ that is assumed when calculating Δ4. The core
concept for the method we are about to present relies on
training the neural network on the shape of this distribution
as either the true or input value for Mχ is varied.

FIG. 12. Distributions of the sDM and fDM signal events after the discovery cut in the (mþ−,MET) plane.

FIG. 13. Contours of the output of spin determination network
based on the HL variables (mþ− and MET). An output of 0
corresponds to fDM-like events, and an output of 1 corresponds
to sDM-like events.

FIG. 14. Accuracy rates for the spin determination using the
ensemble classifier built from the event-by-event HL network.
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To determine the true value of Mχ , we specify a range
½M1;M2� that we expect it to lie in, and we transform each
event xi to a point in the following two-dimensional space,
with M1 and M2 used as input values:

xi → ðΔ4ðxi;M1Þ;Δ4ðxi;M2ÞÞ: ð7:1Þ

Any data sample with the true value Mχ is then converted
into a two-dimensional scatter plot, and with an appropriate
binning, into a pixellated heat map. These heat maps are
used to train the neural network, as the true Mχ is varied
between M1 and M2, and Mχ being assigned as the output
of the neural network during the training. In the testing
phase, the output of the neural network is then taken as the
measured value of Mχ .
To minimize bias, we choose the relatively broad mass

range of (100,900) GeV for this last stage of our analysis.
We use a step size of δMχ ¼ 20 when varyingMχ . We have
checked that a smaller step size does not result in an
improvement of the accuracy of the final result.
To generate the training data, we construct the heat maps

described above from the data samples for each value ofmχ

and S=B of interest, after having applied the discovery cut
(see Sec. IV B). We restrict the heat maps to the range
−Δ4;max ≤ Δ4 ≤ Δ4;max for each sample. Events lying
beyond this range are discarded. We refine the resolution
of the heat maps until a saturation in performance is
reached in terms of the loss function. In our case, this is
achieved for a bin size of Δ4;max=20 along each of the two
axes. Based on this number, we construct 41 × 41 pixel
heat maps. The networks have 1681 nodes in the input layer
and three hidden layers with 100, 300, and 100 nodes,
respectively.
Having completed the training phase, we move on to the

determination ofMχ from the data. In the testing phase, the
trained network is run on the data, with the estimated S=B
value obtained from Eq. (5.1) as input. In 1000 iterations
for each value of S=B, the prediction for Mχ is obtained

from the network output in each run. In Fig. 15, we show
the central value and standard deviation for Mχ obtained in
this way over the S=B range of interest. The central value is
found to be within 1σ of the true value ofMχ over the entire
S=B range, with the precision approaching 20 GeV as S=B
approaches 1.0.

VIII. CONCLUSIONS

We have applied machine learning techniques to opti-
mize discovery sensitivity, spin determination, and mass
measurement in the SUSY-like decay chain in Fig. 1. This
event topology was chosen as a representative case for
when signal cross sections are relatively low and the final
state particles do not have high pT due to a compressed
signal spectrum. The decay chain is not long enough for
algebraic reconstruction methods to be effective and yet
long enough that commonly used one-dimensional distri-
butions of Lorentz-invariant or boost-invariant kinematic
observables do not capture the full amount of useful
kinematic information.
In order to narrow down the parameter space, we started

our analysis with a simple neural network that was effective
in determining the mass gaps in the spectrum and in
enhancing signal over background for the second stage
of the analysis. We have identified the kinematic observ-
ables that match the performance of a “black-box” network
in the first stage of the analysis, confirming the importance
of the observable Δ4 which had previously been proposed
to be an effective observable for similar decay chains.
In the second, ensemble-based stage of the analysis, we

were able to achieve a much higher accuracy in determining
the spins of the new particles compared to an event-by-
event analysis. Similarly, we were also able to measure the
overall mass scale, a significant challenge for methods
based on commonly used observables such as kinematic
edges and end points, with an ensemble-based analysis.
Once again, Δ4 proved to play a significant role in

FIG. 15. The determined Mχ values and the uncertainties are plotted for S=B≳ 0.05. Below this value, our methods cannot
significantly narrow down the possible range of Mχ within our scan interval.
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maximizing the precision of the measurement of the overall
mass scale.
We point out to the reader that Δ4 is anOð8Þ polynomial

of the Lorentz-invariant pairs mij. To test the efficiency of
Δ4 for discovery, a scan can be performed over polynomial
functions of mij. Specifically, the binary cross-entropy loss
can be minimized with respect to the coefficients of the
polynomials of mij. We will address such global optimi-
zation in future work.
The application of similar methods to more general event

topologies and more challenging final state particles, to
which traditional SUSY searches are not sensitive, is of
great interest. Having provided a proof of concept with this

analysis of an idealized final state, we will take on these
challenges in future work.
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