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1 Introduction

The modern perspective on Effective Field Theories (EFTs) takes them to be well-defined

quantum field theories in their own right, with all the attendant structure that implies. In

particular, one can define an EFT at the quantum level using a path integral. However,

the standard approach to extracting observables is to sidestep this intimidating object

by organizing perturbation theory through the use of Feynman diagrams. The recent

reintroduction [1] of the covariant derivative expansion (CDE) [2–4] in a form tailored

to tackling a broader set of EFTs has sparked a renaissance in the extraction of physics

directly from the path integral using functional techniques. A noteworthy example of this

progress has been a general matching formula at one-loop [5, 6] that captures the far off-

shell fluctuations of heavy fields. This result can be used for the extraction of the effective

operators and their Wilson coefficients that characterize the effects of the heavy physics,

encoded in the so-called Universal One-Loop Effective Action (UOLEA) [1, 7–10]; one of its

features is that it elegantly packages together what would be multiple independent Feynman

diagram calculations. This has seen ready application to beyond the Standard Model (SM)

scenarios by facilitating one-loop matching onto the so-called SMEFT. However, there exist

a large number of EFTs whose relationship to UV physics cannot be captured by simply

integrating out an entire heavy field. Here, we present the first application of the modern

functional approach to such EFTs. Specifically, we work in a particular low-energy limit

of the SM [11–14] expanded around a non-trivial background, the Heavy Quark Effective

Theory (HQET) [13, 15–17], see also the reviews [18–22].

– 1 –
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There are many novel features of HQET when compared to the SMEFT. Perhaps the

most striking is that — as a model of the long distance fluctuations of a heavy particle —

HQET is a non-relativistic EFT. Obviously, the path integral is a valid description of a

non-relativistic theory (after all, it was invented as an alternative description of quantum

mechanics [23, 24]), but the concrete demonstration that the functional approach is useful

for precision non-relativistic field theory computations has been lacking until now.1 An-

other intriguing aspect of HQET is that it invokes the concept of a mode expansion. A

single heavy quark field is decomposed into a pair of fields, which model short and long

distance fluctuations. Then, assuming a particular kinematic configuration, only the long

distance modes can be accessed as external states. The short distance fluctuations can

therefore be integrated out, which generates a tower of local EFT operators. It is this

description that is called HQET. This type of one-to-many correspondence plays a role

in many modern formulations of EFTs, and for the first time here we put such models on

even firmer theoretical footing by computing observables directly from the path integral.

Furthermore, a theoretically appealing aspect of this work is that the covariant derivative

expansion of the functional integral manifests the symmetries of the theory in a transparent

way. This is obviously true for gauge invariance, but we will also be able to approach the

residual Lorentz symmetry known as Reparameterization Invariance (RPI) from a novel

vantage point. In particular, we will identify an intermediate stage in our calculations where

RPI becomes manifest. This provides a nice contrast to the Feynman diagram approach,

where this invariance only holds once one sums the full set of relevant diagrams.

Through our application of the functional approach to HQET, we will expose some

important features of the general formalism. Matching a UV theory onto an EFT, first

done for HQET in ref. [29], can be performed diagrammatically by equating matrix ele-

ments computed with the two descriptions of the theory at a common kinematic point.

This requires knowing the EFT operator expansion and identifying the operators that are

relevant to the EFT matrix element calculation. By contract, using functional methods the

generation of operators and matching of Wilson coefficients occurs in a single step. There

is no need to specify the structure of the EFT before performing a matching calculation.

Working through the example of HQET will show that the problem for how to marry the

mode decomposition with functional methods has a nearly universal solution. Specifically,

given an implementation of the mode decomposition using operator-valued projectors, one

can derive a functional equation of motion for the short distance modes. This can be

used to integrate out these modes, yielding a non-local EFT description that encodes the

complete dynamics of the full theory in the relevant kinematic limit. This justifies the

construction of the EFT as a full path integral over a well defined field.

Deriving concrete predictions using conventional techniques typically involves several

steps and many subtleties, but a functional approach makes the procedure more algorith-

mic. The complicated multi-mode matching calculation has a simple form whose structure

is elucidated by analyzing the resulting integrals using the method of regions [30, 31]. As

1To our knowledge, the only time the path integral has been discussed in the context of HQET was

in [25] where the tree-level formulation of the theory was first derived, and in [26–28] where RPI was briefly

discussed in the context of the path integral.
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is well known, matching in HQET only receives support from diagrams that have loops

with both a short distance mode and a mode that propagates in the EFT. Understanding

how to access this exact class of diagrams using functional methods has been the subject

of some confusion. Showing that we can derive matching and running in HQET with these

methods is a conclusive demonstration that functional methods provide a complete frame-

work at one-loop. These results will be summarized below as a simple master formula that

encodes the matching of QCD onto HQET at one-loop and to any order in the heavy mass

expansion, see eq. (5.4).

There are important practical implications of this work. One of the primary purposes

of HQET is to provide efficient methods for precision calculations within the SM. There are

a number of EFTs widely used to facilitation precise predictions including Soft Collinear

Effective Theory [32–34], theories of non-relativistic bound states such as nrQCD [35–37],

and others. Improving on the precision of a calculation often requires the application of

novel theoretical approaches, with a goal to provide computational benefits over a naive

perturbative expansion evaluated using Feynman diagrams. Specifically, functional tech-

nology has seen little use in this context, despite the fact that some of the simplifications

it provides are arguably most relevant to the questions these kinematic EFTs are designed

to answer. By showing we can reproduce non-trivial matching and running results for

HQET here, we open the door to understanding how to apply functional techniques in

these other contexts. We additionally lay the foundation for performing new calculations

within HQET itself. In particular, one can now perform matching calculations to higher

order in the heavy mass expansion, which would be relevant to high precision measure-

ments made at experiments such as LHCb and Belle II, and for connecting lattice gauge

theory calculations performed in the heavy quark limit to their continuum limits [38, 39].

The rest of the paper is organized as follows. In the rest of section 1, we provide a

summary of the known results that we reproduce in a novel way throughout this paper.

Next, section 2 provides a condensed introduction to HQET. Section 3 provides a summary

of the traditional method of calculating the simplest piece of the one-loop HQET match-

ing, the residue matching. (Readers familiar with HQET could skip these two sections.)

In section 4, we review how to extract matching and running from a functional determi-

nant. (Readers familiar with functional methods could skip this section.) In section 5,

we introduce the use of functional integration to construct kinematic EFTs, and clarify

how the method of regions simplifies the derivation of the resulting master matching for-

mula. Section 6 is then dedicated to an explanation of how such matching is performed

to one-loop order. This is followed by section 7, which strengthens the case for functional

methods by providing additional matching calculations, along with an example that shows

how operator running can be derived in the formalism as well. Section 8 then concludes.

An extensive set of pedagogical appendices provide an introduction to many of the

relevant technical details. The “covariant derivative expansion” technique used here was

originally invented in 1980s [2–4], we refer to this as “original CDE” in appendix B. This

was reintroduced in the context of modern EFT calculations in ref. [1], and has been applied

by refs. [7–10, 40] to develop one-loop universal effective actions. A closely related variant

of the original CDE, which we call “simplified CDE” in appendix B, was proposed in ref. [5].

– 3 –
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This more rudimentary version of the CDE turns out to be significantly more convenient for

extracting operators that do not involve a gauge field strength. Most of the results in the

main text of this paper were derived using this simplified CDE. In appendix B, we clarify

the relations between these two versions of the CDE. For completeness, in appendix B

we also provide some simple universal results (tabulated in appendix B.4.2) for functional

traces derived using the CDE. These include the famous elliptic operator, see eq. (B.84a),

which is the central object of study in the development of the UOLEA. Additionally, we

provide the first computation of the contributions to the UOLEA from a term with an open

covariant derivative (truncated at dimension four). This result is provided in eq. (B.84b),

and was previously unknown as emphasized by refs. [10, 41, 42]. A variety of RGE example

calculations are given in appendix C, and a generalization of the Heavy-Heavy matching

calculation is provided in appendix D.

1.1 Summary of results

In what follows, we will present our methods by way of a few canonical matching and run-

ning calculations. First, we derive the high scale HQET Wilson coefficients by matching

QCD onto the EFT for the heavy-light currents q̄ γµ(γ5)Q and the heavy-heavy currents

Q̄1 γ
µ(γ5)Q2 using purely functional methods. We also present a functional derivation of

running effects, using the first subleading operators in the HQET Lagrangian as a concrete

example.

In order to fix our notation and make comparison to standard results straightforward,

we provide a brief compendium of the results we will reproduce in this paper. The conven-

tional derivation is presented in much more detail in standard references, e.g., refs. [19, 22].2

This list provides a useful context for our goals here.

Propagator residue. When performing a matching calculation in any off-shell scheme,

such as MS, it is critical to track the difference in propagator residues (necessary for obtain-

ing the desired S-matrix elements using the LSZ reduction procedure) when moving from

the full theory to the EFT. Taking the functional point of view, the resulting effect shows

up as a rescaling of the kinetic terms for the EFT fields. This can then be moved to its

canonical position in the Wilson coefficients by a field redefinition. Thus, the first step per-

formed in what follows is to derive the one-loop corrections to the kinetic terms from QCD:

LHQET ⊃
(

1−∆R(1)αs

)
h̄v (iv ·D)hv , (1.1)

where hv models the long distance fluctuations of the heavy quark field, vµ is the refer-

ence vector defined in eq. (2.2) below, Dµ is the covariant derivative, αs is the strong fine

2Notation. We have mostly chosen to follow the notation of ref. [22], but have made a number of

minor changes, which is partially why we provide this summary here. For dimensional regularization

(dim. reg.), our convention is to work in d = 4 − 2ε dimensions. We have also chosen to use a different

standard notation of the EFT heavy quark fields. Additionally, we have reserved the superscript numeral in

parenthesis notation to denote loop order, R(0) is tree-level, R(1) is the one-loop correction, and so on. This

is different from the standard notation in the HQET community, e.g. in ref. [22] the one-loop correction

to the residue is denoted as R1. Additionally, we note that we will only denote the loop order of the

renormalized terms, i.e., counterterms are implicit.

– 4 –
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structure constant, and ∆R(1) is the matching correction for the propagator residue. In a

traditional matching calculation, the correction comes from the difference of the residues

between the full and EFT descriptions:

∆R(1)αs ≡
(
R

(1)
Q −R

(1)
h

)
αs = −1

3

αs
π

(
3 ln

µ2

m2
Q

+ 4

)
. (1.2)

While this result is sensitive to the choice of matching scale µ due to presence of a UV

divergence; the cancellation of terms that depend on the IR regulator serves as a check

that the IR behavior of the two theories is identical.

Heavy-light current. At leading order in the heavy-mass expansion, two HQET oper-

ators have the same quantum numbers as the heavy-light vector current of QCD, implying

that they can appear in the matching:

q̄ γµQ = CV,1

(
mQ

µ
, αs(µ)

)
q̄ γµ hv + CV,2

(
mQ

µ
, αs(µ)

)
q̄ vµ hv , (1.3)

where CV,i is the to-be-calculated matching coefficient for the vector current, which is a

function of the heavy quark mass mQ and the strong coupling; there is an analogous ex-

pression for the axial current derived by replacing CV,i → CA,i, γ
µ → γµγ5, and vµ → vµγ5

in eq. (1.3). The answer up to one-loop (see eq. (3.48) in ref. [22]) can be written as

CV,1 = 1 +

[
1

2
∆R(1) + V

(1)
HL,1 − V

(1)
eff

]
αs + · · · , (1.4a)

CV,2 = V
(1)

HL,2 αs + · · · , (1.4b)

where ∆R(1) is defined in eq. (1.2), and the other terms (see eqs. (3.66) and (3.73) in

ref. [22], respectively) are

V
(1)

HL,1 αs = −1

3

αs
π

(
1

ε
− γE + ln 4π + 2

)
, (1.5a)

V
(1)

HL,2 αs = +
2

3

αs
π
, (1.5b)

V
(1)

eff αs = −1

3

αs
π

(
1

ε
− γE + ln 4π

)
, (1.5c)

where 1
ε − γE + ln 4π is the standard factor that is subtracted when using the MS scheme,

with γE denoting the Euler-Mascheroni constant. Then the axial matching coefficients are

given by CA,1 = CV,1 and CA,2 = −CV,2. The one-loop matching coefficients are thus

(compare with eq. (3.74) in ref. [22])

CV,1 = 1 +
αs
π

(
ln
mQ

µ
− 4

3

)
+O

(
α2
s

)
, (1.6a)

CV,2 =
2

3

αs
π

+O
(
α2
s

)
. (1.6b)
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Heavy-heavy current. In case of the heavy-heavy currents, for simplicity we will take

the special kinematic choice of zero recoil, corresponding to v1 = v2 in the EFT (the

generalization to v1 6= v2, first done in ref. [43], is discussed in appendix D). In this limit,

all possible HQET operators at leading order in the mass expansion are equal by the

equations of motion, and the matching between QCD and HQET is simply3

Q̄1 γ
µQ2 = ηV h̄v1 γ

µ hv2 , (1.7)

with an analogous expression for the axial current given by the replacement ηV → ηA and

γµ → γµγ5. The results can be parameterized as (compare with eqs. (3.98) and (3.101) in

ref. [22])

ηV = 1 +
1

2

(
∆R

(1)
1 + ∆R

(1)
2

)
αs + ∆V

(1)
HH αs , (1.8a)

ηA = ηV −
2

3

αs
π
, (1.8b)

where ∆R
(1)
1 and ∆R

(1)
2 are eq. (1.2) for the heavy quarks Q1 and Q2 respectively, and

∆V
(1)

HH = −2

3

αs
π

[
1 +

3

m1 −m2

(
m1 ln

m2

µ
−m2 ln

m1

µ

)]
, (1.9)

where m1,2 corresponds to the mass of Q1,2. The matching coefficients then take the form

ηV = 1 +
αs
π

(
−2 +

m1 +m2

m1 −m2
ln
m1

m2

)
, (1.10a)

ηA = 1 +
αs
π

(
−8

3
+
m1 +m2

m1 −m2
ln
m1

m2

)
, (1.10b)

in agreement with eqs. (3.97), (3.99), and (3.101) of ref. [22].

β-functions. Finally, we reproduce the expressions for the running of the HQET match-

ing coefficients at one-loop and at O(1/mQ) (compare with eq. (4.8) in ref. [22]):

L1 = − ckin(µ) h̄v
D2
⊥

2mQ
hv − cmag(µ) gs h̄v

σµνG
µν

4mQ
hv . (1.11)

The Renormalization Group Equations (RGEs) are [44–46]

µ
d

dµ
ckin = 0 , (1.12a)

µ
d

dµ
cmag =

αs
4π

2CA cmag , (1.12b)

where CA denotes the Casimir factor for the adjoint representation

In what follows, we will show how to reproduce all of these results using functional

methods equipped with the CDE technique.

3The choice of notation for the HQET fields here is made for of ease of legibility in later sections,

but deserves comment here so as to not mislead. The labels v1,2 differ only to keep track of finite-mass

corrections. They do not indicate different velocities, and the relation between the QCD and HQET

operators is not valid except in the zero-recoil limit. (Compare with eq. (3.89) in ref. [22].)

– 6 –
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2 Heavy Quark Effective Theory

One of our main goals here is to initiate the study of functional methods for higher-order

calculations in EFTs that are derived by performing multi-modal decomposition of full

theory fields. Such EFTs are quite common; they occur when the kinematics of the process

being studied selects a preferred reference frame due to, e.g. a conservation law preventing

the decay of a heavy particle, or a measurement function that forces the external states

into a particular region of phase space. These restrictions imply that there are full theory

modes which cannot be put on-shell within the EFT regime of validity, and so it is sensible

to integrate them out. This procedure breaks the full theory space-time symmetries to

some subgroup, while potentially also introducing new internal ones. A theory of this

type is the Heavy Quark Effective Theory (HQET), which describes the fluctuations of a

heavy quark (mQ � ΛQCD) in the presence of light QCD charged degrees of freedom. The

simplifications and universal behavior of QCD in the heavy-mass limit were first appreciated

by refs. [11, 12] and especially refs. [13, 14]. A non-covariant EFT making this behavior

manifest was later developed and shown to be well-behaved in perturbation theory [15, 17],

and finally given a covariant formulation [16]. We provide a review of HQET here, with

a particular emphasis on the equation of motion due to the critical role it plays in what

follows. The reader familiar with HQET can skip ahead to section 4, while more details

can be found in, e.g. section 4.1 of ref. [22].

The full theory (QCD) Lagrangian for a heavy quark includes

LQCD ⊃ Q̄
(
i /D −mQ

)
Q , (2.1)

where Q is our heavy quark, and the covariant derivative only includes the QCD interac-

tions, Dµ = ∂µ − igsGaµT a. In the following, additional interactions of the heavy quark

will be modeled through the introduction of current operators as needed.

Naively, it does not seem that the Lagrangian of eq. (2.1) has a good expansion about

the mQ → ∞ limit. The key insight that allows one to circumventing this issue lies in an

appropriately chosen phase redefinition of the field, whose purpose is to cancel the mass

term for certain components. The full quark field can then be separated into so-called short

distance and long distance fields, where the latter become approximately mass-independent.

Physically, this is motivated by the realization that the heavy quark cannot be pushed

very far off-shell by degrees of freedom for which |q| . ΛQCD. To make this manifest, we

decompose a heavy quark’s momentum as

pµ = mQv
µ + kµ , (2.2)

where vµ is a unit time-like vector, and kµ is the residual heavy quark momentum which

models small fluctuations about its mass shell. For kinematic configurations such that all

Lorentz invariants depending on kµ are small compared to mQ, a truncation at finite order

in the |k|/mQ expansion is justified.4 Since the theory is expanded around the mQ → ∞
4When we expand assuming |k| � mQ, we take each element of the kµ vector to be much smaller

than mQ.

– 7 –
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limit, the structure of HQET does not know about the mass of the heavy quark except

through various non-dynamical quantities. In particular, no sensitivity to mQ appears in

any of the calculations beyond what is encoded in the structure of the matching coefficients.

As a brief aside, we note that the decomposition in eq. (2.2) is not unique. In particular,

a simultaneous transformation of kµ and vµ by a fixed vector:

kµ −−−−→
RPI

kµ + δkµ and vµ −−−−→
RPI

vµ − δkµ

mQ
, (2.3)

leaves pµ unchanged. Enforcing that vµ remains a unit vector implies that δkµ must

satisfy v · δk = δk2/(2mQ). Reparameterization invariance (RPI) is then the statement

that physical observables cannot depend on δkµ, thereby enforcing the residual Lorentz

invariance of the underlying full theory. We will explore the interplay between RPI and

the functional approach in section 6.1 below.

In order to make use of eq. (2.2), we decompose the heavy quark field into two fields

by first extracting the rapidly-varying phase that remains unchanged by low-energy in-

teractions, and then using vµ-dependent projectors to split the remaining field into short

distance and long distance components:

hv(x) = eimQ v·x
1 + /v

2
Q(x) , (2.4a)

Hv(x) = eimQ v·x
1− /v

2
Q(x) , (2.4b)

or equivalently

Q(x) = e−imQ v·x
[
hv(x) +Hv(x)

]
. (2.5)

Plugging eq. (2.5) into eq. (2.1) yields

L ⊃ h̄v
(
iv ·D

)
hv − H̄v

(
iv ·D + 2mQ

)
Hv + H̄v i /D⊥ hv + h̄v i /D⊥Hv , (2.6)

since the projectors enforce /v hv = hv and /v Hv = −Hv (and hence H̄v /v hv = h̄v /v Hv = 0),

and we have defined

Dµ
⊥ ≡ D

µ − vµ (v ·D) . (2.7)

The Lagrangian in eq. (2.6) makes the interpretation of Hv as the heavy mode manifest —

this field has an effective mass of 2mQ, permitting a description at lower energies in terms

of hv alone.

To formally integrate out Hv at tree-level, we solve for its equation of motion

Hv =
1

iv ·D + 2mQ
i /D⊥ hv , (2.8)

and plug it into eq. (2.6), which yields

Lnon-local
HQET ⊃ h̄v

(
iv ·D + i /D⊥

1

iv ·D + 2mQ
i /D⊥

)
hv . (2.9)

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
4

Provided that the momentum of the field hv satisfies |k| � mQ, eq. (2.9) can be expressed

into a convergent series of local terms

1

iv ·D + 2mQ
=

1

2mQ
− 1(

2mQ

)2 (iv ·D) +
1(

2mQ

)3 (iv ·D)2 + · · · . (2.10)

Since the leading term is then insensitive to the Dirac structure of the spinor components

of the field, the theory has gained an approximate SU(2) heavy-spin symmetry, which can

be expanded to SU(2nh) in the presence of nh heavy flavors. This is an example of an

aforementioned emergent symmetry of the EFT.

To understand how this procedure for deriving the EFT Lagrangian can be interpreted

at the path integral level, we note that the projection operators in eq. (2.4) imply that

hv and Hv can be treated as two orthogonal projections of Q. As such, the path-integral

measure factorizes: ∫
DQ =

∫
Dhv

∫
DHv . (2.11)

Since the resulting Lagrangian is quadratic in Hv, the Gaussian integral over the short-

distance field immediately yields eq. (2.9). Therefore, the procedure described here allows

us to literally integrate out the short distance modes of our original quark. This elegant

derivation of the tree-level HQET Lagrangian by way of the path-integral measure was

first presented in ref. [25]. Furthermore, it also justifies the use of the functional approach

to matching and running developed in ref. [5]. Note that there would be no significant ob-

structions even if our projectors were quantum operators instead of simply being functions

of the kinematics as above, since all objects in the path integral are treated as operators

acting on fields. As long as the mode decomposition that is used to define an EFT can be

written in terms of operator-valued projectors, we expected the methods developed here

to be universally applicable.

2.1 Decoupling the heavy quark

The decomposition of the full QCD Lagrangian given in eq. (2.6) makes it clear that Hv can

be identified as a short distance mode which one can integrate out in the limit that |k| �
mQ for all fields in a given process. This procedure yields the non-local Lagrangian given

in eq. (2.9), which makes predictions that are equivalent to QCD for processes involving

only hv modes in the external states. Expanding the non-local Lagrangian using eq. (2.10)

and truncating the series at some order in 1/mQ yields an EFT which is valid for momenta

|k| � mQ. In this subsection, we will briefly review the connection between this procedure

and the fact that the heavy quark should not contribute to the running of the QCD gauge

coupling at scales below mQ. This both has a conceptual benefit, and will also be of

practical importance since similar arguments will be used below when we derive our master

formula for one-loop matching given in eq. (5.4).

For this argument, we will work directly with the hv and Hv fields, and we will use the

terms that are diagonal in these fields to derive propagators, while the mixed terms will be

treated as interactions. Two features are of critical importance, the fact that the kinetic

terms are linear in the momentum of the state, and the relative minus sign between the
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hv and the Hv kinetic terms. The later fact implies that the iε factors in the propagators

will take the opposite sign such that the same Wick rotation can be used to Euclideanize

diagrams involving both hv and Hv propagators.

The QCD Lagrangian written as eq. (2.6) has three types of couplings between the

heavy quark modes and the gluon: diagonal couplings hvhvGµ, HvHvGµ, and an off-

diagonal coupling HvhvGµ. The integral that results when computing the contribution

to the vacuum polarization for the gluon from the two diagonal loops schematically take

the form

Idiag ∼
∫

ddq

(2π)d

(
1

v · q +m± iε

)(
1

v · (q + p) +m± iε

)
, (2.12)

where m is an IR regulator for the hv loop and is equal to 2mQ for the Hv loop. Due to

the linear nature of the kinetic terms and the sign on the factor of iε, when integrating

over q0, the poles reside on only one side of the real axis, and one can deform the contour

away from all them yielding zero contribution. However, the situation is different for the

mixed loop, where the integral takes the form

Ioff-diag ∼
∫

ddq

(2π)d

(
1

v · q +m+ iε

)(
1

v · (q + p) + 2mQ − iε

)
. (2.13)

Now we see that the opposite sign on the iε terms implies that there is a pole in both the

positive and negative Im q0 half-planes. The contour will enclose a pole for any possible

deformation, yielding a non-zero contribution to the β-function.

The argument above makes it clear why in HQET the heavy quark does not contribute

to the RGEs of the gauge coupling. Once we construct HQET by integrating out Hv and

expanding, the heavy field Hv is non-propagating. Therefore, there are no diagrams that

yield contributions of the type in eq. (2.13). The mode hv only yields potentially relevant

integrals of the type in eq. (2.12), which vanish as we have argued. Similar reasoning will

be critical to the derivation of the master formula for matching in eq. (5.4) below.

3 Residues using Feynman diagrams

In this section, we will review the diagrammatic approach to calculating matching coeffi-

cients, using the simple example of the residue of the on-shell propagator for concreteness.

Along the way, we will encounter an order of limits issue, which is a manifestation of the

IR divergence structure of QCD. We will then revisit the calculation by relying on the

so-called method of regions [30, 31] that will avoid the need to deal with this subtlety di-

rectly. This has the additional benefit of providing a familiar setting to review the method

of regions, which will be a critical tool in the derivation of our master formula for HQET

matching coefficients below.

When performing matching calculations, one typically equates matrix elements as cal-

culated in the full theory and the EFT. Particular care must be taken to include the

appropriate residue factors for the external states to ensure that the LSZ reduction is cor-

rectly implemented. One way to extract the residue for the heavy quark Q is to take the
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derivative of the 1PI corrections to the propagator −iΣ(/p), and evaluate it on the mass

shell. We will compute this factor for a quark in QCD RQ = 1 + R
(1)
Q αs + · · · , and for a

quark in HQET Rh = 1 + R
(1)
h αs + · · · , from which we get the quantity that appears in

matching calculations ∆R(1) = R
(1)
Q −R

(1)
h , see eq. (1.2).

3.1 Residue in QCD

The one-loop QCD residue R
(1)
Q can be obtained by computing the two-point 1PI function

−iΣQCD(/p) = −4

3
g2
s µ

2ε

∫
ddq

(2π)d
(2− d)(/q + /p) + dmQ

q2
[
(q + p)2 −m2

Q

] − c.t.

= −i
[
(A−Act)mQ + (B −Bct) /p

]
. (3.1)

Here as well as throughout this paper, “c.t.” denotes the counter term contributions, and

we take the Feynman gauge ξ = 1 for gauge boson propagators. Performing standard

manipulations, we derive5

A
(
p2
)

=
αs
3π

(
4π µ2

)ε
Γ(ε) 4

(
1− ε

2

)∫ 1

0
dx
[
m2
Q x− p2 x(1− x)

]−ε
, (3.2a)

B
(
p2
)

= −αs
3π

(
4π µ2

)ε
Γ(ε) 2 (1− ε)

∫ 1

0
dx (1− x)

[
m2
Q x− p2 x(1− x)

]−ε
, (3.2b)

Act =
αs
3π

4

(
1

ε
− γE + ln 4π

)
, (3.2c)

Bct = −αs
3π

(
1

ε
− γE + ln 4π

)
, (3.2d)

where the MS counter terms Act and Bct are derived by taking the ε expansion of A
(
p2
)

and B
(
p2
)
. This yields

lim
ε→0

(A−Act) =
4

3

αs
π

(
3

2
−
m2
Q

p2
ln
m2
Q

µ2
+
m2
Q − p2

p2
ln
m2
Q − p2

µ2

)
, (3.3a)

lim
ε→0

(B −Bct) = −αs
3π

(
1−

m4
Q

p4
ln
m2
Q

µ2
+
m4
Q − p4

p4
ln
m2
Q − p2

µ2
+
m2
Q

p2

)
. (3.3b)

These results are finite but non-analytic at p2 = m2
Q. In particular, their derivatives with

respect to p2 are divergent when evaluated at p2 = m2
Q. These are a manifestation of IR

divergences that appear when taking on-shell kinematics.

5See eqs. (3.53), (3.55), and (3.57) in ref. [22], noting again that we use d = 4 − 2ε, while ref. [22]

uses d = 4− ε.
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One way to side step this issue, thereby allowing us to extract the residue, is to keep

ε 6= 0 until after taking the derivative. It is then straightforward to derive

R
(1)
Q αs =

dΣQCD(/p)

d/p

∣∣∣∣
/p=mQ

= 2m2
Q

[
d(A−Act)

dp2
+

d(B −Bct)

dp2

]∣∣∣∣
p2=m2

Q

+ (B −Bct)

∣∣∣∣
p2=m2

Q

= −αs
3π

[
2

(
1

ε
− γE + ln 4π

)
+ 3 ln

µ2

m2
Q

+ 4

]
, (3.4)

where ε is specifically regulating the IR divergence. Next, we will derive the residue in

HQET, where we will see that the same IR divergent terms appear. Therefore, the object

of interest ∆R(1) is IR finite. This is to be expected, since one of the standard tests that

one has correctly implemented the matching procedure, namely that one is working with

the correct low energy description, is to check that the IR of the full theory and EFT have

the same divergence structure. We will provide a procedure for directly extracting ∆R(1)

that avoids this IR subtlety utilizing the method of regions, see section 3.3 below.

3.2 Residue in HQET

Next, we perform the two-point function calculation in HQET. Diagrammatically, the

structure is identical to the QCD calculation where the relativistic quark propagator is

replaced by the HQET propagator, yielding

−iΣHQET(v · k) = −4

3
g2
s µ

2ε

∫
ddq

(2π)d
1

q2
(
v · (q + k)

) − c.t.

= −i
[
C(v · k)− Cct(v · k)

]
, (3.5)

which evaluates to6

C(v · k) = −2

3

αs
π

(
4π µ2

)ε
Γ(ε)(−v · k)1−2ε

Γ(1− ε) Γ
(

1
2 + ε

)
(1− 2ε) Γ

(
1
2

) , (3.6a)

Cct(v · k) =
2

3

αs
π
v · k

(
1

ε
− γE + ln 4π

)
, (3.6b)

where the counter term is again determined in the MS scheme.7 Noting that to zeroth

order in 1/mQ the on-shell condition for hv is v · k = 0, we evaluate

dC(v · k)

d(v · k)

∣∣∣∣
v·k=0

=
2

3

αs
π

(
4π µ2

)ε
Γ(ε) (−v · k)−2ε

Γ(1− ε)Γ
(

1
2 + ε

)
Γ(1

2)

∣∣∣∣∣∣
v·k=0

= 0 , (3.7a)

dCct(v · k)

d(v · k)

∣∣∣∣
v·k=0

=
2

3

αs
π

(
1

ε
− γE + ln 4π

)
, (3.7b)

6See eqs. (3.67) and (3.69) in ref. [22].
7Note that when computing the counter term in dim. reg., one must be careful to isolate the UV

divergence. This is done here by keeping v · k 6= 0 as an IR regulator at intermediate steps. This is why

we must take a derivative of eq. (3.6b) before sending v · k → 0 to derive eq. (3.7b). If instead we took

v · k → 0 first, we would effectively be using dim. reg. to regulate the IR divergence as well.
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which yields

R
(1)
h αs =

dC(v · k)− dCct(v · k)

d(v · k)

∣∣∣∣
v·k=0

= −2

3

αs
π

(
1

ε
− γE + ln 4π

)
. (3.8)

Similar to above, the limε→0 ΣHQET is not analytic at v · k = 0 due to an IR divergence,

and so we had to defer taking the ε→ 0 limit until after taking the derivative with respect

to v · k.

3.3 Residue difference from the method of regions

The IR divergences in eqs. (3.4) and (3.8) are the same, as they must be if the EFT

correctly captures the dynamics of the full theory below a certain scale. This implies that

the residue difference is IR finite:

∆R(1)αs =
(
R

(1)
Q −R

(1)
h

)
αs = −αs

3π

(
3 ln

µ2

m2
Q

+ 4

)
. (3.9)

Operationally, we were forced to maintain ε 6= 0 until we evaluated this difference. There-

fore, it would be convenient to have an approach that would allow us to compute ∆R(1)

directly. This can be accomplished by exploiting a technique known as the method of

regions [30, 31].

To begin, we rewrite some expressions in order to make the comparison between R
(1)
Q

and R
(1)
h more obvious. Within QCD, we set pµ = mQ v

µ + kµ and define

ΞQCD(k) ≡ ΣQCD(/p)
1 + /v

2
, (3.10)

so that

vµ
dΞQCD(k)

dkµ

∣∣∣∣
v·k=0

= /v
dΣQCD(/p)

d/p

∣∣∣∣
/p=mQ

1 + /v

2
+ O

(
1

m2
Q

)

= R
(1)
Q αs

1 + /v

2
+O

(
1

m2
Q

)
. (3.11)

Note that we have changed the evaluation condition from v · k = 0 to /p = mQ in the first

line, which is valid up to O(1/mQ). Similarly, we define the HQET quantity

ΞHQET(k) ≡ ΣHQET(v · k)
1 + /v

2
, (3.12)

which is related to R
(1)
h as

vµ
dΞHQET(k)

dkµ

∣∣∣∣
v·k=0

=
dΞHQET(v · k)

d(v · k)

∣∣∣∣
v·k=0

1 + /v

2
= R

(1)
h αs

1 + /v

2
. (3.13)

This allows us to simply express the difference as

∆R(1)αs
1 + /v

2
= vµ

dΞQCD(k)− dΞHQET(k)

dkµ

∣∣∣∣
v·k=0

+ O

(
1

m2
Q

)
. (3.14)
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In order to evaluate this difference, we take the integral expressions for ΣQCD and

ΣHQET given in eqs. (3.1) and (3.5) to write

−iΞQCD(k) = −4

3
g2
s µ

2ε

∫
ddq

(2π)d
(2− d)(/q + /p) + dmQ

q2
[
(q + p)2 −m2

Q

] 1 + /v

2
− c.t. , (3.15a)

−iΞHQET(k) = −4

3
g2
s µ

2ε

∫
ddq

(2π)d
1

q2 [v · (q + k)]

1 + /v

2
− c.t. . (3.15b)

Note that the integrands of ΞQCD and ΞHQET are equal in the heavy quark limit:

lim
mQ→∞

(2−d)(/q+/p)+dmQ

q2
[
(q+p)2−m2

Q

] 1+/v

2
=

(2−d)/v+d

2q2 [v ·(q+k)]

1+/v

2
=

1

q2 [v ·(q+k)]

1+/v

2
. (3.16)

Naively, one might be tempted to conclude that ΞQCD = ΞHQET at leading order in 1/mQ,

which would imply that ∆R(1) vanishes. This would be in conflict with the result derived

in eq. (3.9). This is due to an order of limits issue: since the integral is taken over all

momenta, one cannot expanding the integrand for large mQ before integrating.

The method of regions [30, 31] is a technique for consistently expanding the integrands

such that non-analytic dependence on small parameters is correctly reproduced after in-

tegration. The key is to isolate regions of the integration domain that are dominated by

single scale contributions. For example, the QCD integral contains two physical scales that

are separated by a large hierarchy |k| � mQ. To expand the integrand, we introduce an

intermediate cutoff scale Λ such that |k| � Λ� mQ, which can be used to split the integral

over qµ into two pieces. The first receives support from the soft region |q| < Λ, while the

second is non-zero due to the hard region |q| > Λ:

ΞQCD(k) = ΞQCD,soft(k,Λ) + ΞQCD,hard(k,Λ) . (3.17)

The domain of integration is now bounded, so that one can expand the integrand ac-

cording to the assumed scaling in each region, while maintaining |k| � mQ fixed. The

soft region can be isolated by assuming |q| < Λ� mQ holds, while the hard region where

|k| � Λ < |q| yields a different expansion. Once the integrand has been expanded, the

domain of integration can be restored to infinity when using dimensional regularization so

that the explicit cutoff Λ no longer appears — the contribution from the extended integra-

tion limits is scaleless and therefore vanishes. This is reflected by our notation since we drop

the Λ dependence for the expressions where the domain of the integral is taken to infinity.

Applying this procedure to the two-point function integrals, we recognize that the soft

expansion is identical to the naive approach in eq. (3.16). Therefore, we conclude that

ΞQCD,soft(k) = ΞHQET(k) . (3.18)

This tells us that the residue difference is fully determined by the hard region from QCD:

∆R(1)αs
1 + /v

2
= vµ

dΞQCD(k)− dΞHQET(k)

dkµ

∣∣∣∣
v·k=0

= vµ
dΞQCD,hard(k)

dkµ

∣∣∣∣
v·k=0

. (3.19)
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Note that eq. (3.18) holds to all order in 1/mQ. In eq. (3.16), it was demonstrated only

at the leading order, i.e. mQ → ∞. To explicitly verify this at higher orders in 1/mQ,

one needs to include additional diagrams that contribute to eq. (3.15b) due to higher

order operators in HQET. Then the result in eq. (3.19) still holds, with an appropriate

modification of the evaluation condition v · k = 0.

The practical implication of eq. (3.19) is that we no longer have to track the individual

IR divergences. Instead, the residue difference ∆R(1) is determined by a single loop integral

ΞQCD,hard, and the only divergences that appear are from the UV, which can be subtracted

using counter terms.

For completeness, we evaluate this hard region integral. Starting with eq. (3.15a), we

expand the integrand assuming |k| � |q| and |k| � mQ:

−iΞQCD,hard(k) = −4

3
g2
s µ

2ε

∫
ddq

(2π)d
1

q2

{
2mQ + (2− d)(/q + /k)

(q +mQ v)2 −m2
Q

−
[
2mQ + (2− d)/q

]
2 (q +mQv) · k[

(q +mQ v)2 −m2
Q

]2

}
1 + /v

2
− c.t. , (3.20)

where we have truncated the expansion up to the linear order in k, since this is all that is

required to isolate the residue. Evaluating the integral yields

∆R(1)αs
1 + /v

2
= vµ

dΞQCD,hard(k)

dkµ

∣∣∣∣
v·k=0

= − αs
3π2

(
4π µ2

m2
Q

)ε
Γ(ε)

[
1− 4ε

(1− 2ε)(−2ε)

]
1 + /v

2
− c.t.

= − αs
3π2

(
3 ln

µ2

m2
Q

+ 4

)
1 + /v

2
, (3.21)

which reproduces the result in eq. (3.9).

4 Matching and running using functional methods

This section reviews how to utilize the functional approach for calculating matching co-

efficients and RGEs. To set the stage, we first briefly review the one-particle irreducible

(1PI) effective action, which is a key object in functional methods that one could compute

directly by evaluating the path integral. The general matching condition can be compactly

expressed by equating the 1PI effective actions of the UV theory and the EFT, whose

solution gives us a direct link between the Lagrangians of the two theories, e.g. see ref. [5].

Finally, we also provide a brief review on how to extract RGEs from the 1PI effective

action; more details for RGE calculations are provided in appendix C.

4.1 1PI effective action from a functional determinant

In modern functional methods, the central object of study is the so-called 1PI effective

action Γ[φ], where φ collectively denotes all the fields in the theory. It is a generating
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functional for the 1PI correlation functions:

〈
φ(x1) · · ·φ(xn)

〉
1PI

= i
δnΓ[φ]

δφ(x1)· · · δφ(xn)
for n > 2 . (4.1)

One can in principle extract any perturbative quantum field theoretic prediction from

Γ[φ]. Concretely, the 1PI effective action up to one-loop order can be organized as a loop

expansion:

Γ[φ] ⊃ Γ(0)[φ] + Γ(1)[φ] , (4.2)

where each piece can be extracted from the Lagrangian as

Γ(0)[φ] = S[φ] (4.3a)

Γ(1)[φ] =
i

2
ln Sdet

(
−δ

2S[φ]

δφ2

)
, (4.3b)

with S[φ] =
∫

d4xL(φ), and “Sdet” is the so-called super-determinant, which tracks the

minus sign difference between fermionic and bosonic loops. The normalization factor i
2

assumes that we are tracing over “real” degrees of freedom: a complex scalar field should

be separated into its real and imaginary parts, and Dirac fermions should be decomposed

as discussed in section 4 of ref. [5].

4.2 Matching from a functional determinant

In general, one performs a matching calculation by equating the EFT LEFT(φ) with a UV

theory LUV(φ,Φ) at a matching scale, where φ (Φ) denotes the light (heavy) particles.

The general matching condition is that all the one-light-particle irreducible (1LPI) dia-

grams agree at the matching scale [47, 48]. The natural definition of this statement when

using functional methods is to enforce that the so-called 1LPI effective action ΓL[φ] — the

generating functional for all the 1LPI correlation functions — of each theory coincides at

the matching scale:

ΓL,EFT[φ] = ΓL,UV[φ] . (4.4)

One can relate the 1LPI to the 1PI effective action for the UV theory and the EFT:

ΓL,EFT[φ] = ΓEFT[φ] , (4.5a)

ΓL,UV[φ] = ΓUV[φ,Φ]
∣∣
Φ=Φc[φ]

. (4.5b)

The relation for the EFT is trivial. By contrast, to derive ΓL, UV, one must integrate out

the heavy field by plugging in the solution Φ = Φc[φ] to its equation of motion.

Solving eq. (4.4) in general is nontrivial. However, ref. [5] was able to make signifi-

cant progress towards this goal by deriving the following general expression for the EFT
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Lagrangian up to one-loop order:8

S
(0)
EFT =

∫
d4x

∑
i

C
(0)
i Oi(φ) = SUV[φ,Φ]

∣∣
Φ=Φc[φ]

, (4.6a)

S
(1)
EFT =

∫
d4x

∑
i

(
C

(1)
i,heavy + C

(1)
i,mixed

)
Oi(φ) , (4.6b)

where∫
d4x

∑
i

C
(1)
i,heavyOi(φ) =

i

2
ln Sdet

(
−δ

2SUV[φ,Φ]

δΦ2

∣∣∣∣
Φ=Φc[φ]

)
, (4.7a)

∫
d4x

∑
i

C
(1)
i,mixedOi(φ) =

i

2
ln Sdet

(
−
δ2Snon-local

EFT [φ]

δφ2

)
− i

2
ln Sdet

(
−
δ2S

(0)
EFT[φ]

δφ2

)

=
i

2
ln Sdet

(
−
δ2Snon-local

EFT [φ]

δφ2

)∣∣∣∣
hard

. (4.7b)

A few clarifications are in order:

• In this approach, we do need to know the EFT operators Oi(φ) in advance. We simply

obtain them (with the appropriate one-loop coefficient) by evaluating the right-hand

sides of eqs. (4.6) and (4.7).

• The one-loop contributions to the Wilson coefficients derive from two classes of loops

in the UV theory. The “heavy” Wilson coefficients C
(1)
i,heavy collect contributions

from loops where only Φ appear, while the “mixed” Wilson coefficients C
(1)
i,mixed are

generated by loops with both Φ and φ.

• The non-local Lagrangian appearing in eq. (4.7b) is given by

Snon-local
EFT [φ] = SUV[φ,Φ]

∣∣
Φ=Φc[φ]

, (4.8)

where the heavy field is integrated out using the tree-level solution to its equations

of motion Φc[φ]. No expansion in the heavy masses is performed at this stage, and

hence the resulting Lagrangian contains non-local terms, e.g. see eq. (2.9). This

is in contrast to the tree-level EFT action S
(0)
EFT[φ], which is derived by expanding

the non-local Lagrangian in the heavy mass limit; therefore, it only contains local

terms, e.g. see eq. (2.10). As we have discussed extensively in section 3.3, expanding

the action in the heavy particle limit yields a critical difference between the two

descriptions, where the non-trivial effects result from being careful about the order

of limits — performing the heavy mass expansion does not commute with taking

the functional determinant (which is essentially equivalent to performing the loop

integration). Although, the two terms in the first line of eq. (4.7b) are not equal,

8Note that as before, we use superscript numbers in parenthesis to denote loop order. We need not

specify the loop order for the full theory action, since we treat the counterterm contributions implicitly.

However, matching results in nontrivial loop orders in the EFT Lagrangian.
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they are intimately related in such a way that allows for the following simplification:

using method of regions,9 we can identify the second term as equivalent to the soft

region of the first term. Their difference leaves behind the hard region alone, as

shown in the second line of eq. (4.7b).

4.3 RGEs from the 1PI effective action

In this section, we briefly review the general procedure for using the 1PI effective action

to compute the RGEs [5]. Given a Lagrangian

L(φ) ⊃ OK(φ) + λOλ(φ) + · · · , (4.9)

we are interested in deriving the RGEs for a coupling λ, where Oλ is the corresponding

operator, OK denotes the kinetic terms, and the “· · · ” allow for the possibility of additional

interactions. The first step is to compute the 1PI effective action, which takes the form

Γ[φ] ⊃
∫

d4x
[
(1 + aK)OK(φ) + (λ+ aλ)Oλ(φ)

]
, (4.10)

where aK and aλ encode the one-loop corrections. Next, we renormalize the kinetic terms

to their canonical value by rescaling the fields φ:

Γ[φ] −→
∫

d4x
[
Ok(φ) + (λ+ bλ)Oλ(φ)

]
, (4.11)

where bλ is derived by Taylor expanding the version of Γ[φ] with canonical kinetic terms

as a series in λ. Finally, the RGE for λ is obtained:

µ
d

dµ

(
λ+ bλ

)
= 0 . (4.12)

For reference, a number of standard RGEs are derived using this method in appendix C;

additionally, functional methods were used to compute the bosonic dimension-6 SMEFT

RGEs in ref. [49]. In section 7, we will apply this formalism in HQET to show that the

kinetic term does not run, and will derive the RGEs for the Wilson coefficient of the HQET

magnetic dipole moment operator.

5 HQET matching from a functional determinant

In this section, we apply the general matching result eqs. (4.6) and (4.7) to HQET. As

we will see, salient features of HQET will result in further simplifications for matching

calculations, which will be summarized by our master formula eq. (5.4) for HQET one-loop

matching coefficients. In this case, we identify Φ =
(
H̄v, Hv

)
as the short distance modes of

the heavy quark, and φ collectively as all the propagating long distance degrees of freedom

9Simplifying the functional matching calculation with method of regions was also discussed in refs. [6, 9],

where a different (but equivalent) approach to the row reduction procedure was used to diagonalize the

functional determinant matrix in the space of (Φ, φ).
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modeled by HQET. There are two special features of matching QCD onto HQET that

simplify the resulting master formula.

First, taking second functional derivatives of eq. (2.6) with respect to Hv and H̄v, we

see that the matching coefficient C
(1)
i,heavy vanishes at one-loop:∫

d4x
∑
i

C
(1)
i,heavyOi(φ) =

i

2
ln Sdet

(
−
δ2SQCD[φ,Φ]

δΦ2

∣∣∣∣
Φ=Φc[φ]

)
∝ −i ln Sdet

(
iv ·D + 2mQ

)
= 0 . (5.1)

This functional determinant is zero due to the same contour arguments presented in sec-

tion 2.1 (see also [25]), where we discussed decoupling the heavy quark.10 This indicates

that all the one-loop matching contributions for HQET are mixed loop contributions of the

type given in eq. (4.7b). Therefore, the non-local HQET Lagrangian

Snon-local
HQET [φ] = SQCD[φ,Φ]

∣∣
Φ=Φc[φ]

, (5.2)

which is given explicitly in eq. (2.9), is equivalent to QCD with respect to the dynamics of

the light fields φ.

Another useful feature of HQET is that loop corrections are scaleless [50], and therefore

they vanish when using dim. reg. . This means that the second term in the first line of

eq. (4.7b) is also zero:

i

2
ln Sdet

−δ2S
(0)
HQET[φ]

δφ2

 = 0 . (5.3)

We emphasize that this expression is valid when (i) we are computing on-shell S-matrix

elements, and (ii) when dim. reg. is used to regularize both UV and IR divergences (see

section 3.2 for a calculation where we regulated the IR by keeping the long distance fluc-

tuations off shell).

Taking both simplifications into account, we arrive at our master formula for computing

the Wilson coefficients of HQET11

S
(1)
HQET =

i

2
ln Sdet

(
−
δ2Snon-local

HQET [φ]

δφ2

)
. (5.4)

In particular, note that we have restored the vanishing region, implying that when using this

result we do not need to perform any method of regions style expansion of the integrals

that result from taking the functional trace, and can simple evaluate the integrals that

result from this procedure directly. In sections 6 and 7, we will demonstrate how to apply

this formula by working out a number of explicit examples. We will additionally see that

this formula makes symmetry properties such as gauge invariance and RPI more manifest.

10There is an even simpler (albeit gauge dependent) argument also given in ref. [25]: if one takes the

v ·A = 0 gauge, the determinant no longer depends on any field, and its evaluation simply yields a constant

that is absorbed into the path integral measure.
11There is one caveat to keep track of when applying this formula, which is that it is valid when one

sets all the light masses that appear in a loop integral to zero. If one is interested in computing power

corrections proportional to a light mass, then eq. (4.7b) should be used: one should keep the light masses

non-zero, and the hard region must be isolated before integrating.
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6 Residue difference from a functional determinant

This section provides a first non-trivial example of the procedure for matching between

QCD and HQET at one-loop using functional methods: the calculation of the difference

between the propagator residue for QCD and HQET. Along the way, we will highlight

many of the simplifying benefits of performing these calculations directly from the path

integral. Then before moving on to a number of additional (more complicated) examples

in the next section, we briefly discuss how RPI manifests in the functional language.

Before getting into the details, we provide a simple road map highlighting the critical

steps of the calculation:

(i) Beginning with the UV Lagrangian, we will integrate out the short distance mode

using the tree-level equations of motion. This will result in a non-local Lagrangian

(using background fields as necessary to implement gauge fixing) that encodes a

complete description of the dynamics of the light modes. See eq. (6.1).

(ii) Given this non-local Lagrangian, we will then derive the matrix of the second-order

functional derivatives (see eq. (6.5)), whose determinant is the central object to eval-

uate according to our master formula eq. (5.4).

(iii) Next, we will rewrite the determinant into an efficient form for explicit evaluation

via row reduction. See eq. (6.8).

(iv) Finally, we will evaluate this trace using the methodology of the covariant derivative

expansion as reviewed in appendix B. From this expansion, we will isolate the oper-

ators of interest. This yields the second line of eq. (6.12), which is an expression for

one-loop Wilson coefficients multiplied by the appropriate operators. The last step

will be to explicitly evaluate the loop integral. See the final line of eq. (6.12).

Note that along the way, we will drop any terms which do not contribute to the operator

of interest for simplicity.

The rest of this section is devoted to the explicit calculation of the residue difference.

Our goal is to apply eq. (5.4) in order to derive the one-loop correction to the two-point

function of heavy quarks. This implies that we only need to take variations of the La-

grangian with respect to the gluon and the heavy quark field. The first step is to derive

the non-local HQET action. Following section 2, where we reviewed the derivation of the

HQET Lagrangian, we start with QCD (including the gluon kinetic term, gauge fixing,

and ghost contributions) and integrate out the short distance quark modes:

Lnon-local
HQET = h̄v

(
iv ·D + i /D⊥

1

iv ·D + 2mQ
i /D⊥

)
hv −

1

4
Gaµν G

µν,a + Lgf + Lgh , (6.1)

where the explicit gauge-fixing term Lgf and ghost term Lgh are specified in eqs. (B.74)

and (B.75).

Next, we take functional variations of Snon-local
HQET . We will treat gauge bosons using the

background field prescription described in appendix B.3:

Gµ = GB,µ +Aµ , (6.2)
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where GB,µ is a background field and Aµ encodes the fluctuations. Covariant derivatives

are expanded similarly:

Dµ = DB,µ − igsAµ , (6.3)

where DB,µ is the covariant derivative that includes the background gauge field. After

taking functional variations with respect to Aµ, we replace

GB,µ −→ Gµ , (6.4a)

DB,µ −→ Dµ . (6.4b)

We only need to take the second variation of the Lagrangian in eq. (6.1) with respect

to Aaµ, hv, and h̄v to compute the residue difference:

δ2Snon-local
HQET ⊃

(
δAaµ δhTv δh̄v

)
Cµν,ab Γ̄µ,a −

(
Γµ,a

)T
−
(

Γ̄ν,b
)T

0 −BT

Γν,b B 0



δAbν

δhv

δh̄Tv

 , (6.5)

where terms not relevant for the residue operator in Uµν,ab, Γµ,a, and Γ̄µ,a are discarded:

Cµν,ab = ηµν
(
D2
)ab − 2Uµν,ab , (6.6a)

Uµν,ab = gs f
abcGµν,cB − g2

s h̄vγ
µ
⊥

1

iv ·D + 2mQ
γν⊥ T

aT b hv , (6.6b)

B = iv ·D + i /D⊥
1

iv ·D + 2mQ
i /D⊥ , (6.6c)

Γµ,a = gs

[
vµ + i /D⊥

1

iv ·D + 2mQ
γµ⊥

]
T a hv , (6.6d)

Γ̄µ,a = gs h̄v T
a

[
vµ + γµ⊥

1

iv ·D + 2mQ
i /D⊥

]
. (6.6e)

Here γµ⊥ ≡ γµ − vµ/v is defined in parallel with Dµ
⊥. The reality of the Lagrangian implies

that B† = γ0Bγ0 and Γ̄µ,a = (Γµ,a)†γ0 must hold, and it is straightforward to verify these

with the explicit expressions in eq. (6.6).

Next, we evaluate the functional determinant by row reducing eq. (6.5):

δ2Snon-local
HQET

δ
(
Aaµ, h̄v, hv

)2 =


Cµν,ab Γ̄µ,a −

(
Γµ,a

)T
−
(

Γ̄ν,b
)T

0 −BT

Γν,b B 0



=


Cµν,ab − Γ̄µ,aB−1Γν,b − Γ̄ν,bB−1Γµ,a 0 0

−
(

Γ̄ν,b
)T

0 −BT

Γν,b B 0

 , (6.7)
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where in the last line we have used
(
Γµ,a

)T (
B−1

)T (
Γ̄ν,b

)T
= −Γ̄ν,bB−1Γµ,a. Following the

prescription in section 4.2, we extract the residue operator part of the one-loop HQET

Lagrangian using

S
(1)
HQET =

i

2
ln Sdet

[
−

δ2Snon-local
HQET

δ
(
Aaµ, h̄v, hv

)2
]

=
i

2
ln detG

[
− Cµν,ab + Γ̄µ,aB−1Γν,b + Γ̄ν,bB−1Γµ,a

]
− i

2
ln deth

(
0 BT

−B 0

)
⊃ i

2
ln detG

[
− ηµν

(
D2
)ab

+ 2Uµν,ab + Γ̄µ,aB−1Γν,b + Γ̄ν,bB−1Γµ,a
]

⊃ −iTr

[(
1

D2

)ba
ηµν

(
Uµν,ab + Γ̄µ,aB−1Γν,b

)]
, (6.8)

where the subscripts denote the field that is being traced over, i.e., the state that is running

in the loop, and starting with the third line, we have truncated the series and dropped terms

that do not contribute to the residue operator. Note that in the last line, the trace over

the gluon space is taken (i.e. µν and ab indices are contracted). Next, we evaluate this

expression using the explicit objects given in eq. (6.6), and simplify the two traces as follows:

−iTr

[(
1

D2

)ba
ηµνU

µν,ab

]
= −ig2

sCF Tr

[
(d− 1)

1

(iD)2
h̄v

1

iv ·D + 2mQ
hv

]
, (6.9)

where we used T ah T
a
h = CF = 4/3, and

− iTr

[(
1

D2

)ba
ηµν Γ̄µ,aB−1Γν,b

]
(6.10)

⊃ ig2
s CF Tr

{
1

(iD)2
h̄v

1

(iD)2 + 2mQ (iv ·D)
(iv ·D + 2mQ)hv

+ (d− 1)
1

(iD)2
h̄v

1

iv ·D + 2mQ

1

(iD)2 + 2mQ (iv ·D)

[
(iD)2 − (iv ·D)2

]
hv

}
.

In performing these manipulations, we set [Dµ, Dν ] = 0 since this commutator returns the

field strength Gaµν , which does not contribute to the residue difference. Putting these two

results together, we obtain

S
(1)
HQET = −ig2

s CF Tr

{
1

(iD)2
h̄v

1

(iD)2 + 2mQ (iv ·D)

[
(d− 2)(iv ·D)− 2mQ

]}
hv .

(6.11)
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Finally, we evaluate this functional trace using the simplified CDE technique described

in appendix B.2.2 to derive12

S
(1)
HQET ⊃ −ig

2
s µ

2εCF

∫
ddx

∫
ddq

(2π)d
1

(iD + q)2
h̄v

1

(iD + q)2 + 2mQ v · (iD + q)

×
[
(d− 2) v · (iD + q)− 2mQ

]
hv − c.t.

⊃ −ig2
s µ

2εCF

∫
ddx

[
h̄v iDµ hv

]
×
∫

ddq

(2π)d
(d− 2) q2 vµ − 2(d− 2) qµ v · q + 4mQ q

µ + 4m2
Q v

µ

q2 (q2 + 2mQ v · q)2 − c.t.

=

∫
ddx

[
h̄v iv ·Dhv

] αs
3π

(
4π µ2

m2
Q

)ε
Γ(ε)

[
1− 4ε

(1− ε)(−2ε)

]
− c.t.

=

∫
ddx

[
h̄v iv ·Dhv

] αs
3π

(
3 ln

µ2

m2
Q

+ 4

)
. (6.12)

The first line follows from eq. (6.11) by taking the steps shown in eq. (B.46). In the second

line, we have expanded in the covariant derivative Dµ — this is the explicit step that uses

the Covariant Derivative Expansion. Note that in taking this expansion we need to invoke∣∣D∣∣ � mQ to justify only keeping the residue operator. Its Wilson coefficient is given by

a loop integral with a nonzero hard region but a vanishing soft region. This verifies our

general statement made in section 5, in particular eq. (5.3). In the third line, we have

evaluated the loop integral, with the MS scheme counter terms. The result agrees with

eq. (1.2), providing our first demonstration for using functional methods to compute HQET

loop effects. Before moving on to additional examples in section 7, we will briefly discuss

RPI in the context of the residue difference calculation.

6.1 When does RPI become manifest?

In this section, we briefly explore the interplay between RPI and the calculation detailed

in the previous section.13 Our goal here is to understand at what point RPI holds when

computing with the functional approach. For simplicity, we will only explore this question

to leading order in 1/mQ in the RPI transformations. The full RPI transformations are

significantly more complicated, since the eigenstates hv and Hv rotate into each other at

subleading order, see [26–28, 52, 53] for a discussion.

12Since we treat Dµ as a commuting object here, the simplified CDE approach is sufficient. If one

were interested in extracting Wilson coefficients for operators that involve the field strength, the more

sophisticated original CDE approach described in appendix B.2.3 would be more convenient.
13RPI relations between coefficients are typically obscured in the course of a conventional calculation,

since different combinations of Feynman diagrams will contribute to the matching of operators at different

orders in the mass expansion. In practice, RPI relations are derived independently and then externally

imposed to minimize the number of matching calculations to be performed [51].
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The RPI transformation shifts14

v −−−−→
RPI

v′ = v − k

mQ
,

hv −−−−→
RPI

hv′ = e−ik·x
(

1−
/k

2mQ

)
hv +O

(
1

m2
Q

)
. (6.13)

We will now show that this is a good symmetry of HQET by noting that the non-local

HQET Lagrangian is built using the operator B defined in eq. (6.6). In particular, this

object transforms covariantly as

B ≡ iv ·D + i /D⊥
1

iv ·D + 2mQ
i /D⊥

−−−−→
RPI

B′ = B − ik ·D
mQ

+O

(
1

m2
Q

)
= e−ik·xBeik·x +O

(
1

m2
Q

)
, (6.14)

and hence

Lnon-local
HQET ⊃ h̄v B hv

−−−−→
RPI

h̄v′ B
′ hv′ = h̄v

(
1−

/k

2mQ

)
B

(
1−

/k

2mQ

)
hv = h̄v B hv +O

(
1

m2
Q

)
, (6.15)

where we used the fact that /vhv = hv, /v/k + /k/v = 2v · k, and v · k = k2/(2mQ).

Alternatively, one can check the interplay between the two terms in the first line

of eq. (6.14). We begin by analyzing the explicit transformation of the local term. Keeping

all terms to O(1/mQ), we find

h̄v (iv ·D)hv −−−−→
RPI

h̄v

(
1−

/k

2mQ

)
eik·x

(
iv ·D − ik ·D

mQ

)
e−ik·x

(
1−

/k

2mQ

)
hv

= h̄v (iv ·D)hv − h̄v
(
ik ·D
mQ

+
k2

2mQ

)
hv +O

(
1

m2
Q

)
. (6.16)

This change is compensated by a corresponding shift in the non-local piece

h̄v i /D⊥
1

iv ·D + 2mQ
i /D⊥hv

−−−−→
RPI

h̄v

(
1−

/k

2mQ

)
eik·x

(
i /D⊥

1

iv ·D + 2mQ
i /D⊥

)
e−ik·x

(
1−

/k

2mQ

)
hv

= h̄v i /D⊥
1

iv ·D + 2mQ
i /D⊥hv + h̄v

(
ik ·D
mQ

+
k2

2mQ

)
hv +O

(
1

m2
Q

)
, (6.17)

where we used the identities

i/k⊥ /D⊥+ i /D⊥/k⊥ = 2ik⊥ ·D⊥ = 2kµ i
(
Dµ−vµv ·D

)
+O

(
1

mQ

)
= 2ik ·D+O

(
1

mQ

)
,

/k⊥/k⊥ = (/k−/vv ·k)
2

= k2 +O

(
1

mQ

)
. (6.18)

Then clearly eq. (6.15) holds.

14To reduce notational clutter, we have opted to use k as opposed to δk here to track the change induced

by RPI when comparing with eq. (2.3). Given the form of the relevant expressions, there is no ambiguity.
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The loop-level Lagrangian is given by the super-determinant of the second variation

of eq. (6.1). Therefore, it is also invariant under RPI. Let us explicitly check this to the

order O(1/mQ) for the residue difference calculation presented in the previous section. The

various components defined in eq. (6.6) shift under RPI as

Uµν,ab −−−−→
RPI

Uµν,ab +O

(
1

m2
Q

)
, (6.19a)

B −−−−→
RPI

e−ik·xB eik·x +O

(
1

m2
Q

)
, (6.19b)

Γµ,a −−−−→
RPI

e−ik·x
[
Γµ,a − gs (γµ + 2vµ)

/k

2mQ
T ahv

]
+O

(
1

m2
Q

)
, (6.19c)

Γ̄µ,a −−−−→
RPI

[
Γ̄µ,a − gs h̄v T a

/k

2mQ

(
γµ + 2vµ

)]
eik·x +O

(
1

m2
Q

)
. (6.19d)

From here, we can check the transformations of each term that appears in the argument

of the functional trace in eq. (6.8):

(
1

D2

)ab
−−−−→

RPI

(
1

D2

)ab
, (6.20a)

ηµνU
µν,ab −−−−→

RPI
ηµνU

µν,ab +O

(
1

m2
Q

)
, (6.20b)

ηµν Γ̄µ,aB−1 Γν,b −−−−→
RPI

ηµν

[
Γ̄µ,a − gs h̄v T a

/k

2mQ

(
γµ + 2vµ

)]
B−1

×
[
Γν,b − gs

(
γν + 2vν

) /k

2mQ
T b hv

]
= ηµν Γ̄µ,aB−1 Γν,b +O

(
1

m2
Q

)
, (6.20c)

where in the second derivation we used

ηµν h̄v T
a vµB−1

(
γν + 2vν

) /k

2mQ
T b hv = h̄v T

aB−1
(
/v + 2

) k2

4m2
Q

T b hv . (6.21)

This demonstrates an elegant feature of functional methods when applied to HQET. Specif-

ically, in the last line of eq. (6.8) the terms within the square brackets are manifestly invari-

ant under RPI before evaluating the trace. This is in contrast with the Feynman diagram

approach, where one must sum the full set of Feynman diagrams before the RPI symmetry

becomes apparent.
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7 More matching and running calculations

We have provided an explicit demonstration of a functional calculation in HQET for the

simplest non-trivial example above. However, we have not yet made contact with an actual

observable quantity. The purpose of this section is to do so by exploring more examples of

matching calculations and a derivation of the RGEs for some Wilson coefficients. This will

provide overwhelming evidence that these techniques capture all of relevant physics. Using

the formalism developed in refs. [29, 54], once the one-loop matching of operators is known,

one-loop relations between exclusive quantities, such as decay constants and form factors,

are straightforward to extract. Furthermore, explaining these examples will provide us with

the opportunity to highlight some additional subtle aspects of applying functional methods.

7.1 Heavy-light current matching

This section is devoted to our next example, matching the heavy-light current. The heavy-

light operator in QCD is defined as

Oµ = q̄ γµQ , (7.1)

where q is a light quark and Q is a heavy quark that will be treated as an HQET field.

Since one should use the reference vector vµ when constructing HQET operators, two oper-

ators can be written down at leading order in O(1/mQ) that manifest the same symmetry

properties as the heavy-light QCD operator:

Oµ1 = q̄ γµ hv , (7.2a)

Oµ2 = q̄ vµ hv . (7.2b)

The matching condition requires that matrix elements derived using QCD and HQET at

a convenient matching scale µ are equal,15〈
q
(
0, s′

) ∣∣∣Oµ ∣∣∣Q(p, s)〉
QCD

=
〈
q
(
0, s′

) ∣∣∣C1Oµ1 + C2Oµ2
∣∣∣hv(k, s)〉

HQET
, (7.3)

where the Wilson coefficients for the HQET operators C1,2 = C1,2(mQ/µ, αs(µ)) are func-

tions of µ and αs.

At one-loop order, the two matrix elements can be expressed schematically:〈
q
(
0, s′

) ∣∣∣Oµ ∣∣∣Q(p, s)〉
QCD

=
√
RQRq ū

(
0, s′

)[(
1 + V

(1)
HL,1 αs

)
γµ + V

(1)
HL,2 αs v

µ
]
u
(
p, s
)
,

(7.4a)〈
q
(
0, s′

) ∣∣∣C1Oµ1 + C2Oµ2
∣∣∣hv(k, s)〉

HQET
=
√
RhRq ū

(
0, s′

) (
1 + V

(1)
eff αs

)
×
(
C1 γ

µ + C2 v
µ
)
u
(
k, s
)
, (7.4b)

15Note that due to confinement, the matching is being done with unphysical external states. This does

not cause any problems since the matching condition between the two theories is universal.
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where the one-loop vertex corrections are V
(1)

HL,i, the one-loop residue corrections are

R
(1)
Q αs = RQ−1 and R

(1)
h αs = Rh−1, and Rq denotes the residue for the light quark prop-

agator, which is the same in QCD and HQET. Equating the two expressions in eq. (7.4)

lead to the simplified form given in eq. (1.4). In particular, Rq drops out and the matching

coefficient only depends on the residue difference ∆R(1) = R
(1)
Q − R

(1)
h , computed in the

previous section.

In order to extract the heavy-light matching coefficient from the master matching

formula given in eq. (5.4), we follow the same steps outlined at the beginning of section 6.

The set of fluctuating fields that contribute are Aaµ, hv, h̄v, q, and q̄. We need the equation

of motion for the Hv field, which can be derived from the UV Lagrangian (where sources

J±µ for the heavy-light current are now included)

LQCD ⊃ Q̄
(
i /D−mQ

)
Q+ q̄ i /Dq+

(
q̄ γµQJ−µ +h.c.

)
− 1

4
GaµνG

µν,a+Lgf +Lgh . (7.5)

Note that the sources J±µ are not dynamical fields, but must be included to ensure that

the desired operators appear when matching the full theory and EFT actions. We split

the heavy quark field as in eq. (2.5) above, and derive the equation of motion for the short

distance mode:

Hv =
1

iv ·D + 2mQ

(
i /D⊥hv + J+

µ γ
µ eimQ v·x q

)
. (7.6)

Since J+
µ is merely a source, we are free to redefine it to absorb the phase, J+

µ →J+
µ e
−imQ v·x.

Plugging the equation of motion eq. (7.6) into the UV Lagrangian eq. (7.5) yields the tree-

level non-local HQET Lagrangian:

Lnon-local
HQET = h̄v

(
iv ·D + i /D⊥

1

iv ·D + 2mQ
i /D⊥

)
hv −

1

4
GaµνG

µν,a + Lgf + Lgh

+ q̄
(
i /D
)
q +

(
q̄ γµ J−µ hv + q̄ γµ J−µ

1

iv ·D + 2mQ
i /D⊥ hv + h.c.

)
. (7.7)

We then take the second variation of the non-local action with respect to the relevant

fluctuating fields, again following the prescription described in appendix B.3 for the gluons:

δ2Snon-local
HQET ⊃

(
δAaµ δh

T
v δh̄v δq

T δq̄
)


Cµν,ab Γ̄µ,a1 −
(

Γµ,a1

)T
Γ̄µ,a2 −

(
Γµ,a2

)T
−
(

Γ̄ν,b1

)T
0 −BT

1 0 −ST2

Γν,b1 B1 0 S1 0

−
(

Γ̄ν,b2

)T
0 −ST1 0 −BT

2

Γν,b2 S2 0 B2 0





δAbν

δhv

δh̄Tv

δq

δq̄T


,

(7.8)
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where terms not relevant for the heavy-light operator are discarded in Γµ,ai and Γ̄µ,ai

Cµν,ab = ηµν
(
D2
)ab

, (7.9a)

B1 = iv ·D + /D⊥
1

iv ·D + 2mQ

/D⊥ , (7.9b)

B2 = i /D , (7.9c)

Γµ,a1 = gs T
a

[
vµ + /D⊥

1

iv ·D + 2mQ
γµ⊥

]
hv , (7.9d)

Γ̄µ,a1 = gs h̄v T
a

[
vµ + γµ⊥

1

iv ·D + 2mQ
i /D⊥

]
, (7.9e)

Γµ,a2 = gs T
a

[
γµ q + γα J−α

1

iv ·D + 2mQ
γµ⊥ hv

]
, (7.9f)

Γ̄µ,a2 = gs

[
q̄ γµ + h̄v γ

µ
⊥

1

iv ·D + 2mQ
γα J+

α

]
T a , (7.9g)

S1 =

[
1 + i /D⊥

1

iv ·D + 2mQ

]
γα J+

α , (7.9h)

S2 = γα J−α

[
1 +

1

iv ·D + 2mQ

/D⊥

]
. (7.9i)

Again, only relevant terms are kept here. Since the Lagrangian is real, we expect

B†i = γ0Bi γ
0 , Γ̄µ,ai =

(
Γµ,ai

)†
γ0 , S†1 = γ0 S2 γ

0 , (7.10)

which is explicitly satisfied by the expressions in eq. (7.9).

In order to evaluate this functional determinant, we row reduce the matrix and obtain

the one-loop HQET action

S
(1)
HQET⊃ iTr

[
1

(iD)2
δab ηµν

(
Γ̄µ,a2 B−1

2 Γν,b2 −Γ̄µ,a1 B−1
1 S1B

−1
2 Γν,b2 −Γ̄µ,a2 B−1

2 S2B
−1
1 Γν,b1

)]
.

(7.11)

Next, we use eq. (7.9) to derive

S
(1)
HQET ⊃ −ig

2
s CF Tr

[
1

(iD)2
q̄ γµ

1

i /D
γα J−α

×
[
2mQ + (1 + /v)i /D

]
vµ +

[
i /D −

(
1 + /v

)
iv ·D

]
γµ

(iD)2 + 2mQ iv ·D
hv + h.c.

]
. (7.12)

This functional trace can be converted into integral expressions using the method described

in appendix B.2.2 (since we do not need any operators involving the field strength). This
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procedure yields

S
(1)
HQET ⊃ −ig

2
s µ

2εCF

∫
ddx

∫
ddp

(2π)d

[
1(

iD + p
)2 q̄ γµ 1

i /D + /p
γα J−α

×
[
2mQ +

(
1 + /v

)(
i /D + /p

)]
vµ +

[
i /D + /p−

(
1 + /v

)
v ·
(
iD + p

)]
γµ(

iD + p
)2

+ 2mQ v ·
(
iD + p

) hv + h.c.

]

⊃
∫

ddx

q̄
−ig2

s µ
2εCF

∫
ddp

(2π)d
γµ /p γ

α /p γµ + 2mQ vµ

p4
(
p2 + 2mQ v · p

)
 J−α hv + h.c.


⊃
∫

ddx
(
q̄ IαHL J

−
α hv + h.c.

)
, (7.13)

where we have implicitly defined the integral IαHL in the last line. Evaluating it yields

IαHL = −ig2
s µ

2εCF

∫
ddp

(2π)d
−(d− 2) /p γα /p+ 2mQ /v /p γ

α

p4
(
p2 + 2mQv · p

)
= −αs

3π

(
4π µ2

m2
Q

)ε
Γ(ε)

2ε

1− 2ε

(
γα − vα

)
−→ −2

3

αs
π

(
γα − vα

)
, (7.14)

and hence

S
(1)
HQET ⊃ −

2

3

αs
π

∫
ddx

[
q̄
(
γα − vα

)
J−α hv + h.c.

]
. (7.15)

This reproduces the one-loop matching coefficient for the heavy-light current, see eqs. (1.4)

and (1.5).

7.2 Heavy-heavy current matching

The last matching example we will present is the derivation of the coefficient for the heavy-

heavy current. The steps are essentially identical to the previous calculation, but the details

are a bit more involved here since there are two flavors of heavy quarks to track. Note

that while we will allow the two heavy quark masses m1 and m2 to differ, we will make

the simplifying kinematic assumption that v1 = v2 = v. The velocity labels on the fields

are thus to be taken as flavor indices to keep track of masses only, and not to be taken

as arbitrary. Otherwise, various simplification relations, e.g. h̄v1v
µhv2 = h̄v1γ

µhv2 are no

longer valid. In appendix D, we work out the generalization allowing v1 6= v2.

We start with the UV Lagrangian:

LQCD = Q̄1

(
i /D −m1

)
Q1 + Q̄2

(
i /D −m2

)
Q2 +

[
Q̄1

(
J+
α γ

α + J+
5α γ

α γ5
)
Q2 + h.c.

]
− 1

4
GaµνG

µν,a + Lgf + Lgh , (7.16)

where J±α and J±5α are sources for the vector and axial heavy-heavy currents respectively.

To reduce the clutter and absorb the phase, we introduce the shorthand

J± ≡
(
J±α γ

α + J±5α γ
α γ5

)
e±i∆mv·x , (7.17)
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where ∆m = m1−m2. Note that due to the gamma matrices, their conjugation relation is(
J+
)†

= γ0J−γ0. A new feature of the heavy-heavy current matching calculation is that

now the two heavy quarks mix:

0 =
δS

δH̄v1

= −
(
iv ·D + 2m1

)
Hv1 + i /D⊥ hv1 + J+

(
hv2 +Hv2

)
, (7.18a)

0 =
δS

δH̄v2

= −
(
iv ·D + 2m2

)
Hv2 + i /D⊥ hv2 + J−

(
hv1 +Hv1

)
, (7.18b)

For our purposes here, we only need to solve these equations to linear order in J :(
Hv1

Hv2

)
=

(
1

iv·D+2m1
i /D⊥ hv1

1
iv·D+2m2

i /D⊥ hv2

)
+

 1
iv·D+2m1

J+
(

1 + 1
iv·D+2m2

i /D⊥

)
hv2

1
iv·D+2m2

J−
(

1 + 1
iv·D+2m1

i /D⊥

)
hv1

+O
(
J2
)
.

(7.19)

Plugging this solution into the UV Lagrangian, and taking the relevant second variations

yields

δ2Snon-local
HQET =

(
δAaµ δh

T
v1 δh̄v1 δh

T
v2 δh̄v2

)


Cµν,ab Γ̄µ,a1 −
(

Γµ,a1

)T
Γ̄µ,a2 −

(
Γµ,a2

)T
−
(

Γ̄ν,b1

)T
0 −BT1 0 −ST2

Γν,b1 B1 0 S1 0

−
(

Γ̄ν,b2

)T
0 −ST1 0 −BT2

Γν,b2 S2 0 B2 0





δAbν

δhv1

δh̄Tv1

δhv2

δh̄Tv2


,

(7.20)

with again irrelevant terms for the heavy-heavy operator are discarded in Γµ,ai and Γ̄µ,ai

Cµν,ab= ηµν
(
D2
)ab − 2

(
Uµν,ab1 + 1↔ 2

)
, (7.21a)

Uµν,ab1,2 = −g2
s h̄v1,2 T

aT b
γµ⊥

iv ·D + 2m1,2
J±

γν⊥
iv ·D + 2m2,1

hv2,1 , (7.21b)

B1,2 = iv ·D + i /D⊥
1

iv ·D + 2m1,2
i /D⊥ , (7.21c)

Γµ,a1,2 = gs T
a

{[
vµ + i /D⊥

γµ⊥
iv ·D + 2m1,2

]
hv1,2

+

[
1 + i /D⊥

1

iv ·D + 2m1,2

]
J±

γµ⊥
iv ·D + 2m2,1

hv2,1

}
, (7.21d)

Γ̄µ,a1,2 = gs

{
h̄v1,2

[
vµ +

γµ⊥
iv ·D + 2m1,2

i /D⊥

]

+ h̄v2,1
γµ⊥

iv ·D + 2m2,1
J∓
[
1 +

1

iv ·D + 2m1,2
i /D⊥

]}
T a , (7.21e)

S1,2 =

[
1 + i /D⊥

1

iv ·D + 2m1,2

]
J±
[
1 +

1

iv ·D + 2m2,1
i /D⊥

]
. (7.21f)
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Note that this matrix takes the same form as eq. (7.8), so the row reduction is identical.

The functional determinant is then

S
(1)
HQET ⊃ iTr

[
1

(iD)2
δab ηµν

(
Uµν,ab1 + Γ̄µ,a1 B−1

1 Γν,b1 − Γ̄µ,a1 B−1
1 S1B

−1
2 Γν,b2

)]
+ 1↔ 2

⊃ −ig2
s CF Tr

{
1

(iD)2
h̄v1

i /D + 2m1

(iD)2 + 2m1 iv ·D
J+ i /D + 2m2

(iD)2 + 2m2 iv ·D
hv2

− 1

(iD)2
h̄v1

i /D − 2iv ·D
(iD)2 + 2m1 iv ·D

J+ i /D − 2iv ·D
(iD)2 + 2m2 iv ·D

hv2

+
1

(iD)2
h̄v1 γ

µ i /D⊥ − iv ·D
(iD)2 + 2m1 iv ·D

J+ i /D⊥ − iv ·D
(iD)2 + 2m2 iv ·D

γµ hv2

}
+
(
1↔ 2, J+ ↔ J−

)
. (7.22)

Our notation (1↔ 2, J+ ↔ J−) here (as well as later in the paper) represents only one

term, which results from exchanging both 1 ↔ 2 and J+ ↔ J− in the previous term.

Applying the CDE prescription in appendix B.2.2 to evaluate these functional traces, we get

S
(1)
HQET⊃−ig

2
s µ

2εCF

∫
ddx

∫
ddp

(2π)d

×

[
1

(iD+p)2 h̄v1
i /D+/p+2m1

(iD+p)2+2m1 v ·(iD+p)
J+ i /D+/p+2m2

(iD+p)2+2m2 v ·(iD+p)
hv2

− 1

(iD+p)2 h̄v1
i /D+/p−2v ·(iD+p)

(iD+p)2+2m1 v ·(iD+p)
J+ i /D+/p−2v ·(iD+p)

(iD+p)2+2m2 v ·(iD+p)
hv2

+
1

(iD+p)2 h̄v1γ
µ

i /D⊥+/p⊥−v ·(iD+p)

(iD+p)2+2m1 v ·(iD+p)
J+

i /D⊥+/p⊥−v ·(iD+p)

(iD+p)2+2m2 v ·(iD+p)
γµhv2

]
+
(
1↔ 2, J+↔ J−

)
. (7.23)

This can be simplified down to

S
(1)
HQET ⊃

∫
ddx

[
h̄v1
(
J+
α I

α
HH + J+

5α I
α
HH,5

)
hv2
]

+
(
1↔ 2, J+ ↔ J−

)
, (7.24)

where the loop integrals are

IαHH ≡ −ig2
s µ

2εCF

∫
ddp

(2π)d
1

p2
(
p2 + 2m1 v · p

)(
p2 + 2m2 v · p

)
×
{(
/p+ 2m1

)
γα
(
/p+ 2m2

)
−
(
/p− 2v · p

)
γα
(
/p− 2v · p

)
+ γµ

(
/p⊥ − v · p

)
γα
(
/p⊥ − v · p

)
γµ

}
, (7.25a)

IαHH,5 ≡ Iα
∣∣
γα→ γα γ5

. (7.25b)

Evaluating IαHH gives

IαHH = γα
αs
π

[
1

ε
− γE + ln 4π − 2

3
− 2

∆m

(
m1 ln

m2

µ
−m2 ln

m1

µ

)]
−→ −γα 2

3

αs
π

[
1 +

3

∆m

(
m1 ln

m2

µ
−m2 ln

m1

µ

)]
, (7.26)
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and IαHH,5 can be evaluated in the same way. Putting it all together yields

S
(1)
HQET ⊃ −

2

3

αs
π

∫
ddx

{[
1 +

3

∆m

(
m1 ln

m2

µ
−m2 ln

m1

µ

)]
h̄v1 J

+
α γ

α hv2

+

[
2 +

3

∆m

(
m1 ln

m2

µ
−m2 ln

m1

µ

)]
h̄v1 J

+
5α γ

α γ5 hv2 + h.c.

}
, (7.27)

which agree with eq. (1.8) and eq. (1.9). We note that the case of heavy-heavy matching

at finite recoil (v1 6= v2) is provided in appendix D. The next section turns to calculation of

the RGEs, focusing on the particular examples of the Wilson coefficients for two operators

that appear at O(1/mQ).

7.3 HQET RGEs

In this section, we will derive the RGEs for the two operators that appear at subleading

order in the 1/mQ HQET expansion:

LHQET ⊃ h̄v (iv ·D)hv +
ckin

2mQ
h̄v (iD⊥)2 hv +

cmag

4mQ
gs h̄v σ

µν Gaµν T
a hv

− 1

4
Gaµν G

µν,a + Lgf + Lgh , (7.28)

with

Dµ
⊥ ≡ D

µ − vµ(v ·D) and σµν ≡ i

2

[
γµ, γν

]
. (7.29)

The Wilson coefficient ckin is related to the leading order kinetic term through RPI, and as

such it will not be renormalized; we will derive this explicitly at one-loop in this section. The

Wilson coefficient for the chromomagnetic moment operator cmag does run, and has phe-

nomenological consequences such as predicting the mass splitting between the ground-state

vector and pseudoscalar mesons that contain a heavy quark. A precision determination of

this mass splitting requires evolving cmag between the bottom mass and the charm mass.

It is straightforward to match onto these Wilson coefficients at tree-level by expand-

ing eq. (2.9). Note that because

h̄v

[
σµν v

µ (iv ·D)
]
hv = h̄v

[
i

2

(
/v γν − γν /v

) (
iv ·D

)]
hv = 0 , (7.30)

we can replace Dµ
⊥ with Dµ when it is multiplied by σµν :

i /D⊥ i /D⊥ =
(
iD⊥

)2 − i

2
σµν

[
iDµ
⊥, iD

ν
⊥

]
−→

(
iD⊥

)2 − i

2
σµν

[
iDµ, iDν

]
=
(
iD⊥

)2
+

1

2
gs σ

µν Gaµν T
a . (7.31)

This yields the tree-level matching conditions

c
(0)
kin = c(0)

mag = 1 . (7.32)

These results serve as the boundary conditions for integrating the RGEs whose derivation

are the subject of what follows.
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We follow the procedure outlined in section 4.3. The first step is to compute the 1PI

effective action. We need the second variation of the tree-level action with respect to Aµ,

hv and h̄v. This yields an equation of the same form as eq. (6.5). As opposed to the

residue difference calculation, which uses the non-local form of the Lagrangian, here we are

computing the 1PI effective action for HQET directly. Therefore, we must Taylor expand

in 1/mQ and truncate. In particular, we only keep terms up to order 1/mQ, and we drop

everything that does not include quark fields:

Cµν,ab = ηµν
(
D2
)ab − 2Uµν,ab , (7.33a)

Uµν,ab = gs f
abcGµν,c − g2

s h̄v

[
ckin

2mQ

(
ηµν − vµvν

)
T a T b +

cmag

4mQ
σµν fabc T c

]
hv , (7.33b)

B = iv ·D +
ckin

2mQ

(
iD⊥

)2
+
cmag

4mQ
gs σ

µν Gaµν T
a , (7.33c)

Γµ,a = gs T
a

[
vµ hv +

ckin

2mQ
iDµ
⊥ hv +

ckin

2mQ

(
iDµ
⊥ hv

)
x
− cmag

2mQ
σµν hvDν

]
, (7.33d)

Γ̄µ,a = gs

[
h̄v v

µ +
ckin

2mQ
h̄v iD

µ
⊥ −

ckin

2mQ

(
iDµ
⊥ h̄v

)
x

+
cmag

2mQ
Dν h̄v σ

µν

]
T a . (7.33e)

Note that we have used a non-standard notation in the above — a bracket with a subscript x

is to indicate that the covariant derivative is closed. This is in contrast with the other terms,

where the covariant derivatives are open. A detailed elaboration of this notation is given

in appendix B.1.5, in particular eq. (B.19). Reusing the row reduction result eq. (6.7), we

follow the same intermediate steps given in eq. (6.8) to obtain the one-loop effective action

Γ
(1)
HQET =

i

2
ln Sdet

[
−

δ2SHQET

δ
(
Aaµ, h̄v, hv

)2
]

⊃ −iTr

{
ηµν

(
1

D2

)ba(
Uµν,ab + Γ̄µ,aB−1 Γν,b

)
+

(
1

D2

)bc
U cdνµ

(
1

D2

)da
Uµν,ab

+

(
1

D2

)bc
U cdνµ

(
1

D2

)da(
Γ̄µ,aB−1 Γν,b + Γ̄ν,bB−1 Γµ,a

)}
, (7.34)

where again we emphasize that we are not including higher order 1/mQ terms than above.

Next, we use the expressions in eq. (7.33) to derive

Γ
(1)
HQET ⊃ iTr

{
ckin

2mQ
g2
s (d− 1)CF

1

D2
h̄v hv − g2

s CF
1

D2
h̄v

1

iv ·D
hv

+ g2
s CF

ckin

2mQ

1

D2
h̄v

1

iv ·D
(
iD⊥

)2 1

iv ·D
hv

+ g2
s

(
CF −

1

2
CA

)
cmag

4mQ

1

D2
h̄v

1

iv ·D
gs σ

µν Gaµν T
a 1

iv ·D
hv

+ 2 g2
s CA

cmag

4mQ

1

D2
gsG

a
µν

1

D2

(
h̄v σ

µν T a hv − iDα h̄v v
ν σµα

1

iv ·D
T a hv

)}
≡ Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6 , (7.35)
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where we have used

T aF T
a
F = CF , fabc fabd = CA δ

cd , and T aF T
b
F T

a
F =

(
CF −

1

2
CA

)
T bF , (7.36)

with CF and CA denote the Casimir factor for the fundamental and adjoint representations

respectively. Note that we defined the six terms in eq. (7.35) as Γi=1,··· ,6 in the order that

they appear. Since we want to derive the RGEs, we need to isolate the UV divergence. To

this end, we regulate the IR using a non-zero gluon mass m2, which is sufficient for any of

the loop integrals we encounter below.

For the first two terms we use eqs. (B.81b) and (B.83a) to obtain

Γ1 ≡
ckin

2mQ
g2
s (d− 1)CF iTr

(
1

D2 +m2
h̄v hv

)
⊃ 0 , (7.37a)

Γ2 ≡ −g2
s CF iTr

(
1

D2 +m2
h̄v

1

iv ·D
hv

)
⊃ −2 g2

s CF

∫
d4x

1

(4π)2

(
ln
µ2

m2

) (
h̄v iv ·Dhv

)
. (7.37b)

For the third term, none of the results in appendix B.4.2 directly apply, so we provide some

explicit steps:

Γ3 ≡ g2
s CF

ckin

2mQ
iTr

[
1

D2 +m2
h̄v

1

iv ·D
(
iD⊥

)2 1

iv ·D
hv

]
= −g2

s CF
ckin

2mQ
i

∫
ddx

∫
ddq

(2π)d
tr

[
1

(iD − q)2 −m2

× h̄v
1

v · (iD − q)
(iD − q)2 1

v · (iD − q)
hv

]

⊃ g2
s CF

ckin

2mQ

∫
d4x

(
ηµν V1,2 − 4V µν

2,2

)(
h̄vDµDν hv

)
=

∫
d4x

1

(4π)2
ln
µ2

m2

{
−2 g2

s CF
ckin

2mQ

[
h̄v (iD⊥)2 hv − 3h̄v(iv ·D)2 hv

]}
. (7.38)

In the above, the loop integrals V1,2 and V µν
2,2 can be found in appendix A.4. For Γ4 and

Γ5 we can use eq. (B.81c) and eq. (B.83b) to find

Γ4 ≡ g2
s

(
CF −

1

2
CA

)
cmag

4mQ
iTr

(
1

D2 +m2
h̄v

1

iv ·D
gs σ

µν Gaµν T
a 1

iv ·D
hv

)
⊃
∫

d4x
1

(4π)2
ln
µ2

m2

[
g2
s

(
CA − 2CF

) cmag

4mQ
gsh̄v σ

µν Gaµν T
a hv

]
, (7.39a)

Γ5 ≡ 2 g2
s CA

cmag

4mQ
iTr

(
1

D2 +m2
gsG

a
µν

1

D2 +m2
h̄v σ

µν T a hv

)
⊃
∫

d4x
1

(4π)2
ln
µ2

m2

[
−2 g2

s CA
cmag

4mQ
gs h̄v σ

µν Gaµν T
a hv

]
. (7.39b)
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For the sixth term, we again provide the details:

Γ6 ≡ −2 g2
s CA

cmag

2mQ
iTr

(
1

D2 +m2
gsG

a
µν

1

D2 +m2
iDα h̄v v

ν σµα
1

iv ·D
T a hv

)
= −2 g2

s CA
cmag

2mQ
i

∫
ddx

∫
ddq

(2π)d

[
1

(iD − q)2 −m2
gsG

a
µν

1

(iD − q)2 −m2

×(iD − q)α h̄v vν σµα
1

v · (iD − q)
T a hv

]
⊃ −2 g2

s CA
cmag

2mQ
i

∫
ddx

∫
ddq

(2π)d
vν qα v · q(
q2 −m2

)2 gs h̄v σµαGaµν T a hv
=

∫
d4x

[
2 g2

s CA
cmag

2mQ
vν ηαβ V

β
2,1

(
gs h̄v σ

µαGaµν T
a hv

)]
=

∫
d4x

1

(4π)2
ln
µ2

m2
2 g2

s CA
cmag

2mQ
vν gs h̄v vα σ

µαGaµν T
a hv = 0 . (7.40)

Summing all the six Γi yields the one-loop level effective action:

Γ
(1)
HQET⊃Γ1+Γ2+Γ3+Γ4+Γ5+Γ6

⊃
∫

d4x
αs
4π

ln
µ2

m2

{
−CA

cmag

4mQ
gs h̄v σ

µνGaµν T
ahv

−2CF

[
h̄v (iv ·D)hv+

ckin

2mQ
h̄v (iD⊥)2hv+

cmag

4mQ
gs h̄v σ

µνGaµν T
ahv

]}
. (7.41)

Note that in the last line, we have dropped the operator h̄v (iv ·D)2 hv since it is redundant

due to the equations of motion. Combining this result with the tree-level effective action

Γ
(0)
HQET = SHQET yields

ΓHQET ⊃
∫

d4x

{[
1− 2αsCF

4π
ln
µ2

m2

]
×
[
h̄v (iv ·D)hv +

ckin

2mQ
h̄v
(
iD⊥

)2
hv +

cmag

4mQ
gs h̄v σ

µν Gaµν T
a hv

]
−αs

4π
ln
µ2

m2
CA

cmag

4mQ
gs h̄v σ

µν Gaµν T
a hv

}
−→

∫
d4x

[
h̄v(iv ·D)hv +

ckin

2mQ
h̄v
(
iD⊥

)2
hv

+

(
1− αs

4π
CA ln

µ2

m2

)
cmag

4mQ
gs h̄v σ

µν Gaµν T
a hv

]
, (7.42)

where in the second line, we have performed the field redefinition

hv −→
[
1− 2CF αs

4π
ln
µ2

m2

]−1/2

hv , (7.43)
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to canonically normalize the tree-level kinetic term h̄v (iv ·D)hv. Finally, we can read off

the RGE equations:

0 = µ
d

dµ

ckin

2mQ
=⇒ µ

d

dµ
ckin = 0 , (7.44a)

0 = µ
d

dµ

[
cmag

4mQ

(
1− αs

4π
CA ln

µ2

m2

)]
=⇒ µ

d

dµ
cmag =

αs
2π

CA cmag . (7.44b)

These results agree with the literature as summarized in eq. (1.12) above.

8 Conclusions

This paper provides the first application of functional methods augmented by the covariant

derivative expansion to a kinematic EFT. In particular, we studied HQET — a description

that emerges in the limit that a Dirac fermion is very heavy compared to the scale being

probed by the propagating fluctuations. We focused on the particular example of heavy

quarks coupled to QCD, and reproduced a variety of matching and running results that had

been previously computed using Feynman diagrammatic methods. A critical component

was the existence of an operator valued set of projectors that are used to derive an equation

of motion for the long distance modes that is valid to all-orders in the heavy mass expansion.

Furthermore, the point at which RPI becomes manifest was emphasized. The primary

result of this work was the matching master formula given in eq. (5.4).

There are two clear directions for future progress. First, one can now use these efficient

methods to take one-loop matching calculations to higher order in the heavy mass limit.

This would be relevant for high precision applications to either experiments such as LHCb

and Belle II, or to theory explorations comparing with lattice QCD calculations in the heavy

mass limit [38, 39]. Another interesting direction would be to understand how to use these

methods for other kinematic EFTs, such as SCET, nrQCD, and others. Furthermore,

these methods provide a compelling impetus to revisit the issue of higher-order functional

integration directly in the path integral. If the relevant technology could be developed to

the stage where two-loop (or higher) calculations could be implemented in a straightforward

manner,16 then these techniques could contribute to extend precision in αs as well. This

paper makes the benefits of the functional approach to HQET clear, and furthermore opens

the door to using these methods across a broader class of EFTs than had been previously

explored.

Acknowledgments

We thank Zoltan Ligeti, Gil Paz, and Dean Robinson for useful discussions. TC and XL are

supported by the U.S. Department of Energy (DOE), under grant DE-SC0011640. MF is

supported by the DOE under grant DE-SC0010008 and partially by the Zuckerman STEM

Leadership Program. TC and MF performed some of this work at the Munich Institute

16For promising work in this direction, see refs. [55, 56].

– 36 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
4

for Astro- and Particle Physics (MIAPP) which is funded by the Deutsche Forschungs-

gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy

— EXC-2094 — 390783311. MF thanks the Aspen Center for Physics, supported by Na-

tional Science Foundation grant PHY-1607611, for hospitality while parts of this work were

carried out.

A Loop integrals

In this appendix, we provide a number of frequently encountered loop integrals that are

relevant for the calculations performed in the main text. All loop integrals are regulated

with dimensional regularization d = 4 − 2ε, and parameters are renormalized using the

MS scheme.

A.1 Combining denominators

A general loop integral contains multiple propagators in the integrand. In order to facilitate

the use of the general results presented in what follows, we use the Feynman parameter

technique to combine propagators into a single term:

1

Am1
1 · · ·A

mn
n

=

∫ 1

0
dx1· · ·dxn δ(x1+· · ·+xn−1)

× xm1−1
1 · · ·xmn−1

n

(x1A1+· · ·+xnAn)m1+···+mn
Γ(m1+· · ·+mn)

Γ(m1) · · ·Γ(mn)

=

∫ ∞
0

dλ2· · ·dλn
λm2−1

2 · · ·λmn−1
n

(A1+λ2A2+· · ·+λnAn)m1+···+mn
Γ(m1+· · ·+mn)

Γ(m1) · · ·Γ(mn)
. (A.1)

The first integral in the above expression is convenient for combining propagators that are

quadratic in the loop momentum. For situations where propagators are linear in the loop

momentum, which frequently occurs for HQET calculations, it is more convenient to use

the second integral form of this trick. Note that it is straightforward to obtain this last line

from the more commonly used form given in the first line by making the variable change

xk≥2 = x1λk≥2 and then integrating over x1 using the delta function.

A.2 Single scale relativistic integrals

After combining the propagators using eq. (A.1), if the numerator of the integrand has

factors of the loop momenta with open Lorentz indices, one can convert them by relying

on the symmetry of the integral:

pµpν → 1

d
p2 ηµν , (A.2a)

pµpνpρpσ → 1

d(d+ 2)
p4
(
ηµνηρσ + ηµρηνσ + ηµσηηρ

)
. (A.2b)
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This reduces all loop integrals (with at least one relativistic propagator) to the following

essential form with a single scale ∆:

Imn (∆) ≡ −iµ4−d
∫

ddp

(2π)d

(
p2
)m

(p2 −∆)n

=
µ4−d

(4π)d/2
(−1)n−m

Γ(m+ d/2)

Γ(d/2)

Γ(n−m− d/2)

Γ(n)

1

∆n−m−d/2 . (A.3)

This integral is straightforward to evaluate after performing a Wick rotation to Euclidean

space. Then to derive MS expressions, one expands these integrals for small ε, identifies

the 1/ε poles and cancels all the occurrences of 1/ε− γE + ln 4π using counterterms, where

γE is the Euler-Mascheroni constant. For completeness, we provide explicit results that are

frequently used here. For divergent integrals, we use an arrow to indicate that contributions

from counterterms defined in the MS scheme have been added. The integrals for n−m = 1

are quadratically UV divergent:

Imm+1(∆) =
1

(4π)2

[
1

m!

Γ(m+ d/2)

Γ(d/2)

]
∆

d/2− 1

(
4πµ2

∆

)2−d/2
Γ

(
2− d

2

)
−→ 1

(4π)2
(m+ 1) ∆

(
ln
µ2

∆
+ 2−

m+1∑
r=1

1

r

)
. (A.4)

For n−m = 2, the integrals are logarithmically UV divergent:

Imm+2(∆) =
1

(4π)2

[
1

(m+ 1)!

Γ(m+ d/2)

Γ(d/2)

](
4πµ2

∆

)2−d/2
Γ

(
2− d

2

)
−→ 1

(4π)2

(
ln
µ2

∆
+ 1−

m+1∑
r=1

1

r

)
. (A.5)

For n−m = 3 (and greater), the integrals are UV finite:

Imm+3(∆) = − 1

(4π)2

1

m+ 2

1

∆
, (A.6)

Imm+4(∆) =
1

(4π)2

1

(m+ 3)(m+ 2)

(
1

∆

)2

, (A.7)

and so on.

A.3 Two scale relativistic integrals

Here, we explicitly discuss a commonly appearing integral in relativistic theories that

depends on two scales:

Irn,k(m
2,M2) ≡ −iµ4−d

∫
ddp

(2π)d

(
p2
)r

(p2 −m2)n (p2 −M2)k
. (A.8)
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Note that when this integral contains a nontrivial numerator pµ1 · · · pµs , one can use

eq. (A.2) before combining the propagators, to reduce it to the above form. We evalu-

ate this integral as follows:

Irn,k(m
2,M2) =−iµ4−d

∫ 1

0
dxxn−1(1−x)k−1 Γ(n+k)

Γ(n)Γ(k)

∫
ddp

(2π)d

(
p2
)r

[p2−xm2−(1−x)M2]n+k

=
µ4−d

(4π)d/2
(−1)n+k−rΓ(r+d/2)

Γ(d/2)

Γ(n+k−r−d/2)

Γ(n)Γ(k)

×
∫ 1

0
dx

xn−1(1−x)k−1

[xm2+(1−x)M2]n+k−r−d/2

=
µ4−d

(4π)d/2
(−1)n+k−r

(M2)n+k−r−d/2
Γ(r+d/2)

Γ(d/2)

Γ(n+k−r−d/2)

Γ(n+k)

×2F1

(
n+k−r− d

2
,n;n+k;

M2−m2

M2

)
. (A.9)

In the first line above, we have combined the propagators using eq. (A.1). In the second

line, we have evaluated the single propagator loop integral using the result in eq. (A.3). In

the last line, we have performed the Feynman parameter integral which yields a Gaussian

Hypergeometric function 2F1 (a, b; c; z). If the arguments a, b, and c are integers (or half

integers), the Gaussian Hypergeometric function can be expressed in terms of elementary

functions. A non-exhaustive set of explicit evaluations are listed below for some frequently

encountered integrals. Note that Irn,k(m
2,M2) = Irk,n(M2,m2), so we will only provide

results for integrals with n ≤ k. Taking n+ k − r = 2 yields the log divergent integral

I0
1,1(m2,M2) =

1

(4π)2

(
4πµ2

M2

)2−d/2
Γ

(
2− d

2

)
2F1

(
2− d

2
, 1; 2; z

)
=

1

(4π)2

(
4πµ2

M2

)2−d/2
Γ

(
2− d

2

)
1− (1− z)d/2−1

(d/2− 1)z

=
1

(4π)2

(
M2
)d/2−1 −

(
m2
)d/2−1

(M2 −m2)

(
4πµ2

)2−d/2
(d/2− 1)

Γ

(
2− d

2

)
−→ 1

(4π)2

[
1

M2 −m2

(
M2 ln

µ2

M2
−m2 ln

µ2

m2

)
+ 1

]
, (A.10)

where for convenience we have defined

z ≡ 1− m2

M2
. (A.11)

For brevity, we will we simply state the results for the other evaluations of use here. Taking

n+ k − r = 3 yields UV finite integrals proportional to 1/M2

I0
1,2

(
m2,M2

)
=

1

(4π)2

1

M2

−1

2

2

z2
[z + (1− z) ln (1− z)] , (A.12a)

I1
1,3

(
m2,M2

)
=

1

(4π)2

1

M2

−1

3

−3

2z3

[
z (2− 3z) + 2(1− z)2 ln (1− z)

]
, (A.12b)

I1
2,2

(
m2,M2

)
=

1

(4π)2

1

M2

−1

3

3

z3
[z (2− z) + 2 (1− z) ln (1− z)] . (A.12c)
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Taking n+ k − r = 4 yields UV finite integrals proportional to 1/M4

I0
1,3

(
m2,M2

)
=

1

(4π)2

1

M4

1

6

3

z3
[z (2−z)+2(1−z) ln(1−z)] , (A.13a)

I0
2,2

(
m2,M2

)
=

1

(4π)2

1

M4

1

6

−6

z3
[2z+(2−z) ln(1−z)] , (A.13b)

I1
1,4

(
m2,M2

)
=

1

(4π)2

1

M4

1

12

−2

z4

[
z
(
6−9z+2z2

)
+6(1−z)2 ln(1−z)

]
, (A.13c)

I1
2,3

(
m2,M2

)
=

1

(4π)2

1

M4

1

12

6

z4
[z (6−5z)+2(3−z)(1−z) ln(1−z)] , (A.13d)

I2
1,5

(
m2,M2

)
=

1

(4π)2

1

M4

1

20

5

3z5

[
z
(
12−30z+22z2−3z3

)
+12(1−z)3 ln(1−z)

]
, (A.13e)

I2
2,4

(
m2,M2

)
=

1

(4π)2

1

M4

1

20

−10

3z5

[
z
(
24−42z+17z2

)
+6(4−z)(1−z)2 ln(1−z)

]
, (A.13f)

I2
3,3

(
m2,M2

)
=

1

(4π)2

1

M4

1

20

10

z5

[
z
(
12−12z+z2

)
+6(2−z)(1−z) ln(1−z)

]
. (A.13g)

A.4 Integrals with relativistic and linear propagators

A class of integrals that commonly appear in HQET calculations are built from a rela-

tivistic massive propagator (the mass is often included to regulate the IR) and an HQET

propagator:

V µ1···µr
n,2s+r (m2) ≡ −iµ4−d

∫
ddp

(2π)d
pµ1 · · · pµr

(p2 −m2)n (v · p)2s+r
. (A.14)

Note that for this integral, we cannot apply the numerator reduction formulas in eq. (A.2)

before combining the propagators, because more tensor structures are available due to the

presence of vµ. However, the same logic obviously applies, and we simply need to contract

the integrand with both ηµν or vµ to determine the possible forms. For example,

pµ → vµ (v · p) , (A.15a)

pµpν → 1

d− 1

[
p2 (ηµν − vµvν)− (v · p)2 (ηµν − dvµvν)

]
. (A.15b)

Results for numerators with more factors of pµ can be reduced in the same way. Applying

these relations, we can eventually reduce the integral in eq. (A.14) to the trivial numerator
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case with r = 0, which we can evaluate as follows:

Vn,2s
(
m2
)
≡ −iµ4−d

∫
ddp

(2π)d
1

(p2 −m2)n(v · p)2s

= −iµ4−d
∫

ddp

(2π)d

∫ ∞
0

dλ
(2m)2sλ2s−1

(p2 −m2 + 2λmv · p)n+2s

Γ (n+ 2s)

Γ (n) Γ (2s)

= −iµ4−d22s−1 Γ (n+ 2s)

Γ (n) Γ (2s)

∫
dd`

(2π)d

∫ ∞
0

d∆
∆s−1

(`2 −m2 −∆)n+2s

= −iµ4−d22s−1 Γ (n+ s) Γ (s)

Γ (n) Γ (2s)

∫
dd`

(2π)d
(−1)s

(`2 −m2)n+s

=
µ4−d

(4π)d/2
(−1)n

22sΓ (1 + s)

Γ (1 + 2s)

Γ (n+ s− d/2)

Γ (n)

1

(m2)n+s−d/2 , (A.16)

where in the second line we combined the propagators using the λ version of the Feynman

parameters in eq. (A.1), and then replaced λ→ 2mλ for convenience. In the third line, we

made the replacements `µ ≡ pµ + λmvµ and ∆ = λ2m2. In the fourth line, we integrated

over ∆, and to derive the final result, we used eq. (A.3) to obtain the last line. As a cross

check, we see that taking s = 0 in this expression agrees with eq. (A.3):

Vn,0
(
m2
)

=
µ4−d

(4π)d/2
(−1)n

Γ (n− d/2)

Γ (n)

1

(m2)n−d/2
= I0

n

(
m2
)
. (A.17)

For reference, we provide a non-exhaustive set of explicit formulas with non-zero values

for s:

V1,2

(
m2
)

=
1

(4π)2 (−2)

(
4πµ2

m2

)2−d/2
Γ

(
2− d

2

)
−→ 1

(4π)2 ln
µ2

m2
(−2) , (A.18a)

V2,2

(
m2
)

=
1

(4π)2

1

m2
2 , (A.18b)

V3,2

(
m2
)

=
1

(4π)2

1

m4
(−1) , (A.18c)

V4,2

(
m2
)

=
1

(4π)2

1

m6

2

3
, (A.18d)

V1,4

(
m2
)

=
1

(4π)2

1

m2

−4

3
, (A.18e)

V2,4

(
m2
)

=
1

(4π)2

1

m4

4

3
, (A.18f)

V3,4

(
m2
)

=
1

(4π)2

1

m6

−4

3
, (A.18g)

where as before, the arrow in eq. (A.18a) denotes that we have included the counterterm

contributions using the MS scheme.
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Combining eq. (A.15) with the results in eq. (A.16), one can compute the integrals in

eq. (A.14) with r 6= 0. For example

V µ
n,2s+1

(
m2
)

= −iµ4−d
∫

ddp

(2π)d
pµ

(p2 −m2)n(v · p)2s+1 = vµVn,2s
(
m2
)
, (A.19a)

V µν
n,2s+2

(
m2
)

= −iµ4−d
∫

ddp

(2π)d
pµpν

(p2 −m2)n(v · p)2s+2

= − 1

1 + 2s
[ηµν − 2 (1 + s) vµvν ]Vn,2s

(
m2
)
. (A.19b)

B Covariant derivative expansion

In this appendix, we give a comprehensive review of the algebraic approach to evaluating

functional traces (or determinants) known as the Covariant Derivative Expansion (CDE).

A typical object of interest is the one-loop correction to the 1PI effective action

Γ(1)[φ] =
i

2
ln det

(
−δ

2S

δφ2

)
= Tr ln

[
D2 +M2 + U(φ)

]
, (B.1)

which derives from a Lagrangian of the form

L (φ) = −φ†
(
D2 +M2

)
φ− V (φ) , (B.2)

where φ is a field, Dµ is a covariant derivative, V (φ) is the potential encoding additional

interactions, and U = d2V/dφ2 for this explicit example. Here we will present the formalism

capable of computing generalizations of eq. (B.1) such as17

Tn
(
M2
)
≡ iTr

[
1

D2 +M2
U1 · · ·

1

D2 +M2
Un

]
, (B.3)

where Ui(x) can be any functions of interest. This technique was originally invented in

the 1980s [2–4], and recently reintroduced in the context of modern EFT calculations in

ref. [1], followed by the generalization given in ref. [5]. This technology has been utilized

to compute universal one-loop matching results for relativistic theories [7–10, 40].

Our review of the CDE methodology is organized as follows. In appendix B.1, we

provide a number of useful tools and tricks for manipulating covariant derivatives and

functional traces. In appendix B.2, we review three different algebraic approaches to eval-

uating functional traces, contrasting them against each other, and highlighting the features

of two formulations of the CDE. Then in appendix B.3, we show how the background field

method can be used to take functional variations with respect to gauge bosons in a way

that manifestly preserves gauge covariance. Finally, we provide a compilation of useful

results obtained by applying CDE in appendix B.4.

B.1 Tools and tricks

In this subsection, we spell out many of the manipulations that are required to perform

the calculations utilizing the CDE. This has the additional benefit that it allows us the

opportunity to define notation and conventions. Particular emphasis is placed on subtleties

that can arise.
17For results, see eqs. (B.80) and (B.81) below.
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B.1.1 Baker-Campbell-Hausdorff formula

In deriving the CDE, we will make frequent use of the Baker-Campbell-Hausdorff formula

(see e.g. eqs. (B.57) and (B.68)):

eABe−A =
∞∑
n=0

1

n!
An[B] . (B.4)

Here we have introduced a successive commutator notation An[B] defined as

A0[B] ≡ B and An[B] ≡
[
A,An−1[B]

]
for n ≥ 1 . (B.5)

B.1.2 Gauge coupling

As is well known, one can redefine the gauge field to move the gauge coupling from ap-

pearing within the covariant derivative to the coefficient of the gauge kinetic term. In this

paper, we take the normalization such that the covariant derivative is

Dµ = ∂µ − igGµ = ∂µ − igGaµT a , (B.6)

where the generator matrix T a depends on the representation of the field that it acts on:

Dµφ = (∂µ − igGaµT aφ )φ . (B.7)

We will mostly suppress the representation subscript φ, as it should be clear from the

context. Note that if there are successive covariant derivatives, their representation sub-

scripts must all be the same due to the “covariant” nature of the covariant derivative, i.e.,

it preserves the representation:

Dµ1 · · ·Dµnφ = (∂µ1 − igGa1µ1T
a1
φ ) · · · (∂µn − igGanµnT

an
φ )φ . (B.8)

For convenience, e.g. see eq. (C.2) below, we define a convenient form of the field

strength from the commutator of two covariant derivatives

GDµν ≡ [Dµ, Dν ] = −igGµν = −igGaµνT a , (B.9)

where as usual the field strength is

Gaµν = ∂µG
a
ν − ∂νGaµ + gfabcGbµG

c
ν . (B.10)

Note that if there are multiple gauge sectors, GDµν is the sum of the relevant field strengths.

B.1.3 Functional traces

We use the notation “tr” to denote a trace over the internal symmetries, and “Tr” to denote

a trace over both the internal symmetries and the functional space of the operators:

TrR (A) =

∫
ddx 〈x|trR (A)|x〉 =

∫
ddp

(2π)d
〈p|trR (A)|p〉 . (B.11)
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Here the subscript R denotes the internal symmetry representation that is being traced

over, which we will often suppress when it is clear from the context. Throughout this

appendix, we work in d = 4 dimensional spacetime, except that when we confront divergent

integrals we will use dimensional regularization with d = 4− 2ε.

Another remarkable property is that the functional trace Tr is invariant under cyclic

permutations of operators/functionals, but this is generically not the case for the inter-

nal trace tr, because it only traces over a subspace of the functional. However, when all

the objects in an internal trace tr are functions (i.e. they are all diagonal in the basis

|x〉, see more elaborations in appendix B.1.5), the cyclic permutation rule holds, see e.g.

eq. (B.26a) below.

B.1.4 Product rule for covariant derivative

We highlight an important feature of the covariant derivative Dµ — the product rule takes

the same form as for the partial derivative when it is acting on fields:

Dµ (AiBj) = (DµA)iBj +Ai (DµB)j . (B.12)

This can be justified by noting that the direct product of the two fields Ai ⊗ Bj forms a

tensor representation, for which we have the generator relation

T aA⊗B = T aA ⊗ 1B + 1A ⊗ T aB . (B.13)

Suppressing the representation subscript, this reads

T a (AiBj) = (T aA)iBj +Ai (T aB)j , (B.14)

and leads to eq. (B.12).

Although it might be clear, we emphasize that eq. (B.12) can be contracted with any

non-field constants (that do not transform under the symmetry group in consideration).

This leads to some familiar results such as

Dµ

(
φ†φ

)
=Dµ (δijφ

∗
iφj) =

(
Dµφ

†
)
φ+φ† (Dµφ) ,

Dµ

(
ψ̄ψ
)

=Dµ

(
ψ∗i γ

0
ijψj

)
=
(
Dµψ̄

)
ψ+ψ̄ (Dµψ) ,

Dµ

(
φ†T aφφ

)
=Dµ

(
φ∗iT

a
φ,ijφj

)
= (Dµφ)†T aφφ+φ†T aφ (Dµφ) =

(
∂µ−igGbµT bG

)ac(
φ†T cφφ

)
.

For the last equation above, one can also check the non-trivial consistency between the last

two expressions, where in the final form Dµ is written out explicitly noting that
(
φ†T aφφ

)
forms an adjoint representation. A similar but maybe slightly less intuitive consequence is

that the covariant derivative can be pulled out of a trace over the internal symmetries:

tr (DµA) = Dµ [tr(A)] . (B.16)
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B.1.5 Territory of covariant derivative

In what follows, we will be extensively manipulating functionals — typically referred to as

operators in quantum mechanics. Note that a special class of functionals are just functions.

For example, in quantum mechanics the Hamiltonian Ĥ is built out of two functionals, the

kinetic term T̂ = −∇2/(2m) and the potential V̂ (x). This latter functional is of this special

kind, in that it is just a function with the property V̂ (x)|x〉 = V (x)|x〉.
Because of this, the territory of a covariant derivative Dµ could be ambiguous. When

an object like DµU appears, where U = U(x) is a function, it is not always clear whether

this is a function with Dµ acting only on U(x), or a non-trivial functional with Dµ acting

on everything that appears to the right. Usually, one would use a parenthesis (or a bracket

of any kind) to remove this ambiguity. However, the calculations to be presented are

cumbersome enough that brackets are often used for grouping functionals, as opposed to

specifying the territory of Dµ. As an explicit example, let us consider the following two

toy Lagrangians

L1 = φ†
(
−D2 −M2

)
φ− φ†

(
DµUaµT

a
)
φ , (B.17a)

L2 = φ†
(
−D2 −M2

)
φ− φ†Dµ

(
UaµT

aφ
)
, (B.17b)

where we have introduced a vector field Uaµ transforming in the adjoint representation. The

two interactions are different. In the first Lagrangian, Dµ acts only on Uaµ and the whole

thing
(
DµUaµ

)
is a function, which can be treated as a field (an adjoint scalar). But in

the second Lagrangian, Dµ is acting on both Uaµ and φ. In the above, we successfully used

the parenthesis to distinguish the two scenarios. However, in calculating the 1PI effective

action using eq. (B.1), we will get

ln det

(
−δ

2S1

δφ2

)
= ln det

[
D2 +M2 +

(
DµUaµT

a
)]
→ ln det

[
D2 +M2 +

(
DµUaµT

a
)
x

]
,

ln det

(
−δ

2S2

δφ2

)
= ln det

(
D2 +M2 +DµUaµT

a
)
.

Note that in the second line, a bracket has been introduced to group the three terms, but

we do not mean to “close” the territory of Dµ (i.e. to restrict the territory of Dµ to Uaµ
only). In fact, this is precisely an example of a term with an “open” covariant derivative, a

universal evaluation of which we will provide in eq. (B.84b) up to mass dimension four. This

is in contrast with the case of the first line, where the parenthesis is intended to indicate

“closing” the territory of Dµ. Needless to say, carefully tracking this distinction is critical to

our ability to calculate with functional methods. Practically, when we evaluate functional

traces with the CDE, an open covariant derivative will get shifted due to eip·xiDµe
−ip·x =

iDµ + pµ (see eq. (B.46)), while a closed covariant derivative does not. Therefore, to

remove this ambiguity in the meaning of brackets, we put an additional subscript “x” on

the brackets when they are used for specifying the territory of the covariant derivatives.

This was explicitly done in the last expression of the first line above.18

18When there is no ambiguity in the meaning of brackets, we will drop the explicit subscript x and go

back to our usual way of addressing this issue. In particular, for Lagrangian expressions such as eq. (2.6)

and final results such as eq. (6.12), the subscript x is often dropped. However, note that we have carefully

kept all the subscript x explicit in the results presented in appendix B.4.2.
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We emphasize that a covariant derivative Dµ = ∂µ − igGaµT a has two parts — the

partial derivative and the gauge fields. Therefore, the meaning of closing its territory by

(DµU)x is twofold. First, the partial derivative is only acting on U ; second, the generators

T a are in the representation of U :

(DµU
i)x ≡

[ (
∂µU

i
)
1(x)− ig Gaµ (T aU )ij U j 1(x)

]
, (B.19)

where every functional is projected onto the identity function 1(x). Since this notation

is non-standard, and the second aspect above can be easily overlooked, we provide a few

explicit examples. First, when a Dµ is followed by a field strength GDρσ (acting on a field

φ(x)), we have

DµG
D
ρσ φ =

(
∂µ − igGaµT aφ

)
GD,bρσ T bφ φ , (B.20a)(

DµG
D
ρσ

)
x
φ =

{[
∂µδ

bc − igGaµ (T aG)bc
]
GD,cρσ

}
T bφ φ . (B.20b)

Note the difference in the representations of T a. Second, since the field strength is related

to the covariant derivative through GDµν = [Dµ, Dν ], it also has a notion of territory. So

similar to the case above, for GDµν we also have

GDµν G
D
ρσ φ = GD,aµν T aφ G

D,b
ρσ T bφ φ , (B.21a)(

GDµν G
D
ρσ

)
x
φ =

[
GD,aµν (T aG)bc GD,cρσ

]
T bφ φ . (B.21b)

To further demystify this notation, we can use the product rule in eq. (B.12) to derive

the following operator/functional equation for a generic functional A:

DµUA = (DµU)xA+ UDµA . (B.22)

This shows that our notation defined in eq. (B.19) can be written as a commutator:

(DµU)x = DµU − UDµ = [Dµ, U ] . (B.23)

In addition, one can repeatedly use this relation to derive expressions like

(DµDνU)x = [Dµ, (DνU)x] = [Dµ, [Dν , U ]] . (B.24)

This will be extensively used in our CDE derivations (see e.g. eqs. (B.57) and (B.68)).

Again, because GDµν = [Dµ, Dν ], there is a similar expression for the field strength:(
GDµνU

)
x

=
[
GDµν , U

]
. (B.25)

A potentially confusing consequence is

tr
[(
GDµνU

)
x

]
= tr

[
GDµν , U

]
= 0 , (B.26a)

tr
(
GDµνU

)
6= 0 . (B.26b)
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Note that in the first line above, we are allowed to use the cyclic permutation property

for the internal trace, because both objects GDµν(x) and U(x) are functions. On the other

hand, the trace in the second line is generically non-zero. For example, taking U(x) to be

another field strength, we have

trR
(
GDµνG

D,µν
)

= −g2GaµνG
b,µν trR

(
T aT b

)
= −g2GaµνG

a,µνdR , (B.27)

where dR is defined as trR
(
T aT b

)
= dRδ

ab. This term will be used in appendix B.2 as a

benchmark result for contrasting the three algebraic approaches to evaluating functional

traces (see in particular eq. (B.32)). Some additional non-intuitive manipulations are

GDµνG
D
ρσ = (GDµνG

D
ρσ)x +GDρσG

D
µν , (B.28a)

(DµDνGDµν)x =
1

2
(GD,µνGDµν)x =

1

2

[
GD,µν , GDµν

]
= 0 . (B.28b)

B.1.6 Integration by parts for covariant derivative

Another useful property of the covariant derivative is integration by parts:

S ⊃
∫

ddx tr [(DµU)x] =

∫
ddx {Dµ[tr(U)]}x =

∫
ddx {∂µ[tr(U)]}x = 0 . (B.29)

To derive this relation, we first pulled the covariant derivative out of the trace using

eq. (B.16), and then used the fact that tr(U) must be a group singlet if this term ap-

pears in the Lagrangian. Eq. (B.29) implies∫
ddx tr [U1(DµU2)x] =

∫
ddx tr [−(DµU1)xU2] . (B.30)

For contrast, we emphasize that integration by parts cannot be used for an open covariant

derivative ∫
ddx tr(DµU) 6= 0. (B.31)

B.2 Algebraic evaluation of functional traces

In this subsection, we present three algebraic approaches to evaluating functional traces:

the Partial Derivative Expansion (PDE), the Simplified CDE, and the Original CDE. Pre-

senting the PDE approach will highlight the benefits of CDE. Since both versions of CDE

are used in the text (matching uses simplified CDE and running uses original CDE), we will

present them both in detail here. For concreteness, we will contrast the three approaches by

evaluating the simplest functional trace T0 in each framework up to mass dimension four:

T0(M2) ≡ iTrR

(
1

D2 +M2

)
⊃
∫

d4x
1

(4π)2

1

M2

−1

12
trR(GDµνG

D,µν) . (B.32)

For notational simplicity, we will suppress the representation subscript R, with the under-

standing that the derivation holds for arbitrary representations. A catalog of results for

more involved functional traces are given in appendix B.4.2.
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B.2.1 Partial Derivative Expansion

To begin, we will derive the Partial Derivative Expansion (PDE). This is the brute force

approach to evaluating functional traces. The idea is to ignore the covariant derivative

structure, i.e., by treating partial derivative and the gauge fields independently, and to

perform an expansion in terms of the gauge fields. This yields a large number of terms that

are not gauge invariant individually, but that all combine into gauge invariant quantities

at the end. In fact, PDE is nothing but the Feynman diagram approach represented

algebraically. In particular, since each term generated in the PDE step corresponds to the

contribution of a Feynman diagram, these approaches share the disadvantage that they

lack manifest gauge invariance, which requires dealing with a large number of terms at

intermediate steps. We review this approach to establish that any functional traces can

be evaluated purely algebraically, without invoking any of the additional tricks required to

derive the CDE. This already demonstrates the benefit of functional methods: calculations

are organized into mindless algebraic expansions, which automatically takes care of all the

Feynman rules, relative signs, symmetric factors, etc. . In later subsections, we will derive

the CDE approaches, which are dramatically streamlined by comparison.

As a simple example, consider a gauge theory with an associated coupling g. This

implies there is a covariant derivative:

Dµ = ∂µ − igGµ , (B.33)

so that

D2 +M2 = ∂2 +M2 −
[
ig(∂µGµ +Gµ∂

µ) + g2GµG
µ
]
. (B.34)

In order to compute T0 up to mass dimension four, we should expand the argument of the

trace up to four powers in Gµ:

T0 ≡ iTr

(
1

D2 +M2

)
= −iTr

(
1

−∂2 −M2 + [ig(∂µGµ +Gµ∂µ) + g2GµGµ]

)
⊃ T 1G

0 + T 2G
0 + T 3G

0 + T 4G
0 , (B.35)

with19

T 1G
0 ≡−gTr

[
1

−∂2−M2
(∂µGµ+Gµ∂

µ)
1

−∂2−M2

]
, (B.36a)

T 2G
0 ≡ ig2 Tr

[
1

−∂2−M2
GµG

µ 1

−∂2−M2

+
1

−∂2−M2
(∂µGµ+Gµ∂

µ)
1

−∂2−M2
(∂νGν+Gν∂

ν)
1

−∂2−M2

]
, (B.36b)

19Here we have used

1

A+B
= A−1 −A−1BA−1 +A−1BA−1BA−1 −A−1BA−1BA−1BA−1 + · · · .
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T 3G
0 ≡ g3 Tr

{
1

−∂2−M2
GµG

µ 1

−∂2−M2
(∂νGν+Gν∂

ν)
1

−∂2−M2

+
1

−∂2−M2
(∂νGν+Gν∂

ν)
1

−∂2−M2
GµG

µ 1

−∂2−M2

+

[
1

−∂2−M2
(∂µGµ+Gµ∂

µ)
1

−∂2−M2
(∂νGν+Gν∂

ν)

× 1

−∂2−M2
(∂ρGρ+Gρ∂

ρ)
1

−∂2−M2

]}
, (B.36c)

T 4G
0 ≡−ig4 Tr

{
1

−∂2−M2
GµG

µ 1

−∂2−M2
GνG

ν 1

−∂2−M2

+

[
1

−∂2−M2
GµG

µ 1

−∂2−M2
(∂νGν+Gν∂

ν)

× 1

−∂2−M2
(∂ρGρ+Gρ∂

ρ)
1

−∂2−M2

]

+

[
1

−∂2−M2
(∂µGµ+Gµ∂

µ)
1

−∂2−M2
GνG

ν

× 1

−∂2−M2
(∂ρGρ+Gρ∂

ρ)
1

−∂2−M2

]

+

[
1

−∂2−M2
(∂µGµ+Gµ∂

µ)
1

−∂2−M2

×(∂νGν+Gν∂
ν)

1

−∂2−M2
GρG

ρ 1

−∂2−M2

]

+

[
1

−∂2−M2
(∂µGµ+Gµ∂

µ)
1

−∂2−M2
(∂νGν+Gν∂

ν)
1

−∂2−M2

×(∂ρGρ+Gρ∂
ρ)

1

−∂2−M2
(∂σGσ+Gσ∂

σ)
1

−∂2−M2

]}
. (B.36d)

We see that even for this simplest functional trace T0, the PDE generates many terms:

Operator Terms

T 1G
0 2

T 2G
0 5

T 3G
0 12

T 4G
0 29

It is straightforward to evaluate each term through the repeated insertion of the func-

tional identity element

1 =

∫
ddx |x〉〈x| =

∫
ddp

(2π)d
|p〉〈p| . (B.37)
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For concreteness, we will provide some details for calculating part of T 2G
0 . It contains five

terms20

T 2G
0 = T 2G0

0 + T 2G1
0 + T 2G2

0 + T 2G3
0 + T 2G4

0 , (B.38a)

T 2G0
0 ≡ ig2 Tr

(
1

−∂2 −M2
GµG

µ 1

−∂2 −M2

)
, (B.38b)

T 2G1
0 ≡ ig2 Tr

(
1

−∂2 −M2
∂µGµ

1

−∂2 −M2
∂νGν

1

−∂2 −M2

)
, (B.38c)

T 2G2
0 ≡ ig2 Tr

(
1

−∂2 −M2
∂µGµ

1

−∂2 −M2
Gν∂

ν 1

−∂2 −M2

)
, (B.38d)

T 2G3
0 ≡ ig2 Tr

(
1

−∂2 −M2
Gµ∂

µ 1

−∂2 −M2
∂νGν

1

−∂2 −M2

)
, (B.38e)

T 2G4
0 ≡ ig2 Tr

(
1

−∂2 −M2
Gµ∂

µ 1

−∂2 −M2
Gν∂

ν 1

−∂2 −M2

)
. (B.38f)

In order to demonstrate every detail, we provide the evaluation of T 2G1
0 :

T 2G1
0 ≡ ig2 Tr

(
1

−∂2−M2
∂µGµ

1

−∂2−M2
∂νGν

1

−∂2−M2

)
= ig2

∫
d4p1

(2π)4
tr

〈
p1

∣∣∣∣ 1

−∂2−M2
∂µGµ

1

−∂2−M2
∂νGν

1

−∂2−M2

∣∣∣∣p1

〉
= ig2

∫
d4x1 d4x2

∫
d4p1

(2π)4

d4p2

(2π)4
tr

[〈
p1

∣∣∣∣ 1

−∂2−M2
∂µ
∣∣∣∣x1

〉
〈x1 |Gµ|p2〉

×
〈
p2

∣∣∣∣ 1

−∂2−M2
∂ν
∣∣∣∣x2

〉〈
x2

∣∣∣∣Gν 1

−∂2−M2

∣∣∣∣p1

〉]

= ig2

∫
d4x1 d4x2

∫
d4p1

(2π)4

d4p2

(2π)4
tr

[
ipµ1

p2
1−M2

Gµ(x1)
ipν2

p2
2−M2

Gν(x2)

× 1

p2
1−M2

ei(p1−p2)·x1ei(p2−p1)·x2

]

= g2

∫
ddx1 ddx2 tr [Gµ(x1)Gν(x2)]

×
∫

ddk

(2π)d
e−ik·(x1−x2)

[
−iµ4−d

∫
ddp1

(2π)d
pµ1

(p2
1−M2)2

(p1+k)ν

(p1+k)2−M2

]
. (B.39)

To evaluate this expression we used the definition of functional trace in eq. (B.11) to derive

the second line, followed by insertions of the unit operator to derive the third line. In the

fourth line, we extracted the eigenvalues, and used the fact that 〈x|p〉 = e−ip·x. In the last

line, we make a convenient change of variables p2 = p1 + k. We are then left with a “loop

20Note that the gauge field Gµ(x) does not commute with the partial derivative, as it depends on the

spacetime coordinate x. Therefore, the last four terms are generically inequivalent. On the other hand,

sometimes one assumes that the field is independent of the spacetime coordinate x, e.g. when computing

the Coleman-Weinberg potential. In this case that the background field is constant, it is a lot easier to

evaluate such terms. See e.g. eqs. (11.71)–(11.73) in Peskin and Schroeder [57].
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integral” to evaluate. This integral is divergent, so we use dim. reg. (which explains the

appearance of the µ4−d factor):

− iµ4−d
∫

ddp1

(2π)d
pµ1

(p2
1 −M2)2

(p1 + k)ν

(p1 + k)2 −M2

= −iµ4−d
∫ 1

0
dx 2x

∫
dd`

(2π)d

[
ηµν`2

d(`2 −∆)3
− x(1− x)kµkν

(`2 −∆)3

]
=

∫ 1

0
dx 2x

[
ηµν

1

(4π)2

1

4

(
4πµ2

∆

)2− d
2

Γ

(
2− d

2

)
+ x(1− x)

1

(4π)2

1

2

kµkν

∆

]

⊃ 1

(4π)2

1

2

∫ 1

0
dxx

[
ηµν ln

µ2

M2
+ x(1− x)

ηµνk2 + 2kµkν

M2

]
=

1

(4π)2

(
1

4
ηµν ln

µ2

M2
+

1

24

ηµνk2 + 2kµkν

M2

)
. (B.40)

where we used eq. (A.1) to combine denominators, substituted `µ ≡ pµ1 + (1 − x)kµ and

∆ ≡ M2 − x(1 − x)k2, and used eq. (A.3) to evaluate the integral. In the fourth line, we

have expanded in the external momentum kµ up to quadratic order, which is sufficient to

capture all effective operators with mass dimension four. Plugging the integrated result

into eq. (B.39) yields

T 2G1
0 = g2

∫
d4x1d4x2 tr [Gµ (x1)Gν (x2)]

×
∫

d4k

(2π)4 e
−ik(x1−x2) 1

(4π)2

(
1

4
ηµν ln

µ2

M2
+

1

24

ηµνk2+2kµkν

M2

)
=

∫
d4x1d4x2 tr [Gµ (x1)Gν (x2)]

× 1

(4π)2

[
ln
µ2

M2

g2

4
ηµν+

1

M2

−g2

24

(
ηµν∂2

1 +2∂µ1 ∂
ν
1

)]
δ4 (x1−x2)

=

∫
d4x

1

(4π)2

{
ln
µ2

M2

g2

4
tr(GµG

µ)+
1

M2

−g2

24
tr
[
Gµ
(
ηµν∂2+2∂µ∂ν

)
Gν
]}
. (B.41)

Note that k has become a derivative starting with the second equality. Unsurprisingly, this

object is not gauge invariant since this is only part of T0. Deriving a gauge invariant final

result is therefore one of the consistency checks of the calculation.

All the five terms in T 2G
0 can be evaluated in the same way:

T 2G0
0 ⊃

∫
d4x

1

(4π)2 ln
µ2

M2

(
−g2

)
tr(GµG

µ) , (B.42a)

T 2G1
0 ⊃

∫
d4x

1

(4π)2

{
ln
µ2

M2

g2

4
tr(GµG

µ)+
1

M2

−g2

24
tr
[
Gµ
(
ηµν∂2+2∂µ∂ν

)
Gν
]}
, (B.42b)

T 2G2
0 ⊃

∫
d4x

1

(4π)2

{
ln
µ2

M2

g2

4
tr(GµG

µ)+
1

M2

−g2

24
tr
[
Gµ
(
ηµν∂2−2∂µ∂ν

)
Gν
]}
, (B.42c)

T 2G3
0 ⊃

∫
d4x

1

(4π)2

{
ln
µ2

M2

g2

4
tr(GµG

µ)+
1

M2

−g2

24
tr
[
Gµ
(
ηµν∂2−6∂µ∂ν

)
Gν
]}
, (B.42d)

T 2G4
0 ⊃

∫
d4x

1

(4π)2

{
ln
µ2

M2

g2

4
tr(GµG

µ)+
1

M2

−g2

24
tr
[
Gµ
(
ηµν∂2+2∂µ∂ν

)
Gν
]}
, (B.42e)
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which gives

T 2G
0 = T 2G0

0 + T 2G1
0 + T 2G2

0 + T 2G3
0 + T 2G4

0

⊃
∫

d4x
1

(4π)2

1

M2

−g2

6
tr
[
Gµ
(
ηµν∂2 − ∂µ∂ν

)
Gν
]
. (B.43)

Note that T 2G
0 is still not gauge invariant. We need terms with higher powers of the gauge

fields T 3G
0 and T 4G

0 , which can be evaluated using the same procedure. A quite tedious

evaluation yields

T 1G
0 = 0 , (B.44a)

T 2G
0 ⊃

∫
d4x

1

(4π)2

1

M2

−g2

6
tr
[
Gµ
(
ηµν∂2 − ∂µ∂ν

)
Gν
]
, (B.44b)

T 3G
0 ⊃

∫
d4x

1

(4π)2

1

M2

−ig3

3
tr [(∂µGν) (GµGν −GνGµ)] , (B.44c)

T 4G
0 ⊃

∫
d4x

1

(4π)2

1

M2

−g4

6
tr [(GµGν −GνGµ)GµGν ] . (B.44d)

Putting everything together, we obtain the final gauge invariant result in eq. (B.32)

T0 ⊃ T 1G
0 + T 2G

0 + T 3G
0 + T 4G

0

⊃
∫

d4x
1

(4π)2

1

M2

{
− g2

6
tr
[
Gµ
(
∂2ηµν − ∂µ∂ν

)
Gν
]
− ig3

3
tr [(GµGν −GνGµ) (∂µGν)]

− g4

6
tr [(GµGν −GνGµ)GµGν ]

}
=

∫
d4x

1

(4π)2

1

M2

g2

12
tr (GµνG

µν)

=

∫
d4x

1

(4π)2

1

M2

−1

12
tr
(
GDµνG

D,µν
)
, (B.45)

where we used eq. (B.9) in the last line.

This completes our example for using the PDE to evaluate a functional trace. It

should now be clear that this approach is very tedious, due to the many terms that are

generated at intermediate steps. This can be traced back to the fact that we split the

covariant derivative into a partial derivative and the gauge fields to perform the calculation,

so gauge invariance appeared broken until all the pieces were finally assembled. Seeing

that all the terms ultimately combined together to yield a very simple gauge invariant

answer motivates finding a method for evaluating the functional traces without splitting

the covariant derivative — this is the covariant derivative expansion.

B.2.2 Simplified CDE

Having motivated the desire for a covariant approach to evaluating functional traces, we

now turn to the most straightforward implementation of a covariant derivative expansion,

which we call “simplified CDE.” This is the CDE method introduced in [5], which is used
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to derive the matching results in the main text of this paper. This will also set the stage

for a modified approach — “original CDE” to be presented in the next subsection.

Again, we evaluate T0 as a concrete example. The CDE relies on manipulations like

the following:

T0

(
M2
)
≡ iTr

(
1

D2 +M2

)
= i

∫
ddx

∫
ddp

(2π)d
〈p | x〉

〈
x

∣∣∣∣tr( 1

D2 +M2

)∣∣∣∣ p〉
= −i

∫
ddx

∫
ddp

(2π)d
eip·x tr

[
1

(iD)2 −M2

]
e−ip·x

= −i
∫

ddx

∫
ddp

(2π)d
tr

[
1

(iD + p)2 −M2

]
= −i

∫
ddx

∫
ddp

(2π)d
tr

[
1

(iD − p)2 −M2

]
. (B.46)

For this derivation, the key step is going from the first line to the second line, which relies

on the fact that 〈x |f (x̂µ, p̂ν)| p〉 = f (xµ, i∂ν) 〈x|p〉. After this step, the integrand in the

second line is a function of x and p, and the partial derivative in Dµ = ∂µ − igGaµ (x)T a is

interpreted as an operator that acts on any function of x to its right. In this example, this

function of x is simply e−ip·x. We then use the fact eip·xiDµe
−ip·x = iDµ+pµ to obtain the

third line. Then in the last line, we have flipped the sign of the loop momentum for future

convenience. Again we emphasize that the integrands in lines three and four are no more

mysterious than simply being functions of x and p; the territory of the partial derivative ∂µ
(contained in Dµ) is closed by the square bracket, to the end of which there is an implicit

identity function 1(x). However, this is not the same as the action implied by our notation

defined in eq. (B.19), because we are not closing the territory of the generator T a contained

in the covariant derivative Dµ — its representation is determined by the representation R

(which is suppressed in the expressions above) of the trace tr being evaluated.

Next, one can express the integrand as an expansion in the covariant derivative Dµ:

1

(iD − p)2 −M2
=

1

p2 −M2 −
[
2p · iD − (iD)2

] =

∞∑
n=0

1

(p2 −M2)n+1

[
2p · iD − (iD)2

]n
.

Truncating eq. (B.46) up to the fourth power of Dµ, we obtain

T0 ⊃ −i
∫

ddx

∫
ddp

(2π)d
tr

[
1

p2 −M2
+

2ipα1

(p2 −M2)2Dα1 +
1

(p2 −M2)2D
2

− 4pα1pα2

(p2 −M2)3Dα1Dα2 +
2ipα1

(p2 −M2)3

(
Dα1D

2 +D2Dα1

)
− 8ipα1pα2pα3

(p2 −M2)4 Dα1Dα2Dα3 +
1

(p2 −M2)3D
4

− 4pα1pα2

(p2 −M2)4

(
Dα1Dα2D

2 +Dα1D
2Dα2 +D2Dα1Dα2

)
+

16pα1pα2pα3pα4

(p2 −M2)5 Dα1Dα2Dα3Dα4

]
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⊃ −i
∫

ddx

∫
ddp

(2π)d
tr

[
1

(p2 −M2)2D
2 − 4pα1pα2

(p2 −M2)3Dα1Dα2 +
1

(p2 −M2)3D
4

− 4pα1pα2

(p2 −M2)4

(
Dα1Dα2D

2 +Dα1D
2Dα2 +D2Dα1Dα2

)
+

16pα1pα2pα3pα4

(p2 −M2)5 Dα1Dα2Dα3Dα4

]
. (B.47)

Note that the string of covariant derivatives, e.g. Dα1Dα2Dα3Dα4 , are acting on the identity,

which projects out the gauge fields

(iDα4)1x = (i∂α4)1x + gGaα4
(x)T a1x = gGaα4

(x)T a , (B.48)

thereby breaking the manifest gauge covariance. If one were to carry this out for every

term in the first line of eq. (B.47), the resulting manipulations would simply revert to the

PDE. Instead, the CDE approach treats these terms abstractly as Dµ, and manipulate

the covariant derivatives directly. This yields significant organizational improvements. Not

only does it group many terms together, it also allows us to drop quite a few terms before

evaluating the loop integral (another way of seeing that they would all conspire to cancel).

Take for example the second line of eq. (B.47), where we have dropped terms that do not in-

volve any covariant derivatives, as well as terms that are odd in the loop momentum p since

these vanish once the loop integral is carried out. Additionally, simplifying the numerator

using eq. (A.2), we can further reduce the remaining seven terms down to only four:

T0 ⊃ −i
∫

ddx

∫
ddp

(2π)d
tr

{[
1

(p2 −M2)2 −
4p2

d(p2 −M2)3

]
D2

+

[
1

(p2 −M2)3 −
8p2

d(p2 −M2)4 +
16p4

d (d+ 2) (p2 −M2)5

]
D4

−
[

4p2

d(p2 −M2)4 −
16p4

d (d+ 2) (p2 −M2)5

]
DµD

2Dµ

+
16p4

d (d+ 2) (p2 −M2)5DµDνD
µDν

}
. (B.49)

Rewriting the last term using

DµDνD
µDν = DµDν [Dµ, Dν ] +DµD

2Dµ =
1

2
GDµνG

D,µν +DµD
2Dµ , (B.50)

we get

T0 ⊃ −i
∫

ddx

∫
ddp

(2π)d
tr

{[
1

(p2 −M2)2 −
4p2

d(p2 −M2)3

]
D2

+

[
1

(p2 −M2)3 −
8p2

d(p2 −M2)4 +
16p4

d (d+ 2) (p2 −M2)5

]
D4

−
[

4p2

d(p2 −M2)4 −
32p4

d (d+ 2) (p2 −M2)5

]
DµD

2Dµ

+
8p4

d (d+ 2) (p2 −M2)5 G
D
µνG

D,µν

}
. (B.51)
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Now we are ready to evaluate the loop integrals. Note that the D2, D4, and DµD
2Dµ

terms do not yield gauge invariant objects after acting on the identity function 1(x), so

their coefficients must vanish. We can see this magic happen explicitly by evaluating∫
ddp

(2π)d

[
1

(p2 −M2)2 −
4p2

d(p2 −M2)3

]
= I0

2 −
4

d
I1

3 = 0 , (B.52a)∫
ddp

(2π)d

[
1

(p2 −M2)3 −
8p2

d(p2 −M2)4 +
16p4

d (d+ 2) (p2 −M2)5

]
= I0

3 −
8

d
I1

4 +
16

d (d+ 2)
I2

5 = 0 , (B.52b)∫
ddp

(2π)d

[
4p2

d(p2 −M2)4 −
32p4

d (d+ 2) (p2 −M2)5

]
=

4

d
I1

4 −
32

d (d+ 2)
I2

5 = 0 . (B.52c)

Here we have used the loop integral notation defined in eq. (A.3) and integrated results

given in appendix A.2. So the only term in eq. (B.51) that survives is the last line,

which gives

T0 ⊃
∫

d4x tr
(
GDµνG

D,µν
) 1

3
I2

5

(
M2
)

=

∫
d4x

1

(4π)2

1

M2

−1

12
tr
(
GDµνG

D,µν
)
. (B.53)

This reproduces eq. (B.32).

This shows how to perform calculation using the most naive implementation of a

CDE. The benefit of this approach is that it is very straightforward. In particular, if we

are not interested in operators that involve a field strength, we can discard many terms at

intermediate steps, which dramatically simplifies the calculations. The downside is that it

does generate terms that are not manifestly gauge invariant, but these do not ultimately

contribute. As we saw, checking that the coefficients are zero requires tracking cancellations

among various loop integrals, e.g. eq. (B.52). It would be desirable if this could be avoided,

which is the purpose of the original CDE method presented next.

B.2.3 Original CDE

Having worked through the PDE and simplified CDE approaches, we will now explain the

“original CDE” proposal for performing functional traces that was developed in [2–4] and

recently reviewed in [1]. The simplified CDE generates terms that are not manifestly gauge

invariant, which can be shown to not contribute. One can understand the origin of this

attribute by studying the origin of the loop integral cancellations in eq. (B.52). We notice

that integration by parts lets us organize the integrand into a total derivative of the loop

momentum. For example,

1

(p2 −M2)2 −
4p2

d(p2 −M2)3 =
∂

∂pµ

[
pµ

d(p2 −M2)2

]
, (B.54)

which is a surface term that integrates to zero. This is why the non-gauge-invariant terms

in the naive CDE approach do not contribute. This CDE approach discussed next is
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formulated to ensure that these contributions do not appear at intermediate steps, thereby

further streamlining functional calculations. Practically, it is more efficient for extracting

the matching coefficients at higher mass dimensions, where multiple insertions of the field

strength could appear in many of the terms.

We start by performing the same steps that led to eq. (B.46), followed by the pair of

operator insertions that are marked in red:

T0

(
M2
)
≡ iTr

(
1

D2 +M2

)
= −i

∫
ddx

∫
ddp

(2π)d
tr

[
1

(iD − p)2 −M2

]
= −i

∫
ddx

∫
ddp

(2π)d
tr

[
e
iD· ∂

∂p
1

(iD − p)2 −M2
e
−iD· ∂

∂p

]
. (B.55)

These expressions are equal. The factor inserted on the right e
−iD· ∂

∂p acts on the constant

unit function 1p thereby evaluating to the identity. The factor on the left e
iD· ∂

∂p also

evaluates to the identity since Taylor expanding it only generates total derivative terms in

p that vanish upon integration. As we will see, sandwiching our integrand between these

two factors will eliminate all the non-gauge-invariant terms that appeared when using the

simplified CDE.

To understand how this works in detail, we note that the operator being sandwiched

is a function of the combination f (iDµ − pµ). As the two inserted factors are inverse of

each other, they can be brought inside this function such that they act directly on the

argument:

e
iD· ∂

∂p f (iDµ − pµ) e
−iD· ∂

∂p = f
[
e
iD· ∂

∂p (iDµ − pµ) e
−iD· ∂

∂p

]
. (B.56)

Next, we manipulate this into a more useful form using the Baker-Campbell-Hausdorff

formula given in eq. (B.4):

e
iD· ∂

∂p (iDµ) e
−iD· ∂

∂p =

∞∑
n=0

1

n!

(
iD · ∂

∂p

)n
[iDµ]

= iDµ +

∞∑
n=0

1

(n+ 1)!
(iD · ∂)n [iDν∂

ν , iDµ]

= iDµ +
∞∑
n=0

in

(n+ 1)!
(D · ∂)n

[
GDµν

]
∂ν

= iDµ +

∞∑
n=0

in

(n+ 1)!

(
Dα1 · · ·DαnG

D
µν

)
x
∂α1 · · · ∂αn∂ν , (B.57a)

e
iD· ∂

∂p (pµ) e
−iD· ∂

∂p =
∞∑
n=0

1

n!

(
iD · ∂

∂p

)n
[pµ]

= pµ + iDµ +

∞∑
n=0

1

(n+ 2)!
(iD · ∂)n [iDν∂

ν , iDµ]

= pµ + iDµ +

∞∑
n=0

in

(n+ 2)!
(D · ∂)n

[
GDµν

]
∂ν

= pµ + iDµ +

∞∑
n=0

in

(n+ 2)!

(
Dα1 · · ·DαnG

D
µν

)
x
∂α1 · · · ∂αn∂ν . (B.57b)
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In the above, we have introduced ∂α as a shorthand for ∂
∂pα

. We will adopt this notation

from now on unless otherwise specified, since the position partial derivative ∂
∂xα

will always

be contained in Dα and as such will never explicitly appear. Note that to obtain the last

lines in the above two equations, we have used
[
Dα, G

D
µν

]
=
(
DαG

D
µν

)
x

repeatedly, see

eqs. (B.20b) and (B.24). Combining these two equations, we get

e
iD· ∂

∂p (iDµ − pµ) e
−iD· ∂

∂p = −pµ +
∞∑
n=0

(n+ 1) in

(n+ 2)!

(
Dα1 · · ·DαnG

D
µν

)
x
∂α1 · · · ∂αn∂ν

≡ −pµ +GCDE
µν (x) ∂ν , (B.58)

with

GCDE
µν (x) ≡

∞∑
n=0

(n+ 1) in

(n+ 2)!

(
Dα1 · · ·DαnG

D
µν

)
x
∂α1 · · · ∂αn . (B.59)

Here we have introduced the “CDE field strength” function GCDE
µν (x). The benefit of the

additional insertions in eq. (B.55) is that they systematically converted all covariant deriva-

tives into commutators, GCDE
µν (x). Furthermore, since this object is an explicit function of

x, there are no gauge covariance breaking terms appearing due to Dµ acting on the unit

function. The price is that we now have to keep track of the momentum derivatives that

appear in eq. (B.59). In other words, we have systematically traded the position derivatives

for momentum derivatives, which have the feature that they do not have any impact on

the gauge transformation properties.

Putting this all together, eq. (B.55) becomes

T0 = −i
∫

ddx

∫
ddp

(2π)d
tr

[
1(

pµ −GCDE
µν ∂ν

)2 −M2

]
. (B.60)

The next step is to perform the CDE expansion, which requires performing two simulta-

neous expansions. First, we expand the “CDE propagator”(
pµ−GCDE

µν ∂ν
)2−M2 = p2−M2−

[
ηµα

(
pαG

CDE
µν +GCDE

µν pα
)
∂ν−ηµνGCDE

µα GCDE
νβ ∂α∂β

]
,

which is a Taylor expansion in small GCDE
µν (x). This expansion is performed up to the mass

dimension of interest, noting that each GCDE
µν (x) contributes mass dimension two or more.

Second, GCDE
µν (x) itself should be expressed as a series using eq. (B.59), which should also

be truncated up to the desired mass dimension.

For our example, we keep all terms up to mass dimension four:

1(
pµ −GCDE

µν ∂ν
)2 −M2

⊃
[

1

p2 −M2
+

1

p2 −M2
ηµα

(
pαG

CDE
µν +GCDE

µν pα
)
∂ν

1

p2 −M2

− 1

p2 −M2
ηµνGCDE

µα GCDE
νβ ∂α∂β

1

p2 −M2

+
1

p2 −M2
ηµα

(
pαG

CDE
µν +GCDE

µν pα
)
∂ν

1

p2 −M2

×ηρβ
(
pβG

CDE
ρσ +GCDE

ρσ pβ
)
∂σ

1

p2 −M2

]
, (B.61)
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with

GCDE
µν ⊃ 1

2
GDµν +

i

3

(
Dα1G

D
µν

)
x
∂α1 − 1

8

(
Dα1Dα2G

D
µν

)
x
∂α1∂α2 , (B.62)

which gives

1(
pµ−GCDE

µν ∂ν
)2−M2

⊃
{

1

p2−M2
+GDµν

1

p2−M2
(pµ∂ν)

1

p2−M2

+
1

3

1

p2−M2

[(
iDµGDµν

)
x
∂ν+2

(
iDαG

D
µν

)
x
pµ∂ν∂α

] 1

p2−M2

− 1

4

1

p2−M2

[(
DαD

µGDµν
)
x
∂ν∂α+

(
DαDβG

D
µν

)
x
pµ∂ν∂α∂β

] 1

p2−M2

− 1

4
GDµαG

D
νβ

(
ηµν

1

p2−M2
∂α∂β

1

p2−M2

−4
1

p2−M2
pµ∂α

1

p2−M2
pν∂β

1

p2−M2

)}
. (B.63)

Dropping the term without GDµν , we integrate over the loop momentum and get (note that

terms odd in the loop momentum p vanish upon integration)

T0 ⊃ −i
∫

ddx

∫
ddp

(2π)d
tr

{
GDµν

1

p2 −M2
(pµ∂ν)

1

p2 −M2

− 1

4

1

p2 −M2

[(
DαD

µGDµν
)
x
∂ν∂α +

(
DαDβG

D
µν

)
x
pµ∂ν∂α∂β

] 1

p2 −M2

− 1

4
GDµαG

D
νβ

(
ηµν

1

p2 −M2
∂α∂β

1

p2 −M2

−4
1

p2 −M2
pµ∂α

1

p2 −M2
pν∂β

1

p2 −M2

)}

= −i
∫

ddx

∫
ddp

(2π)d
tr

[
−1

4
ηµνGDµαG

D
νβ

(
1

p2 −M2
∂α∂β

1

p2 −M2

)]
= −i

∫
ddx

∫
ddp

(2π)d
tr

{
1

2
ηµνηαβGDµαG

D
νβ

[
1

(p2 −M2)3 −
4p2

d(p2 −M2)4

]}
=

∫
d4x

1

(4π)2

1

M2

−1

12
tr
(
GDµνG

D,µν
)
, (B.64)

in agreement with the previous two approaches. To obtain the second line, we further

dropped terms that vanish due to symmetries, i.e., the term in the first line of the curly

bracket is zero since pµ∂ν is symmetric under the exchange of µ↔ ν while GDµν is antisym-

metric. The same argument holds also for the second term in the second line (after using

integration by parts) and the second term in the third line of the curly bracket. The first

term in the second line of the curly bracket vanishes because the loop integral will yield

ηνα, which contracts with the field strength to give
(
DµDνGDµν

)
x

= 0, see eq. (B.28b).

This leaves only one term, which can be evaluated using the loop integrals tabulated

in appendix A.2.
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Having worked out this simple example in detail, we will briefly comment on evaluating

more involved functional traces. For example, we frequently encounter functional traces of

the following form

Tn
(
M2
)
≡ iTr

[
1

D2 +M2
U1 · · ·

1

D2 +M2
Un

]
. (B.65)

First performing the simplified CDE step gives

Tn
(
M2
)

= (−1)ni

∫
ddx

∫
ddp

(2π)d
tr

[
1

(iD−p)2−M2
U1 · · ·

1

(iD−p)2−M2
Un

]
. (B.66)

Then converting this into an original CDE expression using the additional insertions as in

eq. (B.55), we have

Tn
(
M2
)

= (−1)ni

∫
ddx

∫
ddp

(2π)d
tr

[
1(

pµ −GCDE
µν ∂ν

)2 −M2
UCDE

1

× · · · × 1(
pµ −GCDE

µν ∂ν
)2 −M2

UCDE
n

]
. (B.67)

Note that the function Uk(x) should also be sandwiched by the insertions, which defines

the series

UCDE
k ≡ eiD·

∂
∂p Uk e

−iD· ∂
∂p =

∞∑
n=0

in

n!
(Dα1 · · ·DαnUk)x∂

α1 · · · ∂αn . (B.68)

The evaluation of several frequently used generic functional traces is given in appendix B.4.2.

B.3 Functional variations for gauge bosons

In the previous section, we showed how to use CDE to evaluate functional traces while

maintaining manifest gauge covariance. In doing so, we assumed that the functional trace

is already expressed in terms of the covariant derivative Dµ. This is the case if the variation

is being taken with respect to a field that is not a gauge boson. In HQET, we are typically

interested in loops involving gluons. In order to take the functional variation with respect

to the gauge fields, we would naively be forced to split up the covariant derivative, which

implies a loss of the manifest gauge covariance. By using the background field method (see

e.g. [55, 57, 58]) we can avoid this issue.

The first step is to decompose the gauge field into a background field component GaB,µ
plus fluctuations Aµ:

Gµ = GB,µ +Aµ . (B.69)

One defines a background covariant derivative DB,µ:

DB,µ ≡ ∂µ − igGB,µ , (B.70)

such that the full covariant derivative is

Dµ ≡ DB,µ − igAµ . (B.71)

Then up to quadratic terms in Aµ, the original field strength and the gauge field kinetic

term are written as

Gaµν = GaB,µν + (DB,µAν)a − (DB,νAµ)a + gfabcAbµA
c
ν , (B.72)
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and

−1

4
GaµνG

µν,a ⊃ −1

4
GaB,µνG

µν,a
B −Gµν,aB (DB,µAν)a

+
1

2
Aaµ

[(
ηµνD2

B −D
µ
BD

ν
B

)ab − 2gfabcGµν,cB

]
Abν . (B.73)

Everything is manifestly gauge covariant with respect to the background gauge field GB,µ,

i.e., every term is composed of either DB,µ or GaB,µν .

Factors of Aµ appear at intermediate steps. However, they will be integrated over

perturbatively, which requires gauge fixing. The key to the background field method is

that we can implement a gauge fixing condition for Aµ that is manifestly gauge covariant

with respect to the background gauge field GB,µ:

Lgf = − 1

2ξ

[(
Dµ
BAµ

)a]2
=

1

2
Aaµ
(
Dµ
BD

ν
B

)ab
Abν , (B.74)

where we have specified to the Feynman gauge ξ = 1 in the last expression. The resultant

ghost term is also manifestly background gauge covariant

Lgh =
(
Dµ
B c̄
)a [

(DB,µc)
a − gfabcAcµcb

]
⊃ c̄a

(
−D2

B

)ab
cb . (B.75)

Note that both the fluctuating part Aaµ and the ghosts ca and c̄a transform under the adjoint

representation of the background gauge symmetry. Once we have preformed a functional

variation, we will drop the subscript B from DB,µ and GaB,µν .

B.4 Applications

In this section, we apply the CDE to evaluate functional traces.

B.4.1 Expansions up to mass dimension six

This section collects some intermediate expansion results that are frequently needed for

evaluating functional traces with the original CDE. First, the CDE field strength GCDE
µν

and UCDE expanded up to mass dimension six are

GCDE
µν ≡

∞∑
n=0

(n+ 1) in

(n+ 2)!

(
Dα1 · · ·DαnG

D
µν

)
x
∂α1 · · · ∂αn

⊃

[
1

2
GDµν +

1

3

(
iDα1G

D
µν

)
x
∂α1 − 1

8

(
Dα1Dα2G

D
µν

)
x
∂α1∂α2

− 1

30

(
iDα1Dα2Dα3G

D
µν

)
x
∂α1∂α2∂α3

+
1

144

(
Dα1Dα2Dα3Dα4G

D
µν

)
x
∂α1∂α2∂α3∂α4

]
, (B.76a)
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UCDE ≡
∞∑
n=0

in

n!
(Dα1 · · ·DαnU)x∂

α1 · · · ∂αn

⊃

[
U + (iDα1U)x∂

α1 − 1

2
(Dα1Dα2U)x∂

α1∂α2

− 1

6
(iDα1Dα2Dα3U)x∂

α1∂α2∂α3 +
1

24
(Dα1Dα2Dα3Dα4U)x∂

α1∂α2∂α3∂α4

+
1

120
(iDα1Dα2Dα3Dα4Dα5U)x∂

α1∂α2∂α3∂α4∂α5

]
. (B.76b)

Note that GDµν = [Dµ, Dν ] always contributes mass dimension two to the effective operator.

On the other hand, although U is also an object with mass dimension two, it might contain

a dimensionful coupling. So U is guaranteed to contribute only mass dimension one to the

effective operator. Next, we expand the “CDE propagator” up to mass dimension six

1(
pµ−GCDE

µν ∂ν
)2−M2

=
1

p2−M2−
[
ηµα

(
pαGCDE

µν +GCDE
µν pα

)
∂ν−ηµνGCDE

µα GCDE
νβ ∂α∂β

]
⊃ 1

p2−M2
+GDµν

1

p2−M2
pµ∂ν

1

p2−M2

+
1

3

(
iDα1G

D
µν

)
x

1

p2−M2
(2pµ∂α1 +ηµα1)∂ν

1

p2−M2

− 1

4

(
Dα1Dα2G

D
µν

)
x

1

p2−M2
(pµ∂α2 +ηµα2)∂ν∂α1

1

p2−M2

− 1

4
GDµνG

D
ρσ

(
ηµρ

1

p2−M2
∂ν∂σ

1

p2−M2
−4

1

p2−M2
pµ∂ν

1

p2−M2
pρ∂σ

1

p2−M2

)
− 1

30

1

p2−M2

[(
iDµDα1Dα2G

D
µν+iDα1D

µDα2G
D
µν+iDα1Dα2D

µGDµν
)
x

+2
(
iDα1Dα2Dα3G

D
µν

)
x
pµ∂α3

]
∂ν∂α1∂α2

1

p2−M2

− 1

6
GDµν

(
iDα1G

D
ρσ

)
x

[
ηµρ

1

p2−M2
∂ν∂σ∂α1

1

p2−M2

−2
1

p2−M2
pµ∂ν

1

p2−M2
(2pρ∂α1 +ηρα1)∂σ

1

p2−M2

]

− 1

6

(
iDα1G

D
µν

)
x
GDρσ

[
ηµρ

1

p2−M2
∂ν∂σ∂α1

1

p2−M2

−2
1

p2−M2
(2pµ∂α1 +ηµα1)∂ν

1

p2−M2
pρ∂σ

1

p2−M2

]

+
1

144

1

p2−M2

[(
DµDα1Dα2Dα3G

D
µν+Dα1D

µDα2Dα3G
D
µν

+Dα1Dα2D
µDα3G

D
µν+Dα1Dα2Dα3D

µGDµν

)
x

– 61 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
4

+2
(
Dα1Dα2Dα3Dα4G

D
µν

)
x
pµ∂α4

]
∂ν∂α1∂α2∂α3

1

p2−M2

+
1

9

(
Dα1G

D
µν

)
x

(
Dα2G

D
ρσ

)
x

[
ηµρ

1

p2−M2
∂α1∂α2∂ν∂σ

1

p2−M2

− 1

p2−M2
(2pµ∂α1 +ηµα1)∂ν

1

p2−M2
(2pρ∂α2 +ηρα2)∂σ

1

p2−M2

]

+
1

16
GDµν

(
Dα1Dα2G

D
ρσ

)
x

[
ηµρ

1

p2−M2
∂α1∂α2∂ν∂σ

1

p2−M2

−4
1

p2−M2
pµ∂ν

1

p2−M2
(pρ∂α2 +ηρα2)∂σ∂α1

1

p2−M2

]

+
1

16

(
Dα1Dα2G

D
µν

)
x
GDρσ

[
ηµρ

1

p2−M2
∂α1∂α2∂ν∂σ

1

p2−M2

−4
1

p2−M2
(pµ∂α2 +ηµα2)∂ν∂α1

1

p2−M2
pρ∂σ

1

p2−M2

]

− 1

4
GDµνG

D
ρσG

D
λη

[
ηρλ

1

p2−M2
pµ∂ν

1

p2−M2
∂σ∂η

1

p2−M2

+ηµρ
1

p2−M2
∂ν∂σ

1

p2−M2
pλ∂η

1

p2−M2

−4
1

p2−M2
pµ∂ν

1

p2−M2
pρ∂σ

1

p2−M2
pλ∂η

1

p2−M2

]
. (B.77)

Evaluating this expression requires taking momentum derivatives of the free propagators:

∂α1
1

p2−M2
=− 2

(p2−M2)2 p
α1 , (B.78a)

∂α1∂α2
1

p2−M2
=

8

(p2−M2)3 p
α1pα2− 2

(p2−M2)2 η
α1α2 , (B.78b)

∂α1∂α2∂α3
1

p2−M2
=− 48

(p2−M2)4 p
α1pα2pα3

+
8

(p2−M2)3

(
pα1ηα2α3 +pα2ηα1α3 +pα3ηα1α2

)
, (B.78c)

∂α1∂α2∂α3∂α4
1

p2−M2
=

384

(p2−M2)5 p
α1pα2pα3pα4

− 48

(p2−M2)4

(
pα1pα2ηα3α4 +pα1pα3ηα2α4 +pα1pα4ηα2α3

+pα2pα3ηα1α4 +pα2pα4ηα1α3 +pα3pα4ηα1α2

)
+

8

(p2−M2)3

(
ηα1α2ηα3α4 +ηα1α3ηα2α4 +ηα1α4ηα2α3

)
. (B.78d)
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Finally, using eq. (B.58), we can also get the “HQET CDE propagator,” which expanded

up to mass dimension six is

− eiD·
∂
∂p

1

v · (iD − p)
e
−iD· ∂

∂p =
1

v · p− vµGCDE
µν ∂ν

⊃ 1

v · p
+ vµ

1

v · p
GCDE
µν ∂ν

1

v · p
+ vµvρ

1

v · p
GCDE
µν ∂ν

1

v · p
GCDE
ρσ ∂σ

1

v · p

+ vµvρvλ
1

v · p
GCDE
µν ∂ν

1

v · p
GCDE
ρσ ∂σ

1

v · p
GCDE
λη ∂η

1

v · p

⊃ 1

v · p
+

1

2
GDµν

(
vµ

1

v · p
∂ν

1

v · p

)
+

1

3

(
iDα1G

D
µν

)
x

(
vµ

1

v · p
∂ν∂α1

1

v · p

)
− 1

8

(
Dα1Dα2G

D
µν

)
x

(
vµ

1

v · p
∂ν∂α1∂α2

1

v · p

)
+

1

4
GDµνG

D
ρσ

(
vµvρ

1

v · p
∂ν

1

v · p
∂σ

1

v · p

)
− 1

30

(
iDα1Dα2Dα3G

D
µν

)
x

(
vµ

1

v · p
∂ν∂α1∂α2∂α3

1

v · p

)
+

1

6
GDµν

(
iDα1G

D
ρσ

)
x

(
vµvρ

1

v · p
∂ν

1

v · p
∂σ∂α1

1

v · p

)
+

1

6

(
iDα1G

D
µν

)
x
GDρσ

(
vµvρ

1

v · p
∂ν∂α1

1

v · p
∂σ

1

v · p

)
+

1

144

(
Dα1Dα2Dα3Dα4G

D
µν

)
x

(
vµ

1

v · p
∂ν∂α1∂α2∂α3∂α4

1

v · p

)
− 1

9

(
Dα1G

D
µν

)
x

(
Dα2G

D
ρσ

)
x

(
vµvρ

1

v · p
∂ν∂α1

1

v · p
∂σ∂α2

1

v · p

)
− 1

16
GDµν

(
Dα1Dα2G

D
ρσ

)
x

(
vµvρ

1

v · p
∂ν

1

v · p
∂σ∂α1∂α2

1

v · p

)
− 1

16

(
Dα1Dα2G

D
µν

)
x
GDρσ

(
vµvρ

1

v · p
∂ν∂α1∂α2

1

v · p
∂σ

1

v · p

)
+

1

8
GDµνG

D
ρσG

D
λη

(
vµvρvλ

1

v · p
∂ν

1

v · p
∂σ

1

v · p
∂η

1

v · p

)
. (B.79)

B.4.2 Functional traces and determinants

Using the expressions provided in appendix A and appendix B.4.1, we have the tools we

need to evaluate various functional traces using the original CDE. In what follows, we

provide a few explicit results.

Single relativistic propagator. For functional traces with n factors of the same rela-

tivistic propagator, we adopt the following notation

T0

(
M2
)
≡ iTr

(
1

D2 +M2

)
, (B.80a)

Tn
(
M2
)
≡ iTr

[
1

D2 +M2
U1 · · ·

1

D2 +M2
Un

]
, (B.80b)
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where Ui(x) are purely functions of x. Assuming that each factor of Ui contributes at least

dimension one to the effective operators, the results up to dimension six are

T0

(
M2
)
⊃
∫

d4x
1

(4π)2 tr

{
1

M2

−1

12
GDµνG

D,µν

+
1

M4

1

180

[
2ηνρησληηµGDµνG

D
ρσG

D
λη−3ηνσ

(
DµGDµν

)
x

(
DρGDρσ

)
x

]}
, (B.81a)

T1

(
M2
)
⊃
∫

d4x
1

(4π)2 tr

[
M2

(
ln
µ2

M2
+1

)
U1+

1

M2

−1

12
U1G

D
µνG

D,µν

]
, (B.81b)

T2

(
M2
)
⊃
∫

d4x
1

(4π)2 tr

{(
ln
µ2

M2

)
(−U1U2)+

1

M2

1

6

(
U1D

2U2

)
x

+
1

M4

−1

60

[
2
(
D2U1

)
x

(
D2U2

)
x
−(DµDνU1)x(DµDνU2)x

+U1G
D
µνG

D,µνU2+3U1G
D
µνU2G

D,µν+U1U2G
D
µνG

D,µν

]}
, (B.81c)

T3

(
M2
)
⊃
∫

d4x
1

(4π)2 tr

{
1

M2

−1

2
U1U2U3

+
1

M4

−1

12

[
(DµU1)x(DµU2)xU3+cyclic

]}
, (B.81d)

T4

(
M2
)
⊃
∫

d4x
1

(4π)2 tr

{
1

M4

−1

6
U1U2U3U4

+
1

M6

−1

60

[
3(DµU1)x(DµU2)xU3U4+2(DµU1)xU2(DµU3)xU4+cyclic

]}
, (B.81e)

T5

(
M2
)
⊃
∫

d4x
1

(4π)2 tr

(
1

M6

−1

12
U1U2U3U4U5

)
, (B.81f)

T6

(
M2
)
⊃
∫

d4x
1

(4π)2 tr

(
1

M8

−1

20
U1U2U3U4U5U6

)
. (B.81g)

Mixed relativistic propagators. The following functional trace with two different rel-

ativistic propagators is often useful:

T1,1

(
m2,M2

)
≡ iTr

[
1

D2 +m2
U1

1

D2 +M2
U2

]

⊃
∫

d4x tr

[
− I0

1,1U1U2 −
1

2
I1

2,2

(
U1D

2U2

)
x

− 1

9

(
3I1

2,3 + I2
3,3

) (
D2U1

)
x

(
D2U2

)
x

+
1

9

(
3I1

2,3 − 2I2
3,3

)
(DµDνU1)x(DµDνU2)x

+
1

3

(
I1

2,3 − I1
3,2

)
(DµU1)x(DνU2)xG

D
µν
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− 1

18

(
9I0

1,3 − 9I1
1,4 − 6I1

2,3 + I2
3,3

)
U1G

D
µνG

D,µνU2

− 1

18
U1G

D
µνU2G

D,µν
(
9I1

2,3 + 3I1
3,2 − 2I2

3,3

)
− 1

18
U1U2G

D
µνG

D,µν
(
9I0

3,1 − 3I1
2,3 − 3I1

3,2 − 9I1
4,1 + I2

3,3

) ]
. (B.82)

The definitions and values of the loop integrals in this expression can be found in

appendix A.3.

Relativistic and linear propagators. A few functional traces containing both relativis-

tic propagators and HQET propagators are important for the calculations in the main text.

T1v

(
m2
)
≡ iTr

(
1

D2+m2
U1

1

v ·iD
U2

)
⊃
∫

d4x
1

(4π)2 tr

{(
ln
µ2

m2

)
2(U1v ·iDU2)x+

1

m2

4

3

[
U1(v ·iD)3U2

]
x

+
1

m2

1

3
U1U2

(
vνiDµGDµν

)
x

}
, (B.83a)

T1vv

(
m2
)
≡ iTr

(
1

D2+m2
U1

1

v ·iD
U2

1

v ·iD
U3

)
⊃
∫

d4x
1

(4π)2 tr

{(
ln
µ2

m2

)
(−2)U1U2U3+

1

m2

4

3
vα1vα2

[
U1(Dα1Dα2U2)xU3

+3U1(Dα1U2)x(Dα2U3)x+3U1U2(Dα1Dα2U3)x

]}
, (B.83b)

T2v

(
m2
)
≡ iTr

(
1

D2+m2
U1

1

D2+m2
U2

1

v ·iD
U3

)
⊃
∫

d4x
1

(4π)2 tr

{
1

m2
[2U1(v ·iDU2)xU3+(v ·iDU1)xU2U3]

− 1

m4

1

18

[
12vα1vα2vα3

(
3(iDα1U1)x(Dα2Dα3U2)xU3

+2U1(iDα1Dα2Dα3U2)xU3

)

+

(
ηα1α2vα3 +ηα1α3vα2

+ηα2α3vα1 +6vα1vα2vα3

)
(iDα1Dα2Dα3U1)xU2U3

+6(ηα1α2 +4vα1vα2)vα3(Dα1Dα2U1)x(iDα3U2)xU3

+2vν

(
3(iDµU1)xG

D
µνU2U3+

(
iDµGDµν

)
x
U1U2U3

+2U1

(
iDµGDµν

)
x
U2U3

)]}
. (B.83c)
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Universal functional determinants. Finally, with the previous results in hand, the

following functional determinants can be evaluated:

i ln det
(
D2 +M2 + U

)
⊃
∫

d4x
1

(4π)2 tr

{
M2

(
ln

µ2

M2
+ 1

)
U

+

(
ln

µ2

M2

)(
1

2
U2 +

1

12
GDµνG

D,µν

)
+

1

M2

[
− 1

90
ηνρησληηµGDµνG

D
ρσG

D
λη +

1

60
ηνσ
(
DµGDµν

)
x

(
DρGDρσ

)
x

− 1

6
U3 +

1

12
(DµU)x(DµU)x −

1

12
UGDµνG

D,µν

]

+
1

M4

[
1

24
U4 − 1

12
U(DµU)x(DµU)x +

1

120

(
D2U

)
x

(
D2U

)
x

+
1

60
(DµU)x(DνU)xG

D
µν +

1

60
UGDµνUG

D,µν +
1

40
U2GDµνG

D,µν

]

+
1

M6

[
− 1

60
U5 +

1

20
U2(DµU)x(DµU)x +

1

30
U(DµU)xU(DµU)x

]
+

1

M8

1

120
U6

}
, (B.84a)

i ln det
(
D2 +M2 + U + iDµJ

µ
)
⊃
∫

d4x
1

(4π)2 tr

{
M2

(
ln

µ2

M2
+ 1

)(
U +

1

4
JµJµ

)

+

(
ln

µ2

M2

)[
1

2
U2 +

1

12
GDµνG

D,µν +
1

4
UJ2 +

1

2
U(iDµJµ)x

− 1

12
JµJνGDµν +

1

6
(iDµJν)xG

D
µν −

1

12
(iDµJν)x (2JµJν + JνJµ)

− 1

24
(ηµνηρσ + ηµρηνσ + ηµσηνρ) (DµJν)x(DρJσ)x

+
1

96
(ηµνηρσ + ηµρηνσ + ηµσηνρ) JµJνJρJσ

]

+
1

M2

[
1

12
(DµU)x(DµU)x −

1

6
U3 +

1

6
U(iDµU)xJµ

− 1

6
U2(iDµJµ)x −

1

12
U2J2 − 1

24
UJµUJ

µ

]

+
1

M4

1

24
U4

}
. (B.84b)

In expanding the above, we have assumed that U and Jµ are purely functions of x, and that

they contribute at least mass dimension one to the effective operator. The first determinant

is truncated up to dimension six. This is the prototype of the UOLEA, which has now
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been studied extensively [7–10, 40, 42]. Note that the second determinant contains an

open covariant derivative, and we have provided the evaluation truncated at dimension

four. This result was previously unknown as emphasized in [10, 41, 42].

C More on RGEs with CDE

In section 4.3, we discussed how one can obtain RGEs using functional methods, first

introduced in ref. [5]. The purpose of this appendix is to provide a pedagogical introduction

to the methodology as applied to RGEs. First, we discuss a minor complication when

computing the RGEs for gauge couplings in appendix C.1, and emphasize how to maintain

the manifest gauge invariance in this case. Then in appendix C.2, we provide detailed

calculations that reproduce the RGEs for some classic examples: the real scalar φ4 theory

in appendix C.2.1, a theory with two real scalars φ and Φ in appendix C.2.2, and gauge

theories in appendix C.2.3.

C.1 RGEs for gauge couplings

The procedure described in section 4.3 applies to any coupling λ. However, there is a minor

complication when considering a gauge coupling g. If the 1PI effective action is written in

terms of gauge invariant operators,21 such as what we will obtain from a CDE procedure,

there will be no explicit operator Og — the gauge couplings are all hidden in the covariant

derivatives. A brute force approach would be to abandon the manifest gauge invariance by

splitting a gauge invariant term and isolating a part of it as a candidate Og. In doing so, one

typically gets multiple terms that can serve as Og. For example, the QCD Lagrangian is

LQCD = −1

4
GaµνG

µν,a + ψ̄ i /D ψ

=
1

2
Gaµ(ηµν∂2 − ∂µ∂ν)Gaν − gsfabc(∂µGaν)GbµG

c
ν −

1

4
g2
sf

abcfadeGbµG
c
νG

µ,dGν,e

+ ψ̄i/∂ψ + gsψ̄ /Gψ . (C.1)

There are no explicit factors of the gauge coupling in the first line, while expanding the

gluon field strength and covariant derivatives exposes the gs dependence. Clearly, there

are three terms that could be identified as Og. This is not a problem — one can choose to

work with any of these three operators since gauge invariance will ensure that the results

are the same. However, there is another approach, which avoids breaking up the gauge

invariant terms. This is additionally convenient here since the CDE approach yields a form

of the 1PI effective action that is already packaged in this way.

21Note that this is not generically guaranteed. For example, in the traditional computation of the

1PI effective action for a non-Abelian gauge theory, the result will not be composed of gauge invariant

operators due to the gauge fixing procedure, e.g. see chapter 16.5 of Peskin and Schroeder [57]. However,

when using functional methods, we can benefit from background field gauge fixing eq. (B.74) described in

appendix B.3. With this choice of gauge fixing, the 1PI effective action will be expressed in terms of gauge

invariant operators, as emphasized in e.g. chapter 16.6 in Peskin and Schroeder [57].
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Again taking QCD as the example, we focus on the gauge invariant kinetic term for

the gauge fields:

LQCD ⊃ −
1

4
GaµνG

µν,a =
1

4g2
s

GD,aµν G
D,a,µν , (C.2)

where we are using a notation defined in eq. (B.9) that is convenient when doing CDE

calculations: [Dµ, Dν ] ≡ GDµν = GD,aµν T a = −igsGaµνT a. (See appendix B.1 for a list of

conventions.) Then the 1PI effective action takes the form

Γ[φ] ⊃
∫

d4x

(
1

4g2
s

+ ag

)
GD,aµν G

D,a,µν , (C.3)

where ag represents the loop corrections.

Note that Dµ does not run as long as gauge invariance is maintained at the perturbative

level. Since GDµν is defined as the commutator of the covariant derivative, this term does

not run either. Therefore, the RG invariance of the coefficient of this term directly yields

the RGE for the gauge coupling:

µ
d

dµ

(
1

4g2
s

+ ag

)
= 0 . (C.4)

This is the approach that will be used in what follows for computing RGEs of gauge

couplings.

For completeness, we will quickly show that the result derived by working with an

individual non-gauge invariant term would yield an equivalent expression. Expanding the

gauge invariant kinetic term in eq. (C.3) gives(
1

4g2
s

+ ag

)
GD,aµν G

D,a,µν = (1 + 4g2
sag)

[
1

2
Gaµ
(
ηµν∂2 − ∂µ∂ν

)
Gaν − gsfabc(∂µGν,a)GbµGcν

− 1

4
g2
sf

abcfadeGbµG
c
νG

µ,dGν,e
]
. (C.5)

Next, we rescale the gauge fields to renormalize the kinetic term

Gaµ → (1 + 4g2
sag)

−1/2Gaµ . (C.6)

After this rescaling, the 1PI effective action in eq. (C.3) becomes

Γ[φ]→
∫

d4x

[
1

2
Gaµ
(
ηµν∂2−∂µ∂ν

)
Gaν−(1+4g2

sag)
−1/2gsf

abc(∂µGν,a)GbµG
c
ν

−(1+4g2
sag)

−1 1

4
g2
sf

abcfadeGbµG
c
νG

µ,dGν,e
]
. (C.7)

Taking either the cubic or the quartic interaction term as Og, we can use eq. (4.12) to derive

eq. (C.4). One can also perform a similar analysis on the fermion kinetic term ψ̄i /Dψ (being

careful to include both the rescaling of ψ and Gµ) as an alternative derivation that yields

the same result.
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C.2 Example RGE calculations

In this section, we provide detailed calculations of RGEs for a number of well known

examples.

C.2.1 Scalar φ4 theory

We start with the simplest example, φ4 theory for a real scalar field φ. The Lagrangian is

Lφ ⊃
1

2
(∂φ)2 − 1

2
m2φ2 − 1

4!
λφ4 =

1

2
φ
(
−D2 −m2

)
φ− 1

4!
λφ4 . (C.8)

We will demonstrate how to compute the RGEs for the couplings m2 and λ. Starting with

the Lagrangian in eq. (C.8), we take the second variation with respect to φ:

δ2Sφ

(δφ)2 = −D2 −m2 − 1

2
λφ2 . (C.9)

Making use of the universal result eq. (B.84a) with U = Uφ = 1
2λφ

2, we see that the

one-loop 1PI effective action contains

Γ
(1)
φ =

i

2
ln detφ

[
−
δ2Sφ

(δφ)2

]
=
i

2
ln detφ

(
D2 +m2 +

1

2
λφ2

)
⊃ 1

2

∫
d4x

1

(4π)2 trφ

[
m2

(
ln
µ2

m2
+ 1

)
Uφ +

(
ln
µ2

m2

)
1

2
U2
φ

]
=

∫
d4x

1

(4π)2

[
m2

(
ln
µ2

m2
+ 1

)
1

4
λφ2 +

(
ln
µ2

m2

)
1

16
λ2φ4

]
. (C.10)

In the second line above, we have only kept terms up to mass dimension four. Combining

it with the tree-level 1PI effective action Γ
(0)
φ = Sφ =

∫
d4xLφ, we get

Γ
(0)
φ + Γ

(1)
φ ⊃

∫
d4x

{
1

2
φ
(
−D2

)
φ− 1

2

[
m2 − λ

2(4π)2m
2

(
ln
µ2

m2
+ 1

)]
φ2

− 1

4!

[
λ− 3λ2

2(4π)2

(
ln
µ2

m2

)]
φ4

}
. (C.11)

The kinetic term is already canonically normalized, so no additional field redefinition is

required. We then simply use eq. (4.12) to find the RGEs:

0 = µ
d

dµ

[
m2 − λ

2(4π)2m
2

(
ln
µ2

m2
+ 1

)]
⇒ µ

d

dµ
m2 =

λ

(4π)2m
2 , (C.12a)

0 = µ
d

dµ

[
λ− 3λ2

2(4π)2

(
ln
µ2

m2

)]
⇒ µ

d

dµ
λ =

3λ2

(4π)2 . (C.12b)

C.2.2 Heavy-light scalar theory

As a second example, we consider a theory with two real scalar fields φ and Φ, with masses

m and M respectively. This toy model was analyzed extensively using Feynman diagrams

in [59]. The Lagrangian is

L(φ,Φ) =
1

2
φ
(
−D2 −m2

)
φ+

1

2
Φ
(
−D2 −M2

)
Φ− 1

4!
ηφ4 − 1

4
κΦ2φ2 , (C.13)
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where we are not including a Φ self-interaction for simplicity.22 We would like to compute

the RGEs for the couplings m2, M2, η, and κ. As before, we first compute the second

variation

δ2S(φ,Φ) =
(
δφ δΦ

)(−D2 −m2 − 1
2ηφ

2 − 1
2κΦ2 −κφΦ

−κφΦ −D2 −M2 − 1
2κφ

2

)(
δφ

δΦ

)
. (C.14)

This is a 2× 2 matrix, which we can diagonalize as

−
δ2S(φ,Φ)

δ(φ,Φ)2 =

(
D2+m2+ 1

2ηφ
2+ 1

2κΦ2 κφΦ

κφΦ D2+M2+ 1
2κφ

2

)

→

D2+m2+ 1
2ηφ

2+ 1
2κΦ2−κφΦ

1

D2+M2+ 1
2κφ

2
κφΦ 0

κφΦ D2+M2+ 1
2κφ

2

 .
Therefore the one-loop level 1PI effective action is given by two terms:

Γ
(1)
(φ,Φ) =

i

2
ln detφ

[
−
δ2S(φ,Φ)

δ(φ,Φ)2

]

=
i

2
ln detφ

[
D2 +m2 +

1

2
ηφ2 +

1

2
κΦ2 − κφΦ

1

D2 +M2 + 1
2κφ

2
κφΦ

]

+
i

2
ln detΦ

(
D2 +M2 +

1

2
κφ2

)
. (C.15)

The terms we need to keep are the kinetic terms for φ and Φ, as well as the potential terms

φ2, Φ2, φ4 and Φ2φ2. With this in mind, we evaluate the first term as

i

2
ln detφ

[
D2 +m2 +

1

2
ηφ2 +

1

2
κΦ2 − κφΦ

1

D2 +M2 + 1
2κφ

2
κφΦ

]

⊃ i

2
Trφ ln

[
1 +

1

D2 +m2

1

2

(
ηφ2 + κΦ2

)
− κ2 1

D2 +m2
φΦ

1

D2 +M2
φΦ

]
⊃ 1

4
iTrφ

[
1

D2 +m2

(
ηφ2 + κΦ2

)]
− κ2

2
i Trφ

[
1

D2 +m2
φΦ

1

D2 +M2
φΦ

]
− 1

16
iTrφ

[
1

D2 +m2

(
ηφ2 + κΦ2

) 1

D2 +m2

(
ηφ2 + κΦ2

)]
⊃
∫

d4x
1

(4π)2

{
1

4
m2

(
ln
µ2

m2
+ 1

)(
ηφ2 + κΦ2

)
+

1

16
ln
µ2

m2

(
ηφ2 + κΦ2

)2
+
κ2

2

[
1 +

1

M2 −m2

(
M2 ln

µ2

M2
−m2 ln

µ2

m2

)]
Φ2φ2

}
, (C.16)

where the last line was obtained by using eqs. (B.81) and (B.82). For the second term, we

use eq. (B.84a) with U = 1
2κφ

2 to obtain

i

2
lndetΦ

(
D2+M2+

1

2
κφ2

)
=

∫
d4x

1

(4π)2

[
M2

(
ln
µ2

M2
+1

)
1

4
κφ2+

(
ln
µ2

M2

)
1

16
κ2φ4

]
.

22Of course this coupling is generated by the RGEs, and it is trivial to generalize our calculation here to

incorporate this effect.
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Now putting everything together, we find

Γ
(0)
(φ,Φ)+Γ

(1)
(φ,Φ)⊃

∫
d4x

{
1

2
φ
(
−D2

)
φ+

1

2
Φ
(
−D2

)
Φ

− 1

2

[
m2− η

2(4π)2m
2

(
ln
µ2

m2
+1

)
− κ

2(4π)2M
2

(
ln
µ2

M2
+1

)]
φ2

− 1

2

[
M2− κ

2(4π)2m
2

(
ln
µ2

m2
+1

)]
Φ2

− 1

4

[
κ− 2κ2

(4π)2

(
1+

1

M2−m2

(
M2 ln

µ2

M2
−m2 ln

µ2

m2

))

− ηκ

2(4π)2 ln
µ2

m2

]
Φ2φ2

− 1

4!

[
η− 3η2

2(4π)2 ln
µ2

m2
− 3κ2

2(4π)2 ln
µ2

M2

]
φ4

}
. (C.17)

Similar to the single scalar case, the kinetic terms are already canonically normalized. We

do not need any further field redefinitions and directly obtain the RGEs as

0 = µ
d

dµ

[
m2 − η

2(4π)2m
2

(
ln
µ2

m2
+ 1

)
− κ

2(4π)2M
2

(
ln

µ2

M2
+ 1

)]
=⇒ µ

d

dµ
m2 =

η

(4π)2m
2 +

κ

(4π)2M
2 , (C.18a)

0 = µ
d

dµ

[
M2 − κ

2(4π)2m
2

(
ln
µ2

m2
+ 1

)]
=⇒ µ

d

dµ
M2 =

κ

(4π)2m
2 , (C.18b)

0 = µ
d

dµ

[
η − 3η2

2(4π)2 ln
µ2

m2
− 3κ2

2(4π)2 ln
µ2

M2

]
=⇒ µ

d

dµ
η =

3η2

(4π)2 +
3κ2

(4π)2 , (C.18c)

0 = µ
d

dµ

{
κ− 2κ2

(4π)2

[
1 +

1

M2 −m2

(
M2 ln

µ2

M2
−m2 ln

µ2

m2

)]
− ηκ

2(4π)2 ln
µ2

m2

}
=⇒ µ

d

dµ
κ =

4κ2

(4π)2 +
ηκ

(4π)2 . (C.18d)

C.2.3 Gauge theory

Finally, we will show how this formalism can be applied to gauge theories with charged

fermions. We will perform the calculation for the generalization of QCD as a non-Abelian

SU(Nc) gauge theory coupled to Nf quarks. The Lagrangian is

LQCD = −1

4
GaµνG

µν,a + Lgf + Lgh + q̄i /Dq . (C.19)

– 71 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
4

The trace over gluons gives the adjoint Casimir

trG

(
T aT b

)
= Ncδ

ab . (C.20)

We denote the quark piece as q and assume that all Nf flavors transform under the same

representation Q of SU(Nc). Accordingly, we have

trq

(
T aT b

)
= NfdQδ

ab , (C.21)

with the factor dQ depending on the representation Q. For example, dQ = 1
2 if Q is in the

fundamental representation, and dQ = Nc if Q is in the adjoint representation.

We will take variation with respect to the gauge fields using the background field

method described in appendix B.3. The Lagrangian is

LQCD ⊃
1

2
Aaµ

[
ηµν
(
D2
)ab − 2gfabcGµν,c

]
Abν + c̄a

(
−D2

)ab
cb + q̄

(
i /D + g /A

)
q . (C.22)

Taking the second variation, we obtain

δ2SQCD =
(
δAaµ δq

T δq̄
) Cµν,ab Γ̄µ,a − (Γµ,a)T

−
(
Γ̄ν,b

)T
0 −BT

Γν,b B 0


 δAbν

δq

δq̄T

+ 2δc̄a
(
−D2

)ab
δcb ,

(C.23)

where we have defined

Cµν,ab = ηµν
(
D2
)ab − 2gfabcGµν,c =

(
ηµνD2 + 2GD,µν

)ab
, (C.24a)

B = i /D , Γµ,a = gγµT aq , Γ̄µ,a = gq̄γµT a . (C.24b)

To derive the RGE for the gauge coupling, we only need to keep the kinetic term of

the gauge boson. Dropping all term with quark fields, we find

δ2SQCD

δ
(
Aaµ, q̄, q

)2 =

 Cµν,ab Γ̄µ,a −(Γµ,a)T

−
(
Γ̄ν,b

)T
0 −BT

Γν,b B 0

 ⊃
Cµν,ab 0 0

0 0 −BT

0 B 0

 . (C.25)

The one-loop effective action is then

Γ
(1)
QCD =

i

2
ln Sdet

[
−

δ2SQCD

δ
(
Aaµ, q̄, q, c̄, c

)2
]

⊃ i

2
ln detG

(
−Cµν,ab

)
− i ln detc

(
D2
)
− i

2
ln detq

(
0 BT

−B 0

)
≡ ΓG + Γc + Γq . (C.26)
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We now provide a detailed calculation for each of these three terms. For the gluon

piece, we have

ΓG ≡
i

2
ln detG

(
−Cµν,ab

)
=
i

2
ln detG

(
−ηρνD2 − 2GD,ρν

)
=
i

2
ln detG

(
−D2ηρβ

)
+
i

2
TrG ln

(
δνβ +

1

D2
ηβµ2GD,µν

)
⊃ 2i ln detG

(
D2
)

+
i

2
TrG

(
−1

2
ηνα

1

D2
2GD,αβ

1

D2
ηβµ2GD,µν

)
= 2i ln detG

(
D2
)

+ iTrG

(
1

D2
GDµν

1

D2
GD,µν

)
. (C.27)

The functional traces above yield scaleless loop integrals, which evaluate to zero when using

dim. reg. . Therefore, we must isolate the UV divergences in order to compute the RGEs.

To this end, we introduce a mass m2 for the gluons which serves as an explicit IR regulator:

ΓG → 2i ln detG
(
D2 +m2

)
+ iTrG

(
1

D2 +m2
GDµν

1

D2 +m2
GD,µν

)
⊃
∫

d4x
1

(4π)2

[
2

(
ln
µ2

m2

)
trG

(
1

12
GDµνG

D,µν

)
+

(
ln
µ2

m2

)
trG

(
−GDµνGD,µν

)]
=

∫
d4x

1

(4π)2

(
ln
µ2

m2

)
trG

(
−5

6
GDµνG

D,µν

)
=

∫
d4x

1

(4π)2

(
ln
µ2

m2

)
5

6
Ncg

2GaµνG
a,µν . (C.28)

In deriving the second line above, we have used eqs. (B.81c) and (B.84a), keeping only the

gluon kinetic terms. Similarly, the ghost pieces give

Γc≡−i lndetc
(
D2
)
→−i lndetc

(
D2+m2

)
⊃−

∫
d4x

1

(4π)2

(
ln
µ2

m2

)
trc

(
1

12
GDµνG

D,µν

)
=

∫
d4x

1

(4π)2

(
ln
µ2

m2

)
1

12
Ncg

2GaµνG
a,µν , (C.29)

and finally the quark piece gives

Γq ≡ −
i

2
ln detq

(
0 BT

−B 0

)
= −i ln detq (B)→ −i ln detq

(
i /D −m

)
= − i

2
ln detq

(
i /D −m

)
− i

2
ln detq

(
−i /D −m

)
= − i

2
ln detq

[
−
(
i /D
)2

+m2
]

= − i
2

ln detq

(
D2 +m2 − i

2
σµνGDµν

)
⊃ −1

2

∫
d4x

1

(4π)2

(
ln
µ2

m2

)
trq

(
−1

8
σµνσαβGDµνG

D
αβ +

1

12
GDµνG

D,µν

)
=

∫
d4x

1

(4π)2

(
ln
µ2

m2

)
NfdQ

[
−1

4

(
ηµαηνβ − ηµβηνα

)
g2GaµνG

a
αβ +

1

6
g2GaµνG

a,µν

]
=

∫
d4x

1

(4π)2

(
ln
µ2

m2

)(
−1

3
NfdQg

2GaµνG
a,µν

)
. (C.30)
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Note that in deriving the second line above, we have used the fact that one can flip the

sign of the Dirac γ matrices within the trace since only even powers will contribute. In the

third line, we have applied the usual notation σµν ≡ i
2 [γµ, γν ]. To obtain the fourth line,

we have used the universal formula eq. (B.84a), again only keeping gauge boson kinetic

term. To get the fifth line, we have used the trace property of the Dirac γ matrices

tr
(
σµνσαβ

)
= 4

(
ηµαηνβ − ηµβηνα

)
.

Putting all the three pieces together, we get

Γ
(1)
QCD ⊃ ΓG + Γq + Γc ⊃

∫
d4x

1

(4π)2

(
ln
µ2

m2

)(
11

12
Nc −

1

3
NfdQ

)
g2GaµνG

a,µν

=

∫
d4x

1

(4π)2

(
ln
µ2

m2

)[
−
(

11

12
Nc −

1

3
NfdQ

)
GD,aµν G

D,a,µν

]
, (C.31)

where we are using our notation

[Dµ, Dν ] ≡ GDµν = GD,aµν T
a , GD,aµν = −igGaµν . (C.32)

Adding the tree-level piece

Γ
(0)
QCD ⊃

∫
d4x

(
−1

4
GaµνG

a,µν

)
=

∫
d4x

1

4g2
GD,aµν G

D,a,µν , (C.33)

we obtain the one-loop effective action:

ΓQCD ⊃ Γ
(0)
QCD + Γ

(1)
QCD ⊃

∫
d4x

[
1

4g2
− 1

(4π)2 ln
µ2

m2

(
11

12
Nc −

1

3
NfdQ

)]
GD,aµν G

D,a,µν .

(C.34)

Following the discussion in appendix C.1, we obtain the RGE equation for the gauge

coupling:

0 = µ
d

dµ

[
1

4g2
− 1

(4π)2 ln
µ2

m2

(
11

12
Nc −

1

3
NfdQ

)]
=⇒ β (g) = µ

dg

dµ
= − g3

(4π)2

(
11

3
Nc −

4

3
NfdQ

)
. (C.35)

Now taking the quarks to form the fundamental representations dQ = 1
2 , we obtain the

familiar QCD beta function

βQCD (g) = − g3

(4π)2

(
11

3
Nc −

2

3
Nf

)
. (C.36)

In the case of QED, the gauge symmetry is Abelian. Since the structure constants vanish

fabc = 0,

trG

(
T aT b

)
= Ncδ

ab = 0 , (C.37)

which corresponds to taking Nc = 0. Hence, only the quark piece contributes, where the

generator matrix is 1:

trq

(
T aT b

)
= dQδ

ab = 1 . (C.38)
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This corresponds to taking dQ = 1. Plugging into eq. (C.35), we derive the QED beta

function:

βQED (g) =
4

3

g3

(4π)2Nf . (C.39)

D Heavy-heavy current matching at finite recoil

In this appendix, we present the calculation of the heavy-heavy current matching for the

case w 6= 1. This is a generalization of the calculation performed in section 7.2. The

resulting matching coefficients will now be functions of w ≡ v1 · v2 6= 1. Our results can be

compared to ref. [43] (see also the appendix of ref. [60]).

The UV Lagrangian is the same as for w = 1 case in eq. (7.16),

LQCD = Q̄1

(
i /D −m1

)
Q1 + Q̄2

(
i /D −m2

)
Q2 +

[
Q̄1

(
J+
α γ

α + J+
5α γ

α γ5
)
Q2 + h.c.

]
− 1

4
GaµνG

µν,a + Lgf + Lgh . (D.1)

However, in solving the equations of motion for the short distance modes, we now need

to carefully distinguish the two velocities. The solution up to linear order in J is now

(cf. eq. (7.19))

Hv1 =
1

iv1 ·D+2m1
i /D⊥1hv1 +

1

iv1 ·D+2m1
J+

(
1+

1

iv2 ·D+2m2
i /D⊥2

)
hv2 , (D.2a)

Hv2 =
1

iv2 ·D+2m2
i /D⊥2hv2 +

1

iv2 ·D+2m2
J−
(

1+
1

iv1 ·D+2m1
i /D⊥1

)
hv1 . (D.2b)

Note that the Dµ
⊥ operators depend on the choice of velocity label as well. We have also

introduced the shorthand

J± ≡
(
J±α γ

α + J±5α γ
α γ5

)
e±i∆p·x , (D.3)

with ∆pµ ≡ m1v
µ
1 −m2v

µ
2 . Taking the second variation of the action proceeds as before,

yielding the same matrix structure

δ2Snon-local
HQET =

(
δAaµ δh

T
v1 δh̄v1 δh

T
v2 δh̄v2

)


Cµν,ab Γ̄µ,a1 −
(

Γµ,a1

)T
Γ̄µ,a2 −

(
Γµ,a2

)T
−
(

Γ̄ν,b1

)T
0 −BT1 0 −ST2

Γν,b1 B1 0 S1 0

−
(

Γ̄ν,b2

)T
0 −ST1 0 −BT2

Γν,b2 S2 0 B2 0





δAbν

δhv1

δh̄Tv1

δhv2

δh̄Tv2


.

(D.4)
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However, the matrix elements are now generalized to (dropping terms that do not con-

tribute to the matching)

Cµν,ab= ηµν
(
D2
)ab − 2

(
Uµν,ab1 + 1↔ 2

)
, (D.5a)

Uµν,ab1,2 = −g2
s h̄v1,2 T

aT b
γµ⊥1,2

iv1,2 ·D + 2m1,2
J±

γν⊥2,1

iv2,1 ·D + 2m2,1
hv2,1 , (D.5b)

B1,2 = iv1,2 ·D + i /D⊥1,2
1

iv1,2 ·D + 2m1,2
i /D⊥1,2 , (D.5c)

Γµ,a1,2 = gs T
a

{[
vµ1,2 + i /D⊥1,2

γµ⊥1,2

iv1,2 ·D + 2m1,2

]
hv1,2

+

[
1 + i /D⊥1,2

1

iv1,2 ·D + 2m1,2

]
J±

γµ⊥2,1

iv2,1 ·D + 2m2,1
hv2,1

}
, (D.5d)

Γ̄µ,a1,2 = gs

{
h̄v1,2

[
vµ1,2 +

γµ⊥1,2

iv1,2 ·D + 2m1,2
i /D⊥1,2

]

+ h̄v2,1
γµ⊥2,1

iv2,1 ·D + 2m2,1
J∓
[
1 +

1

iv1,2 ·D + 2m1,2
i /D⊥1,2

]}
T a , (D.5e)

S1,2 =

[
1 + i /D⊥1,2

1

iv1,2 ·D + 2m1,2

]
J±
[
1 +

1

iv2,1 ·D + 2m2,1
i /D⊥2,1

]
. (D.5f)

The relevant piece of the one-loop effective action is still abstractly given by the first

line in eq. (7.22), since it derives from a matrix with the same form. However, now one

must be careful to track the non-trivial interplay between the two velocities. Plugging in

the concrete expressions of the matrix elements yields

S
(1)
HQET ⊃ iTr

[
1

(iD)2
δab ηµν

(
Uµν,ab1 + Γ̄µ,a1 B−1

1 Γν,b1 − Γ̄µ,a1 B−1
1 S1B

−1
2 Γν,b2

)]
+ 1↔ 2

⊃ −ig2
s

4

3
Tr

{
w

1

(iD)2
h̄v1

2m1 + 2iv1 ·D
(iD)2 + 2m1 iv1 ·D

J+ 2m2 + 2iv2 ·D
(iD)2 + 2m2 iv2 ·D

hv2

+
1

(iD)2
h̄v1

2m1 + 2iv1 ·D
(iD)2 + 2m1 iv1 ·D

J+ i /D⊥2 − iv2 ·D
(iD)2 + 2m2 iv2 ·D

/v1 hv2

+
1

(iD)2
h̄v1 /v2

i /D⊥1 − iv1 ·D
(iD)2 + 2m1 iv1 ·D

J+ 2m2 + 2iv2 ·D
(iD)2 + 2m2 iv2 ·D

hv2

+
1

(iD)2
h̄v1 γ

µ i /D⊥1 − iv1 ·D
(iD)2 + 2m1 iv1 ·D

J+ i /D⊥2 − iv2 ·D
(iD)2 + 2m2 iv2 ·D

γµ hv2

}
+
(
1↔ 2, J+ ↔ J−

)
. (D.6)

This expression reduces to the second line in eq. (7.22) under the special case v1 = v2, as it

must. Next, we apply the CDE prescription discussed in appendix B.2.2 to evaluate these

functional traces (the analog of eq. (7.23)), which eventually simplifies to

S
(1)
HQET ⊃

∫
ddx

[
h̄v1
(
J+
α I

α
HH + J+

5α I
α
HH,5

)
ei∆p·x hv2 + h.c.

]
, (D.7)
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where the loop integrals are given by

IαHH ≡ −ig2
s µ

2ε 4

3

∫
ddp

(2π)d
1

p2
(
p2 + 2m1 v1 · p

)(
p2 + 2m2 v2 · p

)
×
{
w
(
2m1 + 2v1 · p

)
γα
(
2m2 + 2v2 · p

)
+
(
2m1 + 2v1 · p

)
γα
(
/p⊥2
− v2 · p

)
/v1

+ /v2

(
/p⊥1
− v1 · p

)
γα
(
2m2 + 2v2 · p

)
+ γµ

(
/p⊥1
− v1 · p

)
γα
(
/p⊥2
− v2 · p

)
γµ

}
, (D.8a)

IαHH,5 ≡ IαHH

∣∣
γα→ γα γ5

. (D.8b)

Evaluating these integrals is straightforward, although significantly more tedious than in

the equal velocity case. For example, evaluating IαHH with dim. reg. in the MS scheme, we

obtain

Iα = C̃1 (z, w) γα − C2 (z, w) vα1 − C3 (z, w) vα2 , (D.9)

where z ≡ m2
m1

, and the three coefficients are given by the following Feynman parameter

integrals

C̃1 (z, w) =
2αs
3π

∫ 1

0
dx

∫ 1−x

0
dy

(
4π µ2

m2
1

1

x2 + y2 z2 + 2x y z w

)ε
Γ(ε)

[
1− 3 ε+ 2 ε2

+ ε
x+ y z2

x2 + y2 z2 + 2x y z w
− ε 2w − (1 + 2w) (x+ y)

x2 + y2 z2 + 2x y z w
z

]
, (D.10a)

C2 (z, w) = −2αs
3π

2

∫ 1

0
dx

∫ 1−x

0
dy

x2 − y (1− x) z

x2 + y2 z2 + 2x y z w
, (D.10b)

C3 (z, w) = −2αs
3π

2

∫ 1

0
dx

∫ 1−x

0
dy

y2 z2 − x (1− y) z

x2 + y2 z2 + 2x y z w
= C2

(
z−1, w

)
. (D.10c)

Note that for the integrands of C2 (z, w) and C3 (z, w), we have taken the ε→ 0 limit and

subtracted the 1
ε − γE + ln 4π counter terms. We are allowed to do so before performing

the Feynman parameter integral when the ε → 0 limit is finite. Further evaluation of

these integrals is again straightforward, but will yield lengthy expressions that are less

enlightening. As an explicit cross check, we can evaluate C3 (z, w):

C3 (z, w) =
2αs
3π

{
z

(1− 2w z + z2)2

[
2 (w − 1) z (1 + z) ln z

−

(
(w + 1)− 2w (2w + 1) z

−
(
1− 5w − 2w2

)
z2 − 2 z3

)
1√

w2 − 1
ln
(
w +

√
w2 − 1

)]

− z

1− 2w z + z2
(ln z − 1 + z)

}
. (D.11)

This agrees with eq. (19) and eq. (A1) in ref. [43]. As noted above, the function C2 (z, w)

and C3 (z, w) are related to each other by m1 ↔ m2, as they must. The same relation
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holds for the results obtained in ref. [43], as explicitly stated in eq. (A3) therein. So this

verifies our derivation of C2 (z, w) as well. We note that our coefficient C̃1 (z, w) defined

above is slightly different from the C1 defined in ref. [43], because in our approach, the

residue difference contribution needs to be added on top of the result obtained in eq. (D.7),

cf. eq. (1.8). We leave the evaluation of C̃1 (z, w) and IαHH,5 as well as the comparison of

them with ref. [43] for future work, as we believe the evidence that functional methods can

be applied to HQET is sufficient.
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